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Abstract 

In this study, pure Fe was surface-modified by Ta ion implantation with different incident ion 

doses. Its surface morphology and chemical composition were investigated using atomic force 

microscopy and auger electron spectroscopy. Results showed that Ta ion implantation led to the 

formation of Ta/Fe oxide mixtures at the outmost surface (60-80 nm in thickness) of the implanted 

layer. Results from electrochemical measurements and immersion tests indicated that the corrosion 

rate of the pure Fe in simulated body fluids can be accelerated after the Ta ion implantation. The in 

vitro cell culture results showed that the cytocompatibility of osteoblasts on the pure Fe has been 

significantly improved by applying the Ta ion implantation. 
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1. Introduction 

Fe and its alloys have attracted increasing attention to be used as degradable biomedical devices 

such as cardiovascular stents and orthopedic implants [1-4]. The feasibility of the Fe-based alloys as 

biodegradable implants has been verified by both in vitro and in vivo studies [5-8]. The preliminary 

in vivo animal trails indicated that pure Fe showed a good short-term biocompatibility in the porcine 

aorta and it exhibited similar vessel, inflammatory and healing parameters as those of Co-Cr stents 

[9]. However, the very slow degradation rate of the Fe-based alloys in physiological environments 

restricts their wide clinical applications [9, 10]. 

Ion implantation is an effective technique to enhance the performance of biomedical alloys 

through adjusting their surface composition and microstructure [11-14]. It is well known that Ta is a 

good bio-metallic element and has been widely used in biomedical applications [15-17]. Implantation 

of Ta can significantly improve the proliferation rate of L929 mouse fibroblast-like cells on the 

surface of NiTi alloy [12]. However, to the best of our knowledge, few studies have been reported on 

the effects of Ta ion implantation on the corrosion behavior and cytocompatibility of the pure Fe. In 

the present work, the pure Fe samples were modified by Ta ion implantation and, the effectiveness of 

Ta on accelerating the corrosion rate and improving the cytocompatibility of the pure Fe were 

investigated through the analysis of surface characteristics. 

2. Materials and methods 

2.1 Sample preparation 

Commercial pure Fe (99.5%) with the size of 10×10×2 mm3 was mechanically polished with 

SiC emery papers and ultrasonically cleaned in acetone. The metal ion implantation equipment 
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(MEVVA 100) was employed to implant the Ta ions. The Ta ion implantation parameters and the 

corresponding sample names are listed in Table 1. 

Table 1 Ion implantation parameters of Ta implanted Fe (Ta-Fe) samples. 

Samples Fe Ta-Fe-5 Ta-Fe-10 Ta-Fe-30 

Base pressure (Pa) 0 1×10-4 1×10-4 1×10-4 

Ion current (mA) 0 2 2 2 

Bias voltage (kV) 0 -45 -45 -45 

Dose (×1016 ions/cm2) 0 5 10 30 

2.2 Surface characterization 

Atomic Force Microscope (AFM, Veeco Instruments, USA) was employed for the observation 

of 3D topography on the sample surface using the tapping mode. The Auger Electron Spectroscopy 

(AES, ULVACUPHI, Japan) was utilized to determine the elemental depth profiles using a 5 kV 

primary electron beam with an analytical rate of 18 nm/min based on the analysis of a reference SiO2 

film. 

2.3 In vitro degradation tests 

Electrochemical measurements in the simulated body fluid (SBF) were performed using an 

electrochemical workstation (CHI 660e, CH Instruments Inc., Shanghai). The composition of the SBF 

is 142.0 mM Na+, 5.0 mM K+, 1.5 mM Mg2+, 2.5 mM Ca2+, 147.8 mM Cl-, 4.2 mM HCO3
-, 1.0 mM 

HPO4
2- and 0.5 mM SO4

2- with a pH value of 7.40 [18]. In a standard potentiodynamic polarization 

measurement, the applied potential was increased from cathodic region to anodic region at a scan rate 

of 1 mV/s after stabilization for 1 hour.  

The immersion tests were conducted based on the ASTM standard G31-72 and the ratio of 

surface area to SBF volume was 1 cm2/40 mL [19]. The corroded morphology and corrosion products 
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were analyzed using the Scanning Electron Microscope (SEM,Quanta 200F). 

2.5 Direct cell culture 

Rat embryo osteoblasts (MC3T3-E1), provide by the Graduate School of Basic Medical Science, 

China, were used for the evaluation of in vitro cytocompatibility. The cells were cultured in α-

Modified Eagle’s Medium (α-MEM, Gibco, Australia) supplemented with 10% v/v fetal bovine 

serum (GIBCO, Australia) and antibiotics (100 U/mL of penicillin and 100 mg/mL of streptomycin) 

at 37 °C and 5% CO2. The cell suspension with approximate 1×104cells were seeded onto each sample 

surface and cultured for 24 hours. After that, the samples were gently rinsed with Phosphate-Buffered 

Solution (PBS) and immersed in 2.5% glutaraldehyde for 1 hour. After washing with the PBS, the 

cells were dehydrated in sequential concentrations of ethanol and further dehydrated in 

hexamethyldisilizane for 1 hour and then dried in air. The morphologies of the adhered cells were 

observed using the SEM after treating the samples with platinum spraying. 

3. Results and discussion 

Three-dimensional topography images from the AFM analysis and average surface roughness 

(Ra) of the pure Fe and Ta-Fe samples are shown in Fig. 1. From Fig. 1a, the surface of pure Fe, with 

an Ra value of 8.5±0.4 nm, is seen with many parallel grooves which were generated from the 

mechanical grinding process. Significant changes of surface morphology and roughness can be 

observed after the Ta ion implantation with different incident doses. As seen in Fig. 1b, large amounts 

of island-like nano-protrusions appear on the surface of Ta-Fe-5 sample and its Ra value is increased 

to 10.7±0.6 nm. It is shown in Fig. 1c that the nano-protrusions become larger as the Ta ion dose is 

increased. A much rougher surface with an Ra value of 21.7±0.4 nm can be found for the Ta-Fe-10 

sample. For the Ta-Fe-30 sample, as shown in Fig. 1d, the protrusions increase to sub-micrometer 
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scale and are linked together at the largest Ta ion dose, forming a compact and uniform surface with 

the smallest Ra value of 3.4±0.3 nm. It should be noted that the changes in the surface roughness are 

influenced by two opposite effects of ion sputtering and growth of nano-protrusions [20]: the Ra value 

is increased by the sputtering effect of ion implantation under a lower ion dose, whereas it is decreased 

by the growth of nano-protrusions under a higher ion dose. 

 

Fig. 1. AFM images and average surface roughness (Ra) values of (a) pure Fe, (b) Ta-Fe-5, (c) Ta-

Fe-10 and (d) Ta-Fe-30 samples 

Fig. 2 shows the AES depth profiles of Ta, O and Fe elements in the near surface of Ta-Fe 

samples. As shown in Fig. 2a, the outmost surface of the Ta-Fe-5 sample is mainly composed of 61.2% 

Fe and 37.5% O with a trace amount of 1.3% Ta. As the depth is increased to 7 nm, the Fe 

concentration increases linearly to around 90%, while the O concentration decreases sharply to near 

4%. In the depth from 7 to 60 nm, the implanted Ta approximately forms a Gaussian distribution with 

a peak concentration of 12.7% at a depth of 30 nm and simultaneously the Fe concentration shows a 

reverse trend. The O concentration remains as low as 2.5% within the same depth range.  Only Fe 

element can be detected as the sputtering depth is increased over 60 nm (i.e., reaching the substrate). 
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Similar elemental distributions can be observed for the Ta-Fe-10 and Ta-Fe-30 samples. It is seen 

from Fig. 2b that the modified layer of the Ta-Fe-10 sample is about 70 nm with a maximum Ta 

concentration of 18.2%. A thicker modified layer of ~80 nm and a higher maximum Ta concentration 

of 22.4% can be detected for the Ta-Fe-30 sample as shown in Fig. 2c. It can be concluded that the 

modified layer thickness increases from 60 to 80 nm with increasing the Ta ion dose and mixtures of 

the Ta/Fe oxides are formed on the outmost surface of the Ta-Fe samples. It is suggested that the 

Ta/Fe oxides on the surface were caused by the reaction of oxygen and Ta/Fe during or after 

implantation. Firstly, oxygen diffusion may occur along with the ion implantation process because of 

the non-ultra-high vacuum conditions [21, 22]. Secondly, oxygen in air may react with Ta or Fe when 

the implanted samples were taken out from the ion implantation equipment. 

 

Fig. 2AES depth profiles of(a) Ta-Fe-5, (b) Ta-Fe-10 and (c) Ta-Fe-30 samples 

Fig. 3 presents the potentiodynamic polarization curves of the pure Fe before and after Ta ion 
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implantation in the SBF at 37 °C. The corresponding electrochemical parameters of corrosion 

potential (Ecorr) and corrosion current density (icorr) are listed in Table 2. It is known that value of the 

Ecorr is a thermodynamic indication of the corrosion resistance on the surface, and a higher Ecorr value 

represents a higher anti-corrosion ability. Whereas the value of the icorr is a kinetic parameter to 

quantify the corrosion rate and a larger icorr value refers to a higher corrosion rate. As reported in 

literature [23-25], various values of the Ecorr were obtained after ion implantation, which were 

between those of the implanted metal and the substrate. For example, implantation of Zn in the form 

of metallic state increases the Ecorr value of a pure Mg substrate [25]. Accordingly, the Ecorr values of 

the pure Fe (-0.6640.016 V/SCE) could be increased by implanting Ta to achieve a higher corrosion 

potential. It is noted that the icorr value of the pure Fe (2.260.84 10-6 A·cm-2) was increased after Ta 

ion implantation with relatively lower incident doses, e.g. 5 or 10×1016 ions/cm2. The largest 

corrosion rate was obtained in the Ta-Fe-5 sample (with a dose of 5×1016 ions/cm2), which is 

attributed to the combined effects of surface microstructures and roughness. As indicated from the 

AFM and AES results, a heterogeneous microstructure of the Ta/Fe oxides was formed on the surface 

of Ta-Fe-5 sample. The formation of iron oxide on the surface is a possible reason for the accelerated 

corrosion because of its poor corrosion resistance. The different corrosion potentials between the 

Ta/Fe oxides and metallic Fe may accelerate the corrosion rate through galvanic corrosion. 

Furthermore, a rougher surface tends to develop concentrated microscale corrosion cells and thus 

increase the corrosion rate [26]. 
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Fig.3 Potentiodynamic polarization curves of pure Fe and Ta-Fe samples in SBFat 37 °C 

Table 2 Electrochemical parameters of Ecorr and icorr of pure Fe and Ta-Fe samples fitted from the 

potentiodynamic polarization curves 

Samples Fe Ta-Fe-5 Ta-Fe-10 Ta-Fe-30 

Ecorr (V/SCE) -0.6640.016 -0.4290.010 -0.3650.050 -0.5650.017 

icorr (10-6 A·cm-2) 2.260.84 7.570.24 4.541.54 1.710.70 

Fig. 4 presents the SEM morphologies of the corroded surfaces of the pure Fe and Ta-Fe samples 

after immersion tests in the SBF at 37oC for 20 days. In Fig. 4a, the surface of pure Fe is uniformly 

corroded in the SBF, as indicated by the clear grain boundaries and needle-like corroded morphology 

in the grains. It is seen from Figs. 4b and 4c that a much worse corrosion morphology occurs on the 

surfaces of the Ta-Fe-5 and Ta-Fe-10 samples, as evidenced from the coarse corrosion morphologies 

and large corrosion pits caused by the severe pitting corrosion. For the Ta-Fe-30 sample, as shown in 

Fig. 4d, a relatively compact corrosion morphology can be observed on the surface with several small 

corrosion pits showing up near the grain boundaries. It is noted that the corrosion layers of the pure 
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Fe and Ta-Fe samples are easily exfoliated from the surface by washing with water, leaving the 

exposure of Fe substrate without the coverage of corrosion products. The results of immersion tests 

are well consistent with those of the polarization tests, indicating that the corrosion rate of the Fe has 

been accelerated after the Ta implantation (i.e., samples of Ta-Fe-5 and Ta-Fe-10) due to the enhanced 

pitting corrosion. It is believed to be beneficial to the biodegradable performance of the Fe in practical 

application. 

 

 

Fig.4 The corroded morphologies of (a) pure Fe, (b) Ta-Fe-5, (c) Ta-Fe-10 and (d) Ta-Fe-30 

samples after immersion tests in SBF at 37 oC for 20 days. 

The SEM morphologies of MC3T3-E1 cells on the surfaces of the pure Fe and Ta-Fe samples 
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after 24-hour culture are shown in Fig. 5. It is seen in Fig. 5a that some osteoblasts spread on the 

surface of pure Fe and are covered by corrosion products. As seen in Figs.5b, c and d, a significant 

improvement in cytocompatibility is obtained in the Ta-Fe samples, as evidenced from much larger 

size and more numbers of osteoblasts adhered. These cells are elongated and show distinctive cell-

to-cell attachment with connections with filopodia. They are also found to form a layer-to-layer 

structure through overlapping on the surfaces. This result indicated that the implanted Ta is beneficial 

to the proliferation and osseointegration of cells on the pure Fe as it has previously been exhibited on 

the surface modifications of the other biomaterials, such as NiTi [11, 12, 17] and Co-Cr alloys [27]. 

In addition, the increased O content on the surface can also enhance the adhesion and proliferation of 

cells on the surface of implanted samples. 

 

Fig.5 SEM images showing the morphologies of the adherent MC3T3-E1 cells on the surface of (a) 

pure Fe, (b) Ta-Fe-5, (c) Ta-Fe-10 and (d) Ta-Fe-30 samples after 24 h culture 
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4. Conclusions 

Ta ion implantation has been performed on the surface of the pure Fe to improve its corrosion 

behavior and cytocompatibility. The results showed that Ta/Fe oxides mixtures were formed on the 

outmost surface of modified layer with a thickness of 60-80 nm after the Ta ion implantation. The 

pure Fe modified by the Ta ion implantation exhibited a higher corrosion rate due to the formation of 

severe pitting corrosion. The MC3T3-E1 cells showed an enhanced adhesion and proliferation 

behavior on the surfaces of Ta implanted Fe. This study suggested that the Ta ion implantation is an 

effective method to improve the corrosion behavior and cytocompatibility of the pure Fe for 

biomedical applications. 
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Figure Captions: 

Fig. 1 AFM images and average surface roughness (Ra) of (a) pure Fe, (b) Ta-Fe-5, (c) Ta-Fe-10 and 

(d) Ta-Fe-30 samples 

Fig. 2 AES depth profiles of(a) Ta-Fe-5, (b) Ta-Fe-10 and (c) Ta-Fe-30 samples 

Fig.3 Potentiodynamic polarization curves of pure Fe and Ta-Fe samples in SBF at 37 °C 

Fig.4 The corroded morphologies of (a) pure Fe, (b) Ta-Fe-5, (c) Ta-Fe-10 and (d) Ta-Fe-30 samples 

after immersion tests in SBF at 37 oC for 20 d. 

Fig.5 SEM images showing the morphologies of the adherent MC3T3-E1 cells on the surface of (a) 

pure Fe, (b) Ta-Fe-5, (c) Ta-Fe-10 and (d) Ta-Fe-30 samples after 24 h culture 


