
Encoding and Decoding of Balanced q-ary
Sequences Using a Gray Code Prefix

Elie N. Mambou and Theo G. Swart
Dept. of Electrical and Electronic Engineering Science, University of Johannesburg

P. O. Box 524, Auckland Park, 2006, South Africa
Email: {emambou, tgswart}@uj.ac.za

Abstract—Balancing sequences over a non-binary alphabet is
considered, where the algebraic sum of the components (also
known as the weight) is equal to some specific value. Various
schemes based on Knuth’s simple binary balancing algorithm
have been proposed. However, these have mostly assumed that
the prefix describing the balancing point in the algorithm can
easily be encoded. In this paper we show how non-binary Gray
codes can be used to generate these prefixes. Together with a
non-binary balancing algorithm, this forms a complete balancing
system with straightforward and efficient encoding/decoding.

I. INTRODUCTION

Balanced codes have a lot of applications especially in fiber
optics, as well as magnetic and optical storage systems [1].
For optical systems, errors occur in the process of recording
data, this is due to the low frequencies of interaction between
data written on the disc and the servo systems which follow
the track. Such errors can be avoided in high-pass filtering
by using encoded binary balanced codes as they contain no
low frequencies, with a spectral null at the zero frequency.
Balanced codes are important in recording systems for tracking
and pilot tone insertion. In digital transmission over cables,
balanced codes are used to counter the effect of cut-off at low-
frequencies due to isolating transformers and coupling effects.

Knuth [2] showed simple and efficient binary balancing
schemes, where for a binary sequence x of even length k,
there always exits an integer i, 0 ≤ i ≤ k − 1, such that by
inverting the first i bits the sequence will be balanced, i.e.
the same number of zeros and ones. Both serial and parallel
schemes were presented. In the serial scheme, a length of
k = 2r information bits is achieved for r redundant bits. The
redundant bits are used to indicate the initial weight of the
sequence, then the encoding is done by inverting i bits until
the balancing value is reached. For the parallel scheme, length
k = 2r−r−1 information bits are used with r redundant bits.
Here the redundant bits indicate the number of inverted bits,
i.e. the value of i. As soon as i is recovered, decoding can be
done by complementing the first i bits simultaneously.

Several algorithms based on Knuth’s scheme were de-
veloped to balance q-ary sequences. Tallini and Vaccaro [3]
developed a generalization of Knuth’s serial method, showing
that single or double maps can be used to encode sequences
that are close to being balanced. Capocelli et al. [4] balanced q-
ary sequences by partitioning them into different chains with
unique weights in each chain. By using two functions that
abide to some properties, a prefix is chosen that denotes the
original sequence’s weight. Another sequence from the chain
in which the original sequence is, is then chosen such that

the sequence and prefix together is balanced. The maximum
size code was obtained when using balanced sequences for
the design of q-ary immutable codes. Swart and Weber [5]
presented a generalization of Knuth’s parallel method, but
since we will be making use of this, we will discuss it in
more detail in Section II.

A prefixless method was presented in [6]. By using the
method from [5] and applying precoding to a very specific
error correction code, it was shown that balancing can be
achieved without the need for a prefix.

Other related sequence balancing techniques include in-
variant balancing of codes under symbol permutation [7] and
balancing over the m-th roots of unity [8], [9].

All of these schemes in some way rely on a prefix (except
for [6]) to send information regarding the balancing point,
however this prefix also needs to be balanced. Prior work
mostly assumed that this can be done via lookup table or
enumerative encoding. In this paper we will present a complete
balancing scheme, i.e. balancing of the information together
with easy encoding/decoding of the prefix by making use of
non-binary Gray codes. In a way our new scheme will be a
combination of Knuth’s serial and parallel methods.

In Section II we present background on balancing of q-ary
sequences, specifically from [5], and non-binary Gray codes.
Section III shows our proposed encoding and decoding algo-
rithms, while we investigate the redundancy and complexity
in Section IV. Finally, we conclude in Section V.

II. BACKGROUND

Consider a q-ary information sequence x = x1x2 . . . xk,
xi ∈ {0, 1, . . . , q − 1}, of length k. Let the prefix that will be
appended to x be of length r, and let the information and prefix
together be denoted by c = c1c2 . . . cn, ci ∈ {0, 1, . . . , q− 1},
of length n, i.e. n = k + r. If w(c) represents the weight of
c, then the entire sequence is balanced if

w(c) =

n∑
i=1

ci =
n(q − 1)

2
.

Let β denote this balancing value. This holds for all q and n,
except when q is even and n is odd. For the rest of the paper
we will not consider sequences with q even and n odd, so that
n(q − 1)/2 is an integer.

In the rest of this section we provide the background of
the two essential building blocks of our new scheme: the q-
ary balancing scheme from [5] and q-ary Gray codes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/74247441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Balancing of q-ary Sequences

It has been proven [5] that a q-ary sequence, x, can always
be balanced by adding modulo q one sequence from a set
of balancing sequences b(s, p) = b1b2 . . . bk generated as
follows:

bi =

{
s, i− 1 ≥ p,
s+ 1 (mod q), i− 1 < p,

where s and p are integers with 0 ≤ s ≤ q−1, 0 ≤ p ≤ k−1.
Let z be the iterator through these balancing sequences, with
z = sk + p, 0 ≤ z ≤ kq − 1. We will interchangeably use
either b(s, p) or b(z) to denote the balancing sequences. Let
y denote the sequence after a balancing sequence is added, i.e.
y = x ⊕q b(z), where ⊕q denotes modulo q addition. There
are kq possible balancing sequences and at least one of them
will lead to a balanced output y.

Example 1 For q = 4, n = 4, consider the sequence 2303.
The balancing value is β = 6.

z b(z) x⊕q b(z) = y w(y)
0 0000 2303⊕4 0000 = 2303 8
1 1000 2303⊕4 1000 = 3303 9
2 1100 2303⊕4 1100 = 3003 6
3 1110 2303⊕4 1110 = 3013 7
4 1111 2303⊕4 1111 = 3010 4
5 2111 2303⊕4 2111 = 0010 1
6 2211 2303⊕4 2211 = 0110 2
7 2221 2303⊕4 2221 = 0120 3
8 2222 2303⊕4 2222 = 0121 4
9 3222 2303⊕4 3222 = 1121 5
10 3322 2303⊕4 3322 = 1221 6
11 3332 2303⊕4 3332 = 1231 7
12 3333 2303⊕4 3333 = 1232 8
13 0333 2303⊕4 0333 = 2232 9
14 0033 2303⊕4 0033 = 2332 10
15 0003 2303⊕4 0003 = 2302 7

In this case we also need to send a balanced prefix that
represents the index z = 2 or z = 10, depending on the
balancing sequence chosen, so that the receiver can again
reconstruct b(z) to subtract it from y. 2

B. q-ary Gray Codes

Gray code theory was invented by Gray [10] and was
originally used to solve problems in pulse code communi-
cation, before is was extended to several other fields. We
consider all q-ary sequences of length r′, denoting them by
d = d1d2 . . . dr′ , and list them in the normal lexicographic
order. These sequences are mapped to Gray code sequences,
denoted by g = g1g2 . . . gr′ , in such a way that any two
adjacent sequences differ in only one symbol position.

A set of (r′, q)-Gray codes is not uniquely defined since a
permutation of any column on the set will also result in a new
set of (r′, q)-Gray codes. However, in this work we consider a
specific Gray code as presented by Guan [11], which has the
additional property that the difference in weight between any
two adjacent sequences is either −1 or +1.

Gray code encoding algorithm Let d = d1d2 . . . dr′ be a q-
ary sequence of length r′ representing z and g = g1g2 . . . gr′ ,
its corresponding Gray code sequence. The parity of the sum

TABLE I
EXAMPLE OF (2, 4)-GRAY CODE

z d g z d g z d g z d g
0 00 00 4 10 13 8 20 20 12 30 33
1 01 01 5 11 12 9 21 21 13 31 32
2 02 02 6 12 11 10 22 22 14 32 31
3 03 03 7 13 10 11 23 23 15 33 30

TABLE II
DECODING OF (3, 3)-GRAY CODE PREFIXES

Gray code (g) Sequence (d) z s, p b(s, p)
000 000 0 0,0 000000000
001 001 1 0,1 100000000
002 002 2 0,2 110000000
012 010 3 0,3 111000000
011 011 4 0,4 111100000
010 012 5 0,5 111110000
020 020 6 0,6 111111000
021 021 7 0,7 111111100
022 022 8 0,8 111111110
122 100 9 1,0 111111111
121 101 10 1,1 211111111
120 102 11 1,2 221111111
110 110 12 1,3 222111111
111 111 13 1,4 222211111
112 112 14 1,5 222221111
102 120 15 1,6 222222111
101 121 16 1,7 222222211
100 122 17 1,8 222222221
200 200 18 2,0 222222222
201 201 19 2,1 022222222
202 202 20 2,2 002222222
212 210 21 2,3 000222222
211 211 22 2,4 000022222
210 212 23 2,5 000002222
220 220 24 2,6 000000222
221 221 25 2,7 000000022
222 222 26 2,8 000000002

Si of the first i − 1 digits of g determines the Gray code
symbols, where 2 ≤ i ≤ r′ and g1 = d1, then

Si =

i−1∑
j=1

gj , and gi =

{
di, if Si is even,
q − 1− di, if Si is odd.

Simply put, if Si is even then the symbol stays the same, else
if Si is odd then the q-ary complement of the symbol is taken.

Table I shows a (2, 4)-Gray code, where d is the 4-ary
representation of the index z.

Gray code decoding algorithm If g = g1g2 . . . gr′ is the Gray
code sequence, then d = d1d2 . . . dr′ is its corresponding q-ary
sequence representing the index z to be recovered. As before,
the parity of the sum Si of the first i−1 digits of g determines
the original sequence, where 2 ≤ i ≤ r′ and d1 = g1, then

Si =

i−1∑
j=1

gj , and di =

{
gi, if Si is even,
q − 1− gi, if Si is odd.

As an example of how we will use this, Table II presents the
decoding of the (3, 3)-Gray codes to obtain the corresponding
balancing sequences.

III. BALANCING WITH GRAY CODE PREFIX

The main idea is for the Gray code to encode the balancing
index z, so that it can easily be recovered for decoding. Where
the information sequence and prefix both had to be balanced
in [5], here we will only require that the information and

prefix together be balanced. This is reminiscent of Knuth’s
serial binary scheme, however, in this case we also retain the
advantage of parallel decoding from the parallel scheme.

A. Encoding

We will now formally describe the new encoding scheme.
Let a q-ary information sequence, x, of length k be added
modulo q to a set of kq balancing sequences, b(z), with output
y such that x1x2 . . . xk ⊕q b1b2 . . . bk = y1y2 . . . yk. If the
Gray code sequence, g1g2 . . . gr′ , is then prefixed to all the kq
outputs, the final sequence of length k + r′ is:

c′ = [g |y] = g1g2 . . . gr′y1y2 . . . yk.

We impose a condition on q and k that k = qt, where t is
a positive integer, then

r′ = logq(kq) = logq(q
t+1) = t+ 1.

Therefore it takes at most Gray codes of length t + 1 to
uniquely identify kq balancing sequences. This means that the
redundancy is always equivalent to the range of z that we want
to encode. This condition is necessary to ensure that the entire
range of weights from 0 to r′(q − 1) for the Gray code is
obtained.

Example 2 For q = 4, k = 4, consider the sequence 2302,
then with t = 1, it means we need a Gray code of length
r′ = 2.

The cardinality of the (2, 4)-Gray code is equal to the
number of balancing sequences which is 16. The following
shows the steps in obtaining the codeword, c′. The Gray code
sequence for each z can be verified against Table I.

z x⊕q b(z) = y c′ w(c′)
0 2303⊕4 0000 = 2303 002303 8
1 2303⊕4 1000 = 3303 013303 10
2 2303⊕4 1100 = 3003 023003 8
3 2303⊕4 1110 = 3013 033013 10
4 2303⊕4 1111 = 3010 133010 8
5 2303⊕4 2111 = 0010 120010 4
6 2303⊕4 2211 = 0110 110110 4
7 2303⊕4 2221 = 0120 100120 4
8 2303⊕4 2222 = 0121 200121 6
9 2303⊕4 3222 = 1121 211121 8
10 2303⊕4 3322 = 1221 221221 10
11 2303⊕4 3332 = 1231 231231 12
12 2303⊕4 3333 = 1232 331232 14
13 2303⊕4 0333 = 2232 322232 14
14 2303⊕4 0033 = 2332 312332 14
15 2303⊕4 0003 = 2302 302302 10

The underlined symbols represent the appended Gray code
prefix. 2

We note that the first symbol of the Gray code prefix is
always equal to s for any balancing sequence b(s, p), which
should be advantageous for implementation.

A (γ, τ)-random walk is defined as a path with increases of
γ and decreases of τ . When adding b(z) to x and plotting w(y)
against z, a (1, 3)-random walk is obtained for Example 1. In
general, a (1, q−1)-random walk is obtained, which is always
bounded by a minimum below and a maximum above β [5],
ensuring that it will pass through β at least once. Now by using

the Gray code, the prefix will have increases and decreases of
one, and combined with the information sequence’s increases
and decreases of 1 and q− 1, respectively, we can control the
weight and ensure that it passes through the balancing value.

Returning to Example 1, when the Gray code prefix is
appended to the output sequence, it creates a ({0; 2}, {2; 4})-
random walk, where there are increases of either 0 or 2 and
decreases of either 2 or 4, as shown in the above example.
Fig. 1 illustrates the random walks obtained in Examples 1 and
2 before appending the Gray code prefix and after appending
it, respectively.

Lemma 1 Let c′ = [g |y] denote the concatenation of the
Gray code prefix with y. The weight w(c′) plotted against z
always forms a ({0; 2}, {q − 2; q})-random walk. 2

Proof: It has been proven that w(y) vs. z forms a (1, q−
1)-random walk [5]. Similarly for Gray codes, w(g) vs. z
forms a (1, 1)-random walk. This implies that when combined,
w(c′) vs. z forms a ({0; 2}, {q − 2; q})-random walk, with
increases of either 0 or 2 and decreases of either q − 2 or q.

For some values of k and q, concatenation of the Gray
code prefix with an output sequence does not guarantee the
overall sequence to be balanced. This is the case in Example 2,
where in Fig. 1(b), the random walk does not pass through the
balancing value of β = 9. This happens because the random
walk’s increases of two will not necessarily go through β. In
some cases it will be one unit above or below β.

In order to balance the overall sequence, we append one

0 5 10

5

10

15

w
(y
)

z

0

(a)

0 5 10

5

10

15

15

z

w
(c

′)

(b)

Fig. 1. (a) (1, 3)-random walk vs. (b) ({0; 2}, {2; 4})-random walk. The
dashed line indicates the balancing value.

more redundant symbol, u, to control the weight. For a specific
z, if β ≥ w(c′), then set u = β − w(c′), provided that u ∈
{0, 1, . . . , q− 1}, otherwise u can be any random symbol. Let
c be the concatenation of u, g and y:

c = [u |g |y] = u g1g2 . . . gr′ y1y2 . . . yk.

Now the overall length of the sequence is n = k + r = k +
r′+1 = k+ t+2, and the new prefix length and thus the total
redundancy is r = r′ + 1 = logq k + 2.

Theorem 1 Any q-ary sequence of length k can be balanced
by adding modulo q an appropriate balancing sequence b(z),
and prefixing a redundant symbol u with a Gray code sequence
g that describes z. 2

SKETCH OF PROOF Using the amount of times that each sym-
bol appears in a position, it was shown in [5] that the random
walk for the information sequence has an average value of
k(q−1)

2 . A similar approach can be used to show that the
random walk for the prefix has an average value of r(q−1)

2 ,
considering that every symbol will appear as many times as
another in a Gray code, and if we use all possible symbols for
u. It follows that the average value of the random walk for the
information sequence and prefix together is (k+r)(q−1)

2 = β,
thus min{w(c)} ≤ β ≤ max{w(c)} and the random walk
will pass through β at least once. �

We are now in a position to present the complete encoding
algorithm.

Encoding algorithm The following steps are followed to
balance the sequence and find the correct Gray code prefix:

1) Incrementing through z, determine the balancing se-
quence b(s, p) and add it to the information sequence
x to obtain y.

2) For each increment, convert z into base q over r′
symbols and determine the corresponding Gray code
sequence, g, using the Gray code encoding algorithm
described in Section II-B.

3) Set u = β−w(c′), provided that u ∈ {0, 1, . . . , q−1},
otherwise set u = 0.

4) Continue incrementing z until the weight of u, g and
y together is equal to β.

Example 3 For q = 3, k = 3, with t = 1, we have a
Gray code of length two. The total length of the transmitted
sequence is n = 6 and the balancing value is β = 6. Now
consider encoding the sequence 212:

z x⊕q b(z) = y c w(c)
0 212⊕3 000 = 212 100212 6
1 212⊕3 100 = 012 201012 6
2 212⊕3 110 = 022 002022 6
3 212⊕3 111 = 020 112020 6
4 212⊕3 211 = 120 111120 6
5 212⊕3 221 = 100 010100 2
6 212⊕3 222 = 101 220101 6
7 212⊕3 322 = 201 021201 6
8 212⊕3 332 = 211 022211 8

The underlined symbols represent the appended prefix, and
the bold symbol is u, which is chosen such that β is obtained
whenever possible. 2

0 4 8

2

4

8

w
(c
)

z

6

0
2 6

10

Fig. 2. Adjusted random walk for Example 3. The dashed line indicates the
balancing value.

u g

Get z

Get s, p

b(s, p)
length r′

length n = k + r′ + 1

x

	qy

length k

length 1 length klength k

d

Received sequence

Information sequence
⇓

Fig. 3. Flow diagram of the decoding process.

Fig. 2 presents the adjusted random walk of the sequence
from Example 3. The flexibility over the digit u will increase
the occurrence of balanced outputs. These extra balanced
outputs could conceivably be used to send auxiliary data, thus
reducing the redundancy. This was proved for the binary case
by Weber and Immink [12].

B. Decoding

Fig. 3 shows the decoding process.

Decoding algorithm The following steps are followed to
recover the original information from the balanced sequence:

1) Drop the redundant symbol u, then recover z from
the Gray code sequence using the decoding algorithm
as presented in Section II-B.

2) Use z to determine s and p and then reconstruct
b(s, p).

3) Subtract b(s, p) from y to recover the original se-
quence.

Example 4 Consider the case q = 3, n = 13, where a
sequence was encoded as 1012000122022, with a (3, 3)-Gray
code (see Table II). The first symbol 1 is dropped, then the
Gray code sequence is extracted as 012, and decoded as 010.
Thus z = 3, leading to s = 0 and p = 3, and b(0, 3) =
111000000. Finally, the information sequence is recovered as
x = y	qb(s, p) = 000122022	3 111000000 = 222122022.2

IV. REDUNDANCY AND COMPLEXITY

A. Redundancy

Let S(q, r) denote the full set of balanced sequences of
length r. For the construction in [5], the balanced prefix is to
be chosen from the full balanced set, such that |S(q, r)| ≤ kq.
Then the information sequence, as a function of r, is

k ≤ qr−1
√

6
πr(q2−1) , (1)

where we made use of an approximation of |S(q, r)| from [4].

The first construction in [4] has an information sequence
of length

k ≤ qr−1
r−1 . (2)

The second construction, using a similar approach but more
complex, results in

k ≤ 2 q
r−1
r−1 − r. (3)

The construction from [3] makes use of both balancing and
compression. In this case the information length is bounded
by

k ≤ 1
1−2γ

qr−1
r−1 − a1(q, γ)r − a2(q, γ),

with γ ∈ [0, 12), where a1 and a2 are scalars depending of q
and γ. If the compression aspect is ignored, the information
sequence length is the same as in (3). The prefixless construc-
tion from [6] has information sequences of length

k = qr−1 − r. (4)

For our new construction, the redundancy is given by r =
logq k + 2, where k = qt, which results in an information
sequence of length

k = qr−2. (5)

Figure 4 shows a comparison of the information length
versus the redundancy for the constructions discussed above.
For q = 3 we can see that the new algorithm’s information
length is comparable to those of previous constructions as r
increases. However, for q = 16 it is only comparable to the
construction from [5]. In both cases the new construction is
slightly better than the construction it is based on.

B. Complexity

In terms of complexity, previous schemes discussed in
[3] and [4], require O(qk logq k) digit operations for the
encoding and decoding processes. The scheme in [5] requires
O(qk logq k) digit operations for the encoding and O(k) digit
operations for the decoding. In addition to the complexity
of the scheme in [5], our new scheme needs O(logq k) to
encode/decode the Gray code prefix.

The decoding process requires O(k + logq k) digit oper-
ations. In terms of decoding, we still retain the advantage
of fast parallel decoding, once b(s, p) has been determined
from the Gray code. Seeing as the algorithm have to test
each balancing sequence together with the Gray code until
the overall sequence is balanced, the encoding takes longer
than decoding. In the worst case where the kq-th balancing
sequence and Gray code results in balancing, O(qk logq k)
digit operations are needed, since O(qk logq k)� O(logq k).

101

103

105

107

109

1011

1013

1015

1017

In
fo
rm

a
ti
o
n

le
n
g
th

,
k

3 4 5 6 7 8 9 10 11 12 13 14 15
Redundancy, r

(1), q = 3

(2), q = 3

(3), q = 3

(4), q = 3

(5), q = 3

(1), q = 16

(2), q = 16

(3), q = 16

(4), q = 16

(5), q = 16

Fig. 4. Comparison of information sequence length vs. redundancy.

V. CONCLUSION

A simple algorithm was presented to encode and decode
balanced q-ary information sequences of length k, where
k = qt. The algorithm is based on a Gray code prefix that
encodes the balancing index. Both the balancing and Gray code
algorithms are efficient in the sense that only simple addition
and subtraction operations are needed, and no lookup tables
are needed. The majority of the decoding algorithm can also
be performed in parallel. Future work includes an investigation
into whether the extra symbol u can be eliminated for certain
parameters of k and q, and extending the scheme to sequences
of length k where k 6= qt.

ACKNOWLEDGMENT

This work is based on research supported in part by the
National Research Foundation of South Africa (UID 77596).

REFERENCES

[1] K. A. S. Immink “Spectral null codes,” IEEE Trans. Magn., vol. 26,
no. 2, pp. 1130–1135, Mar. 1990.

[2] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 51–53, Jan. 1986.

[3] L. G. Tallini and U. Vaccaro, “Efficient m-ary immutable codes,”
Discrete Applied Mathematics, vol. 92, pp. 17–56, 1999.

[4] R. M. Capocelli, L. Gargano and U. Vaccaro, “Efficient q-ary immutable
codes,” Discrete Applied Mathematics, vol. 33, pp. 25–41, 1991.

[5] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Korea, Jun. 28 – Jul. 3, 2009, pp. 1564–1568.

[6] T. G. Swart and K. A. S. Immink, “Prefixless q-ary balanced codes
with ECC,” in Proc. IEEE Inform. Theory Workshop, Seville, Spain,
Sep. 9–13, 2013.

[7] R. Mascella and L. G. Tallini, “Efficient m-ary balanced codes which
are invariant under symbol permutation,” IEEE Trans. Comput., vol. 55,
no. 8, pp. 929–946, Aug. 2006.

[8] A. Baliga and S. Boztaş, “Balancing sets of non-binary vectors”, in
Proc. IEEE Int. Symp. Inform. Theory, Lausanna, Switzerland, Jun 30–
Jul 5, 2002, p. 300.

[9] R. Mascella, L. G. Tallini, S. Al-Bassam and B. Bose, “On efficient
balanced codes over the mth roots of unity,” IEEE Trans. Inform.
Theory, vol. 52, no. 5, pp. 2214–2217, May 2006.

[10] F. Gray, “Pulse code communication,” U. S. Patent 2632058, Mar. 1953.
[11] D.-J. Guan, “Generalized Gray codes with applications,” in Proc.

National Science Council, Republic of China, Part A, vol. 22, no. 6,
pp. 841–848, 1998.

[12] J. H. Weber and K. A. S. Immink, “Knuth’s balancing of codewords
revisited,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1673–1679,
Apr. 2010.

