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Summary. Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed
dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized
additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating
assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special
cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are
compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized
extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent
theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data
applications are illustrated through two reproducible examples in time series and survival analysis.
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1. Introduction
Distributed lag models (DLMs), originally proposed in econo-
metrics by Almon (1965) and more recently in epidemiology
by Schwartz (2000), constitute an elegant analytical frame-
work to describe associations characterized by a delay between
an input and a response in time series data. DLMs model
the response yt observed at time t in terms of past occur-
rences xt−� of a predictor x. The new quantity �, the lag,
defines a new space that expresses the temporal structure
of the association. In standard DLMs, a parametric function
is applied to model the shape of the lag structure, usually
polynomials or less often regression splines. However, the esti-
mated shape is dependent on the chosen parametric form, for
instance, the degree of the polynomial or the number and
locations of the splines knots. More sophisticated smooth-
ing techniques have been proposed to address this issue in
DLMs, including penalized splines through generalized addi-
tive models (GAMs) (Zanobetti et al., 2000; Muggeo, 2008;
Rushworth et al., 2013; Obermeier et al., 2015) or Bayesian
approaches with the definition of prior distributions (Welty
et al., 2009). While these methods offer greater flexibility
and more advanced model selection procedures, they rely on
the strong assumption of a linear or linear-threshold dose-
response relationship, and are only applicable to time series
data.

Recent work has addressed these limitations. First,
Armstrong (2006) and Gasparrini et al. (2010) extended
DLMs to distributed lag non-linear models (DLNMs), a
framework to describe bi-dimensional dose-lag-response asso-
ciations potentially varying non-linearly in the dimensions of

predictor intensity and lag. Second, Gasparrini (2014) gen-
eralized DLMs and DLNMs beyond the time series setting,
extending their application to other designs and data struc-
tures. However, the current version of DLNMs still requires
the user to select the parametric form of the functions
expressing the dose-lag-response relationship. Model selection
procedures based on information criteria have been proposed,
but they lack a solid theoretical basis, and have been shown
to partly affect the inferential properties of the estimators
(Gasparrini, 2014; Obermeier et al., 2015).

In this contribution, we propose an extended DLNM class
developed through penalized splines regression. This devel-
opment provides greater flexibility for modelling potentially
complex bi-dimensional dose-lag-response relationships, and
offers built-in model selection and inferential procedures
based on recent theoretical work on GAMs. In addition,
we extend the methodology further to accommodate a pri-
ori assumptions on the shape of the lag structure through
the definition of specific penalties. This general framework is
applicable to model either linear or non-linear lagged rela-
tionships, in various study designs based on either time series
or other data structures, and includes most of the models
described above as special cases. This extension is fully imple-
mented in freely available software routines.

The article is structured as follows: Section 2 briefly revisits
the definition of DLNMs. Section 3 illustrates the extension
to a penalized version of DLNMs. In Section 4, we present a
simulation study for the assessment of the performance and
inferential properties of both standard and extended versions.
In Section 5, penalized DLNM are applied in two reproducible
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illustrative examples. A final discussion is provided in Sec-
tion 6. Additional information and results are provided in the
Web material.

2. The DLNM Framework

In time series data, DLMs and DLNMs model a response
yt measured at time t = 1, . . . , m in terms of lagged occur-
rences of a predictor xt , represented by the vector qt =
[xt−�0 , . . . , xt−L]T, with �0 and L as minimum and maximum
lags, respectively, (Gasparrini et al., 2010). The framework
can be extended beyond the time series setting by including
an additional indexing structure, allowing each response yi,t ,
with i = 1, . . . , n, to depend on equally spaced lagged values
qi,t = [xi,t−�0 , . . . , xi,t−L]T. Here, each observation identified by
the index i, for instance, a specific subject followed in time,
refers to a different exposure profile that determines the lagged
dose pattern at time t. Time series data represent a special
case where i = t, while extensions to more complex designs
such as survival or repeated-measures longitudinal data are
straightforward. See Gasparrini (2014) for a more detailed
explanation of the extension beyond time series data and
related algebraic definitions.

The association is represented through a function s, defined
as:

s(qi,t) = s(xi,t−�0 , . . . , xi,t−L) =
L∑

�=�0

f ·w(xi,t−�, �). (1)

Here, the bi-dimensional dose-lag-response function f ·
w(x, �) is composed of two marginal functions: the standard
dose-response function f (x), and the additional lag-response
function w(�) that models the lag structure in the space
� = [�0, . . . , L]T. Parameterization of f and w is obtained by
applying known basis transformations to the vectors qi,t and �,
producing marginal basis matrices Ri,t and C with dimensions
(L − �0 + 1) × vx and (L − �0 + 1) × v�, respectively. Identi-
fiability constraints require a reparameterization of R (see
Section 3.2). The function s, here termed cross-basis function
and parameterized by coefficients η, is constructed by:

s(xi,t−�0 , . . . , xi,t−L; η) = (1T
L−�0+1Ai,t)η = wT

i,tη, (2)

with wi,t as a set of known transformations derived from Ai,t ,
which in turn is computed by a row-wise Kronecker product
between the two basis matrices (Eilers et al., 2006), as:

Ai,t = (Ri,t ⊗ 1T
v�

) � (1T
vx

⊗ C), (3)

with 1j as a vector of 1’s with length j. The n × (
vx · v�

)
cross-

basis matrix W, obtained by applying (1)–(3) to the full set
of n observations, can be included in the design matrix of
standard regression models, such as generalized linear models
(GLMs) or Cox proportional hazard models, to estimate the
parameters η.

The dose-lag-response surface can be recovered by predict-
ing effects β̂x,� on a grid of predictor values x and lag �. For
ease of interpretation, β̂x,� are defined as specific contrasts
of f ·w(x, �) by centering the dose-response function f (x) to

a reference value of the predictor x. These effects β̂x,� are
interpreted in the usual scale of risk ratio or difference. In par-
ticular, the analysis commonly focuses on specific summaries,
such as estimated lag-response associations at a given predic-
tor value, or the overall dose-response association obtained
by cumulating the risk across the lag period. Algebraic and
interpretational details are given elsewhere (Armstrong, 2006;
Gasparrini et al., 2010; Gasparrini, 2014).

3. Penalized DLNMs

A penalized extension of DLNM can be described within the
family of GAMs (Hastie and Tibshirani, 1990; Wood, 2006a).
These models extend the strong parametric form of GLMs by
allowing the linear predictor to include flexible smooth func-
tions of the covariates. A recent development of GAMs defines
smooth components through penalized regression splines,
using low-rank basis terms and a simple form of penalized
likelihood (Wood, 2006b). This definition provides theoret-
ically well-grounded estimators implemented using efficient
and numerically stable routines (Wood, 2008, 2011). We
refer to the two versions of the method as unpenalized and
penalized DLNMs, sometimes using the shortcuts GLMs and
GAMs, respectively.

3.1. Penalized Likelihood

In unpenalized models, the dose-lag-response association
defined by a DLNM can be estimated by maximizing the
model likelihood l(η, γ) in terms of the model parameters
[ηT, γT]T, with η corresponding to coefficients of the cross-
basis and γ to coefficients of additional covariate terms in
the model, respectively. The idea underlying the extension
to penalized DLNM is to form a richly parameterized cross-
basis, and then to apply penalties through its parameters η to
smooth the dose-lag-response surface. Following similar devel-
opments for tensor product bi-dimensional smoothing (Currie
et al., 2004), a penalized version lp(η, γ, λ) of the model like-
lihood is obtained by:

lp(η, γ, λ) = l(η, γ) − 1

2
ηT

(
λx

(
Sx ⊗ 1T

v�

) + λ�

(
1T

vx
⊗ S�

))
η.

(4)

Here, the penalization of η is obtained through penalty
matrices Sx and S� and penalty (or smoothing) parameters λ =
[λx, λ�]

T that control the degree of smoothness of the surface.
The definition in (4) offers several advantages. First, it allows
different degrees of penalization along the two dimensions
of the dose-lag-response function f ·w(xt−�, �), by indepen-
dently calibrating the smoothness in the two marginal spaces
x and � through λx and λ�, respectively. In addition, a mix
of penalized and unpenalized functions can be defined, for
example, when strong parametric assumptions can be made
for either f (x) or w(�) in (1)–(3), with the exclusion of the
related smoothing parameter and penalty matrix from (4).
The framework proposed above, therefore, includes previously
proposed penalized DLM (Zanobetti et al., 2000; Obermeier
et al., 2015) by specifying a linear unpenalized f (x). Exten-
sion to models with multiple cross-basis terms or additional
penalized terms are straightforward.
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3.2. Choice of the Smoother

Smooth terms in a GAM can be specified by different
smoothers, characterized by alternative basis functions and
penalties. In penalized DLNMs, the choice of the smoother
determines the basis transformations used to generate Ri,t

and C in (2)–(3) and the penalties that form Sx and S� in (4).
Here, we describe two options, although others are available
(Wood, 2006a).

The first smoother, labeled ps, is based on P-splines (Eilers
and Marx, 1996), which offer good performance in multidi-
mensional smoothing and both simplicity and flexibility in the
penalty definition. The basis matrix of this smoother is com-
posed of v B-splines of degree p, defined by v + p + 1 equally
spaced knots. The smoothing is obtained by penalizing the dif-
ference between coefficients corresponding to adjacent splines
using a difference order d. The penalty matrix is derived as:

S = DT
d Dd, (5)

with Dd as a (v − d) × v difference matrix of order d. Exam-
ples of the first two orders are:

D1 =

⎛
⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎠

; D2 =

⎛
⎜⎜⎜⎜⎝

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −2 1

⎞
⎟⎟⎟⎟⎠

.

(6)

A second smoother, labeled cr, is based on cubic regres-
sion splines with penalties on second derivatives. As described
in Wood (2006a), for computational convenience the basis
matrix of this smoother is derived using a special parame-
terization of v natural cubic splines, where only one spline is
non-zero at each of the v knots. These knots can be placed
everywhere along the range of the predictor, and by default at
equally spaced quantiles. The smoothing is induced by penal-
izing the second derivative of the function, with more complex
computation required to derive the penalty matrix S (Green
and Silverman, 1994).

The tensor product form of the cross-basis in (1)–(3)
requires constraints to ensure the identifiability of the regres-
sion parameters. Specifically, the identifiability constraints are
absorbed into R and Sx through a reparameterization. This
step coincides with the exclusion of the intercept from f (x) in
unpenalized DLNMs, and ensures that the n × (

vx · v�

)
cross-

basis matrix W can be full rank. Additional details are given
in Wood (2006a) and the references cited above.

3.3. Alternative Penalties on the Lag Structure

Specific assumptions can be made about the shape of the
relationship in the lag dimension. These assumptions can be
incorporated through additional penalties, which fall into two
main categories. First, varying ridge penalties can be imposed
to shrink different parts of the lag-response curve towards the
null value. These type of penalties can be used with either ps

or cr smoothers, and takes two alternative forms:

S� = Pv�
, (7a)

S� = CTP�C. (7b)

Here, P is a pre-specified diagonal matrix of weights p,
which in (7a) are applied directly to the v� coefficients η,
while in (7b) are chosen for the L − �0 + 1 lags and mapped
into η through the basis matrix C defined in (3). These were
previously discussed in Muggeo (2008) and Obermeier et al.
(2015).

A second type are varying difference penalties that can
be applied to enforce a different degree of smoothness along
the lag-response curve. These penalties are naturally defined
for ps smoothers, and while technically applicable with cr

smoothers as well, they are less theoretically grounded for
the latter. They take the forms:

S� = DT
d Pv�

Dd, (8a)

S� = CTDT
d P�DdC, (8b)

where P defines weights p for v� − d and L − �0 + 1 − d

differences between coefficients in (8a) and lags in (8b),
respectively, while Dd is a matrix defined in (6) of consistent
dimensions.

Single or multiple penalties for the lag structure as in (5) or
(7)–(8) can be imposed in the same model by defining for each
of them the smoothing parameters λ� and penalty matrices S�

in (4). See Sections 4–5 for specific examples.

3.4. Estimation

After the model has been defined by the choice of basis
terms and penalty matrices, maximization of the penalized
log-likelihood lp(η, γ, λ) in (4) is solved through standard
estimation methods for GAMs (Wood, 2006a). Briefly, a
penalized iterative reweighted least square (P-IRLS) method
is integrated with multiple smoothing parameter selection to
estimate the degree of smoothness. Alternative methods are
available for the estimation of the smoothing parameters λ

within P-IRLS, such as generalized cross validation (GCV),
unbiased risk estimator (UBRE, essentially scaled AIC) and
(restricted) maximum likelihood (REML and ML), all imple-
mented using reliable and computationally efficient routines
(Wood, 2008, 2011). Simulations indicate that REML and ML
are superior in terms of mean-square error performance and
smoothing properties (Wood, 2011).

Approximate point-wise confidence intervals of the dose-
lag-response surface and its summaries are computed from
the estimated posterior (co)variance matrix of the coefficients
η̂, derived using empirical Bayesian estimators (Marra and
Wood, 2012). These account for the inherent bias affecting
smooth terms and have been shown to provide confidence
intervals with across-the-function frequentist coverage close
to nominal. Although the estimators applied here neglect the
uncertainty in the estimation of the smoothing parameters
λ, this has little effect on interval performance in real-data
settings (Marra and Wood, 2012).
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Figure 1. Simulated scenarios representing different bi-dimensional dose-lag-response associations. The bold black lines
represent the dose-response and lag-response relationships used to compare the fit of different models in Figure 2.

The smoothness of the dose-lag-response surface can be
quantified in terms of effective degrees of freedom (edf), with
the high boundary usually represented by the product of
the dimensions of the two marginal basis matrices, vx × v�

(when λx = λ� = 0), and the lower boundary determined by
the product of their null space dimensions (when λx → ∞ and
λ� → ∞). The null space dimension of each marginal basis is
equal to the order of the penalty, that is, the difference order
d in ps or the order of derivative (usually 2) in cr smoothers,
respectively, minus any constraint (Wood, 2006a).

4. Simulation Study

To assess the performance and inferential properties of differ-
ent versions of penalized DLNMs and to compare them with
the standard unpenalized approach, we performed a simula-
tion study based on scenarios of dose-lag-response surfaces
with varying degree of complexity.

4.1. Simulation Setting

The predictor xt was represented by the daily temperature
series in Chicago within the period 1987–2000 (Samet et al.,
2000), standardized over the range 0–10. For each replicate,
we simulated an outcome series yt of daily mortality counts,
with t = 1, . . . , 5114, from a Poisson distribution with mean
μt , using:

log(μt) = αj +
40∑
�=0

fj ·wj(xt−�, �). (9)

We repeated the simulations in three scenarios j = 1, 2, 3,
with the dose-lag-response function fj ·wj(x, �) over lag 0–40
described by:

� Scenario 1: a simple plane;
� Scenario 2: a shape resembling previously estimated

temperature-mortality associations;
� Scenario 3: a complex wiggly surface.

A graphical representation of these three scenarios is offered
in Figure 1, with algebraic details provided in Web Appendix
A. The intercept αj was used as a signal-to-noise parameter

to achieve a Pearson correlation coefficient between μt and yt

of approximately 0.5 in each scenario.
For each simulated series, we fitted alternative models

where the second term in (9) is replaced by a cross-basis
s(xt, . . . , xt−40). The primary model, simply labeled gam, used
a penalized DLNM with ps smoothers of rank v = 10 (minus
constraints), degree 3 (cubic B-splines) and second-order
difference (d = 2) penalties for each marginal dimension, esti-
mated by REML. Previous research (Wood, 2006a) indicates
that basis dimension is not critical, if large enough to fit the
underlying marginal shape, while the smoother and estimator
were chosen for their flexibility and inferential performance,
respectively. This model was compared with:

• Alternative estimators:
- glm-aic, defined by (unpenalized) quadratic B-spline

functions with the optimal number of equally spaced
knots selected by minimizing AIC among combinations
producing 1–10 df (minus constraints) in each dimension;

- gam-aic, fitted by replacing REML with a UBRE-AIC
estimator.

� Alternative smoothers:
- gam-cr, defined by replacing the ps with cr smoothers;
- gam-ps2,1, with difference penalties of order 2 and 1 for

f (x) and w(�), respectively.
� Additional/alternative penalties for w(�):

- gam-addlast, with an additional varying ridge penalty as
in (7a) with p = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]T;

- gam-altquad, that replaced entirely the penalty with a
varying difference penalty as in (8b), with p� = �2;

- gam-altexp, that replaced entirely the penalty with a
varying ridge penalty as in (7a), with pk = exp(k − 1) and
k = 1, . . . , v� − d.

These additional/alternative penalties follow the assump-
tion of a lag-response that approaches the null value at the
end of the lag period, or that is smoother at longer lags. See
Muggeo (2008) and Obermeier et al. (2015) for details.

We assessed the performance of the eight models above
using 1000 simulation replicates in each of the three scenarios
depicted in Figure 1, by comparing the across-the-surface cov-
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Table 1
Results of the simulation study with average time (seconds, using a 2.4GHz PC), equivalent degrees of freedom (edf),

coverage, and root mean square error (RMSE, relative to the gam-reml model) for each scenario depicted in Figure 1 across
alternative models in 1000 replicates

Scenario 1 Scenario 2 Scenario 3

Time (e)df cov RMSE (e)df cov RMSE (e)df cov RMSE

Alternative estimators
gam 3.70 2.81 0.97 1.00 27.87 0.91 1.00 19.42 0.92 1.00
glm-aic 7.94 2.93 0.83 2.67 30.42 0.85 1.41 22.87 0.81 1.83
gam-aic 5.73 4.54 0.96 1.77 30.49 0.91 1.10 22.93 0.95 1.10

Alternative smoothers
gam-cr 4.72 2.97 0.97 1.02 37.05 0.95 1.03 24.32 0.94 1.00
gam-ps2,1 3.83 1.72 0.98 0.63 28.26 0.91 1.03 18.32 0.92 0.91

Additional/alternative penalties for w(�)
gam-addlast 4.74 2.73 0.95 0.98 20.44 0.93 0.76 16.64 0.89 0.88
gam-altquad 3.66 2.87 0.97 1.02 25.83 0.92 0.92 19.85 0.91 1.03
gam-altexp 4.10 7.45 0.90 2.68 25.20 0.94 0.80 23.15 0.97 0.90

erage and root mean square error (RMSE) (defined in Web
Appendix B, see also Marra and Wood (2012)) using esti-
mated effects β̂xp,�p

computed on a grid of predictor values
xp = 0, 0.25, . . . , 9.75, 10 and lag values �p = 0, . . . , 40.

4.2. Results of the Simulation Study

Results are illustrated in Table 1 and Figure 2. Table 1 reports
the average computing time and edf, the empirical coverage
of 95% confidence intervals and the empirical RMSE relative
to the gam model across the surfaces. Figure 2 displays the
estimated dose-response and lag-response curves correspond-
ing to the bold black lines across the surfaces in Figure 1
for the models gam, glm-aic, and gam-addlast. The same
graphical representation for the other models is provided in
Web Figures S2–S3 in the online Supporting Information.

In all the scenarios, penalized DLNMs appear superior to
the unpenalized counterpart. In particular, glm-aic shows
higher RMSE (as also suggested by the wigglier curves
in Figure 2), and a substantial under-coverage due to
unaccounted additional variability of the model selection pro-
cedure, consistently with what previously reported (Sylvestre
and Abrahamowicz, 2009; Gasparrini, 2014). The REML esti-
mator exhibits a slightly better performance if compared
to UBRE-AIC in gam-aic, with the latter showing higher
RMSE and some evidence of undersmoothing, especially in
the simplest scenario. Alternative smoothers in gam-cr and
gam-ps2,1 provide similar outputs, with the latter performing
better in the plane scenario, which is consistent with its null
space of 1 edf.

The model gam-addlast shows an improved performance
in the second scenario, where the extended flat region (see
Figure 2) is well fitted through the addition of a varying
ridge penalty, which also helps identify the correct lag period
even when the interval is extended well beyond it, as previ-
ously reported (Obermeier et al., 2015). This doubly penalized
model performs well also in the other scenarios that do not
match the assumption of the penalty, with only a minor bias
produced in the plane scenario, as noticeable in the last part
of the estimated lag-response curves in Figures 2 and S3. This

good performance is due to the possibility of virtually remov-
ing the additional penalty by estimating a very low smoothing
parameter λ�. Models gam-altquad and gam-altexp, where
the standard penalty was removed, perform well in the sec-
ond and third scenarios, but the latter fails to fit the plane
dose-lag-response surface, which is not compatible with its
strong assumptions about form of the lag-response shape (see
Web Figure S3).

Generally, penalized models show across-the-surface cover-
age close to the nominal value, although some undercoverage
is evident for some models in the second scenario (see also
Web Figures S4–S5 in the online Supporting Information). In
addition, gam-aic fails to converge in 1.4% of replicates of the
plane scenario, where the simulated surface represents the null
space dimension of the tensor product smoother. However, the
analysis of non-convergent models does not identify problems
with point estimates and coverage.

5. Two Examples

As an illustration of the application of penalized DLNMs in
different study designs, we replicate two published analyses.
The reader can refer to the original publications for details
on the analytical methods and data (Gasparrini and Leone,
2014; Gasparrini, 2014).

5.1. Outdoor Temperature and All-Cause Mortality

The first example illustrates the application of penalized
DLNMs in time series data, using daily series from London in
the period 1993–2006. Specifically, the relationship between
counts of all-cause mortality yt at day t and outdoor temper-
ature xt−�, accounting for up to 25 days of lag, was estimated
with a quasi-Poisson GLM of form:

log[E(yt)] = α + s(xt, . . . , xt−25; η) + g(t; γ) +
6∑

j=1

δjwj,t, (10)

with g as natural cubic splined defined by 10 df/year account-
ing for seasonal and long term trends, and wj as an indicator
of day of the week. In the original analysis (Gasparrini and



6 Biometrics

Plane

0 2 4 6 8 10

−
0.

00
5

0.
01

0
0.

02
0

x

lo
g−

R
R

GAM

0 2 4 6 8 10

−
0.

00
5

0.
01

0
0.

02
0

x

lo
g−

R
R

GLM −AIC

0 2 4 6 8 10

−
0.

00
5

0.
01

0
0.

02
0

x

lo
g−

R
R

GAM −ADDLAST

0 10 20 30 40

−
0.

00
5

0.
00

5
0.

01
5

Lag

lo
g−

R
R

GAM

0 10 20 30 40

−
0.

00
5

0.
00

5
0.

01
5

Lag

lo
g−

R
R

GLM −AIC

0 10 20 30 40

−
0.

00
5

0.
00

5
0.

01
5

Lag

lo
g−

R
R

GAM −ADDLAST

Temperature

0 2 4 6 8 10

−
0.

02
0.

02
0.

06

x

lo
g−

R
R

GAM

0 2 4 6 8 10

−
0.

02
0.

02
0.

06

x

lo
g−

R
R

GLM −AIC

0 2 4 6 8 10

−
0.

02
0.

02
0.

06

x

lo
g−

R
R

GAM −ADDLAST

0 10 20 30 40

−
0.

02
0.

00
0.

02
0.

04

Lag

lo
g−

R
R

GAM

0 10 20 30 40

−
0.

02
0.

00
0.

02
0.

04

Lag

lo
g−

R
R

GLM −AIC

0 10 20 30 40

−
0.

02
0.

00
0.

02
0.

04

Lag

lo
g−

R
R

GAM −ADDLAST

Complex

0 2 4 6 8 10

−
0.

01
0.

01
0.

03

x

lo
g−

R
R

GAM

0 2 4 6 8 10

−
0.

01
0.

01
0.

03

x

lo
g−

R
R

GLM −AIC

0 2 4 6 8 10

−
0.

01
0.

01
0.

03
x

lo
g−

R
R

GAM −ADDLAST

0 10 20 30 40

−
0.

01
0.

01
0.

03

Lag

lo
g−

R
R

GAM

0 10 20 30 40

−
0.

01
0.

01
0.

03

Lag

lo
g−

R
R

GLM −AIC

0 10 20 30 40

−
0.

01
0.

01
0.

03

Lag

lo
g−

R
R

GAM −ADDLAST

Figure 2. Results of the simulation study, illustrating the performance of three different models (see Table 1) in 1000
replicates. The panels represent the dose-response (rows 1–3) and lag-response curves (rows 4–6) corresponding to the bold
black lines in the three simulated surfaces (by column) in Figure 1. Continuous gray, and dashed red and continuous black
lines represent the fit from 25 random replicates, the average across all replicates, and the true simulated curves, respectively.
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Leone, 2014), the dependency was modelled with an unpe-
nalized DLNM within a GLM, using a cross-basis function s

with 4 × 5 = 20 df composed of quadratic B-splines defined by
2 equally spaced internal knots for the dose-response function
f (x) and natural cubic splines by three equally spaced inter-
nal knots in the log scale plus intercept for the lag-response
function w(�). Boundary knots were placed by default at the
ranges.

We replicated the analysis using a penalized DLNM within
a GAM with a REML estimator, specifying marginal ps

smoothers with dimension 10 (minus constraints) for both
spaces. Penalization of f (x) was enforced through a default
second-order difference penalty as in (5). Extending previous
models (Muggeo, 2008; Obermeier et al., 2015), we applied a
double varying penalty to w(�) using a second-order difference
form (8b) with pk = k2 for k = 0, . . . , 23, and a ridge penalty
of form (7a) with p = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]T. These choices
are motivated by the assumption of a shape that is smoother
at longer lags and approaches the null value at the end of the
lag period.

The GAM used 35.45 edf to model the dose-lag-response
surface, and suggests a strong and short-term association with
heat and a more delayed association with cold temperatures,
consistently with previous results (Gasparrini et al., 2015).
The estimates, reported in the first row of Figure 3, are very
similar to those from the original analysis, replicated in the
second row. However, it is interesting to note the effect of the
double varying penalty in the estimated lag-response at 29 ◦C,
with the curve shrinking toward the null at lags higher than
15. In addition, while the cross-basis specification of the unpe-
nalized DLNM was originally defined a priori, an AIC-based
selection suggests a very complex and implausible model with
10 × 9 = 90 df, with estimates illustrated in the third row of
Figure 3.

As previously mentioned (Section 3.1), the flexibility of this
modelling framework allows a mix of penalized and unpenal-
ized functions. As an example, we replaced the ps smoother
for f (x) with an unpenalized double-threshold function, that
is, linear splines which model a straight relationship below
17 ◦C and above 21 ◦C, and a flat region in between. Results
are displayed in the last row of Figure 3. This model uses only
10.64 edf to define the dose-lag-response surface, although this
comes at the price of making strong parametric assumptions
for one of the two spaces. The same approach can be used to
specify simpler penalized DLMs, by selecting a linear function
as f (x).

5.2. Occupational Radon and Lung Cancer Mortality

The second example describes the extension of penalized
DLNMs to individual time-to-event data, using a cohort of
3347 miners working in the Colorado Plateau mines, with
follow-up at December 31, 1982. Specifically, the association
between an indicator of occurrence of lung cancer death yi,t

for subject i at age t, and yearly occupational radon exposure
xi,t−�, measured in working-level months (WLM), with lags of
2–40 years, was estimated with a Poisson GLM of form:

log[E(yi,t)] = α + sx(xi,t−2, . . . , xi,t−40; ηx)

+sz(zi,t−2, . . . , zi,t−40; ηz) + g(t; γ) + δci,t .

(11)

This GLM approximates the Cox proportional hazard
model applied in the original analysis (Gasparrini, 2014) by
splitting the follow-up time of each individual into 1-year peri-
ods, and modelling the baseline risk with a cubic B-spline
function g(t) with 5 df. This allows the use of penalized splines
implemented within GAMs with survival data. Other terms in
the model are a cross-basis function sz to control for the lagged
effect of smoking z, and a linear term for calendar year c. In
the original analysis, the association with radon was modelled
with a cross-basis function sx composed of quadratic B-splines
functions with a single internal knot at 59.4 WLM/year and
13.3 years of lag for f (x) and w(�), respectively, and bound-
ary knots at the respective ranges. The intercept was excluded
from the latter, assuming no effect for exposures experienced
within the first two years. This model, using a total of 9 df to
define the association, was selected by minimizing AIC.

The analysis was replicated with a penalized DLNM using a
GAM with a REML estimator, using marginal cr smoothers
with dimension 11 (minus constraints) and 10 for exposure
and lag spaces, respectively. The use of the cr smoother
allows placing the knots of the dose-response function f (x)
at equally spaced intervals in the log scale, accounting for
the highly skewed distribution of radon exposure, and allows
excluding the intercept in s(�) following previous assumptions.
In addition to the default penalty on the second derivative,
enforced in both spaces, we added a varying ridge penalty of
form (7b) to w(�) with p� = 1 if � > 30 and 0 otherwise, thus
assuming no additional risk 30 years after the exposure to
radon.

Results are displayed in Figure 4. The penalized DLNM
(first row) indicates a peak in lung cancer mortality risk
approximately 11 years after the exposure to radon. The non-
linear dose-response shows how the risk flattens out above
50 WLM/year. The model used a total of 8.03 edf to describe
the association. These findings are consistent with the unpe-
nalized DLNM fitted with a GLM (second row of Figure 4),
which closely approximates the original estimates from the
Cox model illustrated by Gasparrini (2014, Figure 2). How-
ever, the addition of the ridge penalty in the GAM produces
more precise estimates at the end of the lag period, suggest-
ing that the risk completely disappears 30 years after the
exposure.

6. Discussion

In this contribution, we describe a penalized framework
for DLNMs that provides significant developments to this
modelling class, through built-in smoothness selection of
potentially complex marginal functions and the flexible
definition of penalties to accommodate assumptions on
the lag structure. This method includes previous smooth-
ing approaches for simpler DLMs (Zanobetti et al., 2000;
Obermeier et al., 2015) as special cases, and fully extends
the penalized approaches to bi-dimensional dose-lag-response
surfaces. The DLNM framework unifies methods proposed
to investigate lagged associations in different research fields,
beyond time series analysis in environmental research. For
instance, these include case-control studies in cancer epi-
demiology (Thomas, 1988; Hauptmann et al., 2000; Berhane
et al., 2008; Richardson, 2009) and survival analysis in
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Figure 3. First example: dose-lag-response, overall cumulative dose-response, and lag-response at 29 ◦C (by column) sum-
marizing the association between temperature and all-cause mortality, estimated by a GAM with double varying penalty in
the lag space, GLM with a priori selection (as in Gasparrini and Leone (2014)), GLM with AIC-based selection, GAM with
partial penalization (by row). London 1993–2006.



Penalized DLNMs 9

WLM/year

0

50

100

150

200

250

Lag (years)

5
10

15
20

25
30

35
40

R
R

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Exposure−lag−response
GAM with additional varying ridge penalty

0 50 100 150 200 250

0.
9

1.
0

1.
1

1.
2

1.
3

Exposure−response at lag 15

WLM/year

R
R

GAM with additional varying ridge penalty

0 10 20 30 40

0.
9

1.
0

1.
1

1.
2

1.
3

Lag−response at 100 WLM/Year

Lag (years)

R
R

GAM with additional varying ridge penalty

WLM/year

0

50

100

150

200

250

Lag (years)

5
10

15
20

25
30

35
40

R
R

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Exposure−lag−response
GLM with AIC−based selection

0 50 100 150 200 250

0.
9

1.
0

1.
1

1.
2

1.
3

Exposure−response at lag 15

WLM/year

R
R

GLM with AIC−based selection

0 10 20 30 40

0.
9

1.
0

1.
1

1.
2

1.
3

Lag−response at 100 WLM/Year

Lag (years)

R
R

GLM with AIC−based selection

Figure 4. Second example: dose-lag-response, dose-response at lag 15, and lag-response at 100 WLM/year (by column)
summarizing the association between occupational radon exposure and lung cancer mortality, estimated by a GAM with an
additional varying ridge penalty in the lag space and a GLM with AIC-based selection (as in Gasparrini (2014)) (by row).
Colorado Plateau Uranium miners cohort, follow-up at December 31, 1982.

pharmaco-epidemiology (Sylvestre and Abrahamowicz, 2009;
Abrahamowicz et al., 2012)

This penalized version addresses the problem of choosing
the appropriate degree of complexity of the DLNM. This is
a critical limitation of traditional unpenalized DLNMs, for
which current selection methods are not effective (as demon-
strated with the first example in Section 5.1), and produce less
efficient estimators (as illustrated in the simulation study in
Section 4). This penalized extension is based on well-grounded
theoretical results and estimation methods, recently discussed
(Wood, 2006a, 2008, 2011), it can be performed with stable
and efficient routines implemented in freely available software
(Wood, 2006a), and it shows improved inferential properties
if compared to the standard unpenalized version.

The results confirm the good inferential properties of
REML and UBRE-AIC estimators, with the former appearing
slightly superior (Wood, 2011), and the similar performance
of alternative types of smoothers (Wood, 2006a). The latter
can be selected due to convenient characteristics, such as the
possibility of including varying difference penalties with the ps

smoother (see Section 5.1) or the flexibility in the knots place-
ment and exclusion of intercept with the cr smoother (see
Section 5.2). In particular, the inclusion of additional penal-
ties on the lag dimension provides a way to accommodate
realistic assumptions on the underlying shape. These addi-

tional penalties can be selected based on prior knowledge, and
do not represent strong constraints on the lag-response shape,
as their influence can be calibrated through the estimate
of smoothing parameters. As previously suggested (Muggeo,
2008; Obermeier et al., 2015) and shown in the second scenario
of the simulation study, additional penalties can improve the
model fit and make the model less sensitive to the choice of
the lag period.

Some limitations must be acknowledged. The issue of penal-
izing complex bi-dimensional functions has been investigated
in a limited set of simulated scenarios and two real-data exam-
ples. Also, simulations show some issue with nonconvergence
in the simplest scenario, where the selected edf tend to be close
the null space of the cross-basis function, although this prob-
lem does not seem to critically affect inference. The penalized
approach substantially improves the coverage properties of
the confidence intervals, even though in some scenarios and
for some models the empirical coverage falls short of the nom-
inal value. In addition, the method presented here shares
a known limitation of GAMs, which tend to select simpler
(i.e., smoother) models when the statistical power decreases.
Finally, smoothing methods for dose-lag-response relation-
ships are difficult to validate, as the lag dimension is not
directly observable in the data, thus preventing the use of
standard techniques such as residual analysis. These issues
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will be hopefully addressed in future research.
Penalized DLNMs can be further extended to varying-

coefficients models, describing dose-lag-response relationships
that change in time or along the space of other predictors, as
previously described for simpler penalized DLMs (Rushworth
et al., 2013) or unpenalized DLNMs (Gasparrini et al., 2015).
In addition, the DLNM class has interesting links with penal-
ized functional regression, where a functional outcome (say
the shape of the dose-response) is allowed to vary depending
on a functional predictor (say the lag dimension) (McLean
et al., 2014; Scheipl et al., 2015), providing the possibility of
further extensions through this established modelling frame-
work.

Lagged associations occur almost universally in biomedical
research, and well beyond. Penalized DLNMs offer a flexi-
ble modelling class to describe these phenomena, avoiding
biases due to incorrect assumptions about the lag structure,
sometimes made when using simpler approaches, and poten-
tially extending the knowledge of the association under study.
The recent extension of DLNMs beyond time series data
(Gasparrini, 2014) unifies and extends methods proposed in
different study designs and paves the way for original and
promising applications of this modelling framework.

7. Supplementary Materials

Web Appendices, Web Figures, and R code are available at
the Biometrics website on Wiley OnlineLibrary. In addition to
Web Appendices A–B, referenced in Section 4, Web Appendix
C briefly describes the software implementation in the R pack-
age dlnm. The R code fully reproduces the simulation studies
and the two examples, with an updated version available from
GitHub and the personal website of the first author (see Web
Appendix C).

Acknowledgements

This work and Dr Gasparrini were supported by a grant
awarded by the Medical Research Council-UK (Grant
ID:MR/M022625/1), and by a LSHTM Fellowship awarded
using Institutional Strategic Support Fund by the Wellcome
Trust and the London School of Hygiene & Tropical Medicine
(Grant ID: 105609/Z/14/Z). Dr Scheipl was supported by the
German Research Foundation through the Emmy Noether
Programme, grant GR 3793/1-1 awarded to Dr Sonja Greven.

Conflict of Interest

None.

References

Abrahamowicz, M., Beauchamp, M. E., and Sylvestre, M. P. (2012).
Comparison of alternative models for linking drug exposure
with adverse effects. Statistics in Medicine 31, 1014–1030.

Almon, S. (1965). The distributed lag between capital appropria-
tions and expenditures. Econometrica 33, 178–196.

Armstrong, B. (2006). Models for the relationship between ambient
temperature and daily mortality. Epidemiology 17, 624–631.

Berhane, K., Hauptmann, M., and Langholz, B. (2008). Using
tensor product splines in modeling exposure-time-response

relationships: Application to the Colorado Plateau Uranium
Miners cohort. Statistics in Medicine 27, 5484–5496.

Currie, I. D., Durban, M., and Eilers, P. H. C. (2004). Smoothing
and forecasting mortality rates. Statistical Modelling 4, 279–
298.

Eilers, P. H. C., Currie, I. D., and Durban, M. (2006). Fast and
compact smoothing on large multidimensional grids. Com-
putational Statistics and Data Analysis 50, 61–76.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with
B-splines and penalties. Statistical Science 11, 89–101.

Gasparrini, A. (2014). Modeling exposure-lag-response associa-
tions with distributed lag non-linear models. Statistics in
Medicine 33, 881–899.

Gasparrini, A., Armstrong, B., and Kenward, M. G. (2010). Dis-
tributed lag non-linear models. Statistics in Medicine 29,
2224–2234.

Gasparrini, A., Guo, Y., Hashizume, M., Kinney, P. L., Petkova,
E. P., Lavigne, E., et al. (2015). Temporal variation in
heat-mortality associations: A multi-country study. Environ-
mental Health Perspectives 123, 1200–1207.

Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A.,
Schwartz, J., et al. (2015). Mortality risk attributable to high
and low ambient temperature: A multicountry observational
study. The Lancet 386, 369–375.

Gasparrini, A. and Leone, M. (2014). Attributable risk from dis-
tributed lag models. BMC Medical Research Methodology
14, 55.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regres-
sion and Generalized Linear Models: A Roughness Penalty
Approach. Monographs on statics and applied probability 58.
London: Chapman & Hall.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models,
2nd edition, London: Chapman & Hall/CRC,.

Hauptmann, M., Wellmann, J., Lubin, J. H., Rosenberg, P. S., and
Kreienbrock, L. (2000). Analysis of exposure-time-response
relationships using a spline weight function. Biometrics 56,
1105–1108.

Marra, G. and Wood, S. N. (2012). Coverage properties of confi-
dence intervals for generalized additive model components.
Scandinavian Journal of Statistics 39, 53–74.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Rup-
pert, D. (2014). Functional generalized additive models.
Journal of Computational and Graphical Statistics 23, 249–
269.

Muggeo, V. M. (2008). Modeling temperature effects on mortality:
Multiple segmented relationships with common break points.
Biostatistics 9, 613–620.

Obermeier, V., Scheipl, F., Heumann, C., Wassermann, J., and
Kuhchenhoff, H. (2015). Flexible distributed lags for mod-
elling earthquake data. Journal of the Royal Statistical
Society: Series C 64, 395–412.

Richardson, D. B. (2009). Latency models for analyses of protracted
exposures. Epidemiology 20, 395–399.

Rushworth, A. M., Bowman, A. W., Brewer, M. J., and Langan,
S. J. (2013). Distributed lag models for hydrological data.
Biometrics 69, 537–544.

Samet, J. M., Zeger, S. L., Dominici, F., Dockery, D., and Schwartz,
J. (2000). The National Morbidity, Mortality, and Air
Pollution Study (NMMAPS). Part 1. Methods and method-
ological issues. Technical report, Health Effects Institute.

Scheipl, F., Staicu, A.-M., and Greven, S. (2015). Functional addi-
tive mixed models. Journal of Computational and Graphical
Statistics 24, 477–501.

Schwartz, J. (2000). The distributed lag between air pollution and
daily deaths. Epidemiology 11, 320–326.



Penalized DLNMs 11

Sylvestre, M. P. and Abrahamowicz, M. (2009). Flexible modeling
of the cumulative effects of time-dependent exposures on the
hazard. Statistics in Medicine 28, 3437–3453.

Thomas, D. C. (1988). Models for exposure-time-response rela-
tionships with applications to cancer epidemiology. Annual
Review of Public Health 9, 451–482.

Welty, L. J., Peng, R. D., Zeger, S. L., and Dominici, F. (2009).
Bayesian distributed lag models: Estimating effects of par-
ticulate matter air pollution on daily mortality. Biometrics
65, 282–291.

Wood, S. N. (2006a). Generalized Additive Models: An Introduction
with R. Boca Raton, FL: Chapman & Hall/CRC.

Wood, S. N. (2006b). Low-rank scale-invariant tensor product
smooths for generalized additive mixed models. Biometrics
62, 1025–1036.

Wood, S. N. (2008). Fast stable direct fitting and smoothness selec-
tion for generalized additive models. Journal of the Royal
Statistical Society, Series B 70, 495–518.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and
marginal likelihood estimation of semi-parametric general-
ized linear models. Journal of the Royal Statistical Society,
Series B 73, 3–36.

Zanobetti, A., Wand, M. P., Schwartz, J., and Ryan, L. M. (2000).
Generalized additive distributed lag models: Quantifying
mortality displacement. Biostatistics 1, 279–292.

Received September 2015. Revised October 2016.
Accepted November 2016.


