

warwick.ac.uk/lib-publications

Original citation:
Ronak, Bajaj and Fahmy, Suhaib A. (2016) Multipumping flexible DSP blocks for resource
reduction on Xilinx FPGAs. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/85668

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/74253714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/85668
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 1

Multipumping Flexible DSP Blocks for Resource
Reduction on Xilinx FPGAs

Bajaj Ronak, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—For complex datapaths, resource sharing can help
reduce area consumption. Traditionally, resource sharing is ap-
plied when the same resource can be scheduled for different
uses in different cycles, often resulting in a longer schedule.
Multipumping is a method whereby a resource is clocked at a
frequency that is a multiple of the surrounding circuit, thereby
offering multiple executions per global clock cycle. This allows
a single resource to be shared among multiple uses in the same
cycle. This concept maps well to modern field-programmable gate
arrays (FPGAs), where hard macro blocks are typically capable of
running at higher frequencies than most designs implemented in
the logic fabric. While this technique has been demonstrated for
static resources, modern digital signal processing (DSP) blocks
are flexible, supporting varied operations at runtime. In this
paper, we demonstrate multipumping for resource sharing of
the flexible DSP48E1 macros in Xilinx FPGAs. We exploit their
dynamic programmability to enable resource sharing for the
full set of supported DSP block operations, and compare this
to multipumping only multipliers and DSP blocks with fixed
configurations. The proposed approach saves on average 48%
DSP blocks at a cost of 74% more LUTs, effectively saving 30%
equivalent LUT area and is feasible for the majority of designs,
in which clock frequency is typically below half the maximum
supported by the DSP blocks.

Keywords—Digital signal processing, field programmable gate
arrays, design automation, arithmetic synthesis.

I. INTRODUCTION

Modern FPGAs include a number of embedded hard blocks,
including memory blocks, DSP blocks, and embedded pro-
cessors that offer performance, power, and area benefits over
“soft” implementations of the same functions [1]. The DSP
blocks in modern Xilinx FPGAs support a range of arithmetic
functions, selected through control signals that can be dynam-
ically set at runtime, though this is not typically exploited by
vendor tools. Since hard blocks are a limited resource, it is
prudent to share these resources where possible. Traditionally,
operations scheduled in non-overlapping schedule times (STs)
can be mapped to the same hardware resource in the binding
stage by adding multiplexers at the inputs and de-multiplexers
at the outputs of the block. However, this generally increases
schedule length.

Multipumping is another technique that reduces hard block
utilisation, without increasing schedule length and initiation
interval (II). The shared block is run at a frequency that is
a multiple of the surrounding circuit, hence offering multiple
computational cycles per global cycle. This is possible with
DSP blocks since they support much higher frequencies than
the typical complete circuit, and therefore can be clocked
to enable multiple operations to be scheduled in the same

V2Pro V4 V5 V6 V7

0

200

400

600

800

Device

F
re
q
u
en

cy
(M

H
z)

MaxFreq

MaxFreq/2

Fig. 1: Reported frequencies on Xilinx Virtex devices for
over 350 papers (1100 designs) published in recent FPGA
conferences.

clock cycle. Canis el al. [2] demonstrated the technique by
mapping two multiply operations onto a single multipumped
DSP (mpDSP) block per global clock. The multiplier in the
DSP block, becomes a shared resource that can be mapped to
by finding multiple multiplications that can be scheduled in
the same cycle. Multipumping has also been used to enable
multiported memories with fewer resources [3].

The DSP blocks in modern Xilinx FPGAs support frequen-
cies of over 500 MHz on a Virtex 6 [4], while complete systems
will typically have a frequency of around 150–250 MHz.
Multipumping relies on there being a significant difference
between overall circuit frequency and the supported frequency
of the hard block to be multipumped. A factor of two makes
multipumping feasible.

To demonstrate the feasibility of multipumping, we analysed
FPGA designs presented from 2010 onwards at four key FPGA
conferences.

1) The ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA).

2) The IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

3) The International Conference on Field Programmable
Logic and Applications (FPL).

4) The International Conference on Field Programmable
Technology (FPT).

Fig. 1 shows a box plot of the reported operating frequencies
for designs in all papers analysed, split across Xilinx Virtex de-
vice families. The median (indicated by the line inside the box)
and third quartile (top of the box) frequencies are of particular
interest here. The datasheet maximum operating frequency of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 2

the DSP blocks for each family and half this frequency are
also shown. We can see that the median design frequency
has not increased at the same rate as supported DSP block
frequencies in recent device generations, and that over three
quarters of designs are comfortably below half the supported
DSP block frequency for newer families. The outliers are
typically small designs, or those manually optimised around
these hard blocks for maximum performance. A similar study
in [5] analysed papers at FCCM between 1995 and 2014 and
similarly concluded that despite embedded blocks significantly
improving, overall design performance has lagged. The results
in Fig. 1 mean multipumping (or specifically dual-pumping)
of DSP blocks is feasible for most designs.

DSP blocks have increased in complexity, supporting more
operations. The method in [2] considers only the multiplier
in the DSP block, while in previous work [6], we showed
how the multiple sub-blocks could be multipumped through a
brute-force (BF) schedule analysis. In this paper, we show how
functional flexibility offers much improved opportunities for
multipumping over fixed-function DSP blocks. This flexibility
allows different configurations of supported datapaths to share
the same DSP block. We present a tool that incorporates new
scheduling techniques to exploit this extended sharing and
generate more efficient implementations of datapaths with DSP
block usage reduced by a half. This is the first work in which
multipumping has been applied to dynamically configurable
DSP blocks.

The main contributions of this paper are:
1) A reconfigurable multipumped DSP block architecture

using the Xilinx DSP48E1 primitive.
2) Multipumping scheduling techniques that exploits the

dynamic programmability of DSP blocks.
3) An approach combining the concepts of traditional re-

source sharing and multipumping, that reduces DSP block
usage by half.

4) Integration of these techniques into an automated tool.
5) Evaluation of multipumping techniques across a suite of

18 benchmarks with varied complexity.

II. RELATED WORK

A significant amount of research has been done on resource
sharing at the register-transfer level (RTL) level as well as
in high-level synthesis [7], [8], [9], [10]. A typical high-level
synthesis (HLS) tool flow consists of three major steps: 1)
allocation; 2) scheduling; and 3) binding. Cardoso [8] pro-
posed an algorithm combining temporal partitioning, resource
sharing, scheduling, allocation, and binding to obtain resource
efficient implementations. Instead of partitioning the design
first and then applying resource sharing for each partition,
resource sharing is explored in each temporal partition to
minimise resource requirements, resulting in a reduced number
of partitions and more logic implemented in each partition.
Heuristics for global resource sharing were proposed in [9],
which focuses on inter-basic-block sharing. Computational
modules across basic blocks are analysed to minimise con-
nections and functional resources. Patterns for combining re-
sources are extracted and prioritised, resulting in more effective

sharing than when considered individually. This is similar to
the mapping of multiple compute nodes to compound resources
like DSP blocks.

The work in [10] combined module selection and re-
source sharing to minimise area while achieving throughput
requirements. For a given throughput constraint, the proposed
technique explores implementations with different frequencies
and IIs to achieve a target throughput. A mapping-aware
pipeline scheduling approach based on an MILP formulation of
modulo scheduling is proposed in [11]. The algorithm accepts
multiple constraints like clock period, II, resource constraints,
and generates a schedule satisfying all the constraints while
considering LUT mapping.

Generally, HLS tools use static scheduling to determine the
extent of resource sharing possible. Work in [12] proposed
a source-to-source transformation which improves the effi-
ciency and II using dynamic scheduling techniques. Dynamic
scheduling can exploit the extent of resource sharing on-the-
fly, however, extra logic required for complex decision making
during execution results in a resource overhead. A recent
algorithm proposed in [13] attempts to optimise resource usage
and II for different loops in a design to achieve maximum
throughput. Instead of optimising different loops individually,
a global resource sharing approach is proposed, enabling
resource sharing across different loops. A method to reduce
resource usage by determining a pattern of operations, which
is then used for efficient binding was proposed in [14]. Studies
in [15] and [16] analysed the impact of resource sharing on the
performance of FPGA designs. They show the cases for which
resource sharing is advantageous and where it can adversely
impact performance.

Scheduling is a critical step as it determines the degree
of possible resource sharing. Various heuristics have been
proposed including list scheduling [17], force-directed schedul-
ing (FDS) [18], and a recent scheduler based on system of
difference constraints (SDC) [19]. We are not aware of any
work that focuses on multicycle flexible hard blocks like the
DSP48E1. These present unique challenges in their ability
to share different computations on the same hardware, and
the complex latency constraints enforced by their pipeline
configuration.

The concept of multipumping has been applied previously
in other areas, such as double-data-rate memories, that allow
read/write data at double the system clock frequency. It has
been extensively used in designing register files [20], and mul-
tiported memories [21], [22]. A whitepaper by Xilinx [23] used
multipumped DSP blocks with lower input data rates than the
DSP block throughput. However, this capability has not been
incorporated in the Xilinx Vivado HLS tool. Multipumping
has been used to reduce DSP block utilisation [2] in the open-
source LegUp high-level synthesis tool [24].

Our paper differs from that in [2] primarily in that we con-
sider the DSP blocks as fully featured blocks supporting differ-
ent configurations that can be dynamically reconfigured rather
than just multipliers. In our previous work [6], we showed that
multipumping only multipliers can have a detrimental effect
on area as other sub-block operations mapped to DSP blocks
must then be implemented in logic. We also showed that it is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 3

+/-

+ -
D

/

/

/

/

18

30

25

48

/
48

B

A

D

C

P

Multiplier
25x18

Pre-adder
25-bit

X

/
48 A:B

ALU
48-bit

INMODE OPMODE ALUMODE

Fig. 2: DSP48E1 primitive structure.

TABLE I: Maximum frequency in MHz of DSP48E1 for differ-
ent blocks used and pipeline stages (Virtex 6 XC6VLX240T-
1).

Pipeline Depth
Sub-blocks used 2 3 4

Multiplier 236 473 473
Pre-adder, Multiplier 196 292 473
Multiplier, ALU 263 473 473
Pre-adder, Multiplier, ALU 196 292 473

possible to multipump the DSP block including its other sub-
blocks with a BF schedule analysis. In this paper, we extend the
approach to take advantage of the dynamic programmability
of the DSP block, showing that this offers more opportunities
to take advantage of multipumping, further reducing area.

III. XILINX DSP48E1 PRIMITIVE

The simplified architecture of the DSP48E1 primitive in
modern Xilinx FPGAs is shown in Fig. 2. Inputs A, B, C,
and D are of different wordlengths: 30, 18, 48, and 25 bits,
respectively. The DSP48E1 comprises multiple sub-blocks: a
25-bit pre-adder, a 25 × 18-bit multiplier, and a 48-bit ALU,
which can be combined to perform different functions. The
desired operations are set using three configuration inputs: 1)
INMODE; 2) OPMODE; and 3) ALUMODE. DSP Blocks are
internally pipelined with up to four stages allowing maximum
throughput to be achieved even when all three sub-blocks are
used. Table I shows the maximum achievable frequency for
different configurations. The maximum frequency is achieved
with three pipeline stages if the pre-adder is not used, or four
pipeline stages if it is used.

A key feature of the DSP48E1 primitive is its dynamic
programmability that allows functionality to be modified at
runtime in each clock cycle by changing the configuration
inputs. This greatly enhances the capabilities of the DSP48E1
primitive, as it can be reprogrammed and multiple operations
can be mapped to a single DSP block. This flexibility has
previously been demonstrated as enabling the design of small
high speed soft processors [25] and overlay architectures [26].

We conducted a number of experiments with Xilinx RTL
and HLS tools, mapping designs that could fit in a single
DSP block with dynamic programmability, but found that

+

X X X X

-

+

1

2

3

(a)

+

X X

X X

-

+

1

2

3

4

(b)

+

X X X X

-

+

1

2

3

(c)

DSPDSP

mpDSP

+

X

X

+

1

2

3

-

X

X

(d)

DSPmpDSP

mpDSP

+

X

X

+

1

2

3

-

X

X

(e)

Fig. 3: (a) Input dataflow graph (b) Traditional resource
sharing (Number of multipliers available = 2) (c) Multipump-
ing multipliers only (d) Multipumping fixed configuration
DSP blocks (e) Multipumping DSP blocks with dynamic
programmability.

neither flow exploited this capability. The only sharing found
was multiplexing DSP block inputs, and when different sub-
blocks beyond the multiplier are required, these are always
implemented in LUTs. We show that DSP block flexibility
allows for improved application of multipumping, resulting in
increased resource sharing beyond what the vendor tools can
achieve.

IV. RESOURCE SHARING AND MULTIPUMPING

Traditional resource sharing allows the same resource to
be shared in a time-multiplexed manner by multiplexing its
inputs, and demultiplexing its outputs. Complex embedded
blocks in FPGAs are an ideal target for resource sharing since
they are scarce compared to other resources. Multipliers con-
sume significant resources and offer poor performance when
implemented using LUTs and registers, though adders and
subtractors can be efficient in general logic. Resource sharing
is not advisable for simple adders since the multiplexing
overheads negate the benefits of sharing [15]. In traditional
resource sharing, we search for independent uses of the same
resource that are not scheduled at the same time, and add the
resource sharing circuitry around the resource. If there are
M multipliers available, for example, we can schedules the
dataflow graph such that, in each ST, there are no more than
M multiplication operations, but this can result in a longer
schedule.

Multipumping achieves resource reduction by mapping two
operations onto the same resource running at twice the clock
rate, thereby giving it two execution cycles in the time of
one global cycle. We illustrate this using a simple dataflow
graph, which is part of larger design, shown in Fig. 3a. Assume
all multiply operations are implemented using fully pipelined
(four stage) DSP blocks and add/sub operations are either

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 4

merged with multipliers into DSP blocks or mapped to LUT
based adders with a latency of two clock cycles. Without
any resource sharing, the dataflow graph can be implemented
using four DSP blocks and three LUT based adders, with
a schedule length of eight clock cycles. Using traditional
resource sharing, the graph can be implemented using two DSP
blocks and three LUT based adders, reusing the DSP blocks,
but at the expense of increased latency (12 clock cycles)
and II, as shown in Fig. 3b. With multipumped DSP block
multipliers, all four multiplication operations can be mapped
to two DSP blocks [Fig. 3c], saving two DSPs without an
increase in schedule time (compared to no resource sharing).
Two operations sharing the same block are shown in shaded
rectangles. Adder requirements remains same. When we use
all sub-blocks in the DSP blocks, nodes implementing the
same set of operations can be multipumped together. However,
this could increase DSP block usage since opportunities for
multipumping could be reduced if there are no matches for
the full set of sub-blocks. Multipumping DSP blocks with the
same configuration requires three DSP blocks and one LUT
based adder, with a latency of ten clock cycles [Fig. 3d]. Imple-
mentations in Fig. 3c and Fig. 3d provide a trade-off between
DSP block and generic FPGA resource usage. By exploiting
the dynamic programmability of DSP blocks, resource usage
can be further minimised, as different configurations of the
DSP block can also be multipumped together, as shown in
Fig. 3e. Multipumping with dynamic programmability requires
two DSP blocks with one LUT based subtractor.

The primary condition for multipumping to be feasible as a
resource reduction approach is that the embedded block should
support a frequency that is double the frequency requirement
of the overall design. To maximise multipumping, the dataflow
graph should be scheduled such that an even number of DSP
block operations can be scheduled in each ST, so that these
can be shared across multipumped DSP blocks.

V. MULTIPUMPED DSP BLOCK ARCHITECTURE

Our multipumped DSP block (mpDSP) instantiates the Xil-
inx DSP48E1 primitive, exploiting the full set of sub-blocks
and dynamic programmability. We assume the mpDSP runs
at double the speed of surrounding logic, requiring two clock
domains. A block diagram of the mpDSP is shown in Fig. 4.
Clk2 is aligned with and exactly twice Clk1 . Clk1Follower
follows the system clock (Clk1), and is fed to the multiplexer
select signal to choose between inputs to the DSP48E1 prim-
itive. We do not use Clk1 directly to avoid possible hold-
time violations [23]. Theoretically, an application at lower
frequency could offer 4× multipumping, however, overheads
incurred by the data and control multiplexers and the increased
complexity of identifying sharing possibilities in the schedule
would mean diminished benefits.

The preadder and ALU can be en-
abled/disabled/reconfigured in each clock cycle, depending on
the logic to be mapped to the mpDSP. The multiplier is always
enabled. All four pipeline stages of the DSP48E1 primitive
are enabled to achieve maximum frequency for Clk2 . In
configurations for which the ALU block is used, two extra

+/-

+ -
D

X

CONFIG1 CONFIG2

A
LU

M
O
D
E

O
P
M
O
D
E

IN
M
O
D
E

A1

B1

B2

A2

D1

D2

C1

C2

Clkx1
Follower

O1

O2

Clkx1 Clkx1Clkx2

dspB

dspA

dspD

dspC

dspP outReg

dspConfig

Fig. 4: Multipumped DSP block (mpDSP) architecture.

registers are added to align the C input. The configuration
word for the DSP48E1 primitive is 17 bits long, consisting
of 5-bit INMODE, 7-bit OPMODE, 4-bit ALUMODE, and
1-bit CARRYIN signals. CARRYIN is the carry input to the
ALU sub-block, and must be set to 1 when the output of the
multiplier is subtracted from input C.

The mpDSP has at most eight inputs and two outputs,
when both temporal configurations utilise all three sub-blocks.
Configurations of the DSP48E1 primitive are passed through
parameters. If a configuration does not utilise either the pread-
der or ALU sub-blocks, the corresponding inputs are held at
zero in the instantiation of the mpDSP, and these are then
optimised away during synthesis. Fig. 5 shows the timing
diagram of the mpDSP block. At each rising edge of the system
clock (Clk1), input sets I1 (A1, B1, C1, D1) and I2 (A2, B2,
C2, D2) arrive at the multiplexers. For the first half of the
cycle, Clk1Follower causes the multiplexer to pass the I1
inputs and the corresponding configuration bits are applied.
The I2 inputs are selected in the second half of the cycle. The
latency of the mpDSP is equivalent to 3 system clock cycles,
after which the outputs corresponding to both sets of inputs
arrive at O1 and O2.

The maximum frequency for a design using mpDSP blocks
is calculated as min(fClk1, fClk2/2). On more modern devices
where the DSP block can reach up to 700 MHz, a system clock
of over 300 MHz (after taking into account the delays due to
multiplexers) can be achieved, which is above the maximum
achievable frequency for most larger designs as shown in
Fig. 1.

VI. SCHEDULING FOR MULTIPUMPING

To utilise the full potential of multipumping, the DSP
dataflow graph (DDFG) (discussed in more detail in [6])
should be scheduled in such a way that in each schedule time
(ST) i, an even number, 2Mi, of DSP nodes are scheduled.
2Mi DSP48E1 primitive templates then can be mapped to Mi

mpDSP blocks. A simple BF search was proposed in [6], but
that did not scale well to large graphs and was unsuitable
when considering the full flexibility of the DSP block as in
this paper, as the search space becomes too large. Hence,
we present two scheduling techniques that can determine a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 5

Clkx1

Clkx2

A1 ina11 ina21 ina31 ina41

A2 ina12 ina22 ina32 ina42

B1 inb11 inb21 inb31 inb41

B2 inb12 inb22 inb32 inb42

C1 inc11 inc21 inc31 inc41

C2 inc12 inc22 inc32 inc42

D1 ind11 ind21 ind31 ind41

D2 ind12 ind22 ind32 ind42

CONFIG1 conf1

CONFIG2 conf2

dspA ina11 ina12 ina21 ina22 ina31 ina32 ina41

dspB inb11 inb12 inb21 inb22 inb31 inb32 inb41

dspC inc11 inc12 inc21 inc22 inc31 inc32 inc41

dspD ind11 ind12 ind21 ind22 ind31 ind32 ind41

dspConfig conf1 conf2 conf1 conf2 conf1 conf2 conf1

dspP out11 out12 out21

outReg out11 out12

O1 out11

O2 out12

Fig. 5: Timing diagram showing mpDSP operation.

multipumping schedule in deterministic time, the first extends
SDC scheduling, while the second adapts FDS. The FDS-based
approach is shown to be able to prioritise multipumping of
identical DSP block configurations, resulting in reduced LUT
overhead compared to the SDC-based approach, as discussed
in more detail in Section VI-D.

A. Brute-Force Scheduling
A BF schedule is determined as follows. First, the as

soon as possible (ASAP) and as late as possible (ALAP)
schedules of the DDFG are determined to compute the mobility
of each node. This is the measure of scheduling flexibility
for the node; the difference between the ALAP and ASAP
STs. Nodes with zero mobility are those which must be
scheduled in a particular ST to maintain data dependencies.
Nodes with nonzero mobility can be exploited to arrive at
a schedule which maximises opportunities for multipumping.
All possible schedules are generated for these mobilities,
ignoring dependencies. In the next step, schedules that do not
satisfy dependencies are discarded. For the remaining valid
schedules, we calculate the mpDSP block requirement for each
schedule and track the minimum mpDSP (minmpDSP) block
requirement. Schedules using more mpDSPs than minmpDSP
are then discarded. Out of those remaining, the one requiring
the minimum number of balancing registers is then selected
as the final schedule. Although this approach results in an
optimised schedule, the exhaustive search does not scale well
to large dataflow graphs, and adding DSP block flexibility
complicates the search further.

Algorithm 1: SDC based multipumping
def sdcMpSchedule(ddfg, schObjective, λ):

Data: DSP Dataflow Graph (ddfg), schObjective, λ
Result: Scheduled ddfg (schDDFG)

begin
asap(ddfg)
alap(ddfg)

#generate edmond matching dataflow graph and
determine multipumping matchings
EMDDFG = generateEMDDFG(ddfg)
matchings = getMatchings(EMDDFG)

lp = initialiseLP(ddfg) #initialise LP problem
lp = addMulticycleConstraints(lp, ddfg)
lp = addDependencyConstraints(lp, ddfg)
lp = addMultipumpConstraints(lp, ddfg, matchings)
lp = addObjFunc(lp, schObjective, λ) #add objective

function to LP

schDDFG = solveLP(lp) #solve formulated LP

#remove infeasibility if formulated LP is infeasible
while True:

if (schDDFG != -1):
break

incMatch = identifyIncorrectMatching(lp)
EMDDFG = updateEMDDFG(EMDDFG,

incMatch)
newMatchings = getMatchings(EMDDFG)
lp = updateLP(lp, ddfg, newMatchings)
schDDFG = solveLP(lp)

return schDDFG

B. SDC-Based Scheduling
SDC scheduling is based on the SDCs, which formulates

the scheduling problem mathematically as a set of linear
constraints that can be solved using a linear programming (LP)
solver. The scheduling algorithm is detailed in Algorithm 1.

First, the ASAP and ALAP schedules of the DDFG are
determined to compute the mobility of each node. Before
formulating the LP problem to determine the schedule, we
must identify pairs of DSP blocks that can be multipumped
together. Each DSP block can possibly be paired with any DSP
blocks that can be scheduled in same ST. We pair DSP blocks
to maximise the number of pairs. In graph theory, a matching
of a graph is a set of edges such that no edge shares a vertex
with any other, i.e., each vertex is connected to a maximum of
one edge in the matching. Maximum matching is a matching
comprising the maximum number of edges, i.e., covering the
maximum number of vertices. Identification of valid pairs of
DSP blocks for multipumping can be formulated as finding
the maximum matching for a graph where each vertex is a
DSP block and those sharing a ST are connected via edges.
DSP blocks at the endpoints of each edge in the matching
can then be multipumped and mapped to an mpDSP. We use
the Edmond Matching (EM) algorithm [27] to determine the
maximum number of DSP block pairs.

The DDFG includes DSP blocks and add/sub blocks as
vertices with edges representing data dependencies. A separate

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 6

EMDDFG, including only DSP blocks is derived from this. In
the EMDDFG, an edge connecting vertices vi and vj indicates
that the DSP blocks can be multipumped together. An edge is
added between vi and vj if:

1) vi and vj do not depend on each other, i.e., there is no
path connecting the output of vi to vj and vice versa;

2) The ST of vi and vj overlap, to allow multipumping. The
ST of a node in the ASAP schedule is the earliest a node
can be scheduled and the ALAP ST is the latest ST for a
node. Nodes are considered as overlapping if the ASAP
ST of vi is less than the ALAP ST of vj and the ASAP
ST of vj is less than the ALAP ST of vi.

After determining the set of DSP block pairs which can
be multipumped, the algorithm proceeds to SDC scheduling.
Generating the schedule using SDC is done in four steps.

1) Initialise LP Problem: The LP problem is initialised and
scheduling variables for each node in the DDFG are added. The
number of scheduling variables associated with each node is
equal to the latency of the node, one for each pipeline stage.

2) Model Scheduling Constraints: Next, the scheduling con-
straints are modeled. Constraints added to the LP problem are
as follows.
a) Multicycle constraints: Constraints are added such that

difference between the scheduling variables of a node is
always 1.

b) Dependency constraints: To ensure the correct flow of
operations, constraints are added for each dependent pair
of nodes such that the start time of the destination node is
always greater than end time of the source node.

c) Multipumping constraints: DSP block pairs identified for
multipumping using the EM algorithm should be scheduled
in the same ST. For each DSP blocks pair to be multi-
pumped, a constraint is added such that the start times for
both the DSP blocks is the same.

3) Formulate Objective Function: Thirdly, the objective
function is formulated. Both ASAP and ALAP scheduling
objectives are supported, selectable by the user. As ALAP
scheduling maximises the objective function, constraints for
maximum ST (λ) for each output node are also added, such
that the end time of each output node is less than or equal to
λ.

4) Solve LP: The LP with the objective function defined in
the previous step is solved, subject to the defined constraints,
using an LP solver. We used the open-source “lpsolve” [28].

Detailed mathematical formulations of the LP and its con-
straints for SDC are discussed in [19].

In the EMDDFG, independent overlapping nodes are con-
nected by edges, but, information on data dependencies be-
tween nodes is not captured. Due to this, some matchings
generated by the EM algorithm can result in infeasible LP
formulations, for which no solution exists that satisfies all the
constraints. In order to resolve this, we iteratively perform
the following four steps until the formulated LP results in a
solution.

1) Identify incorrect matching, i.e., a multipumping con-
straint due to which the LP is infeasible.

2) Remove the edge corresponding to the identified matching
from the EMDDFG.

3) Rerun the EM algorithm with the updated EMDDFG,
resulting in a new set of matchings.

4) Update the multipumping constraints according to the new
matchings and solve the LP.

An infeasible LP implies that for one of the multipumping
pairs, the start times of both the DSP blocks cannot be
equal. In order to identify this incorrect matching (step 1), we
modify the multipumping constraints one-by-one and attempt
to solve the LP. Multipumping constraints are of the form
sv start(vi)−sv start(vj) = 0, where sv start(v) is the start time
variable of vertex v, and vi and vj are DSP block vertices to be
multipumped. To relax the multipumping constraints, instead
of forcing the start times to be equal, the 0 on the right-hand
side of the constraint equation is replaced by an unbounded
variable α. The relaxed constraint for which the LP results in
a feasible solution after the above replacement is the incorrect
matching, and the corresponding edge must be removed from
the EMDDFG.

The time complexity of EM algorithm is O(n(n + m)m),
where n is number of DSP block nodes in the graph and m
is number of edges in the EMDDFG. The LP model used for
SDC scheduling can be solved in O(p2(q + p log(p)) log(p)),
where p is number of scheduling variables and q is number
of constraints. Considering the iterative method of removing
infeasibility and pair-wise computation of mpDSP blocks,
total worst case time complexity of SDC-based scheduling
algorithm is O(n2(n(n+m)m+ p2(q + p log(p)) log(p))).

C. FDS-Based Scheduling
FDS [18] is a heuristic method for generating a schedule us-

ing a deterministically greedy approach without backtracking.
Although FDS follows a greedy approach, all possible STs of
the node being scheduled are explored with consideration for
the effect on other nodes before a ST is assigned, resulting in
a satisfactory schedule.

We use FDS with a modification to generate multipumping
optimised schedules. Instead of directly selecting the ST of
minimum force for a node, we explore the possibilities of
multipumping the node with previously scheduled nodes. If
a match is found, that ST is selected for the node, otherwise
the minimum force ST is selected. The FDS-based scheduling
algorithm is detailed in Algorithm 2.

First, the ASAP and ALAP schedules of the DDFG are
generated to compute the mobility of each node. We then create
a priority list of nodes in the DDFG, which orders the traversal
for scheduling. We sort nodes according to their ASAP ST, and
ALAP STs are used as a tie-breaker. We initialise the DDFG
schedule by assigning nodes with zero mobility an ST equal
to their ASAP schedule time, and −1 for other nodes that are
yet to be scheduled.

We traverse the nodes in the DDFG according to the priority
determined above and schedule one unscheduled node in each
iteration through three stages. In the first stage, we create a
distribution graph (DG) of the operation of the current node.
Each node can be of two types. It can either be a DSP node

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 7

Algorithm 2: Modified FDS for multipumping
def fdsMpSchedule(ddfg):

Data: DSP Dataflow Graph (ddfg)
Result: Scheduled ddfg

begin
asap(ddfg)
alap(ddfg)

#for each dsp node n in ddfg
for n in ddfg:

n[mobility] = n[talap]− n[tasap]

#assign schedule time to nodes with zero mobility; -1
for other nodes

initialiseSchedule(ddfg)
#initialise an empty list of nodes which are paired for

multipumping
matchedNodes = []
for n in ddfg:

if n[schTime] != -1:
continue

else:
currDG = getDistributionGraph(n[type], n)
nF = [0]*(n[mobility] + 1)
#for each schedule time of node n
for i in (n[tasap], n[talap] + 1):

nF[i] += calcSelfF(currDG,i,ddfg)
nF[i] += calcPredF(currDG,i,ddfg)
nF[i] += calcSuccF(currDG,i,ddfg)

minFIndex = nF.index(min(nF))
if n[type] is addsub:

n[schTime] = n[tasap] + minFIndex
else:

[matchedNode,fIndex] = findMpNode(nF,
ddfg)

if matchedNode:
n[schTime] = n[tasap] + fIndex
matchedNodes.append(n)
matchedNodes.append(matchedNode)

else:
n[schTime] = n[tasap] + minFIndex

return ddfg

implementing a set of operations using a DSP48E1 primitive
or it can be an add/sub node, to be implemented using a
LUT based adder/subtractor. The DG is a set of sums of
probabilities of scheduling an operation in a particular ST. For
each operation Op, DG(i) =

∑N
n=1 Prob(n, i), where N is

the total number of nodes in the DDFG, and Prob(n, i) is
1/(n[mobility] + 1) if n[tasap] ≤ i ≤ n[talap], 0 otherwise.

The second stage is to calculate the force for the node, for
each possible ST. This is a measure of the cost of scheduling
the node in a particular ST, and is the product of the value of
the DG of the ST and the change in the operation’s probability
if it is scheduled in that ST. Force for an operation assigned ST
i is calculated as, Force(i) = DG(i) × ∆Prob(Op, i), where
∆Prob(Op, i) is the change in probability. Three types of force
are associated with each node. First is the self force, which is

the sum of forces for each possible ST, calculated using the
change in probabilities of the current node being scheduled.
While calculating the self force for ST i, the probabilities of
the node changes to 1 for ST i, 0 otherwise; these are the
probability changes used. Assigning the node in a ST can affect
the mobility of its predecessor and successor nodes. Similar to
self force, predecessor force and successor force are calculated
for nodes whose mobility is affected due to the current node
ST. The total force for the current ST is the sum of all three
forces.

In the third stage, traditional FDS selects the ST with
minimum force. For the multipumping optimised FDS, we
modify this stage. Starting from the ST with minimum force,
we check if there are nodes scheduled in the same ST that
are not yet paired with any other node for multipumping. If
a match is found, we assign the ST of the matched node. We
continue to check STs with ascending force to find a match.
Both the current node and the matched node are flagged as
matched and are not considered for matching in subsequent
iterations. If no match is found, the node is assigned to the
ST with minimum force. The worst case time complexity
of the FDS-based scheduling algorithm is O(n2), where n
is number of nodes in the graph, due to the pair-wise force
computations [18].

D. Comparing SDC-Based and FDS-Based Scheduling
We ensure functional correctness of the generated schedules

for both techniques. For SDC-based scheduling, dependency
constraints ensure that while determining opportunities for
multipumping, the order of operations remains the same. For
FDS-based scheduling, the priority list generated prior to
scheduling for graph traversal ensures functional correctness.
Furthermore, when the ST for a node is fixed, the probabilities
of dependent nodes change accordingly. Hence scheduling
never affects the order of nodes or dependencies in the graph.

The SDC- and FDS-based scheduling approaches can gen-
erate schedules in deterministic time while also exploiting the
dynamic programmability of DSP blocks to maximise multi-
pumping. One advantage of the FDS-based approach over the
SDC-based approach is that it can prioritise multipumping of
identical DSP block configurations, whereas the EM algorithm
used for matching in the SDC approach treats all DSP block
configurations identically.

The overheads of using mpDSP blocks include the mul-
tiplexers required to select two different sets of inputs, the
control to switch DSP block configuration, three 48-bit regis-
ters for outputs, and, when the ALU sub-block is used, two
extra 48-bit registers to balance input C. Multipumping with
the same configuration results in savings in terms of LUTs
as there is no need for the configuration control circuitry, and
where a sub-block is unused, a multiplexer is saved. Consider
a scenario where four DSP blocks can be scheduled in one
ST, mapping to two mpDSPs. Among the four DSP blocks,
two utilise only the multiply sub-block (mul) and the other
two utilise all three sub-blocks (add-mul-add). In SDC, the
identified pairs could each be mul and add-mul-add, requiring
an extra input and control register for both the mpDSPs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 8

However, in FDS, the mul operations will be paired and the
add-mul-add paired. Thus, only one mpDSP block will require
extra registers compared to both the blocks for SDC, and the
configuration circuitry is optimised away, saving LUTs.

E. Further Resource Sharing
Ideally, for a dataflow graph with n DSP blocks, multipump-

ing should result in a DSP block reduction from n to
⌈
n
2

⌉
.

However, this is not always feasible due to data dependencies
and the structure of the input dataflow graph that may result
in STs with odd numbers of DSP blocks. In such cases, the
(2n + 1) DSP blocks are mapped to n mpDSPs and a single
DSP48E1 primitive. In large graphs with multiple STs with
odd numbers of DSP blocks, this can limit the benefits of
multipumping.

We overcome this by further sharing these lone DSP blocks
using an mpDSP. An additional pass searches for non-mpDSP
blocks in different STs and pairs them into an mpDSP. Thus,
without affecting the rest of the datapath (including pipeline
balancing registers) and II, and without requiring any extra
control logic, DSP blocks scheduled in different STs can also
be multipumped and mapped onto mpDSPs.

VII. INTEGRATION INTO TOOL FLOW

We adapt the tool flow in [29] to generate synthesisable
RTL for multipumped implementations. The tool has been
modified to accept a computational kernel description in C
rather than the previous proprietary input. LLVM passes are
used to translate the input C file into a set of DOT files, which
are parsed to generate a dataflow graph that is partitioned
into subgraphs representing DSP block configurations. The
partitioned graph, called the DDFG, comprises nodes that are
either DSP48E1 primitive configurations or adders/subtractors
to be implemented in FPGA logic. These adder nodes are those
that cannot be merged with multipliers in the original graph
to map to DSP block configurations. The tool also generates
required balancing registers to align inputs to all nodes in the
DDFG. The scheduling approaches described in Section VI are
added to the flow, and the RTL generation stage is rewritten
to use mpDSP blocks as described in Section V.

The DDFG is transformed into an multipumped DDFG
(mpDDFG), with each node representing one of these three
type of blocks: an mpDSP block, a DSP48E1 primitive,
or a LUT based add/sub block. To achieve a DSP block
reduction of a half, the number of DSP block nodes in each
ST should be a multiple of two, though this is not always
possible due to dependency constraints. For the BF approach,
DSP nodes in the same ST with the same configuration are
mapped to mpDSPs. For the SDC and FDS based techniques
(Sections VI-B and VI-C), if the number of nodes scheduled in
the DDFG is even (2M), we utilise M mpDSP blocks. Ports
corresponding to the nodes in the DDFG (up to 4 × 2M) are
mapped to the corresponding 8×M ports of M mpDSPs. If
an odd number of DSP blocks (2M + 1) is scheduled in a ST,
2M DSP blocks are mapped to M mpDSPs in the mpDDFG,
and the remaining DDFG node is mapped directly to a DSP
block with the correct configuration running at the system

TABLE II: Graph nodes I/O and operations.

Graph Inputs Outputs Adders/Subs Muls

Chebyshev 1 1 2 3
Mibench2 3 1 8 6
FIR2 17 1 15 8
SG Filter 2 1 6 6
Horner Bezier 12 4 6 8
Poly1 2 1 5 4
Poly2 2 1 3 5
Poly3 6 1 4 6
Poly4 5 1 3 3
Poly5 3 1 14 11
Poly6 3 1 19 23
Poly7 3 1 18 17
Poly8 3 1 16 15
Quad Spline 7 1 4 13
ARF 26 2 12 16
EWF 21 5 26 8
Motion Vector 25 4 12 12
Smooth Triangle 29 14 20 17

clock frequency. Although the single DDFG node can also
be mapped to a mpDSP with input set I2 left unconnected,
mapping the node directly to a DSP48E1 primitive saves on
the extra circuitry required in a mpDSP. Finally, lone DSP
blocks scheduled in different schedule times are combined into
mpDSPs as described in Section VI-E.

From the mpDDFG, Verilog RTL instantiations of the
mpDSP blocks, DSP48E1 primitives, and adder blocks are
generated along with pipeline balancing registers. For mpDSP
blocks, the two configurations are passed as parameters (which
can be the same) for each positive and negative edge of
the system clock, as discussed in Section V. If the two
multipumped configurations are identical, the configuration is
hard-wired.

VIII. EXPERIMENTS AND ANALYSIS

To explore the effectiveness of the proposed methods for
multipumping, we implemented a number of multiply-add flow
graphs. These include the Mibench2 filter, quadratic spline, and
Savitzky-Golay filter from [30]; the ARF, EWF, Horner Bézier,
motion vector, and smooth triangle extracted from MediaBench
[31]; and eight polynomials of varied complexity from the
Polynomial Test Suite [32]. Table II shows the number of
inputs, outputs, and number of each type of operation for each
of the benchmarks. All the implementations target the Virtex
6 XC6VLX240T-1 FPGA found on the ML605 development
board, using Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4
tools on an Intel Xeon E5-2695 running at 2.4 GHz with 16 GB
RAM.

A. Resource Usage and Frequency
Multipumping results in a tradeoff between DSP block and

LUT usage. As DSP blocks and LUTs cannot be compared
directly, and to understand overall resource usage, we compare
the area in terms of equivalent LUTs, LUT eqv = nLUT +
nDSP × (196), where 196 is the ratio of the number of LUTs
(150720) to the number of DSP blocks (768) available on

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 9

TABLE III: Resource usage and maximum frequency for
mpDSP block. (PA: Pre-adder sub-block; Freq in MHz)

Sub-blocks DSPs LUTs Eq LUTs Reg Freq

Mul 1 45 241 51 235
PA-Mul 1 70 266 51 230
Mul-ALU 1 69 265 147 227
PA-Mul-ALU 1 102 298 147 229

the target device used. This gives a proxy for overall area
consumption.

Table III shows the resource usage and maximum frequency
for a single mpDSP block which does not utilise dynamic
reconfiguration, for different combinations of sub-blocks used.
The number of LUTs required increases as we use more
sub-blocks since more inputs need to be multiplexed. When
DSP blocks with different configurations are mapped onto a
mpDSP, a 17-bit multiplexer is required for switching between
configurations (as shown in Fig. 4), consuming a maximum of
up to 17 extra LUTs. This multiplexer is optimised away if the
configurations of both DSP operations are the same. Registers
for holding intermediate outputs and the outputs of both the
operations are the same for all four combinations. However,
configurations for which the ALU sub-block is used, require
two extra 48-bit registers to balance the C input of the DSP
block primitive.

As discussed above, a DSP48E1 primitive is equivalent to
196 LUTs in logic. Even after considering the extra 17 LUTs
required to select configurations, the number of extra LUTs
required by the mpDSP is always far fewer than the LUTeqv
of a DSP block (up to 102+17), and thus multipumping repre-
sents an overall area saving. However, there remains a register
utilisation overhead, due to balancing the internal stages and
intermediate output storage. The maximum frequency achieved
by all the configurations remains largely the same.

We compare four different scenarios to understand the effect
of multipumping on resource utilisation and frequency. The
first (Original) does not use multipumping but maps efficiently
to fully pipelined DSP blocks, as discussed in [29]. The
second (MulOnlyMP) multipumps only multipliers (similar
to [2]). This gives us a baseline against which to compare
our approach. Since only the multipliers are multipumped, all
adders and subtracters are forced into the logic fabric. The
third (MP) multipumps DSP blocks including all subblocks
(similar to [6]), but with the improved scheduling approaches
described in this paper. A pair of DSP blocks scheduled in
the same ST, with the same configuration, i.e., implementing
the same combination of operations, is implemented using
a single mpDSP block. The fourth (RTRMP), exploits run-
time programmability to allow DSP block nodes implementing
different operations, including different sub-block usage, to be
implemented using a single mpDSP block.

1) Baseline Multiplier Multipumping: BF scheduling is un-
able to generate schedules for five benchmarks (FIR2, Poly6,
Poly7, Poly8, and Smooth Triangle). The high mobility of mul-
tiple nodes in these benchmarks results in a very large number

TABLE IV: Comparing geometric mean of resource usage and
frequency (normalised against Original implementation) across
the 13 feasible benchmarks for brute-force, SDC-based, and
FDS-based scheduling techniques. Freq in MHz.

Scheduling DSPs LUTs LUTeqv Regs Freq

MulOnlyMP BF 0.59 2.7 0.87 1.71 0.52
SDC 0.59 2.61 0.87 1.67 0.53
FDS 0.59 2.55 0.86 1.66 0.52

MP BF 0.67 1.1 0.78 0.98 0.51
SDC 0.79 0.94 0.85 0.86 0.52
FDS 0.72 1.02 0.81 0.95 0.51

of possible schedules, resulting in full memory utilisation on
our test machine. For the remaining 13 benchmarks, compared
to Original, MulOnlyMP reduces DSP block usage by 33–
50%, averaging 41%, at a cost of increased LUT and register
usage of 2.7× and 1.7× respectively. The significant increase
in LUTs and registers is due to DSP blocks being used for
multiplication only and all add/sub blocks being implemented
in LUTs. Despite this significant increase, this still results in
an average reduction in LUTeqv of 13%, and achieves close to
half the maximum frequency of Original (average 242 MHz).

2) Fixed Function Multipumping: Considering MulOnlyMP
as a baseline, MP utilises 15% more DSP blocks due to
the limited possibilities for multipumping, as the DSP block
configurations must agree. However, since full DSP blocks are
multipumped, add/sub blocks are included, significantly reduc-
ing resource consumption. MP utilises 60% fewer LUTs and
43% fewer registers compared to MulOnlyMP, with average
frequency improved by 1%. Compared to Original, MP results
in a 33% reduction in DSP block usage with 9% more LUTs
and 2% fewer registers, effectively saving 22% LUTeqv area.
This represents DSP block savings comparable to MulOnlyMP
with significantly less impact on LUTs and registers.

Table IV shows the geometric mean of resource usage and
maximum frequency for the 13 feasible benchmarks, for these
three scenarios. For MP, we see that BF scheduling offers the
best savings, but the SDC and FDS approaches can be applied
to more complex benchmarks.

3) SDC-Based Flexible Multipumping: Table V shows re-
source utilisation and maximum frequency for all four sce-
narios, using SDC-based scheduling, normalised against Mu-
lOnlyMP implementations. Ideally, for a benchmark using n
DSP blocks, multipumping can result in savings of up to

⌈
n
2

⌉
DSP blocks. However, this is not always achievable due to
node dependencies in the dataflow graph, and this is evident
in Table V. Out of the 18 benchmarks, half of the benchmarks
(Mibench2, Horner Bezier, Poly2, Poly6, Quad Spline, ARF,
EWF, Motion Vector, and Smooth Triangle) do offer maxi-
mum DSP block reduction, while the other benchmarks save
between 33–42% DSP blocks for the fully flexible RTRMP
approach.

Table V also shows the geometric mean of normalised
resource utilisation across benchmarks, for all four scenarios
we have implemented. MulOnlyMP results in a 44% reduction

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 10

TABLE V: Resource usage and maximum frequency across all implementations, using SDC-based scheduling (normalized against
MulOnlyMP). Freq in MHz.

Benchmarks Original MulOnlyMP MP RTRMP
DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq

Chebyshev (1) 1 0.78 1.06 1 1 1 1 1 1 0.22 0.27 0.62 1 0.22 0.27 0.6
Mibench2 (2) 2 0.33 0.46 2.08 1 1 1 1 1 0.53 0.68 1 1 0.53 0.68 1
FIR2 (3) 2 0.59 0.54 2.05 1 1 1 1 2 0.43 0.51 1.27 2 0.43 0.51 1.27
SG Filter (4) 1.5 0.21 0.45 2 1 1 1 1 1.25 0.17 0.3 1 1 0.27 0.44 0.98
Horner Bezier (5) 2 0.38 0.58 2.03 1 1 1 1 1.75 0.35 0.52 1.02 1 0.64 0.87 0.98
Poly1 (6) 2 0.42 0.67 2.03 1 1 1 1 1.5 0.28 0.59 1.01 1.5 0.28 0.59 1.01
Poly2 (7) 1.67 0.34 0.49 2 1 1 1 1 1.33 0.26 0.43 1 1 0.37 0.55 1
Poly3 (8) 1.5 0.38 0.6 2 1 1 1 1 1.25 0.42 0.49 1 1 0.56 0.73 1
Poly4 (9) 1.5 0.36 0.62 2 1 1 1 1 1.5 0.3 0.45 1.24 1.5 0.3 0.45 1.24
Poly5 (10) 1.71 0.25 0.45 2.07 1 1 1 1 1.71 0.17 0.27 1.28 1 0.35 0.68 0.99
Poly6 (11) 1.92 0.23 0.38 2.09 1 1 1 1 1.83 0.19 0.32 1.09 1 0.56 0.73 1.05
Poly7 (12) 1.89 0.26 0.42 2.16 1 1 1 1 1.89 0.16 0.33 1.31 1.11 0.47 0.67 1.04
Poly8 (13) 1.88 0.22 0.39 2.07 1 1 1 1 1.75 0.16 0.3 1.04 1.25 0.23 0.52 1
Quad Spline (14) 1.86 0.33 0.58 2.06 1 1 1 1 1.29 0.52 0.62 1.02 1 0.78 0.8 1.01
ARF (15) 2 0.49 0.65 2.08 1 1 1 1 1.75 0.49 0.7 1.04 1 0.84 1.07 1
EWF (16) 2 0.64 0.73 2.05 1 1 1 1 1.5 0.72 0.7 1.04 1 0.81 0.83 1.02
Motion Vector (17) 2 0.38 0.6 2.03 1 1 1 1 1 0.76 0.91 0.94 1 0.76 0.91 0.94
Smooth Triangle (18) 1.89 0.36 0.6 2.52 1 1 1 1 1.78 0.45 0.57 1.26 1 0.66 0.83 0.89

Geo Mean 1.77 0.36 0.55 1.99 1 1 1 1 1.47 0.32 0.47 1.05 1.11 0.46 0.64 0.99

Impv (%) 1 1 1 1 -47 68 53 5.2 -11 54 36 -0.9
LUTeqv Impv (%) 1 1 14

0 1 2 3 4 5

0.6

0.8

1

LUTs

D
S
P
48
E
1s

Original
MulOnlyMP

MP
RTRMP

Fig. 6: DSP48E1-LUT usage trade-off for SDC-based schedul-
ing.

in DSP utilisation compared to Original, however this is at the
cost of a 2.8× and 1.8× increase in LUTs and Regs respec-
tively. Note, however, that these values are for a computation
kernel in a larger system, which can utilise many LUTs for the
surrounding logic. Thus, the percentage increase in LUT usage
for the full system may not be significant, as demonstrated
in [2]. Despite the significant increase in LUTs, LUTeqv is
reduced by 13%. As expected, the frequency achieved using
MulOnlyMP is in most cases close to half of Original.

Fig. 6 shows the tradeoff between relative DSP block and
LUT usage for all variations of multipumping, for SDC-
based scheduling. We normalise DSP48E1 and LUT count

for each benchmark against the non-multipumped implemen-
tations. MulOnlyMP implementations have significantly in-
creased LUT usage, compared to MP and RTRMP. This is due
to the mapping of add/sub operations in the FPGA fabric since
only the multipliers are multipumped. The LUT overheads
for MP and RTRMP are significantly reduced, as full DSP
block functionality is multipumped. For MP, DSP block usage
is higher than RTRMP due to the limited opportunities for
multipumping DSP blocks with identical configurations. We
can also see that RTRMP tends to save more DSP blocks with
a comparable LUT count to MP.

Compared to MulOnlyMP, MP utilises 47% more DSP
blocks, however, as the sub-blocks of the DSPs are also
utilised, it uses 68% fewer LUTs and 53% fewer Regs. RTRMP
exploits both the sub-blocks and dynamic programmability of
DSP blocks, thus multipumping the same number of DSP
blocks as MulOnlyMP in most cases, with a significant re-
duction in LUTs and Regs of 54% and 36% respectively.
Compared to Original, RTRMP results in a 37% reduction in
DSP block usage, and a 27% and 17% increase in LUT and
Register usage respectively, effectively saving 25% LUTeqv .

4) FDS-Based Flexible Multipumping: Table VI shows the
resource usage and maximum frequency across all benchmarks
using FDS-based scheduling, normalised against MulOnlyMP
implementations. Table VII compares the geometric mean of
normalised results against the SDC-based approach. We see
some slight improvements resulting from the better matching
of DSP block configurations. As shown in Table VII, both
SDC-based and FDS-based scheduling are not able to achieve
DSP block reduction by half for RTRMP due to odd numbers
of DSPs being scheduled in some STs. The additional resource
sharing in Section VI-E overcomes this and is able to achieve a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 11

TABLE VI: Resource usage and maximum frequency across
all implementations, using FDS-based scheduling (normalized
against MulOnlyMP). Freq in MHz.

B’mark MP RTRMP
DSPs LUTs Regs Freq DSPs LUTs Regs Freq

1 1 0.19 0.27 0.62 1 0.19 0.27 0.62
2 1 0.58 0.71 0.99 1 0.58 0.71 0.99
3 2 0.38 0.51 1.27 2 0.38 0.51 1.27
4 1.25 0.24 0.35 1.03 1 0.29 0.47 1.03
5 1 0.62 0.85 0.98 1 0.62 0.85 0.98
6 1.5 0.36 0.59 1.03 1.5 0.36 0.59 1.03
7 1.33 0.26 0.43 1 1 0.41 0.55 1
8 1.25 0.42 0.52 1.04 1 0.54 0.74 1.03
9 1.5 0.3 0.46 1.24 1.5 0.3 0.46 1.24
10 1.25 0.2 0.35 1.02 0.88 0.46 0.69 1
11 1.36 0.23 0.4 0.96 0.93 0.38 0.71 1.04
12 1.4 0.28 0.45 1.15 1.1 0.4 0.7 1.07
13 1.3 0.2 0.37 1.05 1.1 0.17 0.46 1.04
14 1.43 0.54 0.67 1.03 1.14 0.72 0.86 0.99
15 1 0.71 1 0.99 1 0.71 1 0.99
16 1.5 0.7 0.7 1.08 1 0.77 0.82 0.82
17 1 0.51 0.91 1.09 1 0.51 0.91 1.09
18 1.67 0.41 0.53 1.21 1.11 0.62 0.75 1.15

Geo Mean 1.29 0.36 0.53 1.03 1.1 0.43 0.64 1.01

Impv (%) -29 64 47 3.3 -10 57 36 1
LUTeqv Impv (%) 7 15

TABLE VII: Comparing geometric mean of resource usage
and frequency (normalised against MulOnlyMP implementa-
tion) across all benchmarks, using SDC-based, and FDS-based
scheduling techniques. Freq in MHz.

Scheduling DSPs LUTs LUTeqv Regs Freq

MP SDC 1.48 0.33 1 0.47 1
FDS 1.3 0.36 0.92 0.52 1

RTRMP SDC 1.11 0.47 0.86 0.64 0.98
FDS 1.1 0.44 0.84 0.65 1

48% DSP block reduction for both SDC-based and FDS-based
scheduling techniques. These savings are at a cost of 86%
LUTs and 51% registers for SDC-based scheduling, effectively
saving 29% LUTeqv area. For FDS-based scheduling, as
multipumping of DSP blocks with the same configurations
is prioritised, LUTs and registers are marginally fewer (74%
LUTs and 46% registers), with LUTeqv area savings of 30%.

As discussed earlier, multipumping is feasible only if the
throughput requirement of the full system is half of the
maximum throughput supported by the embedded DSP blocks.
Here, we are focused on the area efficient implementation
of a computationally intensive inner loop of a larger system.
As DSP48E1 primitives on the Xilinx Virtex 6 can run at a
maximum frequency of 473 MHz (Table I), implementations
with multipumping can achieve a maximum system clock
frequency of up to 236 MHz (half the maximum DSP48E1
frequency), which is achieved by most of the multipumped
designs. On more modern Virtex 7 devices where the DSP
block can reach 700 MHz, this translates to a 300 MHz system
clock which is above the maximum achievable frequency for
most larger designs, as shown in Fig. 1.

B. Power Consumption
For multipumping implementations, DSP blocks run at

double the frequency of the surrounding circuit, which can
affect power consumption. We have evaluated this using Xilinx
Power Analyzer on post-place-and-route designs for Original
and SDC-based and FDS-based implementations combining
multipumping and resource sharing (Section VI-E), over 10000
test inputs. We find that both SDC-based and FDS-based
implementations show a modest increase in power of between
0.3% to 2.5% (average 1.1%) across the different benchmarks.
This demonstrates that the higher frequency of operation of the
mpDSP blocks is offset by the reduced numbers of DSP blocks
used in the designs.

C. Tool Runtime
As shown in Table II, the size of the dataflow graphs for

the benchmarks varies from 5 nodes to 42. The time taken to
generate synthesisable RTL from the input C files, including
graph partitioning and scheduling, for all techniques discussed
in this paper is in a range of 10–20 ms.

The BF method is slower due to its complexity, up to 390 ms
for EWF, and fails to run for the larger benchmarks. The SDC
and FDS based scheduling approaches complete in just 3.7–
31 ms across all benchmarks, which is reasonable for a small
step of the design flow, considering that this includes all the
intermediate steps of RTL generation.

IX. CONCLUSIONS

We have demonstrated the concept of multipumping applied
to the flexible DSP blocks in modern Xilinx FPGAs. Since
these blocks can run at significantly higher frequencies than
most large designs, we can clock them at double the system
clock, allowing them to be shared by two operations in a single
system clock cycle. We showed how a BF method could be
applied to fixed DSP block sharing but that it could not scale
to flexible DSP blocks.

We proposed two scheduling techniques, one based on the
SDC framework and another based on FDS, that could both
generate multipumped schedules for flexible DSP blocks in
deterministic time. With improved scheduling techniques and
using dynamic programmability, we showed that multipumping
can result in a reduction of DSP block usage by 37% and 35%
and LUTeqv area by 25% and 26% for SDC and FDS based
scheduling respectively.

Finally, we presented an approach for improving savings fur-
ther by sharing across schedule times through multipumping,
resulting in DSP block reduction by 48%, effectively saving
30% LUTeqv area compared to non-multipumped implemen-
tations. All these methods were integrated into a tool flow
that generates multipumped implementations from a high level
description with very short runtime.

REFERENCES

[1] P. Maidee, N. Hakim, and K. Bazargan, “FPGA family composition
and effects of specialized blocks,” in Proceedings of the International
Conference on Field-Programmable Logic and Applications (FPL),
2008, pp. 101–106.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 12

[2] A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for
resource reduction in FPGA high-level synthesis,” in Proceedings of
the International Conference on Design, Automation and Test in Europe
(DATE), March 2013, pp. 194–197.

[3] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
FPGAs,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), Feb 2010, pp. 41–50.

[4] X. Inc., UG479: 7 Series DSP48E1 Slice User Guide, 2013.
[5] L. Shannon, V. Cojocaru, C. N. Dao, and P. Leong, “Technology scaling

in FPGAs: Trends in applications and architectures,” in Proceedings
of the IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), May 2015, pp. 1–8.

[6] B. Ronak and S. A. Fahmy, “Minimising DSP block usage through
multi-pumping,” in Proceedings of the IEEE International Conference
on Field-Programmable Technology (FPT), Dec 2015, pp. 184–187.

[7] S. Raje and R. A. Bergamaschi, “Generalized resource sharing,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 1997, pp. 326–332.

[8] J. Cardoso, “Novel algorithm combining temporal partitioning and shar-
ing of functional units,” in Proceedings of the IEEE International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
March 2001, pp. 31–40.

[9] S. Memik, G. Memik, R. Jafari, and E. Kursun, “Global resource sharing
for synthesis of control data flow graphs on FPGAs,” in Proceedings of
the ACM/IEEE Design Automation Conference (DAC), June 2003, pp.
604–609.

[10] W. Sun, M. Wirthlin, and S. Neuendorffer, “FPGA pipeline synthesis
design exploration using module selection and resource sharing,” Pro-
ceedings of IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 26, no. 2, pp. 254–265, Feb 2007.

[11] R. Zhao, M. Tan, S. Dai, and Z. Zhang, “Area-efficient pipelining for
FPGA-targeted high-level synthesis,” in Proceedings of the ACM/IEEE
Design Automation Conference (DAC), 2015, pp. 157:1–157:6.

[12] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis
for loop pipelining in high-level synthesis,” in Proceedings of the
ACM/IEEE Design Automation Conference (DAC), May 2013, pp. 1–10.

[13] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-aware through-
put optimization for high-level synthesis,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2015, pp. 200–209.

[14] J. Cong and W. Jiang, “Pattern-based behavior synthesis for FPGA
resource reduction,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), 2008, pp.
107–116.

[15] S. Hadjis, A. Canis, J. H. Anderson, J. Choi, K. Nam, S. Brown, and
T. Czajkowski, “Impact of FPGA architecture on resource sharing in
high-level synthesis,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), 2012, pp.
111–114.

[16] Y. Hara-Azumi, T. Matsuba, H. Tomiyama, S. Honda, and H. Takada,
“Impact of resource sharing and register retiming on area and perfor-
mance of FPGA-based designs,” Proceedings of Information and Media
Technologies, vol. 9, no. 1, pp. 26–34, 2014.

[17] S. Davidson, D. Landskov, B. Shriver, and P. Mallett, “Some ex-
periments in local microcode compaction for horizontal machines,”
Proceedings of IEEE Transactions on Computers, vol. C-30, pp. 460–
477, July 1981.

[18] P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic
data path synthesis,” in Proceedings of the ACM/IEEE Design Automa-
tion Conference (DAC), 1987, pp. 195–202.

[19] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in Proceedings of the ACM/IEEE Design
Automation Conference (DAC), 2006, pp. 433–438.

[20] H. Yantir, S. Bayar, and A. Yurdakul, “Efficient implementations of
multi-pumped multi-port register files in FPGAs,” in Proceedings of

Euromicro Conference on Digital System Design (DSD), Sept 2013,
pp. 185–192.

[21] F. Anjam, S. Wong, and F. Nadeem, “A multiported register file with
register renaming for configurable softcore VLIW processors,” in Pro-
ceedings of the IEEE International Conference on Field-Programmable
Technology (FPT), Dec 2010, pp. 403–408.

[22] C. E. Laforest, M. G. Liu, E. R. Rapati, and J. G. Steffan, “Multi-ported
memories for FPGAs via XOR,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
2012, pp. 209–218.

[23] R. P. Tidwell, XAPP706: Alpha Blending Two Data Streams Using a
DSP48 DDR Technique, Xilinx Inc, 2005.

[24] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LegUp: high-level synthesis
for FPGA-based Processor/Accelerator systems,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2011, pp. 33–36.

[25] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The
iDEA DSP block-based soft processor for FPGAs,” Proceedings of
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 7, no. 3, pp. 19:1–19:23, Sep. 2014.

[26] A. K. Jain, D. Maskell, and S. A. Fahmy, “Throughput oriented
FPGA overlays using DSP blocks,” in Proceedings of the International
Conference on Design, Automation and Test in Europe (DATE), March
2016.

[27] J. Edmonds, “Paths, trees, and flowers,” in Classic Papers in Combina-
torics, ser. Modern Birkhuser Classics. Birkhuser Boston, 1987, pp.
361–379.

[28] “[Online] LP Solve 5.5,” http://lpsolve.sourceforge.net/5.5/.
[29] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on

FPGA DSP blocks,” Proceedings of IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 35, pp.
573–585, April 2016.

[30] S. Gopalakrishnan, P. Kalla, M. Meredith, and F. Enescu, “Finding
linear building-blocks for RTL synthesis of polynomial datapaths with
fixed-size bit-vectors,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2007, pp. 143–
148.

[31] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communications sys-
tems,” in Proceedings of International Symposium on Microarchitecture,
Dec 1997, pp. 330–335.

[32] “[Online] Polynomial Test Suite,” http://www-sop.inria.fr/saga/POL/.

Ronak Bajaj received the B.Tech. degree in elec-
tronics and communication engineering from In-
ternational Institute of Information Technology-
Hyderabad (IIIT-H), India, in 2010 and the Ph.D.
degree from the School of Computer Engineering,
Nanyang Technological University, Singapore, in
2016.

From 2010 to 2011, he worked as an intern at
Xilinx Research Labs, India. Since 2016, he has been
working as post doctoral research fellow at Nanyang
Techological University, Singapore.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36 13

Suhaib A. Fahmy (M’01, SM’13) received the
M.Eng. degree in information systems engineering
and the Ph.D. degree in electrical and electronic
engineering from Imperial College London, UK, in
2003 and 2007, respectively.

From 2007 to 2009, he was a Research Fellow
at Trinity College Dublin, and a Visiting Research
Engineer with Xilinx Research Labs, Dublin. From
2009 to 2015, he was an Assistant Professor at
Nanyang Technological University, Singapore. Since
2015, he has been an Associate Professor with the

School of Engineering at the University of Warwick, UK. His research interests
include reconfigurable computing and FPGAs, accelerators in a broad range
of applications, and networked embedded systems.

Dr. Fahmy was a recipient of the Best Paper Award at the IEEE Conference
on Field Programmable Technology in 2012, the IBM Faculty Award in 2013,
and is also a senior member of the ACM.

