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Abstract

Using domestic predators such as cats to control rodent pest problems around farms and

homesteads is common across the world. However, practical scientific evidence on the

impact of such biological control in agricultural settings is often lacking. We tested whether

the presence of domestic cats and/or dogs in rural homesteads would affect the foraging

behaviour of pest rodents. We estimated giving up densities (GUDs) from established feed-

ing patches and estimated relative rodent activity using tracking tiles at 40 homesteads

across four agricultural communities. We found that the presence of cats and dogs at the

same homestead significantly reduced activity and increased GUDs (i.e. increased percep-

tion of foraging cost) of pest rodent species. However, if only cats or dogs alone were pres-

ent at the homestead there was no observed difference in rodent foraging activity in com-

parison to homesteads with no cats or dogs. Our results suggest that pest rodent activity

can be discouraged through the presence of domestic predators. When different types of

predator are present together they likely create a heightened landscape of fear for foraging

rodents.

Introduction

In the evolutionary arms race between predators and their prey, many animals have developed

innate and learned behaviours to avoid predation [1]. The impact of predators on the behav-

iour and physiology of their prey has been the topic of several reviews which highlight oppor-

tunities for exploiting these dynamics for pest management [2,3,4]. Although much laboratory

research has been able to demonstrate quite clear effects of predatory odours from urine, fae-

ces, fur, skin and anal glands on the behaviour and physiology of prey animals [5,6,7], under-

standing these dynamics under field conditions has been challenging due to often complex

behaviours, habitats, intra-specific competition and habituation [2,3,8]. Despite the once
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promising laboratory results, the use of extracted or synthesised predator odours [9] have not

become widely used for the management of wildlife likely because of habituation to them.

Optimising the amount of time animals spend foraging is an important life strategy directly

related to an animal’s level of fitness; the risk of predation when foraging is one element that

must be considered. By monitoring the time spent foraging it is possible to elucidate the practical

effects of predators on a pest’s perception of risk [10]. The optimisation of foraging behaviour of

animals was developed as the Marginal Value Theorem (MVT) [11]. The MVT postulates that a

foraging animal assumes that food items occur in clumps and that its food intake decreases

along with the time spent in that exact patch. Foragers balance the benefit of energetic reward

and the cost of predation when making foraging decisions [12]. Based on those cost-benefit

assessments on forthcoming yield of the current patch versus the future yield that could be

obtained by moving on to another patch, the forager predicts the value of the patch and makes

decisions on whether to depart to the next food patch [13]. By creating food patches and assess-

ing the amount of food left after foraging, the giving-up density (GUD) of a food source becomes

a measurable unit [14]. The GUD resembles the perceived costs of foraging on that location. The

more food left in a patch after the departure of an animal, the higher the GUD, indicating high

costs [15]. With respect to foraging costs, every so often prey need to sacrifice food for safety,

and this has been termed the “landscape of fear” [16]. Rodents can assess predation risk during

foraging behaviour by indirect cues (e.g. foraging habitat, weather, light levels) or direct cues

(predator urine) [17]. Using GUDs in this way has received much recent attention in terms of

understanding predator-prey dynamics [18,19].

Cats (Felis catus) have been associated with humans for thousands of years, having been

domesticated in the Near East around 9,500 years ago [20,21]. It is speculated that wild cats

were drawn to human settlements by the abundance of pest rodents associated with the farm-

ing and storing of grain. Dogs (Canis familiaris) were domesticated even earlier and may have

originally been drawn to pre-agricultural hunter-gatherer societies by the build-up of refuse

around these camps [22]. Members of the cat genus Felis are typically solitary, ambush preda-

tors that feed on a wide variety of small vertebrate prey [22]. Feral cats in urban centres typi-

cally forage alone and include rats and mice in their diet [23]. In contrast, feral dogs are

descended from the social wolf and may hunt in packs, running down prey over long distances

[22]. Feral dogs may include small mammals in their diet [24], but more typically subsist on

refuse [25]. Hence, domesticated cats and dogs, although both able to feed on pest rodents

[24], differ in their hunting techniques and therefore exert different selection pressures on

rodent pest populations.

Although there is much anecdotal support from farmer surveys [26,27,28] for the role of

domestic cats to control rodent pests, previous research investigating the role of dogs and cats

on rodent control is more equivocal [23,24,29,30,31]. However, applying the analytical power

of GUDs to help understand the role of domestic predators on domestic rodent pests could

help develop innovative strategies whereby pest management attempts to manipulate the land-

scape of fear to the detriment of rodent fitness. Thus the aims of the current study are to evalu-

ate the anecdotal claims made by rural farming homesteads that cats and dogs have an impact

on rodent pests [32]. We aim to do this by assessing relative rodent activity and foraging risk

across a replicated comparative trial. This is the first time that the GUD has been applied to a

domestic rodent management context. We predict that the presence of cats (alone or with

dogs) will reduce pest rodent activity and increase their GUDs compared with their absence.

Furthermore, we predict that the presence of dogs alone will have similar effects compared

with the absence of cats and dogs.

Landscape of fear for pest rodents
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Methods

Study site

This study was conducted in four villages: Mahlanya (26˚29’S, 31˚13’E), Sitjeni (26˚28’S, 31˚

12’E), Mcaphozini (26˚26’S, 31˚12’E) and Elangeni (26˚25’S, 31˚13’E) at Lobamba, central

Swaziland (690m above sea level). The area has been transformed into a matrix of small-scale

subsistence farmland and farmers’ homesteads with none of the original natural vegetation

remaining [33]. The staple crop is maize, with sorghum, vegetables and pulses grown on a

smaller scale.

A typical homestead in this region supports 6–10 people [34]. Each homestead is made of a

number of buildings clustered around a main house. Buildings range from thatched stick-and-

mud to corrugated iron and tiled houses. The majority of homesteads engage in small-scale

subsistence farming.

Homestead survey

More than 200 homesteads from the four villages were visited as part of a survey on rodent

management from which homesteads that keep dogs and/or cats were enumerated. We ran-

domly selected ten homesteads with cats, ten with dogs, ten with both cats and dogs, and ten

with neither cats nor dogs; these 40 homesteads formed the basis for this study. There was no

difference in the breeds of cats (breed: mongrel Swazi) and dogs (breed: Africanis) used for

the study and permission to carry out the research was granted by each head of household.

Although we did not count the number of dogs and cats, at homesteads where they were present

we generally saw between one and four dogs and one or two cats. These domestic dogs and cats

were not chained up but were free to roam around the homestead and the surrounding fields.

A recent survey in the same area has convincingly shown that Rattus rattus was the domi-

nant rodent in and around homesteads [33,35]. Nonetheless, using the same methodology we

surveyed small mammals at these homesteads by setting Sherman live traps (HB Sherman

Traps Inc., Tallahassee, Florida, USA) in areas of high activity over three consecutive nights in

July 2015. Animals caught were identified and released. This survey was only conducted to

assess whether the rodent community in these homesteads had recently changed. The ethics

committee for the use of animals from the University of Swaziland approved the protocols

used in this study which adhered to the guidelines of the American Society of Mammalogists

for the use of wild mammals in research [36].

Experimental design

We quantified rodent activity at each homestead with the use of “tracking tiles”; white ceramic

wall tiles (20cm x 20cm) that were blackened with soot using a smoking paraffin lamp (Fig 1).

To measure the relative amount of rodent activity we calculated the percentage area of the tile

covered by footprints [37]. We placed tracking tiles out for five consecutive nights in the cool

dry season (July 2015) and again in the hot dry season (Oct 2015). We conducted live trapping

based on the activity measures conducted in July. During both seasons we placed freshly

sooted tiles out each evening, and removed the following morning. We determined the per-

centage area marked by rodent footprints by placing a transparent plastic sheet, divided into

16 squares (5cm x 5cm), on top of the tile. The number of squares with rodent footprints was

expressed as a percentage of the total number of squares.

Employing feeding patches and measuring the GUD [14,38] we separately determined

rodent foraging activity. We created feeding patches which consisted of plastic lunchboxes

(size 7.1 cm x 23.0 cm x 17.4 cm) containing 1 kg of sand within which 50 peanuts were

Landscape of fear for pest rodents
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randomly buried. We placed feeding patches alongside the tracking tiles at each of the 40

homesteads for seven consecutive nights to allow rodents to acclimatise to them [39]. On the

afternoon prior to the start of the experiment on day 8 we replenished the feeding patches. For

five consecutive mornings we collected the feeding patches and counted the number of

remaining peanuts and replaced missing ones.

Analysis

We used a generalized-linear mixed model to examine differences in the levels of rat activity

and giving-up densities at each homestead. We fitted both tracking tile activity and GUD to a

negative binomial distribution using the glmmADMB package for R [40,41]. For tracking tile

activity, we ran one model to examine the influence of treatment (none, cat, dog, both) and

two additional models to determine if the influence of treatment varied by season (wet and

dry). For the giving-up density models we only used homesteads that registered any feeding at

the trays and included one variable as a fixed effect, i.e. treatment. For all models we included

homestead as a random variable and set the treatment ‘none’ as the reference category. We

considered treatments with beta estimates (β) and 95% Confidence Intervals that did not

include 0 to be significantly different from the reference category. Using the SEpredicts com-

mand in the AICcmodavg package [42] we calculated the predicted estimates for activity and

GUDs based on the best models. Additionally, to determine if the responses were influenced

by their timing (i.e. day 1, 2, 3, 4 or 5) we used a likelihood ratio test to compare treatment

models to a model that included the additional variable ‘day’, to account for the day the trial

was conducted or the activity that was measured.

Results

A total of 86 rodents of two species were captured within buildings and out-houses around

homesteads in the study area. The majority (73) of specimens were Rattus rattus, with the

remainder (13) being Mastomys natalensis.

Fig 1. Rodent activity in homesteads was quantified by using tracking tiles. (a) blackened with soot; (b)

marked with rodent footprints.

doi:10.1371/journal.pone.0171593.g001
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PLOS ONE | DOI:10.1371/journal.pone.0171593 February 3, 2017 4 / 9



Rodent activity in homesteads was significantly reduced in the presence of both cats and

dogs (β = -1.10 [-1.76- -0.43]) (S1 Table and Fig 2). Rodent activity in homesteads with cats

alone (β = -0.27 [-0.94–0.40]) and dogs (β = -0.08 [-0.75- -0.59]) alone was also reduced, but

not significantly so. The predicted number of tracking tiles marked by rodents in homesteads

with both cats and dogs was 12 [5–26], with neither domestic predator present the predicted

number of tracking tiles marked by rodents was 28 [18–43]. This pattern was consistent across

seasons, with only the presence of both cats and dogs showing a significant reduction in rodent

activity. The influence of cats and dogs appeared more pronounced in the wet season (β =

-2.57 [-0.49- -4.65]) compared with the dry (β = -0.76 [-1.43- -0.09]). The timing (day) of activ-

ity measures did not improve the fit of the model (χ2 = 2.02, DF = 6, p = 0.156).

Compared with no domestic predators in the homestead, the GUDs of rodents were signifi-

cantly higher (fewer peanuts were eaten) at homesteads with both cats and dogs (β = -1.32

[-2.44- -0.20]) (Fig 3). The predicted giving-up densities of rodents at homesteads with neither

cats not dogs was 30 peanuts [15–50], whereas it was 8 peanuts [2–32] at homesteads with

both cats and dogs. There was no significant difference in GUDs of rodents at homesteads

with cats alone (β = -0.11 [-1.13–0.91]) or dogs alone (β = -0.24 [-1.18- -0.70]) compared with

GUDs of rodents from homesteads with neither cats nor dogs. Similar to the activity models,

the timing (day) of GUDs measures did not improve the fit of the model (χ2 = 0.18, DF = 6,

p = 0.671).

Discussion

We showed that pest rodent activity was diminished in rural homesteads where both cats and

dogs were present. Additionally, pest rodents foraged less where both these domestic predators

were present. Thus, our study does not show dogs alone or cats alone to be important in affect-

ing the landscape of fear of pest Rattus rattus and Mastomys natalensis in homesteads; how-

ever, we demonstrate there is a significant impact when the two predators are combined.

Previous studies have shown clear anti-predatory behaviours by rats and other taxonomic

groups including Sykes’ monkeys, bottlenose dolphins, harbour seals, and dugongs [43,44,45].

Fig 2. Boxplot showing median, and upper and lower quartiles, of rat activity around rural

homesteads in Swaziland in the four treatments of this study averaged over the five nights.

Treatments are with cats alone, with dogs alone, with both cats and dogs, and with neither cats nor dogs in:

(a) July 2015; and (b) October 2015.

doi:10.1371/journal.pone.0171593.g002
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Rats, in particular, respond to predators such as mongooses and particularly cats [2,5], the lat-

ter even eliciting an immunoreactivity response in the brain of the rat [6]. Dogs, on the other

hand, do not seem to always elicit strong responses in rats, with some studies showing no

effects on rodents exposed to dog faeces [46], whilst other studies have shown some conse-

quences on rodent behaviour through the presence of dog integumentary odours [47]. The

active removal of dogs from the environment has been shown to change rodent behaviour

[48], although the mechanisms of this relationship are not understood and have not been

investigated.

Contrary to our prediction, the greatest impact on pest rodents was the combined presence

of cats and dogs. The behavioural response mechanisms that explain our results have yet to be

determined. In addition to odour it is possible that rats could have been responding to visual

cues. If visual cues were important, measures of cat and dog activity could potentially be used

as an explanatory variable to explain variation in GUDs. Nonetheless, considerable evidence

indicates that cats are important predators of rodents [22] and have exerted strong selective

pressure on the behaviour and physiology of rats [6]. Evidence of the impact of dogs on

rodents is more equivocal [25,49], and may be due to relatively agile and small-sized rats out-

manoeuvring larger pursuit predators such as dogs. Alternatively, although we did not have

different breeds of dogs in this study, dog breeds (e.g. compare Fox Terrier with Great Dane),

may represent a greater variation in predator design (and perhaps behaviour) compared with

cats which are built to more or less the same morphology. In any case, our data suggest that

when a rat is confronted by both predators, each requiring perhaps a different anti-predator

Fig 3. Boxplot showing median, and upper and lower quartiles, of rat giving up densities in rural homesteads in Swaziland in the four

treatments of this study averaged over the five nights. Treatments were with cats alone, with dogs alone, with both cats and dogs, and with neither

cats nor dogs.

doi:10.1371/journal.pone.0171593.g003
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behavioural response, it creates a perceived environment where the risk of foraging is greater

than the reward of acquiring the food resources; seen as reductions in activity and increases in

GUDs. We suggest that there might be a synergistic influence of these two predators. In fact

some sympatric predators such as wolves and coyotes [50] increase their territorial markings

when they co-occur potentially increasing the landscape of fear for their prey.

Our study presents inferences based on correlational statistics. We recommend testing the

impact of dogs and cats on pest rodent communities by conducting empirical trials to better

understand the mechanisms involved. Furthermore, we did not measure the activity of the

domestic dogs and cats in this study. We suggest that measuring such activity would only serve

to confirm our conclusions.

Supporting information

S1 Table. Giving up densities of rodents at Lobamba, Swaziland.
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