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Abstract—In our previous work we introduced a method for
avoiding/excluding some symbols in Reed-Solomon (RS) codes,
called symbol avoidance. In this paper, we apply the symbol
avoidance method to make synchronization of RS encoded data
more effective. We avoid symbols in a RS code and then perform
conventional frame synchronization on RS encoded data by
appending sync-words on the data. The symbols in the RS code
are avoided according to the sync-word used, such that the
sync-word has very low probability of being found in the RS
codewords, where it was not inserted. Therefore, for different
sync-words, different symbols need to be avoided in the RS code.
The goal here is to reduce the probability of mistaking data
for the sync-word in the RS encoded framed data. Hence, the
probability of successful synchronization is improved. Not only
does our symbol avoidance code improve probability of successful
synchronization, it also reduces the overall amount of redundancy
required when the channel is very noisy.

Index Terms—Reed-Solomon codes, Frame Synchronization,
Sync-words.

I. INTRODUCTION

The conventional frame synchronization technique, employ-
ing sync-words to delimit the beginning or end of a frame, is
widely deployed in digital systems and has been shown to
be a more practical solution to synchronization compared to
synchronizable block code techniques like comma-free codes
[1] [2] [3] [4], prefix codes [5] [6] [7] [8], comma codes [9]
[10]. In conventional frame synchronization, performance is
optimized in two ways. Firstly, to design good sync-words
with good aperiodic auto-correlation functions (ACFs), that
is the sync-word gives a high value only when there is a
perfect match. Secondly, to reduce the probability of data
being mistaken for the sync-word, by using longer sync-words.
However, there is a problem with using long sync-words in
channels with high probability of error. Long sync-words are
more susceptible to channel errors compared to short ones.
There is therefore a need to find ways of frame synchronization
that can reap the benefits of reduced probability of mistaking
data for a sync-word without significantly increasing the
lengths of the sync-words.

In our previous work [11], we developed a method for
avoiding particular symbols in a given RS code, such that
the new code does not have any of the symbols we avoided.

We called the method for avoiding symbols in a RS code,
Symbol Avoidance. Symbol avoidance falls under a small field
of coding theory called codes with constraints, as discussed in
[12, Chapter 7]. In this paper, we use the symbol avoidance
method to avoid symbols in a RS code in order to improve
synchronization when RS encoding is used in transmission.
This work can be seen as a continuation of our previous work
in [13], where we only focused on reducing the probability
of sync-word false acquisition in Reed-Solomon (RS) codes.
In this work we will again use RS codes together with well
known sync-words, modifying the RS codes by avoiding some
symbols such that the probability of mistaking data for the
sync-words is reduced. We will give results on the probability
of synchronization (correctly locating the sync-word) for RS
codes. We will also show that with our synchronization
method, the overall performance of synchronization will be
improved without significantly increasing the lengths of the
sync-words.

Our method of synchronization of RS codes using symbol
avoidance and sync-words actually borrows from the ideas
of synchronizable block codes (prefix codes and comma
codes) and frame synchronization with sync-words. Prefix
codes and comma codes require that the sync-word (prefix
or comma) should not appear in the codewords or in overlaps
of codewords, which implies that the probability of mistaking
data for a sync-word is zero in the absence of noise. In our
synchronization method, we relax this requirement imposed
on prefix and comma codes, that is the zero probability of
mistaking data for a sync-word. We do this by using symbol
avoidance to reduce the probability of mistaking data for a
sync-word such that it approaches zero in the absence of
noise. In some cases, the symbol avoidance method achieves
the zero probability of mistaking data for the sync-word, for
individual codewords (not overlapping codewords). In addition
to reducing the probability of mistaking data for a sync-word,
applying symbol avoidance also reduces the overall required
redundancy when the channel is very noisy.
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II. PRELIMINARIES

This section serves to facilitate our discussion of synchro-
nization of RS encoded data, with symbol avoidance applied
and using sync-words, by providing the necessary “tools” to
aid the discussion.

A. Aperiodic Auto-correlation of Sequences

Since the pioneering work by Barker [14] in 1953 on
frame synchronization, most sequences that were used as sync-
words were designed based on aperiodic auto-correlation, and
some of these sequences are Barker [14], Turyn [15], Willard
[16] and Maury and Styles [17] sequences. These sequences
have “good” aperiodic Auto-Correlation Functions (ACFs)
which makes them “optimal” sync-words. By good aperiodic
ACF here we mean that the sequence has an aperiodic auto-
correlation function that has a high main lobe that is, only
when correlated with zero-shifted version of itself, and mini-
mal side lobes with all other shifted versions of itself. Also,
the sequence is considered optimal if the side lobes of its
aperiodic ACF satisfy a particular required minimal value.

While considering the aperiodic ACF as the criterion for
designing/searching for optimal sync-words is a good guide-
line, there are other ways of looking at the problem of
optimizing synchronization. One such criterion was presented
by Scholtz [18], which is consideration of the probability of
false acquisition on data (probability of mistaking data for
the sync-word), PFAD and probability of true acquisition on
the sync-word, PTAM. Scholtz [18] went further to derive the
lower bound on probability of acquisition, PA as a function
of PFAD and PTAM. The relationship between PA, PFAD and
PTAM is given by

PA = (1− PFAD)PTAM.

B. Binary Symmetric Channel Frame Sync Algorithm

We give a Binary Symmetric Channel (BSC) Frame Sync
Algorithm found in [18]. In the binary symmetric channel, an
error results when one bit turns into another. We denote the
channel bit error probability by Pe. Let S be the sync-word,
of length N and, H be error tolerance. Now, let the received
framed data consisting of N sync-word bits and D data bits, be
R. R is of length N +D; each bit position in R is indexed
by t. Then the frame synchronization algorithm is given as
follows.

BSC Frame Sync Algorithm
Input: R, S, H, D
(a) set t = 1
(b) for t = 1 to D −N + 1
do a Hamming distance comparison
between S and RtRt+1 . . .Rt+N−1
if dH(S,RtRt+1 . . .Rt+N−1) ≤ H,

go to (c)
if dH(S,RtRt+1 . . .Rt+N−1) > H,

t = t+ 1, go to (b)
(c) if t = D −N + 1 then output:

frame synchronization successful
else output:
frame synchronization fails

In summary, the BSC Frame Sync Algorithm given above is
simply a “sliding window” method and Hamming distance
comparison.

In practice, several frames are usually tested before a
synchronization decision is taken. However, in this paper we
are interested in the performance comparison between conven-
tional RS codes and RS codes with symbol avoidance. This
performance comparison can be captured with single-frame
testing. Having stated that, the algorithm can be extended to
test multiple frames.

In the simulations, the probability of acquisition will be the
fraction of the number of successful frame synchronization
events, as indicated in step (c) of the BSC Frame Sync
Algorithm.

C. Symbol Avoidance in Reed-Solomon Codes

In our previous work [11], we presented a method for
avoiding symbols in Reed-Solomon codes, which we called
symbol avoidance. In this subsection, we briefly describe the
symbol avoidance method.

Let us define a linear RS code as (n, k, d)W over GF(q),
where n is the length, k is the dimension, d is the minimum
Hamming distance and q is the size of the field which is a
power of a prime. From the linear RS code (n, k, d)W we
produce a new code (n, k′, d′)W ′, of length n, dimension k′

and minimum Hamming distance d′, over an alphabet of size
q′. We call the operation by which W ′ is obtained from W ,
symbol avoidance. This operation is given in simplified form
as

(n, k, d)W →

 Symbol
Avoidance
Operation

→ (n, k′, d′)W ′,

where d′ ≥ d, q′ < q, k′ < k, and (n, k′, d′)W ′ may be
non-linear. q′ = q−|A|, where A is a set of elements/symbols
to be avoided in (n, k′, d′)W ′. Next, we explain the symbol
avoidance operation in detail.

The conventional systematic generator matrix of the RS
code (n, k, d)W , G = [Ik|Pn−k] with the symbols taken
from a Galois field GF(q), is decomposed into two parts. The



first part of G, which is composed of k′ rows of G, is denoted
Gk′

. The second part of G, which is composed of r rows of
G such that k = k′ + r, is denoted Gr.

G =

[
Ik′ 0k

′

r | P k′

n−k
0rk′ Ir | P r

n−k

]
,

where Gk′
= [Ik′ 0k

′

r |P k′

n−k], G
r = [0rk′ Ir|P r

n−k] and

P k′

n−k =


P k′

11 P k′

21 . . . P k′

1(n−k)
...

...
...

P k′

k′1 P k′

k′2 . . . P k′

k′(n−k)

 , (1)

P r
n−k =

P
r
11 P r

21 . . . P r
1(n−k)

...
...

...
P r
r1 P r

r2 . . . P r
r(n−k)

 . (2)

Gk′
is used to encode a k′-tuple (M = m1m2 . . .mk′ ,

where mi ∈ GF(q)), and this results in a codeword C =
MGk′

. Gr encodes an r-tuple (V = v1v2 . . . vr, where
vi ∈ GF(q)), resulting in what we shall call a control vector
R = V Gr. The difference between C and R will be in
their usage, otherwise they are both results of RS encoding.
The control vectors (collection of the vectors R) are used
to control the presence/absence of a particular symbol(s) in
each codeword C, as will be demonstrated shortly. For a
q-ary linear block code with a systematic generator matrix,
undesired symbols in the codeword, due to the identity part,
can be avoided by simply not including those symbols in the
message to be encoded. However, for the parity part of the
generator, a different method to avoid undesired symbols needs
to be applied. It is therefore the main task of this section to
show that we can avoid undesired symbols in a Reed-Solomon
code while maintaining or improving its minimum Hamming
distance even though the new code may be non-linear. Using
control vectors, we control which symbols to avoid in the
parity part of the RS code. C is the RS codeword and R is a
control vector to be used on C, in case C has an undesired
symbol. By undesired symbols we are referring to the symbols
we do not want occurring in the code.

We now focus on the parity parts of C and R. We denote by
PC
1 , PC

2 , . . . , PC
n−k and PR

1 , PR
2 , . . . , PR

n−k the parity symbols
for C and R, respectively. Using (1), each parity symbol of a
codeword, PC

i , becomes PC
i = m1P

k′

1i + · · · + mk′P k′

k′i, for
1 ≤ i ≤ n − k. Using (2), each parity symbol of a control
vector, PR

j , becomes PR
j = v1P

r
1j + · · ·+ vrP

r
rj , for 1 ≤ j ≤

n− k. Let us define a set A =
{
a1, a2, . . . , a|A|

}
, which is a

set of symbols taken from GF(q), where |.| here indicates the
cardinality of a set. The symbols in set A are the symbols we
want to avoid in all codewords that resulted from the encoding
by Gk′

. If any PC
i ∈ A then we ought to eliminate/avoid that

PC
i using a corresponding PR

j , where j = i. This is done by
adding the corresponding parity parts of C and R such that
the resulting parity symbols in the new codeword, Pi (= PC

i +
PR
i ), do not have any of the symbols in A. This procedure can

be expressed mathematically as Pi 6= ax, or PC
i + PR

i 6= ax,

for 1 ≤ x ≤ |A| and 1 ≤ i ≤ n − k. Depending on their
suitability in a sentence, the words eliminate and avoid will
be used interchangeably since they convey the same message.

The next example illustrates the symbol avoidance proce-
dure.

Note: when describing RS codes, we will be using integer
symbols to represent elements of GF(q), because the integer
symbols make it easier to follow operations on the RS codes
and also aid presentation. See [11] for the relationship between
elements of GF(q) and integer symbols.

Example 1: For this example, we take an (n = 7, k = 3) RS
code over GF(23) with the generator G in (3). The field GF(23)
is generated by a primitive polynomial, p(I) = I3 + I + 1.

G =

1 0 0 | 6 1 6 7
0 1 0 | 4 1 5 5
0 0 1 | 3 1 2 3

 . (3)

Then by choosing r = 1, we have k′ = 2,

Gk′
=

[
1 0 0 | 6 1 6 7
0 1 0 | 4 1 5 5

]
(4)

and
Gr =

[
0 0 1 | 3 1 2 3

]
. (5)

Let 7 be the symbol to avoid in codewords encoded by Gk′

in (4), hence A = {7}. The Gr in (5) gives the following
control vectors we can use when we encounter a codeword
with symbol 7,

0 0 0 | 0 0 0 0
0 0 1 | 3 1 2 3
0 0 2 | 6 2 4 6
0 0 3 | 5 3 6 5
0 0 4 | 7 4 3 7
0 0 5 | 4 5 1 4
0 0 6 | 1 6 7 1
0 0 7 | 2 7 5 2


. (6)

The last control vector, [0 0 7 | 2 7 5 2], is included
for completeness, otherwise it cannot be used to eliminate
symbol 7 since it has 7 in its information part. To illustrate
the elimination of symbol 7, we pick one codeword with
the symbol 7 (in the parity part) from the list of codewords
produced by Gk′

, and that codeword is C = [0 3 0 | 7 3 4 4].
From C, we have PC

1 = 7, PC
2 = 3, PC

3 = 4 and PC
4 = 4.

Taking the control vector to use as R = [0 0 1 | 3 1 2 3]
from (6), we have PR

1 = 3, PR
2 = 1, PR

3 = 2 and
PR
4 = 3. Adding the corresponding parity symbols, we have

P1 = PC
1 +PR

1 = 4, P2 = PC
2 +PR

2 = 2, P3 = PC
3 +PR

3 = 6
and P4 = PC

4 + PR
4 = 7. The new codeword has P1 = 4,

P2 = 2, P3 = 6 and P4 = 7, which still contains symbol
7, hence R = [0 0 1 | 3 1 2 3] is not a suitable control
vector. We repeat this procedure with every control vector in
(6) until we find one that is suitable, and in this case it is
R = [0 0 3 | 5 3 6 5], which gives P1 = 2, P2 = 0, P3 = 2
and P4 = 1. It can also be verified that R = [0 0 5 | 4 5 1 4],
[0 0 6 | 1 6 7 1] or [0 0 2 | 6 2 4 6] is a suitable control vector.



We just showed in Example 1 that the key operation of the
symbol avoidance procedure is about adding two codewords
of the original RS code W to form a new codeword without
the symbols in A. This new codeword then belongs to W ′

together with all other codewords without the symbols in A.
Since W is a linear code, then it always holds that W ′ ⊆W .
According to the definition of linear codes, W ′ can be non-
linear, but its minimum Hamming distance can be the same
as that of W or even greater.

The symbol avoidance procedure steps can simply be pre-
sented by the following algorithm.

Symbol Avoidance Algorithm
Input: G, r, A

(a) split G into Gk′
and Gr, and form

codebooks Ck′
and Cr, respectively

(b) set i = 0, j = 1
(c)
(i) if j is less or equal to |Ck′ |

and i is equal to |Cr|, go to (e)
(ii) if j is greater than |Ck′ |, go to (d)
(iii) test if there are undesired

symbols in the codeword, Cj

if YES then i = i+ 1, Cj = Cj +Ri,
go to (c)

if NO then j = j + 1, go to (c)
(d) output: (n, k′, d′)W ′

(e) output: Symbol avoidance impossible.

In the algorithm, Cj are codewords in codebook Ck′
, and

Ri are control vectors in a collection of control vectors, Cr.
The algorithm works with any size of the generator matrix, G
as long as there is enough memory to hold the codewords of
codebooks Ck′

and Cr.
It should be noted that our symbol avoidance method is

mainly applicable to short RS codes. Short RS codes are
discussed in [19] and [20], where RS codes of lengths 15
and 31 are considered. In [21], RS codes of length 32 and 64
are considered for OFDM systems.

Decoding with symbol avoidance

We now know that the code (n, k′, d′)W ′ over GF(q′) is
obtained by the symbol avoidance operation from the linear
RS code (n, k, d)W over GF(q). The decoding algorithm of
the RS code W is known and well defined. The code W ′ is
easily decoded using the decoding algorithm of the code W ,
but with some “minor added operations” which enhance the
performance of W ′. To describe these minor added operations,
let D ∈ W ′, and D̃ be a received noise corrupted codeword
version of D. We assume additive noise which changes one
symbol into another within the GF(q). Note that D̃ can have
undesired symbols, i.e. symbols that were originally avoided,
due to noise corruption in the channel.

Decoding steps of D̃:

1) If the received codeword D̃ has undesired symbols,
the undesired symbols are marked as erasures and then
minimum distance decoding is performed.

2) If the minimum distance decoding results in a codeword
not in W ′, an error is detected and the codeword is
decoded to the nearest codeword in W ′.

The code W ′ is highly likely to have better performance
than the original RS code W because of one or a combination
of the following:
• d′ ≥ d.
• In some cases, the weight enumerator of W ′ is improved

compared to that of W . This is because some codewords
of W are excluded in W ′.

When the distance properties are not important, as is the
case in the rest of the paper, we will refer to the RS codes
as (2m − 1, k) RS code (or (n, k) RS code), where m is the
number of bits per symbol, k is the dimension of the code and
n = 2m − 1 is the codeword length.

D. System Model

The system model for communication is shown in Figure
1.

At the transmitter, binary data is encoded using conventional
Reed-Solomon codes, however, the generator matrix of the
conventional RS code is split into two parts as described in
the symbol avoidance algorithm and illustrated in Example 1.
If a codeword in the encoded data contains undesired symbols,
one of the control vectors is used to avoid those symbols. The
symbols of a codeword (without the undesired symbols) are
then converted to their binary equivalent, and a binary sync-
word is appended to each codeword which is now in binary
format. Before transmission, digital modulation is applied to
the bits (codeword and sync-word bits). We assume that the
transmitted data experiences additive white Gaussian noise
(AWGN).

At the receiver, firstly, digital demodulation is performed
to obtain the transmitted bits. Then the BSC frame sync
algorithm is applied to search for the sync-word. The sync-
word, if found is removed and the remaining bits (assumed to
be RS codeword bits) are then converted to their equivalent
RS symbols. The final step is decoding the noise corrupted
RS codeword.

III. PROBABILITY OF A SYNC-WORD IN A RS CODE WITH
SYMBOL AVOIDANCE

When symbol avoidance is performed on the RS code, the
symbol probability is no longer the same for all symbols.
The probability of each symbol, in the RS code with symbol
avoidance, can still be calculated by going through the entire
codebook. However, even after getting the probability of each
symbol, the symbols no longer behave as if they occur inde-
pendently like in the case when there is no symbol avoidance
done in the RS code. Therefore, it is quite difficult, if not
impossible, to analytically find the probability of a sync-word
in the RS code with symbol avoidance.
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Fig. 1. System model for communication with Reed-Solomon symbol avoidance.

In this section, we present numerical results for the proba-
bilities of sync-words in the codewords of the RS codes with
symbol avoidance (W ′), as well as the corresponding codes W
for comparison purposes. We find the probability of the sync-
word, of a given number of bits, occurring in a (2m−1, k) RS
code, given symbols to avoid. These probabilities are then used
to indicate which symbols are best to avoid in order to reduce
the probability of false acquisition on data, PFAD, for a given
sync-word. We use the PFAD of the RS code without symbol
avoidance (W ) as the benchmark for comparison against the
PFAD of W ′. All results presented here are for binary sync-
words by Maury and Styles [17]. Since the binary sync-words
can be very long, for ease of presentation we will write them
in their octal representation.

An exhaustive search through all the codewords of the RS
code is performed for the sync-word individually, in the ab-
sence of noise. The codewords are the data, but the sync-word
itself is not included at the end/beginning of each codeword
because we are only interested in the probability of false
acquisition on data. Searching the codewords individually for
the sync-word means that codewords are treated independently,
such that there is no overlap of bits from different codewords.

To better understand the results in Tables I–IV we have
to first discuss the results in Tables A.1 and A.2, in the
Appendix. Tables A.1 and A.2 in the Appendix show results
for a (23− 1, 3) RS code, for various binary sync-words with
avoided symbols. For each subtable, we show the probabilities
of a sync-word occurring in the RS code, under the column
“Probability of False Acquisition”, and the corresponding
avoided symbol(s), under the column “Avoided Symbols”.
The rows are arranged in ascending order according to the
“Probability of False Acquisition”. The results were found
by avoiding the symbol(s) in the second column and then
searching for the sync-word to find its probability of being
in the RS code. The limitation to the length of sync-words
tested in the results was when all avoided symbols give the

lower bound on the probability of false acquisition, PFAD = 0.
Therefore all tables not included in the results are those where
all the avoided symbols give PFAD = 0.

TABLE I
COMPARISON OF THE BEST PFAD FOR W ′ AND PFAD FOR W , FOR BINARY
SYNC-WORDS OF LENGTHS 7− 11, WRITTEN IN THEIR OCTAL FORMAT. A

(23 − 1, 3) RS CODE.

Binary Sync-words Length, N PFAD for W PFAD for W ′

130 7 7.81E-03 1.85E-03
270 8 3.91E-03 0
560 9 1.95E-03 0
1560 10 1.95E-03 0
2670 11 1.95E-03 0

In Table A.1 only one symbol is avoided for the correspond-
ing RS codes, where r = 1. We went further to avoid two
symbols, where possible for r = 1, in an attempt to achieve
PFAD = 0 at shorter sync-word lengths. The results for two
avoided symbols are shown in Table A.2.

Looking at Table A.1 and Table A.2 we can see that some
avoided symbols begin to give the desired result of PFAD = 0
for sync-words of lengths 8. This means that avoiding one
symbol is good enough to give us the desired result.

A major problem with finding these tables (Tables A.1 and
A.2) is the amount of computer processing power needed to
generate all the possibilities of avoided symbols, especially
when avoiding more than one symbol. It is also not that practi-
cal to present all combinations of avoided symbols as this will
result in very long tables. For example, for m = 6, if |A| = 2
(two symbols avoided) the table will have 2mC|A| = 2016
rows. For most of our synchronization purposes, we only need
to choose from the best performing avoided symbols (the ones
at the top of the table). If the avoided symbols have the same
PFAD, any can be chosen. To reduce the lengths of very long
tables, only a few of the avoided symbols giving the best
performance are tabulated and presented. Now, when |A| = 2



we use the avoided symbols giving the best performance from
the results of |A| = 1 to form the tables for |A| = 2 as follows.
From simulation results we found that it is enough to consider
the top two symbols for the |A| = 1 results to make the table
for |A| = 2, for the same RS code. Therefore, the shaded
symbols in the subtables for |A| = 2 in Table A.2 are the top
two symbols in the corresponding subtables for |A| = 1 in
Table A.1.

TABLE II
COMPARISON OF THE BEST PFAD FOR W ′ AND PFAD FOR W , FOR BINARY
SYNC-WORDS OF LENGTHS 7− 11, WRITTEN IN THEIR OCTAL FORMAT. A

(24 − 1, 3) RS CODE.

Binary Sync-words Length, N PFAD for W PFAD for W ′

130 7 7.81E-03 4.35E-03
270 8 3.91E-03 2.12E-03
560 9 1.95E-03 1.96E-04
1560 10 9.77E-04 0
2670 11 4.88E-04 0

Table I gives a summary of the results of the PFAD for the
(23−1, 3) RS code with symbol avoidance (summary of Tables
A.1 and A.2), compared with the PFAD for the (23 − 1, 3) RS
code without symbol avoidance. Table I gives an indication of
the amount of improvement on the PFAD in the code W ′ from
the code W .

For other RS codes with symbol avoidance (W ′), instead
of showing the complete tables (for example, Tables A.1 and
A.2), we only show the comparison of the best PFAD for codes
W ′ and the PFAD for corresponding codes W , as shown in
Table I. Such results are shown in Tables II, III and IV, for
(24 − 1, 3) RS code, (23 − 1, 5) RS code and (24 − 1, 5) RS
code, respectively.

The results in Tables II, III and IV also show the amount
of improvement on the PFAD in the code W ′ from the code
W . For some cases, the improvement is so small that it is not
worth the effort of employing symbol avoidance and the loss
in efficiency (reduced code rate) incurred from W to W ′.

IV. PROBABILITY OF ACQUISITION: RS CODE VS RS CODE
WITH SYMBOL AVOIDANCE

In this section we use the sync-word in its bits representation
form and have the RS code symbols represented in bit-
format as well. The probability of acquisition is simulated
using a BSC frame synchronization algorithm as described
in Section II-B, with bit error probability, Pe. We will present
performance comparison results for (2m − 1, k) RS codes,
where 3 ≤ m ≤ 6 and k = 3.

The results in this section will confirm the notion that sync-
words of short length, compared to those of longer lengths,
have the problem of higher PFAD, while having the benefits
of higher PTAM in the presence of noise. Longer sync-words
bring the benefit of reducing PFAD, however, they are more
susceptible to noise corruption. The other obvious fact is that
longer sync-words reduce transmission efficiency (increase
redundancy).

TABLE III
COMPARISON OF THE BEST PFAD FOR W ′ AND PFAD FOR W , FOR BINARY
SYNC-WORDS OF LENGTHS 7− 16, WRITTEN IN THEIR OCTAL FORMAT. A

(23 − 1, 5) RS CODE.

Binary Sync-words Length, N PFAD for W PFAD for W ′

130 7 7.81E-03 3.40E-03
270 8 3.91E-03 1.10E-03
560 9 1.95E-03 0
1560 10 9.77E-04 0
2670 11 4.88E-04 0
6540 12 2.44E-04 0
16540 13 1.22E-04 0
34640 14 6.10E-05 0
73120 15 3.05E-05 0
165620 16 3.05E-05 0

TABLE IV
COMPARISON OF THE BEST PFAD FOR W ′ AND PFAD FOR W , FOR BINARY
SYNC-WORDS OF LENGTHS 7− 20, WRITTEN IN THEIR OCTAL FORMAT. A

(24 − 1, 5) RS CODE.

Binary Sync-words Length, N PFAD for W PFAD for W ′

130 7 7.81E-03 6.27E-03
270 8 3.91E-03 3.23E-03
560 9 1.95E-03 1.44E-03
1560 10 9.77E-04 7.36E-04
2670 11 4.88E-04 2.53E-04
6540 12 2.44E-04 1.21E-04
16540 13 1.22E-04 6.13E-05
34640 14 6.10E-05 2.90E-05
73120 15 3.05E-05 2.23E-05
165620 16 1.53E-05 9.61E-06
363240 17 7.63E-06 4.49E-06
746500 18 3.81E-06 4.59E-07
1746240 19 1.91E-06 4.70E-07
3557040 20 9.53E-07 0

We have shown that by employing symbol avoidance we can
reduce PFAD while keeping the sync-words short to benefit
from their higher PTAM, hence increasing the probability
of acquisition PA. One issue that immediately comes up
with symbol avoidance in the RS code is the reduction in
transmission efficiency of the RS code. However, this does
not become an issue anymore when comparing the required
lengths of the sync-words, for the RS codes with and without
symbol avoidance, in light of the PA performance. The RS
code without symbol avoidance requires longer sync-words to
achieve the same PA as its equivalent RS code with symbol
avoidance. In most cases, for higher probabilities of bit errors,
the RS code without symbol avoidance always delivers inferior
performance compared to the RS code with symbol avoidance.

We develop the following expressions for calculating and
comparing the efficiencies of the RS codes with and without
symbol avoidance, in terms of redundant bits. The redundancy,
in bits, of a (2m−1, k) RS code is given by R = m(2m−1−k).
We denote by RX the redundancy of the (2m−1, k) RS code
including an X-bit sync-word, such that RX = R+X ,

RX = m(2m − 1)−mk +X. (7)



For the same (2m−1, k) RS code with symbol avoidance, we
denote the redundancy including a Y -bit sync-word by RY ,
such that

RY = m(2m − 1)− b(k − r) log2 (2
m − |A|)c+ Y. (8)

Remember from Section II-C that r is the number of rows no
longer used to encode information in the generator matrix of
the RS code, and |A| is the number of symbols to be avoided
from the set of 2m symbols.

Example 2: To demonstrate the redundancy comparison
between RS codes with and without symbol avoidance, we use
the results from Figure 2. A (2m−1, k) RS code with m = 3,
k = 3, r = 1 is used as an example. For the RS code with
symbol avoidance, we use the sync-word S = {10111000},
of length Y = 8 with A = {6}. At Pe = 3 × 10−4, for the
RS code without symbol avoidance, we need a sync-word of
length X ≥ 12 to approximately match the PA performance
of the RS code with symbol avoidance. Using X = 12 and
Y = 8, the redundancies for both codes are then

RX = m(2m − 1)−mk +X

= 3(23 − 1)− 3× 3 + 12

= 24 bits,

and

RY = m(2m − 1)− b(k − r) log2 (2
m − |A|)c+ Y

= 3(23 − 1)− b(3− 1) log2 (2
3 − 1)c+ 8

= 24 bits,

which results in RY = RX .
The channel bit error probability Pe = 3 × 10−4 was

specifically chosen to demonstrate the case where the PA per-
formances of the RS code with and without symbol avoidance
are roughly the same. Otherwise, for Pe > 3× 10−4, the RS
code without symbol avoidance never reaches the performance
of the RS code with symbol avoidance, for RX = RY .

Next, we present graphical results, in Figures 2–5, showing
the performance comparison of RS codes with and without
symbol avoidance. The simulation results in the figures take
into account the number of data symbols used as well. NC

is the number of codewords, hence the number of data bits
is D = NC(2

m − 1)m. The sync-word length is denoted by
N . For all simulations we set NC = 1, which means that
a sync-word of length N is appended to every codeword to
form a frame. We use NC = 1 because we make use of the
tabulated results in Section III, where the probability of false
acquisition was per codeword. NC > 1 can also be used if
necessary. Sync-words of different lengths are used to indicate
the amount of redundancy needed for the RS codes without
symbol avoidance to achieve performance close to that of RS
codes with symbol avoidance. The largest value of N for the
RS code without symbol avoidance was chosen such that the
amount of redundancy is the same as that of the RS code with
symbol avoidance, RX = RY .

For the simulation results in Figure 2, we use N = 8 and
A = {6} for the RS code with symbol avoidance because that
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(a) Channel bit error probability, 10−4 ≤ Pe ≤ 10−2.
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(b) Channel bit error probability, 10−2 ≤ Pe ≤ 10−1.
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N = 10, No Symbol Avoidance
N = 12, No Symbol Avoidance
N = 8, With Symbol Avoidance, A={6}

(c) Channel bit error probability, 10−4 ≤ Pe ≤ 10−1.

Fig. 2. Probability of acquisition comparison of binary sync-words with and
without symbol avoidance applied on a (23 − 1, 3) RS code.
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N = 12, No Symbol Avoidance
N = 15, No Symbol Avoidance
N = 10, With Symbol Avoidance, A={0, 2}

(a) Channel bit error probability, 10−4 ≤ Pe ≤ 10−2.
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(b) Channel bit error probability, 10−2 ≤ Pe ≤ 10−1.
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N = 12, No Symbol Avoidance
N = 15, No Symbol Avoidance
N = 10, With Symbol Avoidance, A={0, 2}

(c) Channel bit error probability, 10−4 ≤ Pe ≤ 10−1.

Fig. 3. Probability of acquisition comparison of binary sync-words with and
without symbol avoidance applied on a (24 − 1, 3) RS code.
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N = 15, No Symbol Avoidance 
N = 19, No Symbol Avoidance
N = 13 With Symbol Avoidance, A={0, 21}

Fig. 4. Probability of acquisition comparison of binary sync-words with and
without symbol avoidance applied on a (25−1, 3) RS code. Channel bit error
probability, 10−4 ≤ Pe ≤ 10−1.

gives PFAD = 0 as indicated in Table A.1 (b). In Figure 2,
looking at the performance of the RS code without symbol
avoidance, one can see that the longer sync-word (N = 12)
is better for low Pe than the shorter sync-word (N = 10).
The N = 10 sync-word begins to give a better performance
for Pe > 10−2. The N = 8 sync-word for the RS code with
symbol avoidance, where A = {6}, gives the best performance
for all the values of Pe in the graph.
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N = 23, No Symbol Avoidance 
N = 19, No Symbol Avoidance 
N = 16 With Symbol Avoidance, A={8, 16}

Fig. 5. Probability of acquisition comparison of binary sync-words with and
without symbol avoidance applied on a (26−1, 3) RS code. Channel bit error
probability, 10−4 ≤ Pe ≤ 10−1.

For the simulation results in Figure 3, we use N = 10 and
A = {0, 2} for the RS code with symbol avoidance because



that gives PFAD = 0. In Figure 3, looking at the performance
of the RS code without symbol avoidance, one can see that
the longer sync-word (N = 15) is better for low Pe than
the shorter sync-word (N = 12). The N = 12 sync-word
begins to give a better performance for Pe > 3 × 10−3. The
N = 10 sync-word for the RS code with symbol avoidance,
where A = {0, 2}, gives the best performance for all the values
of Pe in the graph.

The performance trend observed in Figures 2 and 3 is also
seen in Figures 4 and 5.

It is clear from Figures 2–5 that the RS code with symbol
avoidance outperforms the RS code without symbol avoidance.
Also, for most sync-word lengths, the RS code with symbol
avoidance will perform better than the RS code without symbol
avoidance at high channel bit (symbol) error probabilities. In
each of the Figures 2–5, (7) and (8) can be used to verify that
the longest sync-word used for the RS code without symbol
avoidance results in the same amount of redundancy as the
RS code with symbol avoidance. Increasing the length of the
sync-word, for the RS code without symbol avoidance, beyond
what we have in Figures 2–5 may result in a slightly better
performance over the RS code with symbol avoidance. How-
ever, as the sync-words get longer, the performance continues
to degrade for low Pe values, and can never match that of
the RS code with symbol avoidance. Hence very long sync-
words are not only inefficient (in terms of redundancy), but
also result in poor performance at low Pe values. Therefore,
the advantages of using RS codes with symbol avoidance (W ′)
over the conventional RS codes (W ) are: the codes W ′ require
less redundancy than the codes W ; in terms of probability of
synchronization, the codes W ′ always outperform the codes
W .

Concerning the amount of redundancy (efficiency), we need
to view the efficiency of the codes in light of their probability
of acquisition performance. This makes it difficult to exactly
give a general number on the amount of redundancy for the
codes because that is dependent on the required probability
of acquisition. Despite this, we can safely state that the codes
W ′ require less redundancy than the codes W . This is because
when the sync-words for the codes W are made longer to
try and match the good performance of the codes W ′, the
performance of the codes W degrades even further at low Pe.

V. CONCLUSION

For Reed-Solomon codes with symbol avoidance (W ′), we
gave simulation results of the probability of false acquisition in
a codeword. We also gave a performance comparison, in terms
of probability of acquisition, between codes W and W ′. It
was shown that the performance of Reed-Solomon codes with
symbol avoidance is good for all channel bit error probabili-
ties. The performance of Reed-Solomon codes with symbol
avoidance proved to be superior to that of Reed-Solomon
codes without symbol avoidance for higher channel bit error
probabilities. The Reed-Solomon codes with symbol avoidance
require less redundancy to deliver the superior performance

over the conventional Reed-Solomon codes without symbol
avoidance.
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APPENDIX

TABLE A.1
RESULTS OF THE PFAD FOR CORRESPONDING AVOIDED SYMBOLS, FOR
BINARY SYNC-WORDS OF LENGTHS 7− 11 WRITTEN IN THEIR OCTAL

FORMAT. A (23 − 1, 3) RS CODE WAS USED FOR THE SYMBOL
AVOIDANCE, |A| = 1 AND r = 1.

(a) Binary sync-word 130, length
7

Probability of 

False Acquisition 

Avoided 

Symbols

6.80E-03 0

6.80E-03 2

6.80E-03 4

8.16E-03 3

8.16E-03 5

8.16E-03 7

9.52E-03 1

1.09E-02 6

(b) Binary sync-word 270, length
8

Probability of 

False Acquisition 

Avoided 

Symbols

0 6

1.46E-03 3

1.46E-03 5

2.92E-03 1

2.92E-03 7

4.37E-03 4

5.83E-03 0

5.83E-03 2

(c) Binary sync-word 560, length
9

Probability of 

False Acquisition 

Avoided 

Symbols

0 3

0 6

1.57E-03 5

3.14E-03 0

3.14E-03 1

3.14E-03 4

3.14E-03 7

6.28E-03 2

(d) Binary sync-word 1560,
length 10

Probability of 

False Acquisition 

Avoided 

Symbols

0 3

0 6

1.70E-03 1

1.70E-03 4

1.70E-03 5

1.70E-03 7

3.40E-03 0

5.10E-03 2

(e) Binary sync-word 2670,
length 11

Probability of 

False Acquisition 

Avoided 

Symbols

0 3

0 5

0 6

1.86E-03 1

1.86E-03 4

1.86E-03 7

3.71E-03 0

5.57E-03 2

TABLE A.2
RESULTS OF THE PFAD FOR CORRESPONDING AVOIDED SYMBOLS, FOR
BINARY SYNC-WORDS OF LENGTHS 7− 11 WRITTEN IN THEIR OCTAL

FORMAT. A (23 − 1, 3) RS CODE WAS USED FOR THE SYMBOL
AVOIDANCE, |A| = 2 AND r = 1.

(a) Binary sync-word 130, length 7

Probability of 

False Acquisition Avoided Symbols

1.85E-03 0 5

3.70E-03 0 1

3.70E-03 0 2

3.70E-03 0 3

3.70E-03 0 4

3.70E-03 0 6

3.70E-03 1 3

3.70E-03 1 4

3.70E-03 3 6

3.70E-03 4 6

5.56E-03 1 7

5.56E-03 2 4

5.56E-03 3 5

7.41E-03 1 5

7.41E-03 1 6

7.41E-03 2 3

7.41E-03 2 5

7.41E-03 3 4

7.41E-03 4 5

7.41E-03 4 7

9.26E-03 1 2

9.26E-03 2 6

9.26E-03 2 7

9.26E-03 3 7

9.26E-03 5 6

9.26E-03 6 7

1.11E-02 0 7

1.11E-02 5 7

(b) Binary sync-word 270, length 8

Probability of 

False Acquisition Avoided Symbols

0 1 3

0 1 5

0 1 6

0 2 3

0 2 6

0 3 5

0 3 6

0 4 5

0 4 6

0 5 6

0 6 7

1.98E-03 0 1

1.98E-03 0 6

1.98E-03 3 4

1.98E-03 5 7

3.97E-03 0 3

3.97E-03 0 4

3.97E-03 2 5

3.97E-03 3 7

5.95E-03 0 2

5.95E-03 0 5

5.95E-03 1 2

5.95E-03 1 4

7.94E-03 0 7

7.94E-03 2 4

7.94E-03 4 7

9.92E-03 1 7

1.19E-02 2 7



(c) Binary sync-word 560, length 9

Probability of 

False Acquisition Avoided Symbols

0 0 1

0 0 3

0 0 4

0 0 6

0 1 3

0 1 5

0 1 6

0 2 3

0 2 6

0 3 4

0 3 5

0 3 6

0 3 7

0 4 5

0 4 6

0 5 6

0 6 7

2.14E-03 5 7

4.27E-03 0 7

4.27E-03 2 5

6.41E-03 0 2

6.41E-03 0 5

6.41E-03 1 2

6.41E-03 1 4

6.41E-03 4 7

8.55E-03 1 7

8.55E-03 2 4

1.28E-02 2 7

(d) Binary sync-word 1560, length 10

Probability of 

False Acquisition Avoided Symbols

0 0 1

0 0 3

0 0 4

0 0 6

0 1 3

0 1 5

0 1 6

0 2 3

0 2 6

0 3 4

0 3 5

0 3 6

0 3 7

0 4 5

0 4 6

0 5 6

0 6 7

2.31E-03 5 7

4.63E-03 0 7

4.63E-03 1 2

4.63E-03 1 4

4.63E-03 2 5

4.63E-03 4 7

6.94E-03 0 2

6.94E-03 0 5

6.94E-03 1 7

6.94E-03 2 4

1.16E-02 2 7

(e) Binary sync-word 2670, length 11

Probability of 

False Acquisition Avoided Symbols

0 0 1

0 0 3

0 0 4

0 0 6

0 1 3

0 1 5

0 1 6

0 2 3

0 2 6

0 3 4

0 3 5

0 3 6

0 3 7

0 4 5

0 4 6

0 5 6

0 6 7

2.53E-03 5 7

5.05E-03 0 7

5.05E-03 1 2

5.05E-03 1 4

5.05E-03 2 5

5.05E-03 4 7

7.58E-03 0 2

7.58E-03 0 5

7.58E-03 1 7

7.58E-03 2 4

1.26E-02 2 7


