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Abstract—This paper provides a useful guidance in the 
interpretation and analyses of the technical impact of power 
factor correction in a power system. It is intended to raise 
awareness in order to achieve correct measurements, 
calculations and the key dynamics of the power system when 
quantifying the impact of power quality (PQ) in a non-linear 
power system. This paper is therefore targeting the power 
producing utilities, municipalities and the bulk end users of 
electricity. 
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I. INTRODUCTION 

The shortage of power in South Africa has led to an 
immediate and effective need for upgrading the efficiency of 
the system. It has been a norm for the industry to operate a 
system with low power factor and transfer the economic 
impact to the consumers. These charges are based on cosφ 
which does not take the effect of harmonics into 
consideration [1], [12]. Furthermore, the increase in the use of 
power electronics devices has also introduced added 
harmonics on the power network which aggravates the low 
power factor and losses in the system [2], [18].  However, this 
scenario can be redeemed by the appropriate employment of 
Power Factor Correction (PFC) applications in order to 
improve the efficiency of the system. 

 

II. PROBLEM DISCUSSION 

The problem proposed for discussion in this paper is one 
approach to quantify the impact of the power factor in 
medium voltage (MV) distribution system. This implies the 
analysis of technical losses of MV distribution system. There 
are several classifications of technical losses, namely: copper 
losses (I2R), dielectric losses, corona losses and iron losses. 
The I2R losses are directly affected by power factor (PF or λ) 
of the system [3]. 

Although nonlinear loads do not draw reactive power at 
the fundamental system frequency (50 Hz), they add more 
losses through harmonic distortion and also deteriorate PF in 

the distribution system for a given load by virtue of drawing 
higher RMS currents [4].  This phenomenon has been 
augmented by the increase in consumers’ power electronic 
equipment. This equipment includes the non-linear devices 
such as direct current (DC) drives, variable speed drives, solid 
state or switched power supplies, etc. Although these devices 
are aimed to improve the efficiency of machinery operation, 
they, depending on the drivers’ front end, also result in low PF 
as the relationship is illustrated in Fig. 1 [5]. 

 

 
Fig.1: Relation between the losses and power factor. 

 
The main factors that influence technical losses in any 

distribution system are cables’ resistance, power factor of the 
load and harmonics injected by the loads. The dielectric 
losses, corona losses and iron losses are not included in this 
study. 

A. Cable resistance 
The cable resistance is directly involved in I2R or copper 

losses. The harmonics also add to the copper losses due to the 
increased temperature of the conductors. The resistance of the 
conductor increases with the increase in the temperature as it 
is illustrated in equation 1. 

                          1 ( )ref refR R                               (1) 

where: R is the resistance of the conductor at temperature “θ”, 
Rref is resistance of the conductor at the reference temperature 
θref, usually 20°C, α is specific temperature coefficient of 
resistance for a given conductor material, θ is conductor 
temperature in degrees Celsius, θref is the reference 
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temperature at a specified corresponding α for a given 
conductor material [6].  
The presence of harmonics in the system increases the 
resistance due to skin effect. 

B. Power Factor 
In linear systems, the displacement angle between the 

voltage and current waveforms is termed power factor angle 
(φ) and the cosine of that angle is called power factor (λ) 
[7],[8], [11]. In nonlinear systems, λ is defined as the ratio of 
the total active power dissipated in an electric circuit to the 
total equivalent volt-amperes applied to that circuit. This 
power factor is referred to as a total or true power factor [4], 
[8], [11]. Furthermore, the true PF is a combination of two 
forms of PF, namely, the displacement power factor (λ1) and 
distortion power factor (λD). Thus true power factor [8], [11] 
can be represented by: 

                          
S
P
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where P is the total active power which is the sum of the 
fundamental component of active power (P1) and the 
harmonic component of power (PH), represented by [8], [11]:  

                           Htotal PPP  1       (3)                    

And S is the total apparent power given by [8], [11]: 
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 The two components of S, namely the fundamental 
component (S1) and the nonlinear component (SN) of the 
apparent power can be further formulated as [8], [11]: 

                        11111 jQPIVS      (5) 
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where the subscripts V1, I1, Q1 are the fundamental voltage, 
current and reactive power, respectively; the DI, DV and SH are 
current distortion power, voltage distortion power and 
harmonic apparent power, respectively.  

C. Harmonics 
From the formulae and definitions above it is evident that 

power factor analysis cannot be done in isolation from the 
harmonics consideration. The IEEE 1159-2009 standard 
defines harmonics as sinusoidal voltages or currents having 
frequencies that are integer multiples of the frequency at 
which the supply system is designed to operate [8]. These 
harmonics are caused by loads drawing nonlinear currents 
thereby increasing the total current drawn from the system. 
Subsequently, they add to the system losses, reducing 
equipment lifespan and interfering with metering and 
protection equipment [8].  

The impact and levels of harmonics can be measured and 
monitored by the individual harmonic distortions or total 

harmonic distortions (THD).  There are regulated limits and 
are set by NRS 048 as shown in Table I. 

There is a severe stress impact on equipment and losses in 
the system if the limits in Table I are exceeded. The direct 
relation to λD is given by: 

                                  21/ 1D ITHD                                (7) 

By substituting (7) into (2), the true power factor can be 
derived as: 

                                 2
1 / 1true ITHD                 (8) 

TABLE I 

  COMPATIBLE LEVELS FOR HARMONIC CURRENTS [9] 

 
 

D. Resonances 
Power factor can be corrected by applying reactive power 

compensation through the use of capacitor banks (classic 
power factor). This method is most suitable for linear loads. 
However, the use of capacitor banks often creates resonance in 
the system. Resonance occurs when the capacitive reactance is 
equal to the inductive reactance for a given system at a given 
system frequency. This can be either series or parallel 
resonance (taking the harmonic load as the source) as 
illustrated in Fig. 2 below. 

 
Fig. 2: Series and parallel resonance [3] 

 

At resonance critical harmonic currents are amplified 
adding more losses to the system. In order to avoid resonance 
at critical harmonic orders, equation (9) can be used to 



determine the resonance frequency to be considered when 
designing or tuning a harmonic filter. 
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where: fr is the resonance frequency, f1 is the fundamental 
frequency (50 Hz), XC1 is the capacitive reactance and XL1 is 
the inductive reactance at the fundamental frequency 
respectively.  

III. FEEDER MODELLING FOR TECHNICAL LOSSES 
EVALUATION 

Any distribution system consists from a number of 
feeders. As many other authors recommend [13], [14], this 
study starts with a simplified model of a radial feeder Fig. 3. 
 
 
 
 
 
 
 
 
 
Fig. 3 Simplified distribution feeder model 
 
The feeder has j = 1…N number of different loads with 
different power factor. The equation governing this feeder is 
given as: 
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where Ij, Yj and Vj are the parameters presented by load Lj at 
node j.    

Considering rj,j+1 being the resistance of feeder k between 
node j and j+1, the total power losses could be determined as: 
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And considering that λ = P / S, the overall power factor of 
feeder k may be expressed as: 
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As long as the apparent power Si depends on the power factor 
of each load, then the total losses in the feeder depend as well 
on it. Using (11) and (12) one can quantify the impact of 
power factor correction and harmonic pollution. 

IV. TECHNICAL IMPACT OF PFC – CASE STUDY 
Medium voltage (MV) substation situated in the northern 

suburbs of Johannesburg was chosen. It comprises of one 
88kV busbar and three 11 kV busbar sections as indicated in 
Fig. 4 and 5 below. There are eighteen active feeders 
connected to the 11 kV busbar.  The feeders are a mix or 
majority commercial building and few industrial and 
residential customers. Loads are connected to the 11 kV 
busbar sections using cross linked polyethene (XLPE) and 
paper insulated (PILC) cables of 185 and 300 mm2 cross 
sectional area depending on the size of the load. 
 

 
 
Fig. 4: Schematic representation of the substation under study 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Digsilent diagram of the substation under study 
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A. Case Study Methodology  
The load flow studies were undertaken for “Bus 11 kV B” 

with different system configurations in order to demonstrate 
the impact of PFC in linear and nonlinear systems [15], [16], 
[17]. All the load flow evaluations were performed using the 
PowerFactory - Digsilent software to illustrate the results 
obtained at Bus 11kV B on following five system 
configurations: 
Case 1 

Run the load flow studies with the existing network (Fig. 
4) at 50Hz and measure the initial system parameters and the 
results are in Table III line 1. Then determine [18] and 
connect the capacitor bank at L7, L14, L17 and L18 with the 
linear system condition (no harmonics pollution) and measure 
the impact of classic PFC on the transferable power, power 
losses and PF. PFC was aimed to improve PF from 0.92, 
0.89, 0.93 and 0.92, respectively to 0.96 as in Fig. 5 and the 
results filled in Table III line 2. 

 

 
 
Fig. 5: Classic power factor at fundamental frequency 
 
Case 2 

A harmonic current source (similar to [10]) was inserted 
(in Digsilent model) at L11 with spectral content indicated in 
Table II and presented in Fig. 6. Run harmonics load flow 
without PFC connected in order to demonstrate the impact of 
harmonics on the total power factor of the system and the 
results presented in Table III line 3. 
 

TABLE II: CURRENT HARMONIC SOURCE AT L11 [10] 
11 kV 

Harmonic 
Order 

% of 50Hz  
Current 

Angle 

1 100 0 
5 69.75 -174 
7 47.03 -171 
11 6.86 17 
13 4.52 -178 
17 7.56 9 
19 3.81 9 
23 2.59 11 
% THD 84.99 

 

 
 
Fig. 6: Illustration of harmonic source created at L11 
 
Case 3 

 Now, run harmonics load flow with capacitor banks 
connected as a classic PFC, as presented in Fig. 7 and 
demonstrate the negative impact of classic PFC in nonlinear 
system with results presented in Table III line 4. 
 

 
 
Fig. 7: Demonstration of classic PFC applied in nonlinear system at L7  
 
Case 4 

In this case, the harmonic source is still connected at load 
L11, but now harmonic filters are connected, as presented in 
Fig. 8 to eliminate harmonic orders above the IEEE limits, in 
parallel with capacitor bank at L7.  

 

 
Fig. 8: Schematic representation of a nonlinear system with PFC and 
harmonic filter at L7 
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Run harmonics load flow with seven combinations of filters 
(design to mitigate selected harmonics) to illustrate the 
recommended methodology which will result in reduced line 
losses, improved voltage stability and power factor as well as 
less harmonic distortions in the system. The results are 
presented in Table III line 5. 

 

B.  Study Results  
The Table III presents the concentrated results of this 

study, upon “Bus 11 kV B”, concerning important parameters 
at the point of common connection of the loads L3 to L11: 
Total Harmonic Distortion (THD), total current (IT), total true 
power (Ptrue), total power losses in the feeders (Ploss), total 
apparent power (ST) and true power factor (λ) at the PCC. 

 
 

TABLE III  RESULTS OBTAINED AT PCC FOR BUS 11 KV  B 

System 
Configuration 

THD 
% 

IT 
kA 

Ptrue 
MW 

Ploss 
MW 

ST 
MVA λ 

1 Original System 0 1.154 22.62 0.604 22.77 0.99 
2 PFC in Linear System 0 1.15 22.63 0.604 22.77 0.99 
3 Nonlinear System 22.94 1.184 22.59 0.802 23.59 0.96 
4 PFC in Nonlinear System 24.29 1.188 22.62 0.813 23.69 0.96 
 
 
 
5 

5th harmonic filter 18.48 1.173 22.64 0.811 23.38 0.97 
5th -7th harmonic filter 14.43 1.165 22.66 0.809 23.19 0.98 
5th -11th harmonic filter 12.97 1.163 22.68 0.801 23.11 0.98 
5th -13th harmonic filter 11.59 1.161 22.70 0.794 23.05 0.99 
5th -17 harmonic filter 8.42 1.157 22.73 0.789 22.91 0.99 
5th -19 harmonic filter 7.6 1.156 22.75 0.785 22.88 0.99 
5th -23rd harmonic filter 7.74 1.156 22.76 0.788 22.90 0.99 

 
 

Analysing the results from Table III one can observe the 
followings: 
• System configuration Case 2 shows an improvement in 

power and less current draw from the system as compare 
to condition in Case1 when applying classic PFC for a 
“linear system”. These results show a slight difference in 
total current and reactive power due to the fact that initial 
system was well compensated for majority of loads. 

• Introduction of harmonics in configuration Case 3 shows 
an increase in current drawn, lower power factor and less 
transferable active power by 40 kW to the loads. 

• Applying a classic PF in the present of harmonic pollution 
(as in configuration Case 3), the system deteriorated the 
results further by increasing the THD by 1.35% and 
apparent power by 100 kVA as compared to configuration 
Case 2. This may be explained due to resonances that 
appears on harmonics. 

• When running Digsilent model with combinations of 
seven harmonic filters (Case 4) for , namely: 5th, 7th, 11th, 
13th, 17th, 19th and 23rd being switched on adding one filter 
at a time, all the parameters in the nonlinear system show 
a significant and gradual improvement as compare to 
configuration Case 3: THD decreased from 24.29% to 
7.6%, current decreased by 28 A, available active power 
increased by 170 kW,  required apparent power decreased 
by 690 kVA and true power factor improved from 0.96 to 
0.99. Power losses do not improve significant due to some 
residual harmonics still flowing through the system 
creating further resonances. 

V. CONCLUSIONS 
The discussion in this paper indicates the significance of 

PFC and harmonics pollution. With the correct methodology 
and consideration of other limiting and aggravating factors 
such as resonance and harmonics respectively, PFC lead to 
energy savings. It is to be noted that the results above are as a 
result of one substation, the injection of harmonics at one 
point in the network and PFC at only four feeders and a 
harmonic filter at one feeder only. The losses in the lines and 
transformer are not computed in this study as it was not yet 
completed at the time of compiling this article. Thus, a 
significant improvement in the system efficiency can be 
realised if the improvement of PF and elimination of 
harmonics can be applied in the whole network.  

This study can be further investigated and serve as a guide 
to implement a pilot power quality mitigation in MV 
distribution system in Republic of South Africa for which the 
authors are busy collecting data and exploring further. 

ACKNOWLEDGMENT 
The authors would like to thank ESKOM-South Africa for the 
support on getting relevant data for this case study. 

REFERENCES 
 
[1]  L.I. Eguiluz and J. Arrillaga, “Comparison of power definitions in the 

presence of waveform distortion”, International journal of electrical 
engineering education, Vol. 32, pp.141-153, 1995. 

[2] F.C. Parentoni, J.G Policarpo and F.N. Belchior, “Electrical losses 
calculation under non-ideal conditions: computational versus 
experimental analysis”, Harmonics and Power (ICHQP), 14th 
international conference, January 2010  

[3]  K. Folly, “Reactive Power Compensation, Instructor led training 
course”, Eskom Academy of Learning in association with engineering 
centre of excellence, 2010 

 [4] L. Cividino, “Power Factor, Harmonic Distortion; Causes, Effects and 
Considerations”, 14th International Telecommunications Energy 
Conference, INTELEC '92, pp. 506-509, August 1992. 

[5] R. Gilleskie & W. Grady “Harmonics and how they relate to power 
factor”, Proc. of the EPRI Power Quality Issues and Opportunities 
Conference (PQA 93), November 1993. 

[6] R. Ellenbogen, “At Load Power Factor Correction: A Pilot Project to 
determine the feasibility and economics of small scale “At Load” 
Power Factor Correction” New York State Energy Research and 
Development Authority, August 2010 

[7] U. Celtekligil, “Capacitive Power Factor and Power Quality 
Correction of a Light Rail Transportation System” 50th International 
Symposium ELMAR, Vol. 2, 2008.  

[8] IEEE 1159-2009, “IEEE recommended practice for monitoring 
electric power quality” Transmission and Distribution Committee of 
the IEEE Power & Energy Society, page 19. 

[9] NRS048-2:2007, “Electricity Supply - Quality of Supply, Part 2: 
Voltage characteristics, compatibility levels, limits and assessment 
methods” page 18. 

[10] G.W. Chang, Xu, W., & Ribeiro, P. F. “Modelling of harmonic 
sources-power electronic converters”. Pulse 10.009: 008. APA, 
Chicago, 1998 

[11] IEEE, “IEEE Standard Definitions for the Measurement of Electric 
Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or 
Unbalanced Conditions”, IEEE Std. 1459-2000 



[12]  L.K. Kirmacher, “Economic Operation of Power Systems”,  Wiley 
Eastern Limited, New Delhi, 1979 

[13] N. Vempati, R.R. Shoults, M.S. Chen and L. Schwobel, “Simplified 
Feeder Modelling for Loadflow Calculation”, IEEE Trans. On Power 
Systems, Vol. PWRS-2, No.1, pp. 168-174, Feb. 1987 

[14] C.S. Chen, J.C. Hwang, M.Y. Cho and Y.W. Chen, “Development of 
Simplified Loss Models for Distribution System Analysis”, IEEE 
Trans. on Power Delivery, Vol. 9, No. 3, pp. 1545-1551, July 1994 

[15] S.W. Kau and M.Y. Cho, “Distribution Feeder Loss Computation by 
Artificial Neural Network”, Industrial and Commercial Power System 
Technical Conference, pp. 73-78, 1995 

[16] Jian Liu, Bi Pengxiang, Z. Yanqing and Wu Xiaomeng, “Power Flow 
Analysis on Simplified Feeder Modelling”, IEEE Trans. On Power 
Delivery, Vol. 19, No. 1, pp. 279-287, Jan. 2004 

[17] R.F. Arritt, R.G. Dugan and T.A. Short, “Determining Loss Factor 
with the Use of Sequential-Time Simulations”, IEEE Trans. On Ind. 
Applications, Vol. 51, No. 2, pp.1933-1937, March/April 2015 

[18] R.G. Dugan and B.W. Kennedy, “Industrial Capacitor Application 
procedures for Loss Reduction and Estimation of Harmonics” 13th 
Annual Meeting, Industry Applications Conference, IAS’95, pp. 1117-
1122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Motlalepula Felix Dlamini received the B-Tech. degree 
in electrical engineering from the Vaal University of 
Technology, South Africa in 2007. Since then, he worked 
for Rotek Engineering and Eskom R&D as transformers 
faults investigating technician and a high voltage 
research engineer, respectively.  

He is currently working at Eskom’s integrated demand management as an 
energy efficiency programme manager. He is currently registered as a 
candidate engineering technologist with ECSA and completing Magister 
Technology degree. 

 
Dan Valentin Nicolae, born in Romania 18/09/1948, 

has got his first degree Master in (Applied) Electronic 
Engineering in 1971 from University Polytechnic of 
Bucharest, Romania. 

Between 1971 and 1975 he was with Institute for 
Nuclear Technologies as design engineer, than in 1975 
he joined National Institute for Scientific and Technical 
Creativity – Avionics Branch in Bucharest Romania as 
principal researcher.  

In 1998, DV Nicolae joined Tshwane University of Technology as lecturer 
for heavy current subjects. In 2000 he started his research activity in TUT 
with a stage in France; with this opportunity he started his PhD which has 
been finalized in 2004. In 2015 he joined University of Johannesburg. 
Presently, Prof. DV Nicolae is involved in research in power converters for 
power systems and electric machines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


