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A new particle optimization algorithm with dynamic topology is proposed based on
a small world network. The technique imitates the dissemination of information in a
small world network by dynamically updating the neighborhood topology of the par-
ticle swarm optimization(PSO). In comparison with other four classic topologies and
two PSO algorithms based on small world network, the proposed dynamic neighbor-
hood strategy is more eÆective in coordinating the exploration and exploitation ability
of PSO. Simulations demonstrated that the convergence of the swarms is faster than
its competitors. Meanwhile, the proposed method maintains population diversity and
enhances the global search ability for a series of benchmark problems.
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1. Introduction

Intelligent optimization algorithms such as genetic algorithms, ant colony optimiza-
tion and more recently Particle Swarm Optimization (PSO) algorithm became top-
ical issue due to their robustness and e±ciency25,39,40,42.PSO algorithm, inspired
by the behavior of birds flocking and fish schooling, is one form of artificial intel-
ligence algorithm for finding optimal solutions to hard numerical functions. In a
particle swarm optimizer, each individual (called particle) is representing a poten-
tial solution to the optimization problem and flies towards the optimal region of
the high dimensional solution space by adjusting its trajectory1,2,3,4,12. PSO tech-
niques have been successfully applied in many science and engineering areas such as
pattern recognition, signal processing, robot control, data clustering and so forth.

However, the basic PSO algorithm has some shortcomings in dealing complex
problems. For instance, it is not sensitive to the change of environment, and prema-
ture convergence phenomenon often occurs because of the influences of the ‘gbest’
and ‘pbest’. So many improved PSO algorithms were proposed by researchers. In
2002, an artificial immune network technique was first proposed to handle multi-
modal function optimization problems25. Jiang and Bompmard proposed a hybrid
chaotic PSO based on combining with linear interior point, which was applied to
reactive power optimization areas26. In the same year, Adaptive PSO was proposed
and applied to solve the typical nonconves optimization problems27. An e±cient
GA/PSO-hybrid method was proposed, the technique improved the diversity of
PSO algorithm and decreased the computational costs of genetic algorithms28. A
niching PSO algorithm based on a ring neighborhood topology was proposed, which
did not need any parameters29. In recent years, hybrid intelligent algorithms be-
came popular32, and a hybrid PSO was applied to estimate the Muskingum model
parameters30. After a while, a novel hybrid migration algorithm was used to resolve
the multi-objective problems31.

In the PSO, every particle has a number of neighbors, aÆecting each other7 by
sharing specific information. Neighborhood topology reflects the mode of sharing in-
formation among particles, so the topology plays a critical role in the performance
of the algorithm. In the early stages of PSO research, the topology commonly
considered was the ‘global best version’ (‘gbest’)1,2. Then the ‘local best version’
(‘lbest’)5,6,7,8 was proposed to deal with more complex engineering problems. The
eÆects of various neighborhood topologies in the performance of PSO were inves-
tigated, such as ring topology, wheel topology, von Neumann topology, and so on.
Suganthan proposed a number of improvements, such as gradually increasing the
local neighborhood, time varying random walk, inertia weight values, and two al-
ternative schemes for determining the local optimal solution for an individual9.
However, this method introduced additional time consumption when calculating
the distance.

Based on the ‘Six Degrees of Separation’ phenomenon14,21, Watts and Strogatz10

proposed the concept of classic small world network model. It was shown that the
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characteristics of the network connections influence the velocity of the information
flowing6,11. Small world networks have been observed in many real-world problems,
such as data clustering, optimization of oil and gas field development planning, lin-
ear programming, reactive power optimization, computer science, networks of brain
neurons, telecommunications, mechanics, and social influence networks17,18,19,20.

In addition, Network-structured PSO combined with small world net-
work(NSPSO) was applied to various benchmark functionsIn33,35,36. In 2013, an
improved PSO algorithm with adaptive small world topology (ASWPSO) was in-
troduced, in which the parameters of topology was adaptively adjusted with the
increasing of iteration34. In [6] and [8], the impact of Von Neumann topology struc-
ture on PSO performance was considered. Based on this topology structure, an
improved algorithm (SWPSO) was proposed by combining with the concept of
small world37,38. For the topology structure of SWPSO, in addition to four imme-
diate neighbors, each particle has two random neighbors which were chosen from
the population excluding the particles selected previously. However, the aforemen-
tioned small world topology algorithms were all suÆering from a serious problem—
they take much time because of a large number of comparisons and computations
among dimensions, especially for multi-dimensional functions.

Since the PSO was inspired by nature, this paper postulates that it is possible
to enhance optimization performance if the small world network topology is consid-
ered in the particle swarm optimization process. A Dynamic Small World Network
Topology PSO (DTSWPSO) is proposed, which imitates information disseminat-
ing in small world networks by dynamically adjusting the neighborhood topology.
Moreover, a time varying neighborhood strategy can eÆectively coordinate the ex-
ploration and exploitation ability of the algorithm. The DTSWPSO is compared
with classical topology versions and two dynamic small world neighborhood struc-
ture PSO algorithms.

The rest of the paper is organized as follows: In Section 2 and Section 3, the
neighborhood topology and small world network are described. Section 4 discusses
the proposed method and in Section 5 the experimental scheme is given. In Section
6, the comparative numerical simulation results are given, which are also discussed
and analyzed. Finally, the conclusive remarks are given in Section 7.

2. Neighborhood Topology of PSO Algorithms

In PSO algorithms, each individual defines its trajectory according to its previous
best solution and the optimal solution of some specific neighbors6,7,13. Each indi-
vidual considers the success of its neighbors to be a source of influence and ignores
the others. So the neighborhood topology structure of the particle swarm plays an
important role in the optimization performance, and the size of the neighborhood
directly aÆects the performance of the algorithm as well.

At present, PSO has been studied in two general types of neighborhood struc-
tures, that is, global best (called ‘gbest’) and local best (called ‘lbest’)7,13. Fig. 1(a)
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is the ‘gbest’ neighborhood also known as ‘all’ topology, where any two individu-
als in the entire community are connected. This neighborhood topology structure
is equivalent to a fully connected topology, in which each particle is attracted to
the best position found by all the other members. All members of the whole can
share information, and each individual chooses a new point for the next iteration
according to the best success of the entire population5.

However, in the local best network, each particle is allowed to be influenced by
only a small number of adjacent members. Kennedy and Mendes6 constructed and
tested typical neighborhood configurations depicted in Fig. 1. The classic ‘lbest’
neighborhood topology is a ring lattice as shown in Fig. 1(b). In this local ver-
sion PSO, each particle is connected to its two immediate neighbors only, located
respectively on its left and right sides in the topological structure. In Fig. 1, (c)
is the ‘Star’ (also called ‘Wheel’) neighborhood topology in which all particles are
connected to the central individual5. Fig. 1(d) is the ‘Pyramid’ neighborhood topol-
ogy, which is in fact a triangular wire-frame structure 13. The ‘Von Neumann’ (also
called ‘square’) neighborhood topology is showed in Fig. 1(e)), where each parti-
cle is connected to four neighbors, which makes it a three-dimensional torus. ‘Four
clusters’ topology (Fig. 1(f)) has four cliques for a population of 20 particles, and in
every clique, there are 5 fully connected individuals13. It was discovered that PSO
with the ‘Von Neumann’ neighborhood topology performed better than other ones
for a suite of standard test functions, such as Sphere function, Schwefel 2.21 and
2.22 functions, Rosenbrock function, Griewank function, Ackley function, Rstrigin
function, and ShaÆer’s f6 function7.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Neighborhood topologies: (a) Global best (All), (b) Ring, (c) Star (Wheel), (d) Pyramid,
(e) Von Neumann (Square), (f) Four clusters
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3. Small World Network

In the real world, the relationship between most things can be described by a net-
work topology structure, such as biological, social and computer networks. However,
in these networks, the connection patterns between individuals are neither purely
regular nor purely random23,24, which reveals non-trivial topological features. Com-
plex networks were defined to model these relationships. The small world network
is a commonly recognized complex network.

Inspired by the ‘Six Degrees of Separation’ phenomena14, the small world
network10 was gradually noticed and became a hot research topic in complex sys-
tem and complexity theory. Small world network is based upon the relationships in
human society and is an intermediate form between a regular and a random net-
work. The small world network has a small characteristic path length of the random
lattice and relative highly clustering coe±cient of the regular lattice10. In extreme
cases, when p = 0, the original is the ‘lbest’ topology graph, and p = 1 for the
’gbest’ topology graph. Four realizations of small world networks10,11,14 are shown
in Fig. 2, where, in order to facilitate the description of the problem, the number
of vertices is set to 12. The construction of a small world network is summarized
as follows10,11:

1. Start with a ring structure of n nodes as shown in Fig. 2(a).
2. Each node is connected to its nearest k neighbors by undirected edges, for in-

stance, k = 4 in Fig. 2(b). On its left and right, there are two(k/2) directly
connected neighbors, respectively.

3. Choose a node in a clockwise direction, with probability p, connect this vertex
to a node uniformly chosen over the entire ring. Repeat this randomly choosing
and connecting process for k times. Duplicate edges are forbidden, where another
one is re-chosen(Fig. 2(c)).

4. Repeat the process 3 by moving clockwise around the ring. Consider each node
in turn until the whole lap is completed (Fig. 2(d)).

(a) (b) (c) (d)

Fig. 2. Construction process of small world network with p probability in sequence of
(a)!(b)!(c)!(d)
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4. Dynamic small world topology for PSO Algorithms

In PSO algorithms, each particle changes its velocity and direction according to the
nodes (called neighborhoods) connected to it and decides which one in its neigh-
borhood found the optimal solution so far5. Therefore, the neighborhood topology
structure of population determines the breadth and extent of influences among
the particles, and the quantity of the particle’s neighbors determines the speed of
information dissemination.

The ‘gbest’ neighborhood topology was discovered to converge fast6 because of
the high interconnectedness. It has a strong global searching ability, yet it is easy to
fall into a local optimum. On the other hand, in the PSO with the ‘lbest’ neighbor-
hood topology, each particle explores its own searching space, so their information
disseminates slowly along the neighborhood topology, and the information of suc-
cess takes a long time to spread throughout the entire population13. So it has a
strong local search ability, it also maintains the diversity of the population to a
certain extent, and it is not easily trapped in a local optima.

According to the characteristics of the small world network10,11,15, the random-
ness of the construction process determines the diversity of population, and the
connections in an otherwise orderly network ensure the propagation of information
throughout the entire neighborhood.

From the above discussion, it is not hard to imagine that if we introduce some
characteristics of small world network to the PSO as the neighborhood topology,
that the global search ability and convergence speed can be improved. The global
search ability comes from the population diversity due the randomness, and con-
vergence is ensured by the connections designed to avoid premature convergence.

On the other hand, the essential characteristics of the small world network
indicate a high clustering coe±cient and a small average path length10,11,14,15. The
clustering coe±cient reflects the degree of aggregation of the nodes in a graph, so a
high clustering coe±cient of the small world network enables diÆerent neighbors to
search only in their own exclusive neighborhood, which helps to enhance the local
searching ability of the PSO algorithm. Path length is defined as the shortest path
between two nodes, which is a measure of the e±ciency of information transport in a
network10, therefore, a small average path length increases the speed of information
transmission between particles. Meanwhile, the e±ciency of small world network
neighborhood topology can improve the global search ability of the proposed PSO
algorithm.

To balance the exploration and exploitation abilities of the PSO algorithm, a
Dynamic Topology Small World network (DTSWPSO) PSO is proposed. In the
proposed small world topology, each node represents one particle respectively, and
all particles are connected according to the small world topology. The neighborhood
topology of this algorithm changes gradually by adjusting the probability p for ran-
domly building edges between two particles after every fixed number of iterations41.
The specific adjustment procedure of this dynamic topology is shown in Table 1. In
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Table 1, the ‘max iteration’ represents the maximum number of iterations to be
considered. The probability p is decreased linearly after certain iterations. In the
early stage of iteration, the neighborhood topology resembles the ‘gbest’ structure,
and then it is gradually decreased, so that at last, it becomes the ‘lgbest’ struc-
ture (i.e. a ‘ring’ topology). The detailed procedure of the proposed algorithm is
summarized as follows:

Table 1. The value of p on diÆerent stage of evolution, where
‘max iteration’ stands for the maximum number of iteration.

Iteration numbers The value of p

[1, max iteration/10] 0.9
[(max iteration/10) + 1, 2max iteration/10] 0.8

. . . . . .
[8(max iteration/10) + 1, 9max iteration/10] 0.1

[9(max iteration/10) + 1, 1] 0

1. Generate the adjacency matrix of the small world topology of DTSWPSO ac-
cording to the construction mode of small world in section 3. The adjacency
matrix is a square matrix which indicates the connection relationship of the
small world topology structure, it is able to indicate whether pairs of nodes are
adjacent or not in the topology.

2. Randomly initialize the population Xi and the velocity Vi of each particle particle
i.

3. According to the iterative formulas (1) and (2), update the velocity Vi and the
position Xi. For each particle xi and its velocity Vi, if they exceed the boundary
of the variable range, their values are reset to the boundary.

4. Calculate and evaluate the fitness of each particles according to the optimization
function.

5. Evaluate the Pi (Individual optimal), Pl (Local optimal) and Pg (Global optimal)
according to the generated adjacency matrix, and use the adjacency matrix to
calculate the position of the corresponding particle which are ‘pbest’, ‘lbest’ and
‘gbest’.

6. Update the adjacency matrix. Decrease the edges in the small world with the
probability p after a certain number of iterations. The detailed regulation of p

with the increase iteration is shown in Table 1.
7. Repeat the process 3), 4), 5), and 6) until ‘max iteration’ is reached or the

solution is mature.

5. Numerical Simulation

The simulation experiments were performed using an Intel Corei5 platform with
8GB memory. The computational model was implemented using Windows10 and
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Mtlab R2014a.
In order to test the optimization performance of the proposed method, we

compared with other four typical topologies: ‘star (wheel)’, ‘ring’, ‘Von Neumann
(square)’, as well as ‘four clusters’ and other two samll world topology algo-
rithms. Fifteen commonly used benchmark optimization problems were consid-
ered in this comparison. These test functions include Sphere function(f1), Schwe-
fel 1.2 function(f2), Schwefel 2.21 function(f3), Schwefel 2.22 function(f4), Step
function(f5), Quartic function with noise in fitness(f6), Rosenbrock function(f7),
Griewank function(f8), Ackley function(f9), Rastrigin function(f10), Stretched
V sine wave function(f11), SchaÆer’s f6 function(f12), Six-Hump Camel-Back
function(f13), Branin(f14), and Goldstein-Price function(f15), where f1-f7 are uni-
modal functions, the rest are multimodal functions. For the multimodal functions,
they have a great number of local optima which are usually di±cult to search. In
these test functions, all functions were run in 30 dimensions, except for the last four
functions(f12-f15) which are 2 dimensions, and 10 dimensions were considered for
Griewank function, since it is harder to find the global optimum with a decrease of
dimension for this function. The parameters and criteria of the eight standard test
functions are given in Table 2.

Table 2. Parameters and criteria for the eight test functions conditions.

Function Dimensions Domain Optimum Criterion Number of iteration

Sphere(f1) 30 [°100, 100] 0 0.01 1000
Schwefel 1.2(f2) 30 [°100, 100] 0 100 8000
Schwefel 2.21(f3) 30 [°100, 100] 0 0.1 5000
Schwefel 2.22(f4) 30 [°10, 10] 0 0.1 2000

Step(f5) 30 [°100, 100] 0 0.1 2000
Quartic with noise in fitness(f6) 30 [°1.28, 1.28] 0 0.1 1000

Rosenbrock(f7) 30 [°30, 30] 0 100 2000
Griewank(f8) 10 [°600, 600] 0 0.05 1000
Griewank(f8) 30 [°600, 600] 0 0.05 1000
Ackley(f9) 30 [°30, 30] 0 100 1000

Rastrigin(f10) 30 [°5.12, 5.12] 0 100 1000
Stretched V sine wave(f11) 30 [°10, 10] 0 100 1000

SchaÆer’s f6(f12) 2 [°100, 100] 0 0.00001 1000
Six-Hump Camel-Back(f13) 2 [°5, 5] °1.0316285 0.00001 500

Branin(f14) 2 [°5, 10]£ [0, 15] 0.398 0.00001 500
Goldstein-Price(f15) 2 [°2, 2] 3 0.00001 500

Since the fifteen benchmark functions and the four topologies are
standard22,23,24, we haven’t included more details which are available in the
literature16. The four typical topologies for PSO algorithms, the two small world
topology algorithms33,34 and the proposed algorithm are applied with a population
size of 20, and the maximum number of iterations on each benchmark problem is
listed in Table 2. Every algorithm runs 20 times. The position and the velocity
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of each particle are initialized with random values. The iterative formulas are as
follows:

V

t+1
id = !V

t
id + c1r1(pid °X

t
id) + c2r2(pld °X

t
id) + c3r3(pgd °X

t
id), (1)

X

t+1
id = X

t
id + V

t+1
id , (2)

Here, Vid and Xid represent the velocity vector and the position vector (solution
to the optimization problem) respectively of particle i in the d

th dimension. The
index t is the iteration number. Pid is the best position of particle i found by itself
in the searching space. Pld refers to the best solution found so far by its neighbors,
and Pgd is the best solution among all particles. ! is the inertia weight by which
the memory of previous velocities can be retained. c1, c2 and c3 are the positive
constant parameters. r1, r2 and r3 are three uniform random weights ranging on
[0, 1] ensuring the random particle trajectory.

In the simulation experiments, for each function, the inertia weight ! = 0.72912.
The parameter values {c1, c2, c3} were set to {1, 1, 1} for the functions f1, f2 and
f7, {1.5, 1.5, 0} for the functions f3-f6 and f9-f15, and {1.5, 1, 0.5} for the function
f8.

The parameter settings of the two small world topology algorithms are the same
to the corresponding references [29] and [30].

6. Results and Discussion

Table 3-18 shows a comparison of algorithms using seven neighborhood topologies
on each benchmark problem, where ‘Best’, ‘Mean Best’ and ‘Worst’ represent best
values, mean best values and worst values searched over 20 runs respectively. ‘Std
Dev’ indicates the standard deviation, and ‘Time (s)’ denotes the computation
time in seconds. The solutions obtained by the proposed method(DTSWPSO) are
better than the other six algorithms. However, the DTSWPSO is computationally
more expensive than the other four classic topology algorithms as the adjacency
matrix of population needs to be dynamically adjusted in the searching process.
On the other hand, in contrast to the other two small world topology algorithms,
our proposed method took the least time in the same number of iterations since it
had no complex computation of dimensions.

As can be seen from Table 3-18, the DTSWPSO technique gives comparable
or better performance than the other six algorithms. Specifically, for Sphere func-
tion, Schwefel 2.21 function, Step function, Quartic function with noise in fitness,
Griewank function with 10 dimensons, Rastrigin function, and Stretched V sine
wave function, the proposed technique performed better than other six algorithms
with diÆerent topologies. However, the ‘NSPSO’ algorithm is better than the other
six algorithms on Schwefel 2.22 function and Rosenbrock function. The ‘Ring’ and
the ‘Von Neumann’ topology perform better than other five topologies on Schwefel
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Table 3. Comparison of seven neighborhood topologies algorithms on f1.

Topology Best Mean Best Std Dev Worst Time(s)

Star 9.37E ° 5 2.50E + 3 4.33E + 3 1.00E + 4 16.88

Ring 1.33E ° 6 9.92E ° 6 1.02E ° 6 5.81E ° 5 17.41
Von Neumann 2.22E ° 9 3.77E ° 8 4.03E ° 8 1.77E ° 7 20.14
Four Clusters 4.02E ° 9 1.20E ° 8 2.11E ° 8 9.31E ° 8 20.28

ASWPSO 9.13E ° 1 2.85E + 0 1.61E + 0 7.02E + 0 112.20
NSPSO 5.27E ° 15 5.67E ° 10 1.67E ° 9 7.60E ° 9 67.19
DTSW 1.31E° 17 3.91E° 11 1.03E° 10 4.48E° 10 27.83

Table 4. Comparison of seven neighborhood topologies algorithms on f2.

Topology Best Mean Best Std Dev Worst Time(s)

Star 2.62E ° 5 3.25E + 3 4.26E + 3 1.50E + 4 145.09

Ring 5.79E ° 4 5.27E° 3 5.61E° 3 2.03E° 2 183.94
Von Neumann 2.01E ° 8 2.00E + 3 4.30E + 3 1.50E + 3 156.57
Four Clusters 3.94E ° 7 1.75E + 3 2.94E + 3 1.00E + 4 151.05

ASWPSO 4.56E + 2 4.37E + 3 3.03E + 3 1.49E + 4 1076.86
NSPSO 2.25E° 25 1.08E + 3 2.85E + 3 5.17E + 3 552.81
DTSW 2.89E ° 20 2.08E + 3 3.02E + 3 1.00E + 4 162.92

Table 5. Comparison of seven neighborhood topologies algorithms on f3.

Topology Best Mean Best Std Dev Worst Time(s)

Star 5.68E ° 1 6.04E + 0 3.44E + 0 1.36E + 1 101.14
Ring 5.01E ° 2 2.33E ° 1 4.97E + 3 1.58E ° 1 92.16

Von Neumann 1.71E ° 3 1.14E ° 2 1.19E ° 2 4.40E ° 2 71.88
Four Clusters 5.52E ° 3 5.83E ° 2 8.58E ° 2 3.78E ° 1 64.19

ASWPSO 1.49E + 1 2.35E + 1 5.19E + 0 3.21E + 1 528.94
NSPSO 1.98E + 0 6.16E + 0 4.09E + 0 1.94E + 1 333.52
DTSW 7.05E° 4 1.10E° 2 9.14E° 3 3.14E° 2 83.49

1.2, Griewank function, and Ackley function. For the Rosenbrock function, there is
a narrow valley between the local optimum and the global optimum. It is di±cult
to distinguish the global optimum for algorithms with larger neighborhood size. For
the Griewank function, with increase of the dimension, the range of local optimum
is getting narrower, which makes it easier to find the global optimum. The ‘ring’
and the ‘Von Neumann’ topologies obviously show good performance because of
their smaller neighborhood sizes. The DTSWPSO algorithm has a relatively large
neighborhood in the early searching stage, so its performance is not always opti-
mal. For SchaÆer’s f6 function, Six-Hump Camel-Back function, Branin function,
and Goldstein-Price function, there is no statistically significant diÆerence among
all seven topologies. The main reason is that the four optimization functions are
simple 2D functions, and it is easy to find the optimal solutions by any the seven
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Table 6. Comparison of seven neighborhood topologies algorithms on f4.

Topology Best Mean Best Std Dev Worst Time(s)

Star 8.50E ° 5 7.11E + 0 7.06E + 0 2.00E + 1 37.88

Ring 5.51E ° 9 3.00E + 0 5.57E + 0 2.00E + 1 46.51
Von Neumann 3.63E ° 12 2.00E + 0 6.78E + 0 3.00E + 1 43.28
Four Clusters 3.55E ° 12 2.50E + 0 4.33E + 0 2.00E + 1 48.49

ASWPSO 2.60E ° 4 1.50E° 3 1.23E° 3 4.33E° 3 202.36
NSPSO 8.62E ° 8 3.20E + 1 4.35E + 1 1.19E + 2 116.95
DTSW 1.18E° 13 3.50E + 0 5.72E + 0 2.00E + 1 45.94

Table 7. Comparison of seven neighborhood topologies algorithms on f5.

Topology Best Mean Best Std Dev Worst Time(s)

Star 0 1.07E + 3 3.99E + 3 1.01E + 4 45.27
Ring 0 2.50E° 1 8.87E ° 1 4.00E + 0 44.91

Von Neumann 0 1.75E + 1 5.41E + 1 2.50E + 1 51.38
Four Clusters 3.94E ° 7 3.30E + 1 1.42E + 1 6.50E + 1 51.13

ASWPSO 0 8.00E ° 1 1.23E + 0 4.00E + 0 209.29
NSPSO 6.00E + 0 5.96E + 1 6.34E + 1 2.46E + 2 117.02
DTSW 0 6.60E ° 1 1.20E + 0 4.00E + 0 43.27

Table 8. Comparison of seven neighborhood topologies algorithms on f6.

Topology Best Mean Best Std Dev Worst Time(s)

Star 2.38E + 1 3.67E + 1 8.13E + 0 5.50E + 1 47.90
Ring 1.33E + 1 1.98E + 1 6.16E + 0 3.86E + 1 46.62

Von Neumann 7.60E + 0 1.73E + 1 7.64E + 0 3.35E + 1 48.40
Four Clusters 8.05E + 0 2.08E + 1 9.27E + 0 4.46E + 1 42.29

ASWPSO 6.96E + 0 1.79E + 1 7.21E + 0 3.16E + 1 146.01
NSPSO 1.37E ° 1 3.74E ° 1 2.09E ° 1 1.13E + 0 70.46
DTSW 2.21E° 2 4.17E° 2 1.44E° 2 6.96E° 2 48.84

algorithms.
Success rate is one the most important parameters to evaluate the performance

of an algorithm. It denotes the number of successful optimal hits for an algorithm
in 100 runs, which is used to measure global searching ability of an algorithm,
and the success rates of diÆerent neighborhood topologies on fifteen benchmark
functions over 20 runs are shown in table 19. For the functions f1, f3, f6, f7, and
f12, the success rate of our proposed algorithm is higher than other six algorithms.
All the seven algorithms are able to achieve one hundred percent success rate for
the function f9, f11, f13-f15. For f2, f5, and f8, the ‘ring’ and ‘Von Neumann’
topologies perform slightly better than other five topologies.

In order to further compare these algorithms, the evolutionary curves were pre-
sented on each test function as shown in Fig. 3-5. It can be seen that the DTSWPSO
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Table 9. Comparison of seven neighborhood topologies algorithms on f7.

Topology Best Mean Best Std Dev Worst Time(s)

Star 1.71E + 1 4.18E + 2 8.95E + 2 3.16E + 3 57.12
Ring 6.54E ° 1 8.28E + 1 6.10E + 1 3.02E + 2 47.67

Von Neumann 6.39E + 1 1.05E + 2 1.11E + 2 5.55E + 2 51.82
Four Clusters 6.26E + 1 3.89E + 2 8.95E + 2 3.09E + 3 43.86

ASWPSO 6.21E + 1 6.36E + 2 1.60E + 2 6.48E + 2 199.89
NSPSO 3.01E ° 1 2.33E + 1 2.69E + 1 1.09E + 2 121.65
DTSW 7.80E° 3 4.55E + 3 1.96E + 4 9.00E + 4 51.24

Table 10. Comparison of seven neighborhood topologies algorithms on f8 with 10
dimensions.

Topology Best Mean Best Std Dev Worst Time(s)

Star 2.46E ° 2 1.03E ° 1 4.86E ° 2 2.34E ° 1 25.18
Ring 1.19E ° 2 4.77E° 2 2.86E ° 2 1.53E ° 1 22.60

Von Neumann 1.23E ° 2 5.06E ° 2 2.66E° 2 1.68E ° 1 26.59
Four Clusters 1.72E ° 2 7.96E ° 2 4.50E ° 2 1.77E ° 1 23.86

ASWPSO 2.41E ° 2 1.79E ° 1 1.19E ° 1 4.76E ° 1 91.34
NSPSO 4.92E ° 2 1.11E ° 1 8.29E ° 2 4.13E ° 1 68.77
DTSW 1.13E° 2 7.66E ° 2 3.25E ° 2 1.50E° 1 28.74

Table 11. Comparison of seven neighborhood topologies algorithms on f8 with 30
dimensions.

Topology Best Mean Best Std Dev Worst Time(s)

Star 4.34E ° 3 4.74E + 0 1.96E + 1 9.02E + 2 29.01
Ring 6.15E ° 6 1.07E° 2 1.33E° 2 5.26E° 2 26.41

Von Neumann 1.15E ° 8 1.30E ° 2 2.48E ° 2 1.10E ° 1 19.25

Four Clusters 2.89E ° 8 1.57E ° 2 2.43E ° 2 9.11E ° 2 20.22
ASWPSO 8.42E ° 1 9.93E ° 1 6.16E ° 2 1.08E + 0 124.17
NSPSO 1.70E ° 11 4.46E ° 2 4.67E ° 2 1.88E ° 1 68.17
DTSW 0 7.86E ° 2 1.42E ° 1 6.31E ° 1 29.90

algorithm converges faster than the other six algorithms, especially on multimodal
functions. Because it is easy to find the optimum solutions for unimodal function,
the more simple a topology structure is, the faster it converges.

In summary, during the earlier searching stage of DTSWPSO, the value of p is
large, and the neighborhood population is relatively large, hence it behaves more
like the ‘gbest’ topology version, and has a high searching speed. Moreover, due
to the randomness and the rapid information dissemination ability by dynamically
adjusting the probabiligy p for updating the small world network, the proposed
method maintains the diversity of the population and improves the local searching
ability.
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Table 12. Comparison of seven neighborhood topologies algorithms on f9.

Topology Best Mean Best Std Dev Worst Time(s)

Star 1.90E + 0 8.13E + 0 4.44E + 0 1.49E + 1 21.75

Ring 3.19E ° 4 2.39E° 3 1.71E° 3 7.69E° 3 24.10
Von Neumann 4.07E ° 5 1.28E + 0 2.98E + 0 1.40E + 1 23.15
Four Clusters 3.78E ° 5 1.79E + 0 4.08E + 0 1.41E + 1 27.49

ASWPSO 1.10E + 0 2.32E + 0 5.99E ° 1 3.30E + 0 137.65
NSPSO 1.90E + 0 4.53E + 0 6.61E + 0 7.00E + 0 95.42
DTSW 3.63E° 5 4.33E + 0 5.67E + 0 1.45E + 0 24.98

Table 13. Comparison of seven neighborhood topologies algorithms on f10.

Topology Best Mean Best Std Dev Worst Time(s)

Star 7.56E + 1 1.34E + 2 3.22E + 1 1.81E + 2 24.17
Ring 8.86E + 1 1.36E + 2 2.54E + 1 1.75E + 2 19.29

Von Neumann 6.87E + 1 1.22E + 2 3.13E + 1 1.89E + 2 18.82
Four Clusters 6.77E + 1 1.32E + 2 3.23E + 1 1.92E + 2 17.23

ASWPSO 8.05E + 1 1.53E + 2 4.98E + 1 2.42E + 2 125.80
NSPSO 3.98E + 1 7.37E + 1 1.95E + 1 1.04E + 2 78.88
DTSW 3.48E + 1 5.89E + 1 2.26E + 1 1.03E + 2 24.66

Table 14. Comparison of seven neighborhood topologies algorithms on f11.

Topology Best Mean Best Std Dev Worst Time(s)

Star 2.38E + 1 3.67E + 1 8.13E + 1 5.50E + 1 47.90
Ring 1.33E + 1 1.97E + 1 6.16E + 0 3.86E + 1 46.62

Von Neumann 7.60E + 0 1.73E + 1 7.64E + 0 3.35E + 1 48.40
Four Clusters 8.05E + 0 2.08E + 1 9.27E + 10 4.46E + 1 42.29

ASWPSO 2.55E + 1 3.39E + 1 6.53E + 1 4.53E + 1 121.60
NSPSO 2.68E + 1 4.02E + 1 9.63E + 1 6.06E + 1 79.07
DTSW 7.57E + 0 1.49E + 1 6.08E + 0 3.54E + 1 50.37

7. Conclusion

This paper proposed a new dynamic neighborhood topology structure for PSO
algorithms. According to the way the small world network is generated, the lo-
cal neighborhood topology decreases gradually by adjusting the probability p with
increasing iterations. The simulation results of fifteen typical test functions demon-
strated that the new method maintains the diversity of population, balances the
exploration and exploitation ability, and ensures the convergence of the particle
swarm. Consequently, the proposed technique improves the practicality and ef-
fectiveness of PSO. Because of the randomness of the small world network, the
dynamic neighborhood topologies should have many adjustment modes, which will
be studied in future work.
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Table 15. Comparison of seven neighborhood topologies algorithms on f12.

Topology Best Mean Best Std Dev Worst Time(s)

Star 0 3.89E ° 3 4.76E ° 3 9.72E ° 3 22.52
Ring 0 5.35E ° 3 4.83E ° 3 9.72E ° 3 23.51

Von Neumann 0 1.46E ° 3 4.47E ° 3 9.72E ° 3 23.12
Four Clusters 0 3.11E ° 3 4.40E ° 3 9.72E ° 3 20.62

ASWPSO 0 1.00E ° 3 2.91E ° 3 9.72E ° 3 38.31
NSPSO 0 7.77E ° 3 3.89E ° 3 9.72E ° 3 60.31
DTSW 0 4.85E° 4 2.23E° 3 9.72E° 3 21.86

Table 16. Comparison of seven neighborhood topologies algorithms on f13.

Topology Best Mean Best Std Dev Worst Time(s)

Star °1.03E + 0 °1.03E + 0 2.11E ° 16 °1.03E + 0 9.86
Ring °1.03E + 0 °1.03E + 0 2.11E ° 16 °1.03E + 0 9.27

Von Neumann °1.03E + 0 °1.03E + 0 2.11E ° 16 °1.03E + 0 9.65
Four Clusters °1.03E + 0 °1.03E + 0 2.11E ° 16 °1.03E + 0 9.25

ASWPSO °1.03E + 0 °1.03E + 0 7.60E ° 10 °1.03E + 0 14.39
NSPSO °1.03E + 0 °1.03E + 0 1.98E ° 16 °1.03E + 0 39.21
DTSW °1.03E + 0 °1.03E + 0 1.98E° 16 °1.03E + 0 11.66

Table 17. Comparison of seven neighborhood topologies algorithms on f14.

Topology Best Mean Best Std Dev Worst Time(s)

Star 3.98E ° 1 3.98E ° 1 0 3.98E ° 1 9.18

Ring 3.98E ° 1 3.98E ° 1 0 3.98E ° 1 10.82
Von Neumann 3.98E ° 1 3.98E ° 1 0 3.98E ° 1 10.88
Four Clusters 3.98E ° 1 3.98E ° 1 0 3.98E ° 1 10.85

ASWPSO 3.98E ° 1 3.98E ° 1 1.97E ° 9 3.98E ° 1 16.21
NSPSO 3.98E ° 1 3.98E ° 1 0 3.98E ° 1 45.66
DTSW 3.98E° 1 3.98E° 1 0 3.98E° 1 12.39
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(b) Schwefel 1.2 function(f2)
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(c) Schwefel 2.21 function(f3)
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(b) Quartic function with noise in fitness(f6)
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(c) Rosenbrock function(f7)
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(d) Griewank function with 10
dimensions(f8)
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Fig. 4. Time evaluation of seven neighbornood topologies on f5-f9
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(a) Rastrigin function(f10)
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(b) Stretched V sine wave function(f11)
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(c) SchaÆer’s f6 function(f12)
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(d) Six-Hump Camel-Back function(f13)
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(e) Branin function(f14)

0 500 1000 1500 2000
10−15

10−10

10−5

100

105

1010

1015

Step

Lo
g(

f(x
))

 

 
Star
Ring
Von Neumann
Fourclusters
ASWPSO
NSPSO
DTSW

(f) Goldstein-Price function(f15)

Fig. 5. Time evaluation of seven neighbornood topologies on f10-f15
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