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Abstract—SRC, a supervised classifier via sparse representa-
tion, has rapidly gained popularity in recent years and can be
adapted to a wide range of applications based on the sparse
solution of a linear system. First, we offer an intuitive geometric
model called constrained subspace to explain the mechanism
of SRC. The constrained subspace model connects the dots
of NN, NFL, NS, NM. Then, inspired from the constrained
subspace model, we extend SRC to its tensor-based variant,
which takes as input samples of high-order tensors which are
elements of an algebraic ring. A tensor sparse representation is
used for query tensors. We verify in our experiments on several
publicly available databases that the tensor-based SRC called
tSRC outperforms traditional SRC in classification accuracy.
Although demonstrated for image recognition, tSRC is easily
adapted to other applications involving underdetermined linear
systems.

I. INTRODUCTION

The concept of a data manifold plays an important role
in a wide range of problems. Take image representation for
example. An image of size m×n pixels with 256 gray-scales
for each pixel has 256mn pixel configurations, but only a
few correspond to particular classes of objects. Due to this
redundancy in the raw representation of images, it is often
assumed that that such as images belong to a manifold with
a low intrinsic dimension (id). The intrinsic dimension is a
measure of the number of degrees of freedom in the data [11],
[14], [4]. The intrinsic dimension is the minimum number
of parameters needed to describe the data structure such that
the fundamental properties of the data are preserved. Briefly
speaking, when data are represented by vectors in a high
dimensional feature space, the manifold associated with the
data is a nonlinear geometric structure which describes the
distribution of the observed data and serves as a universal
data set for the class in question [12].

A classifier called SRC (Sparse Representation Classifier)
represents each query sample by a linear sum of a few highly
associated training samples. In this way, SRC exploits the re-
dundancy of the data and enjoys a high classification accuracy
[19], [17]. Although first proposed for image classification,
SRC can be easily adapted to a wide range of applications in
which a sparse solution of an underdetermined linear model

is established [18], [5].
Later papers reinterpreted or challenged the mechanism

of SRC [3], [13], [21], [20], [15]. For example, Zhang et
al contend that collaboration offered by training samples of
different classes contributes to the success of SRC. Shi et al
propose a class-collaborative classifier called orthonormal `2-
norm algorithm to challenge the mechanism of SRC. Yang et
al propose an affine sparse representation to improve SRC.
Although these works have advanced our knowledge of SRC,
a simple yet effective intuitive geometric model to interpret
the mechanism of SRC is still unavailable.

We propose a geometric model called constrained subspace,
which not only connects the dots of NN (Nearest Neighbor),
NFL (Nearest Feature Line), NS (Nearest Subspace) and
NM (Nearest Manifold) but also interprets SRC from the
perspective of approximation by linear manifolds. Inspired
by the recently reported technique called t-product [7], [1],
[6], we extend SRC to its tensor-based variant while still
retaining our constrained subspace model. We demonstrate in
experiments that tSRC outperforms SRC and its non-tensor
variant (Yang’s method) in classification accuracy.

The reminder of this paper is organized as follows. In
Section II, the constrained subspace is introduced. Our tensor
model built on a high-order algebraic ring and the tensor-based
classifier tSRC are discussed in Section III. In Section IV,
a sparse tensor solution of an underlying linear system is is
obtained. The choice of features is discussed for tSRC. Section
V presents experimental results obtained by applying the new
classifier to publicly available databases. Section VI concludes
this paper.

II. CONSTRAINED SUBSPACE

A. Notations and indexing

Before any detailed discussion, we first clarify some nota-
tions. (i) Vectors unless otherwise stated are column vectors.
Some MATLAB notations are adopted as follows. (ii-A)
Comma notation: [A1,A2] is a new matrix concatenating
vectors/matrices A1 and A2 “from left to right” column by
column. (ii-B) Semicolon notation: [A1;A2] is a new matrix
concatenating A1 and A2 “from top to bottom” row by
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row. Similarly, we can concatenate a finite number of vec-
tors/matrices together in one way or another as [A1,A2, · · · ]
or [A1;A2; · · · ], as long as the sizes of the given entry vec-
tors/matrices are compatible with each other. (iii) The values
of the indices for tensors, including vectors and matrices, begin
at 0. For example, A(0, 0) rather than A(1, 1) denotes the first
scalar entry of matrix/tensor A. (iv) Colon notation: A(i, :)
denotes the i-th row of matrix/tensor A. A(:, j) denotes the
j-th column of matrix/tensor A. Note that A(0, :) rather than
A(1, :) is the top row and A(:, 0) rather than A(:, 1) is the
leftmost column.

B. Model

For the supervised classification problem, we first propose
a geometric model called constrained subspace — Given
K classes and Ni training vectors of class i denoted by
x
(1)
i ,x

(2)
i , . . . ,x

(Ni)
i , the constrained subspace Mi for class

i is defined as a union of a set of of affine hulls as follows.

Mi =

{
Aiαi

∣∣∣∣∣ αi ∈ RNi

1Tαi = 1 and ‖α‖0 6 κ 6 Ni

}
(1)

where Ai
.
=
[
x
(1)
i ,x

(2)
i , . . . ,x

(Ni)
i

]
, 1 denotes a vector with

all its entries equal to 1 and the intrinsic dimension parameter
κ is a positive integer.

Based on equation (1), we define a generalized classifier
called NCSC (Nearest Constrained Subspace Classifier), which
includes classifiers NN and NFL as low-dimensional special
cases — Given a query vector y belonging to one of the above
mentioned K classes, NCSC classifies y as follows.

class(y) = argminiminx∈Mi
‖y − x‖2 (2)

C. Connecting the dots

Note that when κ = 1, Mi, as in equation (1), becomes a
set of feature points and NCSC, as in equation (2), becomes
NN. When κ = 2, Mi becomes a set of feature lines and
NCSC becomes NFL [10]. Moreover, if the training samples
are linearly independent, the intrinsic dimension of Mi is given
by

id(Mi) = κ− 1. (3)

In other words, NN and NFL are just low-dimensional
special cases of NCSC respectively with id = 0 and id = 1.
On the other hand, if constraints 1Tαi = 1 and ‖α‖0 6
κ 6 Ni are removed from equation (1), NCSC becomes NS
and Mi is relaxed to a linear (unconstrained) subspace S with
id(S) = Ni. Since condition Mi ⊂ S is always satisfied
for all κ = 1, 2, · · · , Ni, we call our model the constrained
subspace model.

NCSC is also an approximation to the well-known classifier
NM. Simply speaking, if the manifold assumption is true,
manifold Mi serves as the universal sample set of class i.
Namely, given query sample y belonging to one of the above
mentioned K classes, NM employs a similar approach to
equation (2), classifying y as follows.

class(y) = argminiminx∈Mi ‖y − x‖2 (4)

By virtue of M1, · · · ,MK serving as universal sets of
samples, NM has a high classification accuracy. In order
to improve NCSC’s accuracy, we contend that Mi should
be an accurate approximation to a manifold Mi for all
i = 1, 2, · · · ,K.

Since the affine hull is also referred to as linear manifold,
the essence of equation (1) is to use a union of a series of
affine hulls with id = κ−1 to approximate the corresponding
manifold. Since Mi |κ=1 ⊂ Mi |κ=2 ⊂ · · · ⊂ Mi |κ=Ni , we
contend that in order to make Mi a more accurate approxima-
tion to Mi, one criterion is

id(Mi) u id(Mi). (5)

Equation (5) leads to the problem of estimating id(Mi)
from a finite number of observed samples. Although there
are some interesting estimators available [4], [2], [9], their
estimates vary with the choice of estimator and estimation
parameters. A comprehensive evaluation of the estimators for
a range of parameter values is still an open problem. The
sparse representation employed by SRC offers an approach
without the explicit estimation of intrinsic dimension.

SRC is class-collaborative while NCSC discussed in Section
II-B is class-wise in the sense that, in SRC, training samples
from different classes are allowed to represent a query sample
but in NCSC, only training samples from a same class are
used to represent a query sample.

It is easy to update NCSC from class-wise to class-
collaborative. To obtain a class-collaborative version of NC-
SC, construct a constrained subspace M to approximate to
M .

=
⋃
iMi under the criterion id(M) u id(M). Similar to

equation (1), M is given by

M =

{
Aα

∣∣∣∣∣ α ∈ RN
1Tα = 1 and ‖α‖0 6 κ 6 N

}
(6)

where A
.
= [A1,A2, · · · ,AK ], α .

= [α1;α2; · · · ;αK ] and
N

.
=
∑
iNi.

Given y, we seek a solution α∗ for y = Aα subject to
1Tα = 1 and ‖α‖0 6 κ where κ is a small positive integer
satisfying κ u 1 + id(M). Once α∗ is obtained, the class-
collaborative NCSC classifies y as follows.

class(y) = argmini∈{1,2,··· ,K}
∥∥y −Aλi(α

∗)
∥∥
2

(7)

where λi : RN → RN is the characteristic function. λi(α∗)
returns a sparse vector of length N whose nonzero entries are
the entries of α∗ associated with the training samples of class
i.

D. Yang’s method

To avoid an explicit estimation of κ for NCSC, one can seek
α∗ with the minimal `0-norm with the expectation ‖α∗‖0 6 κ.
Namely,

α∗ = argmin
α
‖α‖0 subject to y = Aα and 1Tα = 1 (8)



Furthermore, one can solve the following `1-norm mini-
mization problem rather than the NP-hard problem in equation
(8).

α∗ = argmin
α
‖α‖1 subject to y = Aα and 1Tα = 1 (9)

Equation (9) is Yang’s method [20], which imposes the
constraint 1Tα = 1 on SRC, in order to improve its classifi-
cation performance. However Yang did not provide a concise
geometric model to explain the essence of the constraint
1Tα = 1. From the perspective of manifold approximation,
our constrained subspace model supports Yang’s method over
SRC if the manifold assumption is true.

III. TENSORS

A. Definitions

In this section, we propose an tensor sparse representation
for tensor data such as images (second-order tensors), which
naturally come in the form of arrays rather than vectors. It is
easy to extend the tensor sparse representation to high-order
tensors, such as videos (third-order tensors). For presentation
conciseness and without loss of generality we focus the
discussion on second-order tensors such as images. First, we
give some definitions as follows.

Definition 1. Tensor addition. Given tensorsA andB of size
m × n, the sum C = A +B is a new tensor of same size,
satisfying C(i, j) = A(i, j)+B(i, j) for all i = 0, 1, · · · ,m−
1 and i = 0, 1, · · · , n− 1.

Definition 2. Tensor multiplication. Given tensors A and B
of size m×n, the product D =A ◦B is a new tensor of same
size defined as the result of 2D circular convolution betweenA
and B, satisfying D(i, j) =

∑m−1
k1=0

∑n−1
k2=0A(k1, k2)B((i−

k1)modm, (j − k2)modn) for all i = 0, 1, · · · ,m − 1 and
j = 0, 1, · · · , n− 1.

Given tensors A and B of the same size, the product C
can be computed efficiently by performing the 2D Fast Fourier
Transform (2DFFT) and its inverse 2DFFT transform, because
the following theorem holds.

Theorem 3. Fourier Transform. Given tensors A, B and
the product D = A ◦B, D̂(i, j) = Â(i, j)B̂(i, j), ∀ i and
j, where D̂, Â and B̂ are respectively the 2D Fast Fourier
Transforms of D, A and B.

By Theorem 3, we have A ◦ B ≡ B ◦ A.

Definition 4. Zero tensor. The zero tensor Z is defined by
Z(i, j) = 0 for all i and j.

Definition 5. Identity tensor. The identity tensor E is defined
by E(0, 0) = 1 and E(i, j) = 0 for (i, j) 6= (0, 0).

It is not difficult to prove that the tensors of size m × n
defined above form an algebraic ring R. Furthermore, we also
define a tensor vector/matrix as follows.

Definition 6. Tensor vector/matrix. Tensor vector/matrix is
defined as vector/matrix whose atomic entries are tensors over

R rather than scalars over R. Operations between entries
of tensor vector/matrix comply with the operations defined
over R. Other manipulations of tensor vectors/matrices are
analogous to these defined for vectors/matrices over R.

B. Connection to t-product.
The recently emerged t-product [7], [1], [6], [22], which

is based on 1D circular convolution, can be described by
our tensor model. Let’s take the t-product defined in [22]
for example — Given tensors A and B of size m × n, if
we leave A alone and constrain B satisfying B(i, j) ≡ 0
if i 6= 0, then C = A ◦ B, a tensor of size m × n, is
equivalent to t-product C(t) = A(t) ∗B(t) of size m× 1×n,
where A(t) is a t-product tensor (we call tensors defined
by t-product t-product tensors) of size m × 1 × n satisfying
A(t)(i, 0, j) ≡ A(i, j) and B(t) is a t-product tensor of
size 1 × 1 × n satisfying B(t)(0, 0, j) ≡ B(0, j) for all
i = 0, 1, · · · ,m and j = 0, 1, · · · , n. C is equivalent to C(t)

in the sense that C(i, j) ≡ C(t)(i, 0, j) for all i and j.
Since our approach defined in Section III-A manipulates

tensors from multiple directions, (i.e., row and column direc-
tions for second-order tensors) while t-product manipulates
tensor only from one direction, our tensor model is more
generalized.

C. Tensor sparse representation and tSRC
Given training tensors X1,X2, · · · ,XN belonging to K

classes, a query tensor Y can be represented by a sparse linear
sum of the training tensors as follows.

Y =

N∑
k=1

βk ◦Xk subject to
N∑
k=1

βk = E (10)

On defining the column vector β .
= [β1;β2; · · · ;βN ] and

the row vector A .
= [X1,X2, · · · ,XN ], equation (10) can be

rewritten in its tensor vector/matrix form. A sparse solution
β∗ is given by the following `1-norm minimization.

β∗ = argminβ
∥∥β∥∥

1

subject to Y = A ◦ β and
∑N
k=1 βk = E

(11)

where
∥∥β∥∥

1

.
=

N∑
k=1

m−1∑
i=0

n−1∑
j=0

∣∣βk(i, j)∣∣.
We define the `2-norm of a second-order tensor X by

‖X‖2
.
=
√∑

i

∑
j |X(i, j)|2. Then, we propose a tensor

based classifier called tSRC in Algorithm 1.

Algorithm 1 tSRC — tensor SRC on algebraic ring R
Input: Query tensor Y and training tensors X1, X2, · · · ,

XN of K classes.
Output: Class label of Y .

1: Calculate β∗ .= [β∗1 ; · · · ;β∗N ] as in equation (11);
2: ri ← ‖Y −Aδi(β∗)‖2 ∀i = 1, 2, · · · ,K ;
3: return class(Y )← argmini∈{1,2,··· ,K} ri ;

In Algorithm 1, δi : RN → RN is the characteristic
function. δi(β∗) returns a sparse tensor vector of length N ,



whose nonzero entries are the coefficient tensors associated
with the training tensors of class i. On denoting the index set
of the training tensors of class i by Si and defining δjN ∈RN

as the sparse column tensor vector with entry j equal to E
and all other entries equal to Z, δi(β) is defined as follows.

δi(β) =
∑
j∈Si

diag
(
δjNβ

T
)

(12)

IV. `1-NORM MINIMIZER AND FEATURE EXTRACTION

A. Minimizer

We give a solver for equation 10, which recasts the tensor-
based optimization problem as a traditional `1-norm optimiza-
tion problem as follows.

First, we give the following notations — given a tensor
X of size m × n and integers km, kn, X(km,kn) denotes a
tensor of the same size, satisfying X(km,kn)(i, j) = X((i −
km)modm, (j − kn)modn), for all i = 0, 1, · · · ,m− 1 and
j = 0, 1, · · · , n− 1. We denote the vector versions of X and
X(km,kn) respectively by x and x(km,kn).

Then, equation (11) can be transformed into the form of
equation (9) — given training tensors X1,X2, · · · ,XN of
size m× n, the columns of A in equation (9) are given by

A(:, (k − 1)mn+ kmn+ kn) = x
(km,kn)
k (13)

where x(km,kn)
k is the vector version of X(km,kn)

k for all k =
1, 2, · · · , N , km = 0, 1, . . . ,m− 1 and kn = 0, 1, . . . , n− 1.

Furthermore, setting y as the vector version of Y and with
the original constraint 1Tα = 1 replaced by

N∑
k=1

α((k − 1)mn+ kmn+ kn) = E(km, kn)

∀km = 0, 1, · · · ,m− 1 and
∀kn = 0, 1, · · · , n− 1

(14)

α∗ obtained as in equation (9) is equivalent to β∗ obtained as
in equation (11).

Since A(:, (k − 1)mn + kmn + kn) corresponds to
βk(km, kn), the tensor vector β∗ .= [β∗1 ;β

∗
2 ; · · · ;β∗N ] can be

easily restored by

β∗k(km, kn) = α
∗((k − 1)mn+ kmn+ kn) (15)

Equations (13) and (15) reveal that tSRC is an extension
of SRC (more accurately Yang’s method) which enlarges the
original training volume by extending a single sample Xk to
multiple samples X(km,kn)

k for all km = 0, 1, · · · ,m− 1 and
kn = 0, 1, · · · , n− 1.

B. Feature extraction

There exist a wide range of popular and effective feature ex-
tractors, such as PCA (Principle Component Analysis), which
extract features as vectors rather than tensors. To work with
these feature vector extractors, one can extract a collection of
feature vectors from a set

{
X(km,kn)

∣∣∀km, kn} rather than
just one feature vector from one sample X .

With the minimizer discussed in Section IV-A, which flat-
tens tensors to vectors, tSRC can conveniently handle feature

vectors. More specifically, tSRC uses the following equation
to work with feature vectors.

A(:, (k − 1)mn+ kmn+ kn) = x̂
(km,kn)
k (16)

where x̂
(km,kn)
k denotes the feature vector extracted from

X
(km,kn)
k .

V. EXPERIMENTS

A. Settings

Although tSRC and SRC-like classifiers can be used for
purposes including but not limited to supervised classifica-
tion, in this section, we evaluate tSRC for supervised image
classification on several publicly available databases.

In order to get statistically stable classification accuracies
by classifying a sufficient number of query samples for
each training set, our experiments contain multiple rounds
of classification. In order to avoid unnecessary perturbation-
s of classification accuracy, in each round, query samples
and training samples are randomly chosen and then kept
unchanged in the evaluation of the relevant classifiers. After all
rounds, the classification accuracy of each classifier is given
by accuracy = w/W where w is the total number of correctly
classified query samples and W is the total number of query
samples from all rounds.

B. Evaluations on the raw MNIST data

In this section, we apply the relevant classifiers to the raw
MNIST database [8]. The MNIST database of handwritten
digits contains a large number of image samples of size
28 × 28 pixels belonging to 10 classes. There are 60, 000
training images (roughly 6, 000 images per class) and 10, 000
query images (roughly 1, 000 images per class) in the MNIST
database. Figure 1 shows some examples of the MNIST
database.

Fig. 1. Some image samples of the MNIST database.

Due to its large number of samples, small image size and
unvarying illumination condition, it is ideal to evaluate the
manifold assumption, constrained subspace model and the
relevant classifiers.

To use SRC and Yang’s method, which handle vectors rather
than tensors, on the raw images of the MNIST database,
images have been flattened without feature extraction to 784-
dimensional vectors. Although tSRC can directly handle im-
ages as second-order tensors, we use the vector-flattening `1-
norm minimizer discussed in Section IV-A to solve equation



(9). To construct the underdetermined linear system in equa-
tion (9), the column number of A should be larger than 784.
We observe the classification performance when the number of
training samples is changed. Thus, in each classification round,
we set the number of training samples of class i respectively
by Ni = 100, 150, 200, 250, 300 and 350. The experiment
contains 10 classification rounds. In each round, 1, 000 query
images (100 images/class ×10 classes) are randomly chosen
from the MNIST test set and N training samples (N samples
= Ni samples/class × 10 classes) are randomly chosen from
the MNIST training set.

To evaluate the efficacy of the t-product [7], [1], [6], our
tSRC is developed as two variants, tSRC-1D and tSRC-2D.
Classifier tSRC-1D is tSRC via tensor sparse representation
offered by the t-product, but with the constraint that the only
non-zero scalar entries of tensor βk are in βk(0, :) for all
k = 1, 2, · · · , N . More specifically, in the t-product model,
tensor Xk of size m × n is recast to t-product tensor X(t)

k

of size m × 1 × n, tensor βk is recast to t-product tensor
β
(t)
k of size 1× 1× n, satisfying, ∀ i = 0, 1, · · · ,m− 1 and

j = 0, 1, · · · , n− 1{
X

(t)
k (i, 0, j) =Xk(i, j)

β
(t)
k (0, 0, j) = βk(0, j)

. (17)

Thus, C .
=Xk ◦βk is equivalent to C(t) .=X

(t)
k ∗β

(t)
k in the

sense that C(i, j) ≡ C(t)(i, 0, j).
In tSRC-2D, the constraint imposed on the nonzero entries

in βk found in tSRC-1D is removed. In comparison with SRC
and Yang’s method, the computational complexity of solving
the linear system in tSRC is dramatically increased primarily
because tensors are employed.

In order to obtain results of tSRC in a reasonable time, the
computational complexity of tSRC is reduced. We constrain
tSRC-2D by setting βk(i, j) equal to zero outside the set of
values defined by i ∈ {(m− 1), 0, 1} and j ∈ {(n− 1), 0, 1}.
Similarly, we constrain tSRC-1D by setting βk(i, j) equal
to zero outside the set of values defined by i = 0 and
j ∈ {(n− 1), 0, 1}. These constraints on tSRC-1D and tSRC-
2D are also kept unchanged in the experiments on other
databases.

This constraint imposed on tSRC exploits the fact that in a
small neighborhood of an image, the grayscales of the pixels
are highly correlated.

Figure 2 shows the classification accuracy curves of the
relevant classifiers SRC, Yang’s, tSRC-1D and tSRC-2D on
the raw MNIST data.

Several observations are made on Figure 2.
(i) As Ni increases, the classification accuracy increases.

Since the constrained subspace is a linear approximation to
manifold of low intrinsic dimension, with Ni increasing, we
contend that the approximation to the underlying manifold
becomes more accurate and leads to a higher classification
accuracy.

(ii) The second observation is that the classification accuracy
of Yang’s method is higher than that of SRC, albeit marginally.
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Fig. 2. Accuracy curves with an increasing number of training samples
obtained by SRC, Yang’s method, tSRC-1D and tSRC-2D on the raw MNIST
data.

This versifies the report by Yang [20] and supports the
manifold assumption and our constrained subspace model.

(iii) The classification accuracy of tSRC is higher than those
of SRC and Yang’s method.

(iv) The accuracy of tSRC-2D is higher than that of tSRC-
1D. We contend that this is because tSRC-2D exploits more
image structure information both in the row direction and
the column direction while tSRC-1D only exploits structure
information in the column direction.

C. Evaluations with feature extraction

Since tSRC (tSRC-1D and tSRC-1D) can be transformed to
its flattened version involving vectors, we are particularly inter-
ested in classification accuracies obtained on feature vectors.
Given the effectiveness and popularity of PCA in data analysis,
we evaluate SRC, Yang’s method, tSRC with PCA features.
For tSRC, given tensor X(km,kn)

k and after vectorizing it, we
extract its PCA feature vector x̂(km,kn)

k as in equation (16).
1) MNIST data: Figure 3 gives the classification accuracy

curves of SRC, Yang’s method and tSRC by repeating the
experiment in Section V-B but with the PCA feature extractor.
The feature dimension is d = 100.

Compared to the classification results shown in Figure 2,
the accuracies obtained with PCA are significantly increased.
The observations drawn from Figure 2 also apply to Figure 3.

2) ORL data: We are also interested in classification ac-
curacies on image datasets with a larger image size but with
a smaller number of images. The ORL database is one such
database. The ORL database contains 400 facial images (10
images/class × 40 classes) of size 112 × 92 pixels, taken
at different times with variations of facial expressions, details
and poses etc.

Figure 4 shows the images from a sample subject (class) of
the ORL data.

Figure 5 gives the accuracy curves of SRC, Yang’s method
and tSRC on this database.

In our experiments, the number of training samples for each
class is respectively taken as Ni = 5, 6, 7, 8, 9. For each value
of Ni, the accuracy of each classifier is obtained from multiple
classification rounds. In each round, Ni samples/class × 40
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Fig. 3. Accuracy curves with an increasing number of training samples
obtained by SRC, Yang’s method, tSRC-1D and tSRC-2D on the PCA features
of the MNIST data.

Fig. 4. Images of a sample subject (class) of the ORL data.

classes are randomly chosen as the training samples. The re-
maining samples are taken as the query samples. Thus, in each
classification round, the number of query samples is (10−Ni)
samples/class × 40 classes. Both training samples and query
samples are extracted by PCA to yield 100-dimensional feature
vectors.

In order to have the same number of query samples in
multiple rounds for each value of Ni, corresponding to Ni =
5, 6, 7, 8, 9, the number of classification rounds is respectively
set as 12, 15, 20, 30, 60. In other words, each accuracy point
in Figure 5 is the result of classifying 2400 random query
samples.

The observations on the curves in Figure 4 are the same
as the observations drawn in Section V-B on the raw MNIST
data .

3) Extended Yale B data: We aslo evaluate the classifiers
on the Extended Yale B database [16]. The Extended Yale
B database contains 2, 414 cropped frontal face images of
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Fig. 5. Accuracy curves with an increasing number of training samples ob-
tained by SRC, Yang’s method, tSRC-1D and tSRC-2D on features extracted
by PCA on the ORL data.

size 192 × 168 pixels from 38 subjects (classes), roughly 64
image per class. The images from this database are taken under
vaying illumination.

Figure 6 shows some samples of the Extended Yale B
database. It is clear that the average grayscales of the samples
even in the same class are perceivably different.

Fig. 6. Image samples of the Extended Yale B database under varying
illumination condition.

Since the effect of the illumination can be modeled by
a scale factor, it is believed that varying illumination tends
to reduce the accuracy of the approximation to the data by
the underlying constrained subspace. This might challenge the
effectiveness of the affine linear representation offered by the
constrained subspace model.

To reduce the influence of varying illumination, we first en-
hance the grayscale contrast of images by means of grayscale
histogram equalization. Then, we extract the PCA features
of the enhanced images with feature dimension d = 100.
There are 10 classification rounds for each value of Ni, .
In each round, 912 images (912 images = 24 images/class
× 38 classes) are randomly chosen as query samples. N
training samples (where N samples = Ni samples/classes ×
38 classes) are randomly chosen from the rest of the samples
respectively with Ni = 16, 20, 24 and 28.

Figure 7 shows the accuracy curves, with an increasing
number of training samples, for SRC, Yang’s method, tSRC-
1D and tSRC-1D. Each point on the curves is the accuracy of
classifying 9, 120 random query images (9, 120 images = 912
images/round × 10 rounds).
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Fig. 7. Accuracy curves with an increasing number of training samples
obtained by SRC, Yang’s method, tSRC-1D and tSRC-2D on the PCA features
of the Extended Yale B data.

The observations found in Figure 7 are consistent with the
ones found in Figures 2, 3 and 5 in the sense that the accuracy



of tSRC (tSRC-1D and tSRC-2D) is higher than those of SRC
and Yang’s method.

However, compared to the results shown in Figures 2, 3, and
5, the accuracy differences between SRC, Yang’s and tSRC
are less predominant although image enhancement and PCA
feature extraction have been used.

Although our present work only focuses on evaluations and
comparisons of the performances of relevant classifiers, we
argue that, to enlarge the classification difference of tSRC and
its non-tensor counterparts, besides more sophisticated image
enhancement and feature extraction techniques, a reduced
region of the entries constrained to zero in βk for all k
(discussed in Section V-B) might be helpful, but at the cost of a
significant increase of computational complexity. Our present
experiments clearly show the differences in the classification
accuracies of SRC, Yang’s method and tSRC.

4) Evaluations with increasing feature dimension: In the
experiments in this section, the training samples are fixed
but feature dimension is changed. The experiment is on the
PCA feature vectors extracted from the ORL database. The
feature dimension is respectively set by d = 20, 60, 100
and 140. In each classification round, 200 training samples
(5 samples/class × 40 classes) are randomly chosen. The
remaining 200 samples (also 5 samples/class × 40 classes) are
taken as the query samples. There are 10 classification rounds.
In other words, each point in Figure 8 is the accuracy of
classifying 2, 000 samples (200 samples/round × 10 rounds).

Figure 8 gives the accuracy curves over different values of
feature dimension. The curves shown in Figure 8 verify the
accuracy of tSRC over its non-tensor counterparts.
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Fig. 8. Accuracy curves with an increasing feature dimension obtained by
SRC, Yang’s method, tSRC-1D and tSRC-2D on the PCA features of the
ORL data.

Another interesting observation found from Figure 8 is that
the increase in feature dimension does not always lead to
an increase in the classification accuracies of SRC, Yang’s
method and tSRC. When feature dimension d is very small
(for example, in Figure 8, when feature dimension d < 60),
an increase of d does increase classification accuracy since
more useful information in the data is exploited. When d
is relatively high (for example when d > 100 in Figure
8), the features contain over-detailed information from the

data which can cause the classification accuracy to decline.
Similar results are obtained in classifying samples from other
databases. The results are not reported here in order to reduce
the length of the paper. However, we would like to add
another interpretation to this observation from the perspective
of constrained subspace — Each classifier in our experiments
requires the training samples to be over-complete in order
to construct an underdetermined linear system y = Aα,
which has a low-rank matrix A. The over-completeness of
training samples is highly associated with feature dimension
d. When the number of training samples is fixed, an increase
of d of a query sample usually make it less likely that the
given training samples will be complete for the query sample.
When d increases, in order to find a constrained space M
to include the query sample, the intrinsic dimension id(M)
must increase. In other words, the solution α∗ of equation
(11) or β∗ of equation (8) becomes less sparse. We call this
phenomenon the “inflation of the constrained subspace”. The
inflated constrained subspace with id(M) much larger than
that of the manifold is a less accurate linear approximation to
the underlying manifold and therefore causes a reduction in
the accuracy of the classification.

VI. CONCLUSIONS

A constrained subspace model is proposed for a tensor-
based classifier called tSRC. In this model, the constrained
subspace is defined as a union of a series of affine hulls.
Each affine hull is spanned by training samples via sparse
representation, and serves as a local linear approximation of
the corresponding manifold.

This model establishes a generalized framework for some
classical classifiers including NM, NN, NFL and NS. In this
model, NN, NFL and NS are all approximations to NM,
which in principle enjoys a high classification accuracy. The
constrained subspaces of NN and NFL have respectively
intrinsic dimensions 0 and 1.

To make the constrained subspace a more accurate approxi-
mation to the corresponding manifold, we contend that the in-
trinsic dimension of the constrained subspace should be equal
to that of manifold. Based on this assumption, we contend that
the sparsity parameter κ of the sparse representation, employed
with the training samples to span the constrained subspace,
should be carefully tuned. Thus, the searching of the nearest
constrained subspace point to a query data point is formulated
as a constrained least-squares problem.

To circumvent the explicit intrinsic dimension estimation
and exploit the collaboration offered by different classes,
the constrained subspace model helps transform the least-
squares problem to a spare representation problem via `1-norm
optimization.

Thus, the proposed constrained subspace model not only
connects the dots of NN, NFL, NS, SRC and NM but also
offers an intuitive explanation to the mechanism of SRC and
Yang’s method which is a variant of SRC.

Then, we replace the vector representation of data by a high-
order tensor representation. The multiplication between two



tensors is defined via high-order circular convolution.
Then we propose a novel classifier called tSRC. The pro-

posed classifier is a tensor variant of SRC subject to the
conditions inspired from the constrained subspace model.

Our experiments on several publicly available databases
verify our claims on the constrained subspace model and tSRC.
The proposed tSRC is scalable in its computational complexity
control. At the cost of a manageable complexity increase,
tSRC is more accurate than competing classifiers.
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