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Abstract. Sometimes in studies of the dependence of survival time on explanatory variables

the natural time origin for defining entry into study cannot be observed and a delayed time

origin is used instead. For example, diagnosis of disease may in some patients be made

only at death. The effect of such delays is investigated both theoretically and in the context

of the England and Wales National Cancer Register.
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1. Introduction

The key elements in defining even the simplest form of survival study are that for each

individual involved there should be a clear time origin, that the passage of time should be

appropriately measured, and that the outcome of interest should be unambiguous. The

measurement of time and identification of outcome have both been extensively discussed

in the literature; see, for example, Cox and Oakes (1984). In contrast the identification of

the time origin, the time from which individuals are at risk of experiencing the outcome,

has not been examined to the same extent.

Common choices of time origin include date of birth and time of first exposure, but

there are situations where a different entry point is used instead because the true origin

is not observable, for example because of defects in the detection of the start of the ‘at

risk’ period. This could happen because of delays in disease detection (e.g. when detection

requires extensive investigations) or in registration to a particular scheme (e.g. to receive

benefits). Using an imprecise entry has consequences in terms of a distorted account of

the time scale and, potentially, of distorted associations with the outcome of interest.
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We represent this by considering for each individual three time points, an unobserved

time origin, an observed delayed entry time and an outcome. There are thus three random

variables, V , unobserved, the time between origin and outcome, Z, also unobserved, be-

tween origin and entry and also T , which is directly observed, between entry and outcome.

Our aim is to discuss the likely consequences of delayed recording of time for the hazard

ratio (HR) of an exposure of interest when that ratio is estimated using the observed entry

time and to propose a test of whether such an estimate differs from the HR on the true

time scale.

The paper is organized as follows. Section 2 describes a motivating application; Sec-

tion 3 presents some theoretical results under simple assumptions. Section 4 revisits the

application in the light of the theoretical results and Section 5 draws some final remarks.

2. Motivation : cancer survival and deprivation score

Registration of all cancer diagnoses is carried out routinely in England and Wales via

the National Cancer Register, with the data then regularly linked to the NHS Central

Registration System for assessment of vital status, and recoding of cause and date of

death. For a minority of cancer cases inclusion in the Cancer Registration System occurs

only because cancer was mentioned in the death certificates. Hence, for these patients,

date of diagnosis coincides with their date of death and follow-up time is zero. Such

occurrences highlight that detection is then later than the actual onset of disease.

We have access to data on patients registered with a diagnosis of breast cancer (in

women only) and lung cancer (both sexes) in the National Cancer Registry of England

and Wales in 1995-2007 with follow-up to 31 December 2007. For each patient we know

the deprivation score (Carstairs and Morris, 1989) of their area of residence at the time

of diagnosis (or at the date of death if date of diagnosis was missing). This index is

categorical, with the five groups corresponding to quintiles of the England and Wales

distribution of this score.

Overall, breast cancer is relatively more frequent among the least deprived groups,

whereas lung cancer is relatively more frequent among the most deprived (Deprivation

Gradient for Cancer Incidence, Cancer Research UK, 2016). However the frequency of

diagnosis at time of death increases with deprivation score for both cancers (Table 1).

This increase is reflected in the increased odds of diagnosis at death certification from the

least to the most deprived group, especially for breast cancer patients (Table 2), a factor

possibly related to uptake of screening. The same direction of effects is seen in terms of

survival hazard rates for the patients whose follow-up time is greater than zero (Table 3).

The interpretation of these is, however, not straightforward because of the possible bias
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introduced by left-censoring (i.e. shortening of the follow-up time) and left-truncation

(selection of individual with follow-up time greater than zero).

3. Theoretical development

3.1. A simple model

As noted in Section 1, there are three random variables, V and Z, which are unobserved,

and T , which is directly observed. There is the possibility, assumed in much of the

discussion to have small probability, that the outcome has already occurred at the instance

of detection, in which case we define T to be zero (Figure 1).

T > 0
origin entry outcome

V

Z T

T = 0
origin outcome entry

V

Z

Figure 1. Two typical scenarios where Z represents the unobserved time between origin and

entry, V the unobserved time between origin and outcome and T = (V −X)
+
> 0 or = 0. (In the

motivating example, origin is time of true disease onset, entry is time of diagnosis and outcome is

death.)

In general we write T = (V − Z)+. The object of study is the dependence of V on a

vector x of explanatory variables. We can observe only the dependence on x of T , in fact

in two parts, namely the dependence of P (T = 0) and the dependence of T conditionally

on T > 0.

In the simplest special case, V and Z are independently exponentially distributed

with rate or hazard parameter, that is the reciprocal of the mean, ρV and ρZ , respectively,

corresponding to events in independent Poisson processes. Then P (T = 0) = ρV /(ρV +ρZ)

and the distribution of T+, that is T conditionally on T > 0, is the same as that of V , as

are the hazards, ρT+ = ρV .
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If now we have the representations

ρV = ρV0
exp(βTV x), ρZ = ρZ0

exp(βTZx), (1)

then

log{P (T = 0)/P (T > 0)} = (log ρV0
− log ρZ0

) + (βV − βZ)Tx. (2)

That is, with exponential V and Z, a direct analysis of T estimates βV and a logistic

analysis of the frequency of zero values estimates the log odds ratio (βV − βZ) (for unit

changes in x). If it is reasonable to assume that the detection process is independent of x,

then βZ = 0 and two asymptotically independent estimates of βV are obtained. Subject to

their mutual consistency, a mean may be calculated, weighting each contribution inversely

by its variance, as estimated from the relevant information matrix.

This simple analysis is based on strong assumptions and we now consider in outline a

number of extensions of the analysis.

3.2. Some developments

The nature of the detection process may make the assumption of exponentially distributed

Z reasonable and, moreover, it is likely that for most purposes, so long as Z is small

compared with V , the precise form of the distribution of Z may not be critical. We

therefore continue to assume that Z is exponentially distributed but allow an arbitrary

distribution for V . Then provided ρZ is relatively large, so that Z is small, and with the

probability density of V denoted by fV (v), we have that

P (T = 0) = P (Z > V ) =

∫ ∞
0

fV (v)e−ρZvdv (3)

= fV (0)/ρZ − f ′V (0)/ρ2Z + . . . , (4)

so that if the density of V varies only slowly near the true origin, essentially the previous

result is recovered, with

log{P (T = 0)/P (T > 0)} ≈ α0+(βV − βZ)Tx. (5)

If, however, as may happen in some applications, there is a relatively particularly high

risk of failure at very small times, e.g. if the distribution of V is Weibull with index less

than one, then f ′V (0) will be large and negative and P (Z > V ) increases. If that happens

then the true log odds ratio will be larger than (βV − βZ).

In the region V > Z in which T is therefore positive, the improper density of T is

fT+(t) =

∫ ∞
0

fZ(z)fV (t+ z)dz (6)
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and if the values of Z are all small this can be written as

fT+(t) = fV (t̃){1 +
1

2
σ2Zf

′′
V (t̃)/fV (t̃)}, (7)

where t̃ = t + µZ . If Z is exponentially distributed then σ2Z = µ2Z and to the first order

the consequence of observing T rather than V is to displace the argument of the density,

and in fact also the hazard, by µZ . If also V is exponentially distributed then there is no

change in the hazard, as is clear on general grounds. Then displacement might be of little

concern unless Z depends strongly on the explanatory variables x.

A further possibility, usually not assessable directly, is that Z and V are dependent

given the explanatory variables x. As an approximation for small levels of dependence we

write the joint density of (Z, V ) in the form

fZ(z)fv(v){1 + ησ−1Z σ−1V (z − µZ)(v − µV )}, (8)

where µ and σ denote mean and standard deviation and η = corr(Z, V ). This could be

regarded formally as the leading term of an expansion in terms of orthogonal polynomials.

Note that here η is assumed sufficiently small that contributions from formally negative

values of the density may be ignored. Assuming that Z is marginally exponentially dis-

tributed so that σZ = µZ , local dependence can be represented approximately by writing

for small η the joint density as

ρZe
−ρZzfV (v){1 + η(ρZz − 1)(ρV v − 1)}, (9)

where ρV = 1/µV . Then

P (Z > V ) =

∫ ∞
0

e−ρZv{1 + ηv(v − µV )}fV (v)dv (10)

and this may be evaluated in terms of the moment generating function of V . The integral

can be evaluated explicitly if V has a gamma distribution or may be approximated for

large ρZ/ρV . We outline here the case where Z is exponentially distributed and V has a

gamma distribution with index δ, that is σV /µV = 1/
√
δ. Then, with ρV = 1/µV we have

that

P (T = 0) = P (Z > V ) = δδ(ρV /ρZ)δ(1 + δρV /ρZ)−δ
{

1− η 1− ρV /ρZ
(1 + δρV /ρZ)2

}
. (11)

The leading term shows that for given small values of ρV /ρZ the value of P (T = 0)

decreases with δ. That is, if the distribution of V is relatively more dispersed than the

exponential distribution , then P (T = 0) decreases. If this happens then the approximation

outlined in (5) would lead to an overestimate of the true log odds ratio and hence an

underestimate of (βV − βZ).
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Figure 2. Estimated cumulative hazard function for breast cancer patients.
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Figure 3. Estimated cumulative hazard function for lung cancer patients.
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4. The cancer data revisited

In the cancer data we have shown that both the odds of T = 0 and the hazard of death

measured on the T+ scale increase with deprivation score. In the following for simplicity

we consider a dichotomy of the deprivation score, corresponding to the top two fifths of

the distribution in the general population.

Assuming initially both that Z is exponentially distributed and that V either follows an

exponential distribution or its density varies slowly near the time origin, then log(OR) of

a death certificate only diagnosis of exposed (higher deprivation score) versus unexposed

(lower deprivation score) should give an (approximate) estimate of (βV − βZ). For the

breast cancer patients this is 0.1369 ( SE=0.0160) and for lung cancer patients it is 0.0259

(SE=0.0087). The corresponding values of log(HR) estimated on the T+ scale are 0.2598

(0.0043) and 0.0473 (0.0028), respectively.

Formally, comparing these two sets of independent estimates we find for breast cancer

that 0.2598 and 0.1369 are statistically significantly different (z = 7.418, p < 0.001).

For lung cancer the two estimates, 0.0473 and 0.0259, are also statistically significantly

different (z = 2.338, p = 0.01). Under the assumption that Z and V are both exponentially

distributed, these results imply that Z is positively associated with deprivation score, with

β̂Z = 0.1229 (SE=0.0166) for breast cancer and β̂Z = 0.0214 (SE=0.0092) for lung cancer.

In other words, time to diagnosis to either cancer is shorter on average when suffering

deprivation, especially so for breast cancer cases.

The form of the cumulative hazard functions on the T scale suggests a deceleration of

the hazards (Figures 2 and 3) and hence, extrapolating this pattern from T to V , since Z

is assumed to be small relative to V , a deceleration of the hazards on the V scale. This

implies that f ′V (v) is negative, leading to the true log odds ratio of exposure (for T = 0)

being larger than (βV − βZ). In this case the calculations above give, in absolute terms,

overestimates of βZ , when β̂T is a good approximation for βV . For lung cancer, since the

log odds ratio above is small, the implication is that β̂T is a good approximation for βV

(see the interpretation of equation (7)). For breast cancer however, an overestimation of

βZ has more substantial consequences for this approximation, with the displacement of

the hazard functions on the T+ scale in exposed and unexposed possibly being less serious

than anticipated. Since the size of the bias affecting β̂T when used as an approximation for

βV cannot be deduced directly, we consider a range of values for βZ in sensitivity analyses

using observed T to capture the shape of fV (v). This is shown in Figure 4 (details

in the Web Appendix). There we report mean β̂V obtained in simulations where V is

generated as the sum of observed T and a random draw from a variable generated with

hazard ρZ = ρZ0
exp(βZx), where x is the deprivation indicator, ρZ0

is set to be either 0.5
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Figure 4. Sensitivity analysis of the effect of deprivation on βV on breast cancer when βZ takes

different values and ρZ0 = 1 (black) or = 2 (grey) (N=660,025; 100 simulations per combination

of parameters). The horizontal dotted line depicts β̂T as obtained from the original data and the

vertical dotted line depicts β̂Z obtained under the assumption of exponential Z and V .

or 1 (i.e. mean time to diagnosis in unexposed two or one year since cancer onset, as is

realistic for this example), and βZ varies from -0.10 to 0.30. We also show the minimum

lower bound and maximum upper bound of the 95% confidence intervals for each of these

groups of estimates.

When βZ is set to be 0 there is no differential displacement between exposed and

unexposed individuals and β̂T = 0.2598 overestimates βV because of the departure from

the exponential distribution in V . When βZ� 0, β̂T = 0.2598 underestimates βV , more

substantially when ρZ0
is smaller, but not critically if βZ ∼ 0.12 as suggested by the earlier

analyses. In summary, with a positive βZ , β̂T can be taken as a lower bound for the log

hazards ratio of survival by deprivation, βV .

The analysis has assumed a proportional hazard dependence on the V scale. This can

be checked to some extent by studying the dependence of T by censoring the follow-up

times at 3,5 and 10 years and examining the effect on the estimates of β̂T . For lung cancer

the resulting estimates change by less than 2 per cent suggesting that the proportionality

assumption is reasonably satisfactory. For breast cancer the changes are systematic from

0.2964 for the data censored at 3 years to 0.2740 and 0.2643 for the other censored data
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to 0.2598 for the original data. That is, there is reasonable evidence that the effect of the

explanatory variable is relatively greater at short times than at longer times.

Finally, if there were a small positive correlation between Z and V , beyond that due to

their common dependence on the deprivation score, and if V was relatively more dispersed

than the exponential distribution (e.g. followed a gamma distribution), our estimates of

the true log odds ratio of deprivation (for a death certificate only diagnosis) would in

expectation be smaller than (βV −βZ). Then the underestimation discussed above would

be compensated.

5. Concluding remarks

Our aims were to discuss the likely consequences of the bias affecting the hazards ratio of

an exposure of interest estimated on the observed time scale T , as opposed to the true time

scale V . We give a simple procedure for exploring such a bias. The simplest assumption,

that exponential distributions are involved for both Z and V , leads to direct and easily

interpreted answers. When the assumed exponential distribution for V is inappropriate

we have given alternative more realistic possibilities that focus on the expression for the

odds of T = 0. More elaborate results would be required if P(T = 0) were large, as would

happen when Z is not small relative to V .
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Table 1. Number of breast and lung cancer diagnosis by deprivation index cate-

gories (fifths) and type of registration

Breast cancer Lung cancer

Death Death

Deprivation index All cert. only All cert. only

category N N Row % N N Row %

1=Least 146,078 3,016 2.06 81,071 7,525 9.28

2 144,204 3,727 2.58 101,578 9,662 9.51

3 139,029 3,851 2.77 119,318 11,971 10.03

4 129,734 3,874 2.99 145,945 14,595 10.00

5=Most 100,980 2,729 2.70 162,017 16,294 10.06

All 660,025 17,197 2.61 609,929 60,047 9.84

Table 2. Odds ratios (ORs)∗ of being a death certificate only registration

by deprivation index categories (in fifths) and cancer type

Deprivation index Breast cancer Lung cancer

category OR 95%CI OR 95%CI

1=Least 1 - 1 -

2 1.26 1.20, 1.32 1.02 0.99, 1.06

3 1.35 1.29, 1.42 1.08 1.05, 1.11

4 1.45 1.38, 1.52 1.07 1.04, 1.10

5=Most 1.29 1.22, 1.36 1.07 1.04, 1.10

Linear trend (p-value) < 0.001 < 0.001

∗ ORs estimated by logistic regression adjusted for year of diagnosis and gender (the latter only

for lung cancer).
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Table 3. Hazard ratios (HRs)∗ of survival by deprivation index categories (in fifths) and cancer

type

Deprivation index Breast cancer Lung cancer

category N HR 95%CI N HR 95%CI

1=Least 143,062 1 - 73,546 1 -

2 140,477 1.17 1.15, 1.18 91,916 1.05 1.03, 1,06

3 135,178 1.30 1.28, 1.32 107,347 1.07 1.06, 1.09

4 125,860 1.43 1.41, 1.45 131,350 1.09 1.08, 1.10

5=Most 98,251 1.56 1.54, 1.59 145,723 1.10 1.09, 1.11

Linear trend (p-value) < 0.001 < 0.001

∗ HRs estimated by semi-parametric proportional hazards regression stratified by year of

diagnosis and gender (the latter only for lung cancer).
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