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Abstract 

Fly ash (FA) is a waste product of coal combustion in thermal power plants which is 

available in massive quantities all over the world causing land pollution. This paper reports 

the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA 

particles synthesized using friction stir processing (FSP). The volume fraction of FA particles 

was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical 

microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram 

(EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were 

observed to be distributed homogeneously in the AMC irrespective of the location within the 

stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The 
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incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. 

The strengthening mechanisms of the AMC were discussed and correlated to the observed 

microstructures. The wear mechanisms were identified by characterizing the wear debris and 

worn surfaces.        
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1. Introduction 

Aluminum alloys reinforced with various ceramic particles, universally known as 

aluminum matrix composites (AMCs) have become the focus of the current materials era due 

to their superior properties such as light weight, high wear resistance, low thermal expansion, 

high strength to weight ratio etc. AMCs are progressively phasing out aluminum alloys in a 

wide range of applications in automotive, aerospace, marine and nuclear industries [1–3]. 

Although industries gaze to exploit the benefits of AMCs, it still remains a daunting task to 

produce AMCs possessing all desirable properties at an economical price. The production 

cost of AMCs can be controlled if inexpensive reinforcements such as fly ash (FA) and 

natural minerals are used. FA is reasonably an economical reinforcement compared to 

conventional reinforcements such as silicon carbide (SiC), aluminum oxide (Al2O3), titanium 

carbide (TiC) and boron carbide (B4C). The combustion of coal in thermal plants around the 

world releases FA as a byproduct in massive quantities which goes as a waste causing 

environmental impact. Incorporating FA to produce AMCs is a sensible way to reduce the 

cost of AMCs and land pollution [4–7].      

Several researchers attempted to produce and characterize AMCs reinforced with FA 

particles using liquid metallurgy and solid state methods in the past decade [8–17]. Sobczak 

et al. [8] characterized the interfacial reaction products in Al/FA AMCs prepared using hot 

pressing. Rohatgi et al. [9] synthesized A356/FA AMCs using pressure infiltration and 
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reported the compressive behavior. Wu et al. [10] measured the damping properties of 

AA6061/FA AMCs prepared using squeeze casting. Rajan et al. [11] prepared A356/FA 

AMCs using stir casting and compo casting methods and evaluated the effect of processing 

method on the distribution FA particles in the aluminum matrix. Sudarshan and Surappa [12] 

shed light on the compressive and damping behavior of A356/FA AMCs formed using stir 

casting followed by hot extrusion. Kumar et al. [13] studied the high temperature dry sliding 

wear behavior of AA6061/FA AMCs developed by powder metallurgy subjected to hot 

extrusion. Marin et al. [14] investigated the electro chemical behavior of Al/FA AMCs 

obtained by powder metallurgy. Murthy et al. [15] fabricated AA2024/FA nano AMCs using 

ultrasonic cavitation and analyzed the microstructure and mechanical properties. Kumar et al. 

[16] reported the tensile and fracture behavior of AA4026/FA AMCs produced by stir 

casting. Selvam et al. [17] reported the microstructure of AA6061/FA AMCs made by 

compocasting.   

The literature survey revealed that it is possible to produce AMCs reinforced with 

various types of FA particles using several techniques which include stir casting, compo 

casting, squeeze casting, powder metallurgy etc. But those production methods were always 

associated with multiple defects such as porosity [10,12,13], voids [9], particle clusters [15], 

inhomogeneous distribution [16] and brittle intermetallics owing to interfacial reaction [8,11]. 

Those defects diminish the mechanical and tribological properties and reduce the 

performance of Al/FA AMCs during service. Further, the wettability of FA particles with 

molten aluminum is poor which requires treatment of FA particles [12,15] or addition of 

wettability agents [11] leading to an increase in the cost of the AMC. The poor wettability 

weakens the interfacing bonding between the aluminum matrix and the FA particles limiting 

the load bearing capacity of the AMCs. Therefore, development in production method is 

crucial to exploit the advantages of low cost Al/FA AMCs.    
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Friction stir processing (FSP) is a promising method to produce surface and bulk 

AMCs and gained more attention in the last five years [18,19]. FSP is capable of overcoming 

the short comings of casting and powder metallurgy routes. Mishra el al. [20] conceived an 

idea to use FSP to create AMCs. The working principle of FSP was derived from friction stir 

welding (FSW) which was invented at The Welding Institute (TWI) in 1991. FSP induces 

severe plastic deformation and material flow due to the frictional heat and translation of 

material across the tool. The ceramic particles are packed along the FSP direction by 

applying any one of the methods which include straight groove, V groove, circular holes etc. 

The rotating action of the tool and plasticized material flow mix with the packed ceramic 

particles to form the composite. AMCs produced at optimized FSP parameters will be free of 

porosity, clusters and interfacial reaction. Moreover, FSP is not sensitive to the type of 

ceramic particles commonly employed in engineering applications. Hitherto, FSP has been 

successfully employed to produce AMCs reinforced with SiC [21], Al2O3 [22], TiC [23], 

Si3N4 [24], Ni [25], CNT [26], NiTi [27], TiN [28] and solid lubricants [29,30].    

The structure and properties of Al/FA AMCs produced using FSP is not reported in 

literatures. Hence, the objective of the this research work is to synthesize AA6061/FA AMCs 

using FSP and characterize the evolution of microstructure, distribution, micro texture and 

sliding wear behavior. Aluminum alloy AA6061 is extensively used in industries and 

possesses good castability, weldability, reasonable strength and corrosion resistance [31].    

2. Experimental procedure 

Aluminum alloy AA6061 plates of size 100 mm x 50 mm x10 mm were used for this 

research work. The chemical composition of aluminum alloy AA6061 is presented in Table 

1. A groove of 5.5 mm deep was made along the centre line of the plates using wire cut 

electrical discharge machining (WEDM) and compacted with FA particles. The average size 
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of FA particles used in this work was 2 μm. SEM micrograph of FA particles is shown in 

Figs. 1a and b. A pinless tool was initially used to cover the top of the groove after filling 

with FA particles to avoid the particles from scattering during FSP [32]. A tool made of 

HCHCr steel having threaded pin profile was used for the present study. The tool had a 

shoulder diameter of 18 mm, pin diameter of 6 mm and pin length of 5.8 mm. FSP was 

carried out on an indigenously built FSW machine. The process parameters employed were: 

tool rotational speed = 1600 rpm; traverse speed = 60 mm/min and axial force = 10 kN. The 

process parameters were adopted from Rejil et al. [33] which were optimized to yield 

desirable distribution of second phase particles without macroscopic defects in the FSP zone. 

The FSP procedure to produce the composite is available elsewhere [32].  Two passes were 

applied in opposite directions to achieve better distribution of FA particles. FSP was 

processed on three such plates by varying the width of the groove (0.4, 0.8, and 1.2 mm) to 

have four levels of volume fraction of FA particles (0, 6, 12, and 18 vol.%). Zero volume 

fraction refers to unprocessed aluminum alloy AA6061. The theoretical and actual volume 

fractions of FA particles were calculated as reported by Sathiskumar et al. [34]. 

Specimens were obtained by cutting the friction stir processed plates at its centre 

perpendicular to the processing direction. They were polished as per the standard 

metallographic procedure and etched with Keller’s reagent. The digital image of the 

macrostructure of the etched specimens was captured using a digital optical scanner. The 

microstructure was observed using a metallurgical microscope, scanning electron microscope 

(SEM) and electron backscattered diffraction (EBSD). Selected samples were electro 

polished using a mixture of perchloric acid and methanol to observe micro texture using 

EBSD. The microhardness was measured using a microhardness tester at 500 g load applied 

for 15 seconds at various locations in the composite.  
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The sliding wear behavior of AA6061/FA AMCs was evaluated using a pin-on-disc 

wear apparatus (DUCOM TR20-LE) at room temperature according to ASTM G99-04A 

standard. Pins of size 6 mm x 6 mm x 40 mm were prepared from the FSP zone by WEDM. 

The wear test was conducted at a sliding velocity of 1.0 m/s, normal force of 20 N and sliding 

distance of 3000 m. The polished surface of the pin was slid on a hardened chromium steel 

disc. A computer aided data acquisition system was used to monitor the loss of height. The 

volumetric loss was computed by multiplying the cross sectional area of the test pin with its 

loss of height. The wear rate was obtained by dividing volumetric loss to sliding distance. 

The worn surfaces of the test specimen were observed using SEM. The wear debris which 

were scattered on the face of the counterface were carefully collected and characterized using 

SEM. 

3. Results and discussion 

The representative crown appearance of the stir zone of friction stir processed 

AA6061 with FA particles is presented in Fig. 2. The surface of the crown is flat without any 

depressions, voids and discontinuities. There are no flaws on the crown surface. Semi circular 

striations which were formed due to the rubbing action of the rotating tool are seen on the 

crown. The spacing between the striations is equal to the ratio of traverse and tool rotational 

speeds i.e. weld pitch [35]. These striations do not affect the microstructure of the stir zone 

beneath the crown. But they indicate the material flow across the stir zone. A smooth crown 

appearance is essential as it leads to the formation of internal defects in the stir zone. The 

smooth crown appearance can be attributed to the optimized parameters used in this work.     

3.1. Macrostructure of AA6061/FA AMCs  



7 

 

The macrostructures of AA6061/FA AMCs are depicted in Figs. 3a–c. The stir zone 

area which houses the AMC is obviously evident in all the figures. The periphery of the stir 

zone is marked using a black line. The identity of the groove on the aluminum plate before 

FSP is totally disappeared. It confirms that the formation of the composite is complete and 

plasticized material flow is continuous. The rubbing of the tool shoulder and the shearing of 

the pin develop ample frictional heat which turns the aluminum matrix around and below the 

tool into plastic state. The rotating and translation movement of the tool moves the plasticized 

aluminum from advancing side to retreading side. This movement of material flow forces the 

groove to yield and combines the packed ceramic particles with the plasticized aluminum 

alloy. The speed at which the tool rotates and translates determines the intensity of mixing 

resulting in the formation of the composite. 

The width of the stir zone steadily decreases across the depth of the stir zone. The 

material flow characteristics during FSP influence the difference in the stir zone width. Two 

modes of material flow are present during the formation of stir zone as observed by Kumar 

and Kailas [36]. Both the shoulder and the pin of the FSP tool create two kinds of material 

flows i.e. “pin driven flow” and “shoulder driven flow”. The scale of resultant material flow 

changes along the depth of the stir zone. The shoulder driven flow of plasticized material is 

more dominant at the top and inferior at the bottom of the stir zone. Therefore, the width of 

the stir zone decreased along the depth of the stir zone. The area of the stir zone was 

computed using an image analyzing software. The area of the stir zone was estimated to be 

50 mm2 at 6 vol. % FA and 41 mm2 at 18 vol. % FA. The area of the stir zone shrinks as the 

volume fraction of FA particles is raised from 6 vol. % to 18 vol. %. FA particles were 

initially compacted into the groove at the middle of the plate. The same tool was used without 

alteration in dimensions for FSP of all plates. The reason for reduction in stir zone area can 

be attributed to the following aspects. The increased volume fraction of FA particles elevates 



8 

 

the flow stress of the plasticized AMC. Because, the non deformable FA particles present 

resistance to the movement of plasticized aluminum. Secondly, FA particles behave as a 

thermal barrier and insulate the frictional heat from reaching the aluminum to certain extent. 

The consequence is to reduce the available friction heat for plasticization. The above 

mentioned two aspects magnify the flow stress value required to plasticize the AMCs. Hence, 

the area of the stir zone reduces as volume fraction is raised.            

   It is apparent from Figs. 3a–c that the stir zone is free from defects such as pin 

holes, tunnels, voids, cracks and kissing bonds. Those defects are often faced in FSW/FSP 

[37,38]. Defects minimize the area of the stir zone and cause the composite weaker to sliding 

wear and tensile loading. None of those defects occurred in the stir zone. Defects arise owing 

to numerous factors which are not limited to inadequate heat generation, material flow and 

consolidation. The process parameters control those factors appreciably. Absence of defects 

can be related to the chosen set of process parameters used in this work.        

Fig. 4 shows a correlation between theoretical and actual volume fraction of FA 

particles in the AMC. The actual volume fraction is noted to be lower than that of the 

theoretical volume fraction under all experimental conditions. The theoretical volume 

fraction was estimated taking into consideration of the projected area of the pin. However, the 

frictional heat plasticizes additional aluminum higher than the swept volume of the pin. The 

compacted FA particles blend with more aluminum than that is determined. So, the volume 

fraction is reduced.    

3.2. Microstructure of AA6061/FA AMCs 

 The selective SEM micrographs of the developed AA6061/FA AMCs are presented in 

Figs. 5a–f.  The distribution of FA particles is seen all over the aluminum matrix. The 

distribution can be considered as reasonably homogeneous in the composite. The plasticized 
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aluminum matrix flows from advancing side to retreading side during FSP and cause the 

groove to cave in. The plasticized material is finally forged at the backside of the tool. The 

rotating tool exerts an intense stirring action which combines the compacted FA particles in 

the groove with the plasticized aluminum. The distribution of the particles in the aluminum 

matrix is a function of tool rotational speed [39]. The homogeneous distribution can be 

related to the tool rotational speed used in this research work. It is evident from the SEM 

micrographs that most of the FA particles are located within the grain boundaries. There is no 

segregation or arrangement of particles along the grain boundaries. The distribution is 

completely intragranular. Segregation deteriorates the mechanical and tribological properties 

of the composite. The ceramic particles naturally moves within the aluminum melt due to 

density gradient and cause segregation and clustering of particle. This is the limitation of 

liquid metallurgy routes. The free movement of the particles due to the density gradient is 

absent in FSP since the whole process is completed in solid state without melting of the 

aluminum matrix.       

 The severe plastic strain induced by the FSP on the aluminum matrix has the tendency 

to break and alter the shape and size of reinforcement particles [40]. The shape and size of 

FA particles are remarkably altered in comparison to the initial morphology as seen in Figs. 

1a and b 1. Most of the FA particles lost its spherical shape. The vigorous stirring action of 

the tool broke spherical FA particles into irregular shapes. Some FA particles which were 

larger in size managed to withstand the severe plastic strain to retain its shape. The breaking 

of FA particles produces large number of fragment debris. It is interesting that there is no 

clustering or segregation of debris. This implies that the fragmented debris also merged with 

the plasticized aluminum and dispersed homogeneously in the composite. The size of debris 

is observed to be ranging in the order of nanometer to sub micron. The change in size of FA 

particles subsequent to FSP creates functionally graded local regions within the composite.   
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 Figs. 6a and b reveal the SEM micrograph of AA6061/FA AMCs at higher 

magnification. The interface details of several FA particles are seen in this figure. Some 

researchers observed pores around reinforcement particles in AMCs developed using FSP 

[39]. No pores were observed around any of FA particles in Figs. 6a and b. Absence of pores 

can be attributed to sufficient material flow and plasticization of aluminum matrix at the 

chosen process parameters. The interfacial bonding between the reinforcement particle and 

the aluminum matrix contributes to a major role to transfer the load effectively during tensile 

loading and sliding wear. Excellent interfacial bonding is a prerequisite despite homogeneous 

distribution to enhance the properties. The temperature rise during the formation of the 

composite affects the interfacial bonding strength to a larger extent. The aluminum reacts 

with FA particle to form intermetallics at elevated processing temperature [8,11]. The 

reaction products deposit at the interface and weaken the interfacial bonding strength. No 

such intermetallics or reaction products were noticed around the FA particles. The 

temperature rise during FSP is insufficient to initiate any interfacial reaction.    

Figs. 7a–h represent the optical photomicrographs of AA6061/18 vol.% FA AMCs 

snapped at various regions within the stir zone. The FA particles are distributed in every 

region inside the stir zone. There is no region which is free of FA particles. The micrographs 

reveal that the distribution of FA particles is independent of the region within the stir zone. 

The variation in the distribution of FA particles from the advancing side to the retreading side 

or from the top side to the bottom side is negligible. This result contradicts few researchers 

who observed significant change in the distribution of reinforcement particles across the stir 

zone [41–43]. The negligible variation can be correlated to sufficient plasticization of 

aluminum matrix and dispersion of FA particles to all regions of the stir zone at the chosen 

tool rotational speed. It is difficult to obtain constant distribution of reinforcement particles 

across the whole composite synthesized using casting methods. The velocity of the 
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solidification front will be varying across the mould which induces considerable variation in 

the distribution of reinforcement particles across the composite castings. It is further observed 

in Figs.7g and h that there is no formation of onion rings at the bottom of the stir zone. This 

indicates that the temperature variation from top to bottom of the stir is insufficient to mix the 

flows of plasticized material to form onion rings. 

EBSD images of AA6061/FA AMCs at various volume fractions and the effect of 

volume fraction on average grain size are depicted in Figs. 8a–d and Fig. 8e respectively. 

Coarse grains (Fig. 8a) which are perpendicular to rolling direction are seen in the matrix 

alloy. The average grain size was measured to be 72 μm. The grains in AA6061/FA AMCs 

are considerably finer in comparison to matrix alloy. The formation of fine equiaxed grains is 

the result of dynamic recrystallization due to intense plastic deformation. The strain rate 

during FSP can attain values up to 80s–1 at the contact surface of the tool pin and the matrix 

material which is enormous compared to other traditional severe plastic deformation 

processes (0.1– 80s–1) [20]. Such a huge strain rate leads to refinement of grains in the 

aluminum matrix. The grain size of the composite is reduced with an increase in volume 

fraction of FA particles. This leads to a conclusion that the FA particles act as grain refiners. 

The movement of the grain boundaries is pinned by the FA particles which slow down the 

rate of grain growth caused by dynamic recrystallization. This is known as pinning effect 

which refines the grain size. The curve in Fig. 8e is not linear. The slope of the curve is very 

abrupt from 0 to 6 vol. % and modest after 6 vol. %. This can be explained by taking into 

account the mechanism of grain refinement in FSP to that of casting routes. The ceramic 

particles serve as grain nucleating sites in casting routes and limit the freely growing 

aluminum alloy. The intense plastic deformation during FSP is the additional mechanism 

which offset the pinning effect of particles at low volume fraction.           
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3.3. Microhardness of AA6061/FA AMCs 

Fig. 9a represents the effect of FA particles on the micro hardness of AA6061/FA 

AMCs. The reinforcement of FA particles remarkably improved the micro hardness of 

AA6061/FA AMCs. The microhardness was measured to be 62 HV at 0 vol.% and 125 HV at 

18 vol.% FA particles. The microstructural changes caused by the reinforcement of FA 

particles are accountable for the improvement in micro hardness. The strengthening 

mechanisms are detailed as follows. FA particles are distributed all over the aluminum matrix 

which provides Orowan strengthening [44]. The fine distribution of FA particles resists the 

motion of dislocations and the path of dislocations is thwarted. The presence of FA particles 

multiplies the dislocation density of AA6061/FA AMCs compared to unreinforced AA6061. 

Secondary dislocations are formed due to the thermal mismatch and the differential 

deformation between the aluminum matrix and the FA particles. The dislocation motion is 

slowed down due to an increase in dislocation density across the AMC. Further, the 

difference in thermal contraction between the aluminum matrix and the FA particles results in 

quench hardening effect. According to Hall-Petch relationship, the grain size affects the 

mechanical properties of metallic materials. The grain size of AA6061/FA AMCs is smaller 

to that of aluminum matrix due to grain refinement of FA particles. The fine grains results in 

increased micro hardness. The effect of the aforementioned mechanisms multiplies as the 

volume fraction of FA particles is increased. Moreover, increasing the volume fraction of FA 

particles reduces the distance between them which causes an increase in the required stress 

for dislocation movement between the FA particles. Consequently, micro hardness is 

increased.    

3.4. Sliding wear behavior of AA6061/FA AMCs 
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Fig. 9b depicts the wear rate of AA6061/FA AMCs as a function of vol. % of FA 

particles. It is obvious from the figure that the wear rate of AA6061/FA AMCs decreases as a 

function of FA content at constant wear test conditions. The wear rate was estimated to be 

411 x 10-5 mm3/m at 0 vol. % and 203 x 10-5 mm3/m at 18 vol. %. FA particles enhanced the 

wear resistance of the AMCs extensively. The factors described in sec. 3.3 strengthen the 

AMCs and contribute to improvement in wear resistance of the AMCs. Archard’s law 

provides a relationship between hardness and wear rate of metallic materials. The volume loss 

of material during sliding wear is inversely proportional to the hardness of the AMC 

according to Archard’s expression. Higher the hardness of the AMC, lower will be the wear 

rate. Because the increase in hardness of the AMC increases the resistance to sliding wear. 

The aluminum matrix surrounded by the particles is easily worn away during sliding. Hence, 

the effective contact area between the AA6061/FA AMC specimen and the counter disc is 

reduced in comparison to unreinforced AA6061. FA particles bear the applied normal load. 

The superior interfacial bonding between the aluminum matrix and the FA particles retard the 

detachment of FA particles from the aluminum matrix during sliding. The good interfacial 

bonding and the homogeneous distribution of FA particles reduce the coefficient of friction 

[45]. The aforesaid factors lead to higher wear resistance of AA6061/FA AMCs. It is evident 

from Fig. 9b that the wear rate of AMCs with increasing content of FA particles is not linear. 

The non linear behavior is due to the occurrence of complex wear mechanisms of composites 

during sliding.          

 The worn surface of AA6061/FA AMCs at various volume fractions of FA particles is 

presented in Figs. 10a– d. The worn surface of aluminum alloy AA6061 in Fig. 10a displays 

large amount of plastic flow, fragmentation marks and deep craters. Groove pattern becomes 

to appear on this worn surface. Frictional heat develops during sliding wear which forces the 
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material to plasticize. The plasticized aluminum is primarily sticky to the counterface and 

consequently removed as sliding progresses. The plasticized aluminum alloy is furthermore 

exposed to the cutting action of the asperities of the counterface in the absence of FA 

particles. The cutting action and the removal of material in lumps produce a crater on the 

worn surface. The wear mode appears to be largely adhesion and abrasion to a smaller 

amount. The worn surfaces of AA6061/FA AMCs exhibit flat surface and are clearly 

different to that of aluminum alloy AA6061. Parallel groove like patterns are evident on the 

worn surface which are the marks of abrasive wear mechanism. The wear mode has 

transferred to abrasion from adhesion. This transfer of wear mode is prominent for achieving 

a significant improvement in the wear performance of AA6061/FA AMCs. The plastic flow 

of the matrix at the edges of wear tracks is too little due to the reinforcement of FA particles. 

The worn surfaces are covered with numerous loose and compacted wear debris. The wear 

debris do not adhere to the worn surface due to its hard nature. No craters are seen on the 

worn surfaces due to the homogeneous distribution of FA particles in the aluminum matrix. 

The grooves are uniformly distributed throughout the worn surface and in due course broke 

off to turn into debris.      

  The wear debris of AA6061/FA AMCs at various volume fractions of FA particles is 

presented in Figs. 11a– d. It is observed from Fig. 11a that the wear debris of AA6061 reveals 

a thin plate like morphology along with a minor amount of fine debris. The plasticized 

aluminum matrix is subjected to the cutting action of the counterface. The plate like 

morphology suggests that the material removal rate during sliding is high and confirms that 

the operating wear mechanism is adhesive. A minor amount of fine debris can be attributed to 

fragmentation of asperities during the initial stages of sliding wear. It is evident from Figs. 

11a– d that the volume fraction of FA particles in the AMC considerably influences the 
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morphology and size of the wear debris. When the volume fraction of FA particles is 

increased, the wear debris morphology tends to be spherical and the size becomes finer (Figs. 

11b– e). The spherical morphology suggests that the operating wear mechanism in the AMC 

is abrasive. The surface contact between the composite specimen and the counterface is small 

compared to unreinforced matrix alloy. FA particles project outside the surface and bear the 

load initially. As sliding proceeds the projected particles are either fragmented or detached 

from the specimen surface and trapped between the counterface and the sliding specimen. A 

new layer of projected particles will subsequently make contact with the counterface. The 

trapped particles alter two body abrasion wear into three body abrasion wear and creates fine 

spherical wear debris. The formation of spherical wear debris is similar to the conventional 

ball milling. The wear debris is ground to fine size till the specimen covers the set sliding 

distance. The spherical wear debris can be attributed to the reduction in wear rate of the AMC 

in comparison with matrix alloy. The spherical wear debris change sliding contact into rolling 

contact. The amount of friction is less in rolling contact compared to sliding contact.  The 

material removal rate is decreased. The above discussed effects magnify as the volume 

fraction of FA particles is increased. The net result is formation of finer spherical wear debris 

and lower wear rate.          

4. Conclusions 

AA6061/(0,6,12 and 18 vol. %) FA AMCs were successfully synthesized using FSP. 

The microstructure, microhardness and sliding wear behavior were characterized. The 

following conclusions were derived from the present research work. 

 The increase in volume fraction of FA particles caused a reduction in the area of 

the composite. The area of FSP zone was measured to be 50 mm2 at 6 vol. % and 

41 mm2 at 18 vol. %.  
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 The FA particles were distributed homogeneously in the composite irrespective of 

the volume fraction. The distribution was independent upon the location within 

the stir zone.   

 The FA particles experienced a change in size and shape due to high strain rate 

induced by FSP. The interface between the FA particle and the aluminum matrix 

was observed to be clean without the formation of any kind of intermetallics.  

 The grain size of the composite was refined remarkably by the combination of 

intense plastic deformation and the pinning effect of FA particles.  

 FA particles enhanced the microhardness of the composite. The microhardness 

was measured to be 62 HV at 0 vol. % and 125 HV at 18 vol. %.  

 FA particles improved the wear resistance of the composite. The wear rate 

reduced as the volume fraction of FA particles was increased. The wear rate was 

found to be 411 x 10-5 mm3/m at 0 vol. % and 203 x 10-5 mm3/m at 18 vol. %.  

 FA particles affected the wear mode as well as the morphology of the wear debris. 

The increased volume fraction of FA particles altered the wear mode from 

adhesion to abrasive. The wear debris changed from thin plate at 0 vol. % to 

spherical shape at 18 vol. %.  

 The enhancement of properties confirms that FA particles can be used as 

reinforcement for AMCs and will lead to reuse of FA particles avoiding land 

pollution.  

 

 



17 

 

Acknowledgements 

The authors are grateful to Centre for Research in Metallurgy at Karunya University, 

Welding Research Cell at Coimbatore Institute of Technology, Microscopy Lab at University 

of Johannesburg and OIM and Texture Lab at Indian Institute of Technology Bombay for 

providing the facilities to carry out this investigation.  

References 

[1] Rao RN, Das S. Effect of applied pressure on the tribological behaviour of SiCp 

reinforced AA2024 alloy. Tribol Int 2011;44:454–62. 

[2] Murugan N, Ashok Kumar B. Prediction of tensile strength of friction stir welded stir 

cast AA6061-T6/AlNp composite. Mater Des 2013;51:998–1007.     

[3] You GL, Ho NJ, Kao PW. In-situ formation of Al2O3 nanoparticles during friction stir 

processing of Al\SiO2 composite. Mater Charact 2013;80:1–8.    

[4] Zahi S, Daud AR. Fly ash characterization and application in Al–based Mg alloys. 

Mater Des 2011;32:1337–46.   

[5] Rohatgi PK, Daoud A, Schultz BF, Puri T. Microstructure and mechanical behavior of 

die casting AZ91D-Fly ash cenosphere composites. Compos Part A 2009;40:883–96. 

[6] Rao JB, Rao DV, Murthy IN, Bhargava NRMR. Mechanical properties and corrosion 

behaviour of fly ash particles reinforced AA 2024 composites. J Compos Mater 

2011:46;1393–1404. 

[7] Valdeza AC, Robles JMA, Gutiérrez GV, Morquecho AA. Adhesion strength and 

thermal shock resistance of fly ash cenospheres deposited on SiC. Mater Charact 

2010;61:1299–303. 

[8] Sobczak N, Sobczak J, Morgiel J, Stobierski L. TEM characterization of the reaction 

products in aluminium–fly ash couples. Mater Chem Phys 2003;81:296–300. 



18 

 

[9] Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A. Compressive characteristics of 

A356/fly ash cenosphere composites synthesized by pressure infiltration technique. 

Compos Part A 37 (2006) 430–437. 

[10] Wu GH, Dou ZY, Jiang LT, Cao JH. Damping properties of aluminum matrix–fly ash 

composites. Materials Letters 60 (2006) 2945–48.   

[11] Rajan TPD, Pillai RM, Pai BC, Satyanarayana KG, Rohatgi PK. Fabrication and 

characterization of Al–7Si–0.35Mg/fly ash metal matrix composites processed by 

different stir casting routes. Compos Sci Technol 2007;67:3369–77. 

[12] Sudarshan, Surappa MK. Synthesis of fly ash particle reinforced A356 Al composites 

and their characterization. Mater Sci Eng A 2008;480:117–24. 

[13] Kumar PRS, Kumaran S, Rao TS, Natarajan S. High temperature sliding wear 

behavior of press-extruded AA6061/fly ash composite. Mater Sci Eng A 

2010;527:1501–9.   

[14] Marin E, Lekka M, Andreatta F, Fedrizzi L, Itskos G, Moutsatsou A, Koukouzas N, 

Kouloumbi N. Electrochemical study of Aluminum-Fly Ash composites obtained by 

powder metallurgy. Mater Charact 2012;69:16–30. 

[15] Murthy IM, Rao JV, Rao JB. Microstructure and mechanical properties of aluminum–

fly ash nano composites made by ultrasonic method. Mater Des 2012;35:55–65. 

[16] Kumar KR, Mohanasundaram, Subramanian R, Anandavel B. Influence of fly ash 

particles on tensile and impact behaviour of aluminium (Al/3Cu/8.5Si) metal matrix 

composites. Sci Eng Compos Mater 2014;21:181–9.   

[17] Selvam JDR, Smart DSR, Dinaharan I. Microstructure and some mechanical properties 

of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by 

compocasting. Mater Des 2013;49:28–34.    



19 

 

[18] Ma ZY. Friction stir processing technology review. Metall Mater Trans A 

2008;39:642–58. 

[19] Arora HS, Singh H, Dhindaw BK. Composite fabrication using friction stir processing 

– a review, Int J Adv Manuf Technol 2012;61:1043–55. 

[20] Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication 

of surface composite, Mater Sci Eng A 2003;341:307–10. 

[21] Bahrami M, Givi MKB, Dehghani K, Parvin N. On the role of pin geometry in 

microstructure and mechanical properties of AA7075/SiC nano-composite fabricated 

by friction stir welding technique. Mater Des 2014;53:519–27. 

[22] Sharifitabar M, Sarani A, Khorshahian S, Afarani MS. Fabrication of 5052Al/Al2O3 

nanoceramic particle reinforced composite via friction stir processing route. Mater Des 

2011;32:4164–72.   

[23] Thangarasu A, Murugan N, Dinaharan I, Vijay SJ. Synthesis and characterization of 

titanium carbide particulate reinforced AA6082 aluminium alloy composites via 

friction stir processing. Arch Civ Mech Eng 2015;15:324–34.   

[24] Moghaddas MA, Bozorg SFK. Effects of thermal conditions on microstructure in 

nanocomposite of Al/Si3N4 produced by friction stir processing. Mater Sci Eng A 

2013;559:187–93. 

[25] Yadav D, Bauri R. Nickel particle embedded aluminium matrix composite with high 

ductility. Mater Lett 2010;64:664–7. 

[26] Liu ZY, Xiao BL, Wang WG, Ma ZY. Analysis of carbon nanotube shortening and 

composite strengthening in carbon nanotube/aluminum composites fabricated by 

multi-pass friction stir processing. Carbon 2014;69:264–74.   



20 

 

[27] Ni DR, Wang JJ, Zhou ZN, Ma ZY. Fabrication and mechanical properties of bulk 

NiTip/Al composites prepared by friction stir processing. Journal of Alloys and 

Compounds 2014;586:368–74. 

[28] Hashemi R, Hussain G. Wear performance of Al/TiN dispersion strengthened surface 

composite produced through friction stir process:A comparison of tool geometries and 

number of passes. Wear 2015;324-325:45–54. 

[29] Soleymani S, zadeh AA, Alidokht SA. Microstructural and tribological properties of 

Al5083 based surface hybrid composite produced by friction stir processing. Wear 

2012;278–279:41–7.     

[30] Raaft M, Mahmoud TS, Zakaria HM, Khalifa TA. Microstructural, mechanical and 

wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using 

FSP. Mater Sci Eng A 2011;528:5741–6.    

[31] Wu A, Song Z, Nakata K, Liao J, Zhou L. Interface and properties of the friction stir 

welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061. Mater Des 

2015;71:85–92.   

[32] Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir 

processing. Scr Mater 2006;54:1415–20. 

[33] Rejil CM, Dinaharan I, Vijay SJ, Murugan N. Microstructure and sliding wear 

behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by 

friction stir processing on aluminum substrate. Mater Sci Eng A 2012:552;336–44. 

[34] Sathiskumar R, Murugan N, Dinaharan I, Vijay SJ. Characterization of boron carbide 

particulate reinforced in situ copper surface composites synthesized using friction stir 

processing. Mater Charact 2013;84:16–27. 

[35] Krishnan KN. On the formation of onion rings in friction stir welds. Mater Sci Eng A 

2002;327:246–51. 



21 

 

[36] Kumar K, Kailas SV. The role of friction stir welding tool on material flow and weld 

formation. Mater Sci Eng A 2008;485:367–74. 

[37] Li B, Shen Y, Hu W. The study on defects in aluminum 2219-T6 thick butt friction stir 

welds with the application of multiple non-destructive testing methods. Mater Des 

2011;32:2073–84. 

[38] Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K. Three defect types in friction 

stir welding of aluminum die casting alloy. Mater Sci Eng A 2006;415:250–4. 

[39] Sharma V, Prakash U, Manoj Kumar BV. Surface composites by friction stir 

processing: A review. J Mater Process Technol 2015;224:117–34 

[40] Salih OS, Ou H, Sun W, McCartney DG. A review of friction stir welding of 

aluminium matrix composites. Mater Des 2015;86: 61–71. 

[41] Mahmoud ERI, Ikeuchi K, Takahashi M. Fabrication of SiC particle reinforced 

composite on aluminium surface by friction stir processing. Sci Technol Weld Joining 

2008;13: 607–18. 

[42] Lim DK, Shibayanagi T, Gerlich AP. Synthesis of multi-walled CNT reinforced 

aluminium alloy composite via friction stir processing. Mater Sci Eng A 2009;507: 

194–9. 

[43] Faraji G, Asadi P. Characterization of AZ91/alumina nanocomposite produced by FSP. 

Mater Sci Eng A 2011;528:2431–40. 

[44] Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-

reinforced metal matrix nanocomposites. Mater Sci Eng A 2008;483–484:148–52. 

[45] Thakur SK, Dhindaw BK. The influence of interfacial characteristics between SiCp 

and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 

2001;247:191–201. 

 



22 

 

Table Captions 

Table 1 Chemical composition of AA6061 aluminum alloy.  

 


