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Abstract: The mechanisms of cell death can be predetermined (programmed) or not and 

categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits 

completes the execution of death-related mechanisms. Reactive oxygen species (ROS)  

are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading 

cell components. ROS are also involved in immune responses, where they stabilize and 

activate both hypoxia-inducible factors and phagocytic effectors. ROS production and 

presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer 

therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a 

light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and 

stable PSs with improved photochemical abilities. They are effective inducers of cell death 

in various neoplastic models. The metallated PCs localize in critical cellular organelles and 

are better inducers of cell death than other previous generation PSs as they favor mainly 

apoptotic cell death events. 
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1. Introduction 

At the cellular level, death is a well-understood biological process and refers to the inability of  

a cell to preserve indispensable life functions. In mammalian cells, the process is important for both 

development and homeostasis [1]. Cell death assists life by removing damaged cells and superfluous 

cells that are capable of causing harm and, therefore, need to be destroyed for the advantage of the whole 

organism [2]. After suffering damages beyond repair and becoming inadequate for the entire organism, 

damaged cells undergo cell death mechanisms. For an individual to reach its post-embryonic maturity, 

superfluous cells, such as those in the interdigital spaces, are to be destroyed to prevent syndactyly [3]. 

An average individual loses half of his/her body mass annually, and without this process, the individual 

would have accumulated a bony mass of more than two tons and a 16 kilometer long intestine by the age 

of 80 [4]. 

1.1. Apoptosis 

Depending on cellular aspects such as morphology, enzymatic activity, functional and immunologic 

responses, the mode of cell death is determined and designated as either a programmed or non-programmed 

mode [5]. Nuclear and membrane degradation characterize apoptosis, which is the standard programmed 

and also the most occurring cell death [6]. It is triggered by precise signals that lead to the activation of 

cascade pathways to finally deliver a suicidal response. Therefore, apoptosis is an induced and regulated 

process that activates a family of proteins (known as caspase) and precise cellular events, which degrade 

nucleic and polypeptide materials. Caspases are cysteine aspartyl proteases and can further stimulate 

others effector agents to digest cellular contents. Additionally, the apoptotic response is enhanced  

upon the binding of BH3-only members of the Bcl-2 family to and inhibiting the action of  

pro-survival proteins. 

As a consequence, affected cells round up and cease communication with adjacent cells; their plasma 

membranes bleb, and phosphatidylserines translocate to the outer layers (Table 1). These mechanisms are 

accompanied by additional cellular changes, including cross-linkage and polymerization of proteins, 

chromatin condensation, nuclear fragmentation from ±300,000 to 185 nucleotides through internucleosomal 

degradation by cation-dependent endonuclease and, finally, cellular fragmentation into apoptotic bodies 

and removal. Permeable mitochondrial membranes and the release of apoptogenic substances, such as 

cytochrome C, characterize the intrinsic pathway, while the activation of death receptors, such as tumor 

necrosis factor receptor 1 (TNFR1) or Fas/CD95, on the plasma membrane characterizes the extrinsic 

pathway [3,6–8]. In contrast, the presence of Beclin 1 prevents caspase-dependent cell death events and 

demonstrates anti-apoptotic potential [8]. Silicon phthalocyanine (PC-4) photosensitizer (PS) was used 

in photodynamic therapy (PDT) to cause damage to CD4+ CD7− malignant T-lymphocytes. PC-4 was 

efficient at inducing cytodamage by destroying BCL-2 proteins and promoting apoptosis [9]. Similarly, 

a metallo-PC-mediated PDT in breast cancer cells led to apoptosis signs, including the predominance  

of apoptotic cells post-PDT; nuclear fragmentation was seen as oligonucleosomal degradation and 

increased expression of the B-cell lymphoma 2 (Bcl-2), DNA fragmentation factor alpha (DFFA1) and 

caspase 2 (CASP2) genes [10]. PSs that preferentially accumulate in mitochondria and damage BCL-2 

protein, like PC, generally are inducers of apoptosis [11]. Additionally, the level of calcium ions (Ca2+) 
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and the transfer from endoplasmic reticulum to mitochondria represent further criteria for cell death 

induction. The overload of Ca2+ in mitochondria leads to changes in morphology and apoptosis in  

a nonnuclear and Ca2+-dependent manner [12]. In the presence of an increased level of intracellular Ca2+, 

PDT has the ability to induce cytodamage, which also appears to be p53 dependent [13]. 

Table 1. Distinctive characteristics of cell death pathways. Different cell death pathways  

can be classified according to morphological appearance (apoptotic, autophagic, necrotic), 

enzymological criteria or regulators (distinctive classes of proteases, such as caspases, calpains 

and kinases) and functional aspects (programmed or accidental, physiological or pathological). 

Distinctive 
Features 

Cell Death Pathways 

Apoptosis Autophagy Necrosis 

Morphologies 

Shrinkage; blebbing; 
chromatin condensation; 

DNA degradation;  
nuclear fragmentation,  

apoptotic bodies 

Decreased cell size;  
double membrane vesicles; 

organelle degradation 

Cell swelling; loss of  
membrane integrity; 
organelle swelling;  
NO DNA laddering 

Regulators 

Death receptors; Bcl-2 
family; Beclin 1; caspases; 

IAPs; adaptor proteins; 
kinases; phosphatases; 
calcium ions, calpains; 

BCNI1 

mTOR; PI3 kinase; ATG 
family; UPR stress sensors; 

Beclin 1; kinase (JNK);  
Bcl-2 family; IP3 receptor 

Calcium ions; ion channels; 
metabolic failure; PARB,  

calcium-regulated proteins; 
RIP kinase;  

death receptors; ceramides 

Stimuli 

ROS; DNA damage;  
death receptors ligands; 

developmental programs; 
organelle stress;  

anti-cancer drugs;  
ER calcium release 

Nutrient starvation; protein 
aggregation; ER stress; 

calcium overload; 
developmental programs; 

hypoxia; ischemia;  
damaged organelles; 

proteasome impairment 

bacterial toxins; metabolic 
poisons; ischemia; stroke; 

calcium overload 

Response Programmed, physiological 
Survival, accidental, 

physiological 
Accidental, pathological 

Abbreviations: ATG, autophagy; Bcl-2, B-cell lymphoma 2; IAPs, inhibitor of apoptosis proteins;  

IP3 receptor, inositol 1,4,5-trisphosphate (IP3) receptors; ER, endoplasmic reticulum; mTOR, (mammalian)  

target of rapamycin; PAR, poly(ADP-ribose); NO, nitrite oxide; PARB, PAR-binding site; PI3 kinase, 

phosphatidylinositide 3-kinases; UPR, unfolded protein response; ROS, reactive oxygen species; RIP1, oxygen 

species; RIP1, a specific kinase that is recruited to the death-inducing signaling complex. 

1.2. Autophagy 

Embryological studies revealed that cells are accumulated and damaged in vesicles during a 

programmed cell death known as autophagy, an essential, but selective cell degrading process [14]. 

Autophagy is thought to be primarily a pro-surviving mechanism initiated by cells that have to face  

sub-lethal levels of damage [15]. Additionally, autophagy was shown to promote the induction of 

immunogenic cell death and to play a critical role in photodynamic-related cell damages, especially in 

apoptosis-resistant cells [16]. When inhibiting autophagic actions, cancer cells showed resistance  
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and increased cell survival after treatment [17]. Thirty autophagy-related genes (Atg) and two  

ubiquitin-dependent mechanisms have been identified, but Atg7 protein is involved in both mechanisms 

and participates in other Atg activations, autophagosomal assemblage and molecular degradation [18]. 

Unlike apoptosis, autophagy is not well understood, but has also been reported to be involved in either 

cell survival or death function [19]. 

Autophagy is a catabolic process comprised of reactive oxygen species (ROS) accumulation, 

membrane lipid oxidation on the membrane and loss of plasma membrane integrity in the absence of 

caspase activities. Caspase is a family of cysteine proteases that are inducers and effectors of changes 

occurring during apoptosis [3,20,21]. Caspase inhibition induces catalase degradation and ROS 

accumulation. The accumulation of ROS is dependent on the activity of catalase and is related to 

autophagy [22]. This mode of cell death has several roles in many biological pathways and differs from 

endocytosis lysosomal destruction by the formation of an autophagosome, which engulfs the target 

components to be degraded within the lysosomes [23]. Four consecutive steps make up this process, and 

these are: appropriation, transportation to lysosomes, degradation and reutilization of residues (Table 1). 

Lysosomes are the sites for cellular degradation and prompt cell death through the release of lysosomal 

hydrolases into the cytoplasm, prompting cell death. The action of autophagic proteins protects 

neighboring cells from the detrimental effects of lysosomal degradation [24]. A regulated autophagy 

controls the cell metabolism by degrading, recycling and synthesizing cell components [25,26]. PDT is 

recognized to activate apoptosis, but it can also induce autophagy in several types of cells, where the 

autophagic response can either involve survival or cell death mechanisms. Autophagy is first of all  

a survival mechanism, and autophagy-triggered PDT can add resistance to the therapy by inhibiting cell 

death signals. However, apoptosis-deficient cells depend on autophagic responses to induce cell death 

after PC-4 PDT. Both apoptosis and autophagy are required for an enhanced cell death response, and 

when blocking autophagy, MCF-7 cells develop resistance to PC-mediated PDT, resulting in increased 

cell survival [27,28]. PCs that localize in the endoplasmic reticulum and affect both the mammalian 

target of rapamycin (mTOR) activation and Beclin-1 protein are likely to lead to a comprehensively 

autophagic cell death response [11]. 

1.3. Necrosis 

Necrosis has been referred to as an accidental and non-programmed cell death event. There is an 

absence of signals associated with programmed cell death, and an inflammatory response characterizes 

this mode of death. External stimuli, such as infections, toxins and trauma, are required to initiate a 

necrotic cell death response [5,29]. In the absence of caspase activity in eukaryotic cells, it was shown 

that signal transduction and catabolic activities govern the execution of the necrotic pathway through the 

death domain and toll-like receptors. The activity of the receptor interacting protein (RIP1) controls the 

promotion of this cell death. RIP1 is a serine/threonine kinase required for the death receptor signaling 

and necroptosis, which is a necrotic-like and caspase-independent programmed cell death (Table 1) [30]. 

Seven types of necrotic cell death pathways have been recognized, but the sequential events  

remain unchanged for all. They include membrane permeability, movement of calcium ions across  

the endoplasmic reticulum, cytoplasmic swelling (oncosis), calcium-dependent calpain activation, 

lysosomal rupture, followed by degradation of cell components and induction of the inflammatory  
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response [31]. Though it lacks the distinctive characteristics of apoptosis and autophagy, necrosis is 

comprised of precise sequential events; therefore, it can occur in a controlled manner. The efficiency of 

the liposomal aluminum chloro-phthalocyanine (AlClPC) in PDT was studied both in vitro and in vivo 

using the oral cancer cell line Ehrlich tumor cells, and AlClPC-mediated PDT led to 90% necrotic cell 

death and disruption of blood vessels [32,33]. Another PC, zinc phthalocyanine tetra-sulfonated, was 

found to possess anti-neoplastic activity after PDT, and an evident increase of necrotic-related cell death 

was seen [34]. Subcellular localizations with cell membrane disintegration, local depletion of oxygen 

and nutrients are prone to receive PCs that would stimulate cell death by necrosis [11]. 

The relative uptake, cytodamage and subcellular localization are all dependent on distinctive chemical 

features of each PC. Neutral PCs showed more diffuse localization and were likely to primarily localize 

in the Golgi apparatus in the perinuclear area. Though both cationic and anionic PCs prefer lysosomes 

as their initial sites of localization, the cationic, followed by the neutral PCs appeared to be more 

effective than their anionic counters. Following irradiation, PCs undergo relocalization, which is charge 

dependent, and this demonstrated that the secondary localization site is more important in predicting the 

outcome of any PC-mediated PDT [35]. 

1.4. Reactive Oxygen Species and Photodynamic Cancer Therapy 

ROS have been considered only as a metabolic by-product and are intentionally produced by the Nox 

family NADPH oxidases on cell membranes during immune response. These phagocyte oxidases are 

crucial in innate immunity and are usually inactivated in resting cells. During phagocytosis, they are 

activated to produce ROS, which are the precursors of oxidants. This generation of ROS during 

phagocytosis makes Nox family NADPH oxidases major effectors in the protection mechanism [36,37]. 

In mitochondria, ROS stabilize hypoxia-inducible factors (HIF-1), which are a transcriptional regulator 

of the immune response and are essential for the secretion of tumor necrotic factor (TNF-alpha) [38]. 

The action of ROS on HIF-1 changes the mitochondrial functions and leads to the modulation of the 

immune response. This altered immune function can enhance lifetime [39]. Patients with dysfunctional 

oxidases suffer from improved vulnerability to microbial infection. ROS attack bacteria in the isolated 

neutrophil phagosomes. Nox family NADPH oxidases and ROS are important in innate immunity for 

the eradication of microbial infection [40]. 

Elevated levels of ROS, downregulation of ROS scavengers and antioxidant enzymes are associated 

with various human diseases, including diabetes, neurodegenerative diseases and various cancers. 

Cancer is a multistage disorder and a leading cause of death worldwide. The term cancer is characterized 

by the proliferation and invasion of abnormal cells without control in an organ. The abnormal cells  

can spread to other organs and body locations through the blood or lymph systems. Several types of 

cancer have been identified, and the most-commonly diagnosed include breast cancer, colorectal cancer, 

endometrial cancer, kidney cancer, lung cancer, cervical cancer, skin cancer, non-Hodgkin lymphoma, 

melanoma, leukemia, pancreatic cancer, prostate cancer and thyroid cancer [41,42]. Early diagnosis is 

critical for the efficiency of the treatment. Surgery, radiation therapy and chemotherapy are effectively 

used in the battle against cancer, but their lack of specificity for cancer cells causes damage to normal 

healthy cells, numerous side effects and loss of cell functions. Thus, there is an increasing interest to 

develop more sensible and effective discriminatory means of treating cancer [10,43]. 
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Photochemotherapy of cancer, also known as photodynamic therapy (PDT), is a sequential 

photochemical and photobiological process that aims to irreversibly target and damage malignant  

tissues [44]. This therapy is an evolving and clinically-approved approach that exerts selective cytotoxic 

activities on malignant cells. It involves the administration of a photosensitizer (PS), followed by local 

irradiation at a wavelength that matches the absorbance band of the PS used [45–47]. In the presence of 

oxygen, irradiation induces activation of PS and a series of reactions leading to the generation of  

singlet oxygen and free radicals, followed by cell death. The mechanisms of cell death include direct 

tumoricidal effects, microvascular damage and induction of potent local inflammatory responses and  

depend mainly on the type and dose of PS used, the intensity of irradiation and the level of oxygen 

(Figure 1) [48,49]. 

 

Figure 1. Photodynamic cancer therapy (PDT)-mediated cellular effects. Photosensitizer 

(PS) localizes in tumor cells and is converted from its ground to singlet state form through 

light activation. Singlet state PS can lose energy in form of heat or fluorescence, but an ideal 

photodynamic PS undergoes inter-system crossing and transforms into the triplet state  

form. Triplet state PSs with a long lifespan mediate reactive oxygen species (ROS) 

generation within cells. ROS induce cytotoxic effects (predominantly apoptotic and  

necrotic types of responses, with the exception of autophagy, which is more cytoprotecting 

than cytodamaging), causing cell damage and destruction. 

In both clinical and experimental setting, most PSs do not localize in nuclei, but rather in plasma 

membrane, lysosomes, mitochondria, endoplasmic reticulum (ER) and Golgi apparatus. PSs enter cells 

through the plasma membrane or by endocytosis, and this subcellular localization depends on the 

physico-chemical properties of PSs [50,51]. For optimal photodynamic actions and efficiency, the PSs 
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used should have an absorption peak between 600 and 800 nm, as at longer wavelengths than 800 nm, 

photons become inefficient and generate insufficient energy to excite oxygen to its singlet state  

and therefore yield insufficient ROS and cell damage. Light that penetrates into tissues is directly 

proportional to the wavelength. PSs with relatively strong absorbance in the red or near-infrared region 

of the electromagnetic spectrum are often preferred over the blue light-absorbing PSs, as blue light 

penetrates less effectively through tissues than red light [48]. Good PSs have limited dark toxicity and 

relatively rapid clearance from normal tissue, thus reducing phototoxic side effects. Photodynamic 

actions are sometimes associated with an acute inflammatory response characterized by an increased 

level of inflammatory cytokines and accumulation of leukocytes in targeted tumor areas, and  

PDT-mediated anti-tumor immunity has been reported [52,53]. All of these lead to an acute stress 

response that includes changes in the Ca2+ level, lipid metabolism, cytokine production and stress 

mediators [11]. In many photodynamic responses, the inductor stimulus is 1O2, originating from 

mitochondria, which enhances the formation of the receptor interacting protein 3 (RIP-3) complex. The 

cellular mechanism by which ROS generate such a response is not well understood [54,55]. 

Porphyrin had attracted the attention of photodynamic researchers and has good planar aromatic  

ring structures and photophysical properties with synthetic adaptability [56]. Due to the poor relative yield 

and limited efficiency in photodynamic applications, porphyrin is subjected to chemical modifications in 

order to improve its photochemical features and photodynamic therapeutic effectiveness, from the first 

generation into its second, then third generation. Phthalocyanine evolved from porphyrins and shares 

some of features of its precursors (Figure 2). Moreover, it is a better photodynamic agent with a higher 

yield and improved spectroscopic properties that are within the therapeutic window. Those synthetic 

modifications increase also the specificity of PC for neoplastic targets [53,57]. 

 

Figure 2. Synthesis of phthalocyanine (PC). The O-cyanobenzamide reacts with phthalimide 

to give a tetrabenzoporphyrin, also known as phthalocyanine. The structure of PC resembles 

that of the precursor porphyrin. PCs are tetradentate and capable of coordinating metal ions 

within their nitrogenous core. Chemical alternations are made possible at the metal center 

and substitutions at the benzo periphery (Portions 1–4, 8–11, 15–18 and 22–25). 
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Phthalocyanine-mediated PDT has been shown to enhance autophagy, caspase-3 activation and 

increased cell killing [58]. After their unintended discovery during the preparation of phthalimide from 

phthalic anhydride in 1928, phthalocyanines (PCs) and their derivatives have since attracted attention. 

Preliminary studies on these interesting compounds determined both their structures and names from 

their phthalic anhydride origin (phthalo) and deep blue coloration (cyanine). PCs are mostly red  

light-absorbing compounds and referred to as tetrabenzotetraazaporphyrins; macrocyclic structured 

compounds with isoindole and nitrogen atoms at their meso-positions [59]. These flexible and stable 

compounds have enhanced light absorbing abilities and have been used as chemical sensors, 

semiconductors, non-linear optics and photodynamic agents [60,61]. Several factors, including the 

degree of ligation, the nature of the central atom, the composition of the solvents, peripheral substitution, 

aggregation, as well as extension of conjugation, contribute to their absorbance in the optical 

transmission window of biological tissues [62]. In their naturally-occurring forms, the hydrophobic 

characteristics of their aromatic cores make them insoluble in most solvents, which ensures their 

durability when used as dyes. However, applications require functionalized PCs, and in order to increase 

the solubility in organic solvents and to reduce aggregation, different substituents are incorporated in the 

peripheries of PCs. 

Some porphyrin-related PSs accumulate in the vasculatures of tumor cells, and subsequent irradiation 

induces several damages, including stasis, vascular collapse and leakage; the mechanisms of action 

remain unknown [44]. Metallated PCs have been identified as strong inducers of cytodamage and 

preferentially accumulate in tumor cells, where they stimulate photodamages in various tumor models. 

In vitro, they have been associated with the induction of the apoptotic and necrotic pathways, while  

in vivo, PCs promote cell death through translocation of activated p38 to mitochondria, phosphorylation 

of BCL2 and/or BCL-X2, through facilitation of cytochrome C release from mitochondria,  

caspase-mediated PARP cleavage and inhibition of the P13/Akt/mTOR pathway [63,64]. Most PCs 

adhere to the following main features: low cytotoxicity in the dark, high phototoxicity upon light 

activation, high selectivity and specificity for targeted tumor, rapid clearance from the body, absorption 

in the optical transmission window of biological tissues, high quantum yield of singlet oxygen 

production, solubility in water-based solutions and stability under physiological conditions [65]. 

Metallated PC family members were used to investigate their phototherapeutic activities in various 

cancer cell lines. A mixed sulfonated metallophthalocyanine with zinc as the central atom (ZnPcSmix) 

successfully entered cells and localized in vital organelles, including mitochondria, lysosomes and Golgi 

apparatus. ZnPcSmix compounds had the ability to absorb light at a wavelength of 680 nm and showed 

photodynamic activities, neoplastic damage and good therapeutic results in lung, colon and breast cancer 

cells [66,67]. The effects of the phototherapeutic activities of ZnPcSmix in lung cancer cells included a 

change in cell morphology, a decrease in cell viability and proliferation, an increase in cytotoxicity and 

further cell damage evidence. Light-activated ZnPcSmix resulted in increased ROS production in both 

monolayer and multicellular tumor spheroid models of lung cancer [43,68]. The mechanisms of cell 

death were investigated post-irradiation in breast cancer using the same PC. The abundance of apoptotic 

cells, degradation of nuclear materials and the increase in the level of the expression of B-cell  

lymphoma-2, DNA fragmentation factor alpha and caspase-2 genes concurred with the validation of 

apoptosis as the induced mode of cell death [67]. 
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The effects of others PCs similar to ZnPcSmix, with the exception of the central atoms, were 

investigated in esophageal and breast cancer cells. Both AlPcSmix and GePcSmix were found to be 

effective at targeting these malignant cells and led to cytotoxicity in a dose-dependent manner.  

A relatively lower concentration of photoactivated AlPcSmix and GePcSmix showed greater apoptotic 

inducing capabilities [69]. The effects of SnPcSmix and SiPcSmix were used in esophageal cancer and 

compared to those of GePcSmix and two others PC mixes. All three metallated PCs led to better cancer 

damaging effects when compared to an unmetallated PC mix and binaphthalo-PC counterparts. 

GePcSmix caused and induced an inflammatory response and high intracellular ATP, which could have 

been an indication of a necrotic type of cell death [70]. 

2. Conclusions 

It can be concluded that programmed cell death improves the quality of life by eliminating undesirable 

cells from organisms. The execution of this process is accomplished by different mechanisms, including 

cell senescence, apoptosis, autophagy and necrosis. The induction of oxidative responses and the 

generation of ROS are essential for these eradicating mechanisms. PDT is an efficient means to target 

and induce damage in cancer cells and involves PSs, which can enhance both ROS production and cancer 

therapy. Metallated PCs are among the best currently-used PSs in vitro, and their use in clinical settings 

should be encouraged for prospective means of managing cancer. 
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