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1. Introduction 8 

Acoustic Emission (AE) is the phenomenon of radiation of sub-audible stress waves 9 

produced by any material undergoing irreversible changes in its structure due to rapid 10 

energy release. These waves have typically frequencies higher than 20 kHz. In soil AE is 11 

generated by inter-particle friction (Koerner et al., 1975) and in rock materials it is 12 

generated by nucleation and propagation of new fractures and/or displacement along 13 

existing discontinuities (Hardy, 2003); hence AE is suitable to be used as a measure of 14 

deformation or  degradation preceding a slope failure. 15 

As AE radiates from the source and travels through the material, the amplitude of such 16 

waves tends to attenuate due to many factors including geometric spreading, internal 17 

friction, scattering and mode conversion (Hardy, 2003). Geological materials are 18 

characterised by high attenuation, which means that only relatively small volumes can be 19 

investigated. Koerner et al. (1981) provides attenuation ranges for soil >10 dB/cm and for 20 

intact rock in the order 10-1 to 10-3 dB/cm for frequencies of about 20 kHz. To partially 21 

overcome signal attenuation problems and to monitor larger volumes of the material, bars 22 

or tubes composed of a low attenuation solid such as steel (<10-4 dB/cm), referred to as 23 

waveguides, have been used in geotechnics and many other monitoring fields. The purpose 24 

of waveguides is to create a preferential low attenuation path to direct AE signals to AE 25 

sensors (Chichibu et al., 1989; Dixon et al., 2003; Shiotani and Ohtsu, 1999). 26 

In order to monitor AE trends generated within a deforming fine grained soil slope with high 27 

attenuation, Dixon et al. (2003) conceived a system which makes use of an active waveguide 28 

to generate a stronger AE signal and transfer this to a piezoelectric transducer. Laboratory 29 

testing and field trials (Dixon et al., 2014; Smith and Dixon, 2014; Smith et al., 2014) 30 
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demonstrated that an increase in deformation of a soil body (e.g. slope) results in an 31 

increase of AE activity, providing also an empirical coefficient of proportionality that links AE 32 

rates monitored with an increasing rate of deformation (velocity).  33 

The prospect of using the system to forecast failure of rock slopes has been recently 34 

considered. Slopes composed of rocks characterised by brittle behaviour have the potential 35 

to fail catastrophically (e.g. Nichol et al., 2002) and monitoring of pre-failure deformation 36 

with classical geotechnical instruments is challenging as collapse develop very rapidly 37 

(i.e. very small displacement magnitude prior to large scale and rapid collapse). However, 38 

the deformation process that leads to nucleation and propagation of fractures releases 39 

acoustic stress waves, which are therefore suitable to be used as an indicator of incipient 40 

failure. 41 

Therefore, to effectively use the system for the monitoring of rock slopes it has to be 42 

considered that not only do rock slopes show significantly different behaviour in terms of 43 

strength criteria and failure modes compared to soils, they also include discontinuities and 44 

can be much more permeable to rainfall. This means that very different AE trends are 45 

recorded. To be able to recognise trends in the AE information that are generated by slope 46 

degradation, which could ultimately lead to collapse, it is essential to understand the 47 

acoustic rock mass response to internal and external excitations. Therefore, the approach 48 

developed is to identify AE signatures for all the processes able to generate acoustic trends 49 

(e.g. temperature-related, seepage within rock fractures, groundwater level changes, 50 

seismicity, deformation, etc.) and differentiate between those that are descriptive of an 51 

ongoing deformation/degradation process and those that do not carry any useful 52 

information and can be considered as “noise”.  53 



Codeglia et al. 2016 – Analysis of AE patterns for monitoring of rock slope deformation mechanisms Page 4 of 27 

 

This paper deals with recurring AE patterns detected at two trial sites, examining relations 54 

with parameters measured using traditional geotechnical instrumentation and discussing 55 

hypothesis about the possible generating processes. 56 

2. The monitoring system  57 

Acoustic emission in this study was detected using a sensor system attached to a 58 

waveguide. The system was originally developed for the detection of AE activity generated 59 

by deformation of slopes formed in fine grained soils (i.e. soils with dominance of silt or clay 60 

fractions) (Dixon and Spriggs, 2007; Dixon et al., 2003; Spriggs, 2004). 61 

Acoustic emission is measured by means of a piezoelectric transducer mounted on a steel 62 

waveguide (Fig. 1). The primary function of the waveguide is to direct AE waves to the 63 

transducer located at ground level. As discussed above, high frequency waves travelling 64 

along the steel tube attenuate much less than in a fine-grained soil or a discontinuous rock 65 

medium. The waveguide is installed in a borehole, which ideally should reach the stable 66 

stratum below any shear surfaces or potential shear surfaces that may form within a soil 67 

slope or across any critical discontinuities that may lead to failure in a rock slope. 68 

In soil applications, the gap between the waveguide and the borehole is backfilled with 69 

gravel or coarse sand. This makes the system "active" as the gravel/sand acts as a wave 70 

generator when the host soil moves (Dixon et al., 2014, 2003). The reason for introducing 71 

the generator lies in the poor acoustic properties of the host material as fine soils generate 72 

very low AE levels that are challenging to detect due to high attenuation. Adding a noisy 73 

backfill ensures that AE activity generated is sufficiently high to be transferred to the 74 

waveguide without being dissipated along the path. In rocks, the energy of generated AE is 75 
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orders of magnitude greater than AE in soils and attenuation of AE is lower than in soils. 76 

Therefore, grouting the waveguide into the rock is sufficient for the stress waves generated 77 

by the deforming rock mass to be transferred from the rock to the steel tube. This is 78 

considered to be a passive system, as the grout surrounding the waveguide is not expected 79 

to be the primary source of generated AE in detected deformation events.  80 

AE generated by deformation mechanisms on one or more discontinuities that intersect the 81 

waveguide, or in its vicinity, is transmitted by the waveguide to the piezoelectric transducer 82 

clamped at the free end (Fig. 1), which converts mechanical signal to electronic signal. The 83 

transducer is coupled with silicone gel to allow better wave transmission. A transducer with 84 

sensitivity to frequencies >20 kHz is used to limit the recording of low frequencies from 85 

environmental background noise (e.g. generated by wind, traffic and anthropic activities). 86 

The electronic signal is subsequently processed by a computing device called a sensor node. 87 

The sensor node amplifies the signal and applies a band-pass filter that removes frequencies 88 

lower than 20 kHz and higher than 30 kHz. The lower limit is to remove background noise 89 

and the upper to restrict AE to a range that can be readily processed in this battery-powered 90 

device (i.e. higher processing rates require increased power). Ring Down Count (RDC) rates 91 

are then determined counting the number of times the signal exceeds a pre-determined 92 

voltage threshold within a pre-set period of time (Fig. 2). The threshold voltage is used to 93 

remove the lower amplitude background and spurious noise, hence it needs to be set 94 

sufficiently high so that no RDC are recorded during periods of time when there are no rock 95 

deformations occurring (i.e. during periods of good weather). The user can select a value for 96 

the voltage threshold in the range 0.05-0.49V; for the studies reported in this paper it was 97 

set at 0.25V. The sampling frequency choice is between 1 and 60 min. Typically, time 98 
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periods of 15 minutes are a good compromise in order to maximise memory storage 99 

capacity and yet provide the benefit of high temporal resolution monitoring. At the end of 100 

each monitoring period, the sensor compares the number of RDC counts with up to four 101 

pre-determined alarm threshold values of RDC rate. The sensor node is capable of sending 102 

an alert SMS with the corresponding warning status to an assigned responsible person as 103 

soon as one of the thresholds is exceeded. In soil slope applications the four warning 104 

statuses available are Very slow, Slow, Moderate and Rapid displacement rates, each 105 

corresponding to a user defined RDC rate. 106 

The reported study is part of ongoing research to develop strategies for data interpretation 107 

in order to relate AE activity to the initial stages of rock slope collapse. The analysis of 108 

recurring AE patterns is a necessary step to acquire the understanding and knowledge that 109 

can lead to development of appropriate criteria for setting thresholds (or, if needed, design 110 

a different threshold system) that can provide an early warning of incipient failures. 111 

Therefore, alarm thresholds for rock slopes, equivalent to those for soil, have not been 112 

determined at this stage. 113 

The system works continuously and in near real-time providing high temporal resolution 114 

information. Processing power was optimised in order for sensors to work on batteries 115 

without maintenance for more than one year, which makes the system suitable to be 116 

installed at remote sites. The system uses a simple processing approach such as counting of 117 

the number of times the signal amplitude exceeds a static threshold (Ring Down Counting) 118 

to minimise power consumption and maximise memory storage. Clearly this comes at the 119 

cost of limiting the system capabilities. The recording of whole waveforms (or Short Time 120 

Average/Long Time Average ratio triggered recording), for example, could provide increased 121 
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information, including the possibility to locate the AE source along the waveguide using the 122 

difference in arrival time of different wave modes (e.g. Maji et al., 1997). This not only 123 

would require increased power but also significantly increased sensor processing capacity 124 

and a memory capable of  storing the enormous amount of data recorded. This would 125 

require a sensor connected to a mains power supply and much bulkier equipment, which is 126 

often impracticable when working at remote sites. Sites that have restricted access (e.g. due 127 

to geographical position, adverse conditions such as snow cover for prolonged periods, etc.) 128 

are often monitored with low sensitivity or low temporal resolution systems (e.g. remote 129 

sensing, manual-reading inclinometer, etc.) as other automated systems are too power 130 

demanding or too expensive. These traditional methods seldom provide real-time 131 

information for use in early warning of instability. Therefore, there is a clear need for high 132 

sensitivity, continuous and near-real time systems that can provide information on the state 133 

of slope stability. 134 

3. The Passo della Morte (PdM) trial site 135 

Passo della Morte trial site is situated in North-Eastern Italy, about 3 km east from Forni di 136 

Sotto [Lat 46.3978, Lon 12.7026] on the left flank of Tagliamento River valley. Coordinates 137 

are given in decimal degrees and refer to WGS84 Web Mercator projection. The AE 138 

monitoring system at Passo della Morte was set up in stages starting in summer 2010. The 139 

site (Fig. 3) consists of an unstable rock mass, as indicated by the history of failures, in 140 

stratified limestone (Calcari scuri stratificati – lower Carnian). This is steeply lying (typical dip 141 

angle 73°) on massive dolomite (Dolomia dello Schlern – upper Ladinian), which forms the 142 

stable underlying bedrock. Passo della Morte road tunnel crosses the limestone rock mass 143 
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for its entire width (Fig. 3b), at a constant altitude of 720 m a.s.l. with only shallow cover (0-144 

15 m) on the side towards the slope. 145 

At this site geological and geomorphological surveys, supported by remote sensing 146 

techniques such as Terrestrial Laser Scanning (TLS) and Infra-Red Thermography (IRT) (Teza 147 

et al., 2015), were carried out in order to identify the critical joints and weak zones of the 148 

rock mass. These studies were used to select the most appropriate location for each of the 149 

monitoring instruments installed on site. 150 

3.1 Monitoring system 151 

Three horizontal waveguides were inserted in boreholes drilled through the steeply dipping 152 

limestone layers from within the road tunnel. The three 146 mm diameter boreholes were 153 

designed with specific functions in mind: AEWG1 penetrates for 50 m into the rock away 154 

from the slope, reaching the stable stratum of dolomite in the last 12 m; AEWG2 (30 m) and 155 

AEWG3 (10 m) penetrate the limestone slabs between the tunnel and the slope surface to 156 

monitor activity of open discontinuities filled with marl that can be observed daylighting on 157 

the slope face. Waveguides inserted and grouted in the boreholes are 50 mm diameter steel 158 

tubes, in singular lengths of 3 metres screwed together with connectors to reach the desired 159 

total length. Each waveguide was equipped with a sensor at different times: AEWG1 has 160 

been in place since 16/12/2010, AEWG2 since 27/09/2011 and AEWG3 since 12/10/2012. 161 

Other than the three AE sensors, several other monitoring instruments are installed at the 162 

site. Five Time Domain Reflectometry (TDR) cables of various diameters (22 or 41 mm), a 163 

three point rod extensometer, an inclinometer, piezometric sensor, two MEMS 164 

accelerometers, a down-hole accelerometer and a seismometer have been installed to 165 



Codeglia et al. 2016 – Analysis of AE patterns for monitoring of rock slope deformation mechanisms Page 9 of 27 

 

monitor displacements of strategic sections and other physical quantities (groundwater 166 

level, seismic motion) within the rock mass. Additionally, three crackmeters and three GPS 167 

benchmarks monitor displacement of key points on the surface. Figure 3 shows the location 168 

of the instruments and their designation. Data recorded since April 2011 has been made 169 

available by CNR-IRPI for comparison with AE RDC trends. Rainfall data are available since 170 

December 2010 and snowfall data since January 2012. Although AE data are collected on 171 

site per 15 min periods, they are aggregated here in hourly data to allow easier comparison 172 

with other data types recorded once per hour. 173 

3.2 Interpretation from AE 174 

AE events at the Passo della Morte site can be visually subdivided in three categories based 175 

on different AE event-patterns: type A, type B and type C (Fig.4). Events are defined as 176 

periods of measured AE activity that can be one or more monitoring periods bounded by 177 

periods of zero or lower than 10 RDC/hour within one hour monitoring period. These 178 

patterns are recognised on all three waveguides, although with slightly different AE rate 179 

levels. 180 

Type A pattern events are common throughout the data series, occurring during both dry 181 

and rainfall periods. AEWG1 typically has measured counts in the range 100-400 RDC/hour, 182 

which last for one or very few 1-hour monitoring periods. AEWG2 Type A events are in the 183 

same order of count rate as AEWG1 but they can last for several consecutive 1-hour 184 

monitoring periods. AEWG3 event rates are higher, about 300-1000 RDC/hour and generally 185 

last for a single 1-hour monitoring period and are more frequent than AEWG1 events. Rarely 186 

these events are recorded by all the waveguides simultaneously, which leads to the 187 

hypothesis that such events are generated by local mechanisms (e.g. deformation on a 188 



Codeglia et al. 2016 – Analysis of AE patterns for monitoring of rock slope deformation mechanisms Page 10 of 27 

 

discontinuity or local ground water flow) generating low energy AE that cannot propagate to 189 

more than one waveguide.  190 

Type B pattern events usually last for a few days and are recorded primarily by one sensor 191 

while the other two show lower RDC/hour rates. These types of events can show a sharp 192 

increase in RDC/hour rate at the beginning, or they can gently rise to a peak RDC/hour rate, 193 

but in both cases the rates typically decrease gradually. They are mainly associated with 194 

changes in the groundwater level, which is discussed in Section 3.2.1. However, some do not 195 

correlate to particular rainfall events and occur when the piezometric level does not change. 196 

The generating mechanism for these events is to date unclear. 197 

Type C pattern events can reach 140,000 RDC/hour on waveguide AEWG1, 100,000 on 198 

AEWG2 and almost 200,000 RDC/hour on AEWG3 within a single 1-hour monitoring period, 199 

which give them a very sharp peaky shape. Comparison with snowfall data suggest that they 200 

could be generated by snow loading on the surface of the slope. Details are given in Section 201 

3.2.2. 202 

To be able to reach a better understanding of the acoustic trends recorded, all the possible 203 

causes that can generate acoustic emission have to be taken into account, therefore, 204 

earthquakes have been considered as a possible source as Passo della Morte is in an active 205 

seismic zone. As a rock mass shakes under the effect of the peak ground acceleration (PGA) 206 

cracks can grow or small displacements can take place, hence releasing energy in the form 207 

of high frequency waves (AE). Further discussion is reported in Section 3.2.3. 208 

Although longer waveguides intersect more discontinuities, it is difficult to establish a 209 

proportional relationship between tube length and RDC/hour. In fact not all discontinuities 210 
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might be active at the same time and the level of activity depends on the generating process, 211 

as it will be clearer from the discussion of data. Also, the intrinsic attenuation of the 212 

waveguide must be taken into account, which, although lower than the rock medium 213 

surrounding the waveguide, is still capable of damping the acoustic emission generated at a 214 

long distance from the sensor.  Therefore, some events can be recorded by one sensor and 215 

not by the other sensors, regardless of the waveguide length. 216 

3.2.1 Groundwater pressure variation 217 

Acoustic emission events in the order of some thousands of RDC/hour are related to 218 

variations in the groundwater level following periods of intense rainfall, which are common 219 

in particular during autumn time in the area. The delay between rainfall and rise in the 220 

groundwater level is in the order of about twelve hours. No RDC are normally recorded 221 

during this period of time, meaning that rainfall seepage through fractures between the 222 

rock slope surface and groundwater does not induce AE response (this is clearly visible in 223 

the example given in Fig. 5a). AE response is simultaneous with the increase in the 224 

groundwater level. 225 

AEWG1 is sensitive to these events, consistently recording distinct RDC/hour rates when 226 

variation in the ground water level (i.e. pore water pressures) occurs. As can be seen in the 227 

piezometric level vs AE rates plots in Fig. 5b, the RDC/hour and water level rise are generally 228 

proportional (although with occasional higher AE spikes): water level increases of 1 to 2 m 229 

induce 1,000-5,000 RDC/hour, increases bigger than 5 m induce AE rates in the order of 230 

5,000-30,000 RDC/hour with occasional spikes reaching 60,000 counts. There seems to be 231 

also proportionality in terms of distributions with time (i.e. sharp increase at the beginning 232 

of an event followed by a gentle decrease as the water level equilibrates to the long-term 233 
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level). AEWG2 shows a similar response, although not as pronounced. Only increases in 234 

water level > 5 m correlate with increased AE activity. Counts are in the order of 1,000-1,500 235 

RDC/hour. AEWG 3 shows higher AE rates for these types of events with rates recoded in 236 

the range 5,000-15,000 RDC/hour, they appear to be sharp and spiky (i.e. RDC/hour is 237 

generated over a small number of monitoring periods) but the counts are not proportional 238 

to the variation in groundwater level (Fig. 5b). 239 

Changes in water pressures due to an increase or decrease of water level induce 240 

rearrangement of stresses within the rock mass, which results in micro-deformation and 241 

consequent AE stress release. This deformation is a non-linear process and develops in steps 242 

of instant energy release (i.e. slip – stick behaviour). The release intensity depends on the 243 

energy previously accumulated and hence it is expected that the relationship between 244 

piezometric level change and AE rates will not be proportional in some cases. 245 

The different response of the three waveguides to the same generating mechanism is 246 

explained by their location: AEWG1 penetrates deep into the rock mass crossing multiple 247 

bedding planes and the contact between the limestone and dolomite, whereas AEWG2 and 248 

AEWG3 are located near to the slope face and thus monitor a relatively superficial portion 249 

of the rock mass. 250 

3.2.2 Snow load   251 

Type C pattern events are mainly observed during winter time. These events can be 252 

described as "spiky" as they are high counts which last for short periods of time, just one to 253 

three monitoring periods (i.e. one to three hours). The spikes can be grouped in clusters 254 

over periods of some days or be more sporadic. AEWG3 seems to be particularly sensitive to 255 
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the production of this type of events showing RDC/hour rates that are approximately double 256 

of those recorded from AEWG1 and AEWG2 in the same monitoring period. This type of 257 

event was initially observed and discussed by Codeglia et al. (2015) where a dependence to 258 

low temperature and correlation with displacements recorded by extensometers EXT4 and 259 

EXT5 was hypothesised, but the causes were uncertain. Recently, snow data series have 260 

been acquired from the closest available snow-gauge placed in the vicinity of Malga 261 

Cjampiuz [Lat 46.3505, Lon 12.6790]. When interpreting snow data versus other parameters 262 

such as temperature it is important to take into account that the snow-gauge is located 5.5 263 

km SW from Passo della Morte at an altitude of 1710 m a.s.l., which is about 1000 m higher 264 

than Passo della Morte at tunnel level, where the temperature sensor (TEMP) is located. 265 

Therefore, snow events recorded by the gauge might have not taken place at PdM site. For 266 

this reason, only events that meet the following two conditions are considered as actual 267 

snowfall events occurring at Passo della Morte: a) an increase in the snow-gauge plot can be 268 

observed and b) the temperature at PdM is around zero (as can be seen in Fig. 6). Assuming 269 

that at higher altitudes temperatures are generally lower, if condition a) is verified but 270 

condition b) is not, a snowfall event has probably taken place at the snow-gauge altitudes, 271 

but not at PdM where temperatures are higher and hence precipitation is expected as rain. 272 

Also, a period of constant temperature is considered as an indicator of thick cloud cover, 273 

which could indicate conditions for snow precipitation. It is generally accepted (e.g. Rossow 274 

and Lacis, 1990; Rossow and Zhang, 1995) that cloud cover reflects part of the sun light 275 

spectrum resulting in reduced earth heating during the day, and retaining earth's warmth 276 

from escaping into space at night, hence influencing the fluctuation of air temperature. 277 

Fluctuation will thus be minimal in case of clouds cover during winter time as temperatures 278 

are already generally low. 279 
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As can be observed in Fig. 6, in correspondence with periods for which all the conditions for 280 

snowfall are verified, the high-rate spiky AE events are present. This suggests that the snow 281 

cover could be responsible for generating such AE activity. The hypothesis here is that the 282 

snow accumulating on the slope produces a pressure on the surface of the sub-vertical 283 

limestone slabs. This additional vertical stress could make the slabs moving vertically, 284 

generating a differential micro-displacement between adjacent layers. This mechanism of 285 

deformation is aided by the marl infilling of the bedding planes between the limestone 286 

layers, which have very poor strength properties. The interaction between the limestone 287 

units could generate the AE behaviour recorded. 288 

Paterson (1994) suggests snow density values between about 100 kg/m3 for light new snow 289 

immediately after falling and 400 kg/m3 for wind packed snow, including in this range are 290 

intermediate values which refer to damp and settled snow. Taking an average snow density 291 

value of 200 kg/m3, the stress increase for every 0.1 m of snow depth would be in the order 292 

of 0.2 kN/m2. Considering that at the site a single snow fall event can easily reach 0.5-1 m, 293 

this means that an additional stress of 1-2 kN/m2 can be applied to the surface of the slope 294 

in a few hours. 295 

Displacements measured by extensometers EXT4 and EXT5 placed across cracks daylighting 296 

on the slope are available during some periods of time that match with snowfall events. 297 

These displacement could be interpreted as being generated by the snow pressures but, due 298 

to the exposed location of the devices, at this stage it can't be excluded that the 299 

displacements recorded are due to snow accumulated on top of the extensometers.  300 

3.2.3 Earthquakes 301 
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Northeast Italy is a seismically active area. Earthquakes are one of the main triggers for 302 

landslides, but even when the motion is not strong enough to induce a collapse, the shaking 303 

can result in internal deformation of the rock mass (e.g. relative deformation of units and 304 

fracture formation) contributing to slope degradation.  305 

Acoustic emission rates recorded by the sensors after earthquake occurrences have been 306 

verified: for this purpose earthquake records were obtained from the Italian National 307 

Institute of Oceanography and Experimental Geophysics seismic network (CRS-OGS, 2016) 308 

for the period 17/12/2010 – 10/01/2016. Data are filtered to exclude duplicate events with 309 

matching date, time and magnitude values. As an initial analysis, only earthquakes that 310 

occurred within a radius of 20 km from Passo della Morte and with local magnitude ML ≥ 2.5 311 

are considered as those representing the highest energy events occurred in the 312 

surroundings since the sensors were installed. As RDC values are reported at the end of one-313 

hour monitoring periods, RDC values taken into account for every earthquake refer to the 314 

following rounded up hour (e.g. earthquake time 16:05:01 corresponds to RDC recorded at 315 

17:00:00). 316 

Twenty-three events have been identified: local magnitude ML values are in range 2.5-3.8, 317 

with five events exceeding ML = 3. The minimum epicentre distance from the site is 3.8 km 318 

and maximum is 19.5 km. The general response from the three waveguides is RDC/hour = 0 319 

(i.e. there are no detected RDC/hour generated by the seismic event), in very few cases 320 

RDC/hour < 50, with one single episode reaching 3,813; 77 and 1,798 RDC/hour counts on 321 

waveguides AEWG1, AEWG2 and AEWG3 respectively. However, further comparison with 322 

the other available parameters measured in the same time period allow a conclusion that 323 
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these counts are due to rock mass response to increasing groundwater level and not the 324 

concurrent seismic event. 325 

The analysis clearly concludes that there is no acoustic emission response to the 326 

earthquakes recorded to date. The result is in line with Zoppè (2015) who calculates the 327 

theoretical peak ground acceleration (PGA) at Passo della Morte based on the strongest 328 

earthquakes (ML > 4.5) recorded in the last 30 years within 100 km from the site: the eight 329 

earthquakes identified by Zoppè (2015) (ML in range 5.4-6.3, distances 32-77 km) give PGA 330 

values between 0.005-0.050 g, which are too low to induce rock slope collapse. 331 

Considering that the expected PGA for the area is 0.225-0.250 g with 10% probability of 332 

exceedance in 50 years as per the "Seismic hazard map of the Italian territory" (OPCM 3519, 333 

2006) it can't be excluded that strong earthquakes closer to the site could take place and 334 

induce fracturing of the rock mass in the future. 335 

4. The Grossreifling (SART) trial site 336 

Grossreifling trial site is situated in Styria, Austria about 1.5 km north of Grossreifling 337 

[Lat 47.6739, Lon 14.7099] on the left bank of Enns River, which is one of the largest 338 

Austrian tributaries of the Danube River. The site consists of a steep conglomerate slope 339 

that threatens a section of the railway line St. Valentin-Tarvisio at km 91,400. The 340 

Grossreifling trial site was set up in April 2014 as a complementary component of the 341 

Sentinel for Alpine Railway Traffic (SART) project. SART is a pilot project that aims to 342 

improve safety of alpine railways through reducing the risk of damage to tracks and trains 343 

due to rock falls, and to provide a cost saving alternative to expensive dynamic rock fall 344 

barriers. The system takes advantage of a dual approach: early warning of imminent rock 345 



Codeglia et al. 2016 – Analysis of AE patterns for monitoring of rock slope deformation mechanisms Page 17 of 27 

 

falls, given by acoustic emission generated within the rock constituting the slope, and 346 

detection of rock fall occurrence, provided by a light static catch fence instrumented with 347 

movement sensors that give information about the debris that detaches from the slope and 348 

impacts the fence. The two subsystems share a common control centre, which issues 349 

warnings and alarms to the rail traffic operator, providing information to allow action, 350 

specifically slow down or stop the railway traffic (although this control function is not 351 

implemented in the pilot phase). 352 

4.1 Monitoring system 353 

At Grossreifling two horizontal waveguides (H108L and H209R) and one vertical waveguide 354 

(VE10U) were installed. Figure 7 shows the slope instrumented and the location of 355 

waveguides and detection fence. The waveguides are formed using 32 mm threaded self-356 

drilling tubes. These differ from the 50 mm smooth tubes usually installed at other sites (e.g. 357 

Passo della Morte). The self-drilling type of tubes is quite common in slope surface 358 

stabilisation applications but their use as waveguides is innovative. As there is no need to 359 

pre-drill a borehole of bigger diameter, the time and cost for installation was greatly 360 

reduced. The annulus between the tube and borehole wall is filled by pumping grout 361 

through the hollow stem to the drill bit thus backfilling the annulus between tube and 362 

borehole wall towards the slope surface. The downside of this installation approach is that 363 

in rock it is not possible to reach a great depth, as bars are relatively thin and the drilling 364 

equipment is light to make it manoeuvrable. After about 10 m the thin tubes struggle to 365 

transmit the power needed to the drill bit for progression into the rock mass. From a 366 

preliminary study conducted in the laboratory on 3 m tube lengths, there is little difference 367 

(for slope monitoring purposes) in AE propagation within the waveguide between threaded 368 
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and smooth bars. However, attention should be paid when mounting the piezoelectric 369 

transducer. Experiments showed that the best coupling between transducer and waveguide 370 

is given when the transducer is mounted on a flattened thread (i.e. produced by filing), 371 

increasing the area of contact. 372 

The study slope is 70 m high, the top being at 505 m a.s.l. and the bottom at 435 m a.s.l., 373 

where the rail line is located. Waveguides H108L and H209R are installed horizontally in the 374 

conglomerate at altitudes of about 487 m a.s.l. and 486 m a.s.l., respectively, and penetrate 375 

into the rock mass for 3 m. They are installed about 5 m apart diverging at an angle of about 376 

45°. It is important to note that H209R is installed into loose debris for about a third of its 377 

length (1 m), while H108L is located in the conglomerate for its full length. Waveguide 378 

VE10U is composed of 4 bars of 3 m connected using screwed couplings to form a total 379 

length of 12 m and penetrates the conglomerate from near the top of the slope 380 

(500 m a.s.l.). Its bottom is therefore about 1 to 2 m higher in terms of altitude with respect 381 

to the two horizontal waveguides. From a plan perspective waveguide VE10U is located in 382 

between the other two. 383 

To allow comparison between the three waveguides, piezoelectric transducers (Physical 384 

Acoustics R3alpha) and voltage threshold (0.25V) settings are the same for all sensor nodes. 385 

All three sensors were calibrated in the laboratory prior to installation and found to give the 386 

same response to standard calibration tests. Other data available at this site for comparison 387 

are records (date and time) of events hitting the detection fence, along with photos from 388 

the cameras triggered by movement sensors installed on the fence. 389 

Recently, data has become available from a nearby weather station. This is located in 390 

Mooslandl, about 4.5 km SE from the site in a straight line, along the Enns River valley. 391 
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Hourly rainfall and temperature measurements are available since 01/04/2014. At 392 

Grossreifling a rain gauge and temperature sensor were installed at the beginning of the 393 

project but they have been subject to power faults on numerous occasions and hence did 394 

not provide continuous reliable time series. However, a comparison of the Grossreifling and 395 

Mooslandl data sets for periods of overlap has been useful to determine that the Mooslandl 396 

rainfall is representative of the weather in Grossreifling and suitable for comparison with AE 397 

recorded at the site. 398 

4.2 Interpretation of measured AE 399 

The period of time considered for data analysis in this paper is from 29/08/2014 to 400 

31/12/2015. AE records actually started on 11/04/2014 but gaps in H108L and H209R covers 401 

allowed water to leak and drip onto the free end of the waveguide, generating RDC/hour 402 

trends. The covers were re-sealed on 28/08/2014. 403 

Events at Grossreifling cannot be generally subdivided into categories depending on 404 

RDC/hour rates as AE response is very different for each waveguide for the reasons detailed 405 

below: 406 

H108L shows RDC/hour rates that in general are lower by more than one order of 407 

magnitude compared to the other two waveguides. Rates are generally below 4000 408 

RDC/hour with only five single (i.e. 1 hour) periods exceeding this value, with a maximum 409 

number of counts recorded being about 26,000 RDC/hour. AE activity recorded by 410 

waveguide H209R is orders of magnitude higher than the adjacent H108L: rates are 411 

generally about 100,000 RDC/hour with a few events exceeding this. About four events are 412 

just below the maximum counts recorded of 550,000 RDC/hour.  413 
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VE10U also has measured counts about 100,000 RDC/hour and also events distribution with 414 

time very similar to H209R. The main difference is the highest number of counts recorded 415 

with VE10U reaching close to 750,000 RDC/hour on two occasions. 416 

It is important to note that the five biggest events during the monitoring period are 417 

recorded by all the three waveguides, although with different rates. Although rates are 418 

significantly different for the three waveguides due to their specific locations and ground 419 

conditions, it has been possible to identify two categories of events that are, with different 420 

response rates, present in all three datasets: events related to rainfall, discussed in Section 421 

4.2.1, and events related to freeze-thaw cycles, discussed in Section 4.2.2. 422 

4.2.1 Rainfall 423 

From the time series of measurements it is clear that part of the AE activity is generated by 424 

rainfall events. In particular, the response of sensors H209R and VE10U is instantaneous 425 

(see below) and RDC/hour levels are high, generating the peak values discussed above. AE 426 

rates with time are similar in shape to rainfall trends as can be seen in the example provided 427 

in Fig. 8a. AE and rainfall rates are proportional (Fig. 8b), although the relationship is not 428 

always consistent. Both waveguides show AE rates generated by rainfall that are typically in 429 

the region of 20,000 to 50,000 counts per hour, lasting for the entire duration of the rainfall 430 

event and in some cases continuing after rainfall ceases. In Fig. 8a a major event is reported 431 

in May 2015, showing very high sustained counts well above 100,000 RDC/hour. These 432 

occasional high count events last for a single monitoring period (i.e. they are occur within an 433 

1-hour monitoring period). Comparison with rainfall data also shows that in general there is 434 

no delay between rainfall and generated AE, or at least the delay is restricted to the 1 hour 435 

time resolution of measurements. This suggests that the AE is generated by almost 436 
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immediate infiltration of rainfall into the near surface high permeable stratum, which is 437 

slope talus for H209R and vegetated soil for VE10U. 438 

It is interesting to observe that all waveguides show, throughout the dataset, some AE rate 439 

peaks that are relatively higher (i.e. a larger ratio of rainfall rate to AE response of slope). An 440 

example is shown in Fig. 8a around 14/05/2015. As these atypical peaks are not caused by 441 

an increase in the rain rate, it can be interpreted that AE is generated by other deformation 442 

mechanisms and superimposed on top of the AE activity generated by the flow of water. 443 

Rainfall triggered deformation of the slope material would be a potential mechanism 444 

generating AE. These require further investigation. 445 

H108L shows a sporadic and weaker response to rainfall, although the major rainfall events 446 

generate increased AE levels but an order of magnitude less than compared to the other 447 

two sensors. H108L response to rainfall is normally in the range of 500-1000 RDC/hour. This 448 

weaker response is a result of H108L being installed within intact rock at a location with no 449 

superficial soil surface deposits.  450 

4.2.2 Freeze-thaw 451 

Low AE rates lasting only a few monitoring periods are recorded during winter time when 452 

the temperature drops below zero at night and rises above zero during the day. As can be 453 

observed in Fig. 9, rates are in the order of 500-1,500 RDC/hour for waveguide H108L. 454 

Waveguide H209R shows slightly higher rates, about 2,000 counts per hour and waveguide 455 

VE10U shows higher counts of 3,000-5,000. However, VE10U has greater variability; in some 456 

periods events don't exceed 1,000 RDC/hour and at some time no AE is measured. H108L 457 

and H209R AE events are consistently recorded during the warmest hours of the day, 458 
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whereas VE10U AE is generally measured at night. This could be explained considering the 459 

waveguides locations; H108L and H209R are much closer to the rock mass face and probably 460 

are subject to the effect of the slope surface defrosting during the warmer hours of the day. 461 

Fluctuations of the rock face temperature around zero degrees Celsius can induce 462 

movement on discontinuities and the detachment of small boulders from the surface. This 463 

later mechanism is confirmed by photographs taken in winter of the slope and detection 464 

fence.  These are taken automatically triggered when debris impact the fence. Counts are 465 

recorded by all the waveguides simultaneously when a prolonged period of temperatures 466 

higher than zero follows a cold period (i.e. with temperatures sub-zero for a number of 467 

days). 468 

5. Conclusions 469 

This paper details an approach for monitoring the stability of rock slopes using 470 

measurement of acoustic emission generated by deformation mechanisms. The system 471 

comprises a steel waveguide with grout surround located in the rock mass, with AE 472 

measured using a piezoelectric transducer coupled to a sensor that conditions the signal to 473 

remove background noise and quantifies activity as ring down count rates. Although 474 

relationships between AE and slope displacement rates are now established for soil slopes, 475 

this novel application to monitoring of rock slopes means that new interpretation strategies 476 

are required. Time series of AE recorded at two rock slopes in Italy and Austria have been 477 

compared with responses of a range of traditional instruments. Potential drivers of rock 478 

mass deformation mechanisms have been considered systematically (i.e. rainfall, snow, 479 

temperature fluctuations and seismic activity). Clear and repeatable AE trends have been 480 

measured and associated with changes in external slope loading and internal stress changes.  481 
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At Passo della Morte, Italy, clear and consistent AE trends have been measured as the rock 482 

mass responds to variations in the groundwater level, which alters stress conditions in the 483 

steeply bedded limestone. In addition, AE are also generated in response to snow loading on 484 

the slope and the hypothesis is that the vertical stress increase results in differential micro-485 

displacements between the limestone layers. The distribution and magnitude of AE rates 486 

from these two mechanisms can be differentiated. Confidence in the interpretation of the 487 

links between destabilising factors (e.g. snow loading and ground water level) is provided by 488 

the multiple events recorded, consistent behaviour and simultaneous measurement of AE 489 

on multiple waveguides. It has been shown that to date there is no link between seismic 490 

activity from local events up to magnitude ML = 3.8 and AE recorded by the system, 491 

although generation of AE linked to shaking of the rock mass cannot be discounted for 492 

future earthquake events.  493 

At the Grossreifling, Austria, rain seepage into the near surface slope talus and top soil has 494 

been found to generate high rates of AE. However, the correlation between rainfall and AE 495 

rates are not consistent and it is hypothesised that rain triggered mechanisms of slope 496 

instability could be indicated by elevated AE. When the slope is subjected to freeze-thaw 497 

temperature cycles, AE rates have been detected that are linked to observed detachment of 498 

small boulders from the slope surface. 499 

The two case studies presented demonstrate that AE monitoring using grouted waveguides 500 

can be used to detect and differentiate a range of rock slope deformation mechanisms. 501 

Work is continuing in order to establish correlations between AE rates and deformations, 502 

and propose relationships that can be used to interpret AE for classes of slopes. This is 503 

challenging as detected AE rates are linked to the specific location of the waveguide in the 504 
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rock mass relative to the deformation mechanisms. Large scale failure events have not 505 

occurred at either site during the monitoring periods. Therefore, the ability of AE 506 

measurements to detect deterioration of rock slope stability towards failure, and hence be 507 

used to provide an early warning, is not yet proven. However, the sensitivity of measured AE 508 

to relatively small scale and/or localised changes to rock mass loading and stress state, give 509 

confidence that a large scale event can be detected using AE as stability deteriorates. 510 

Monitoring is continuing at both sites to extend the data sets and with the expectation that 511 

significant failure events will occur. 512 
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