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Abstract 

The incident shock wave generally has a strong effect on the transversal injection field in cold kerosene-fueled 

supersonic flow, possibly due to its affecting the interaction between incoming flow and fuel through various 

operation conditions. This study is to address scale effect of various injection diameters on the interaction between 

incident shock wave and transversal cavity injection in a cold kerosene-fueled scramjet combustor. The injection 

diameters are separately specified as from 0.5 to 1.5mm in 0.5mm increments when other performance parameters, 

including the injection angle, velocity and pressure drop are all constant. A combined three dimensional Couple Level 

Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model is used to characterize penetration 

height, span expansion area, angle of shock wave and sauter mean diameter (SMD) distribution of the kerosene 

droplets with/without considering evaporation. Our results show that the injection orifice surely has a great scale 

effect on the transversal injection field in cold kerosene-fueled supersonic flows. Our findings show that the 

penetration depth, span angle and span expansion area of the transverse cavity jet are increased with the injection 

diameter, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the combustor for 

the orifice diameter of 1.5mm. The calculation predictions are compared against the reported experimental 

measurements and literatures with good qualitative agreement. The simulation results obtained in this study can 

provide the evidences for better understanding the underlying mechanism of kerosene atomization in cold supersonic 

flow and scramjet design improvement.  

 

Key words: Scale effect, Transversal cavity injection, Cold supersonic flow, Couple Level Set & Volume of Fluids 

(CLSVOF), K-H & R-T model   

 

1. Introduction 

Development of an optimum supersonic combustion ramjet (scramjet) engines are pivotal for the realization of 

hypersonic vehicles [1]. Understanding the effect of the injection system design on the interaction characteristics 

between incoming flow and fuel in cold supersonic flow is a key issue for development of scramjets. However, design 

of the optimum injection system with great performance capabilities is really a challenge [2]. This is predominantly 

due to the fact that the hypersonic vehicles are generally operated at high Mach number, e.g. 8, which indicates that 

the residence time of the supersonic free-stream within the combustion chamber of the scramjet is extremely short, 

typically on the order of milliseconds [1]. Too short residence time of the fuel incurs incomplete mixing and, hence, 

strongly affects the combustion efficiencies [2].  

 Currently, studies have already addressed the design of injector systems for improving the fuel-air mixing 
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characteristics. For example, transversal fuel injection through a wall orifice is considered to be one of the simplest 

and most conventional approaches for the scramjet engine, possibly due to its good fuel penetration, interaction, and 

mixing [3-6]. Abdelhafz et al. [7] numerically investigated oblique and transverse configurations when gaseous fuel 

was injected into a low-aspect-ratio supersonic combustor. They claimed that injecting fuel obliquely can result in 

higher mixing efficiencies. Huang et al [8] addressed the effect of injection angle of helium, under various pressure 

conditions, on the interaction between fuel and incoming air in the transversal injection flow field. They concluded 

that RNG k  turbulence model is better in predicting the wall pressures under low jet-to-crossflow pressure ratios, 

whilst SST k  is more appropriate for high jet-to-crossflow pressure ratios. Since a counter-rotating vortex pair 

appears behind a jet, fuel–air mixing is induced by jet penetration into supersonic crossflow. S.H. Lee et al. [9-12] 

proposed multiple injections to enhance the fuel-air mixing characteristics. A. Zang et al. [13] found out that a cavity 

model can also improve the characteristics of air mixing, and it has been investigated as a flame holding mechanism 

for the scramjet engine [14-15]. However, to the best of our knowledge, there are few studies in literature for the fuel-

air mixing characteristics in a cold kerosene-fueled supersonic flow. A careful study of fuel-air interaction is essential 

to better understand the underlying mechanism of kerosene atomization in cold supersonic flow as well as the scramjet 

design improvement.  

Hence, in this study we are concerned to numerically investigate the scale effect of varying injection diameters, 

in a cold kerosene-fueled scramjet combustor, on the interaction between incident shock wave and transversal cavity 

injection using a combined three dimensional Couple Level Set & Volume of Fluids (CLSVOF) approach with an 

improved K-H & R-T model.  

 

2. CFD Model and Simulation Approach 

 

2.1. Model geometry 

 

 
 

  

Figure 1 schematically illustrates the real prototype of scramjet combustor presented by Liu [16]. In the original 

design, for the purpose of experimental measurements, the scramjet combustor contains flange 1 and 6, pressure pad 

of upper glass window 3 and upper glass window 4. To simply the CFD model, however, the foregoing components 

are ignored because they do not affect the interaction between kerosene and supersonic flow. Though the strut 8 

affects the flow patterns of the mixture in the combustor, it is not consider either due to the fact that there is not the 

component in the present experimental setup of Liu’s. As a result, the scramjet combustor in this study consists of 

rear cover 2, upper cover 5, lower cover 7 and cavity 9. Figure 2 shows the simplified geometry of the three-

dimensional scramjet combustor by using a combined feature-based modeling approach and Virtual Assembly 

Technique (VAT) [17]. The primary specifications used for the calculation are listed in Table.1. Note that the incident 

Fig. 1. Schematic of a scramjet combustor: 1. flange, 2. rear cover, 3. pressure pad of upper glass window, 

4. upper glass window, 5. upper cover, 6. flange, 7. lower cover, 8. Strut, 9.cavity 
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shock wave, generated by kerosene, is injected from the orifice at the center of the cavity (see Fig. 2 (b)). 

 

 

 

 

Table 1   

Specifications of the scramjet combustor 

 

 

 

 

 

 

 

 

2.2. CFD modeling 

 

Figure 3 shows the meshed CFD model of the scramjet combustor. There are totally 330,000 hexahedron cells 

used for the combustor, in which the mesh cells are concentrated around the walls and the region near the cavity due 

to the strong interaction between incident shock wave and transversal cavity injection.  

 

 

The interaction between incoming flow and kerosene was simulated by commercial CFD software ANSYS 

Fluent 14.0 to understand the interface breakup and coalesce with another interface. As for this, Volume of Fluids 

(VOF) model is generally used for the underlying physical mechanisms [18]. However, additional re-meshing is 

Fig.2. (a) A three-dimensional model of the scramjet combustor, (b) Computational domain of (a) and         

(c) the cavity configuration     

Fig.3. Details of numerical grid of the scramjet combustor                         
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necessitated when VOF is applied for a large deformation of the gas-liquid interface [18]. The mixing process of 

incident shock wave and transversal cavity injection in supersonic flows generally results in more complex turbulent 

structures [19]. Hence, in this study three dimensional Couple Level Set & Volume of Fluids (CLSVOF) model was 

proposed to predict the scale effect of various injection diameters on the breakup behaviors of kerosene droplets in 

the cold kerosene-fueled scramjet combustor. This may be explained as due to CLSVOF coupling the LS (Level Set) 

and VOF. In detail, CLSVOF model contains the advantage of VOF: automatically deal with topological changes 

with a higher-order of accuracy, and also overcomes the disadvantage of VOF: unable to accurately compute such 

important properties as the curvature and the normal to the interface [20]. Consequently, CLSVOF is more accurate 

than both the standalone LS and VOF models [20]. Note that the LS and VOF methods belong to one fluid method. 

A single set of the conservation equation is therefore used for the whole domain, and there are no separate gas-liquid 

velocities. In this case the Navier-Stokes has the following form [20]: 

      
( )

( ) (2 ) stv v v v v v

u
u u p D F g

t

   
         

                      (1) 

and the continuity equation is  

           
                                                                        (2) 

where is the velocity vector, is the fluid density defined by Eq. (3), is the time, is the fluid viscosity 

defined by Eq. (4), D is the viscous deformation tensor defined by Eq. (5), g is the gravity vector and the body force 

due to the surface tension, , is defined using the immersed boundary method to represent the presence of the solid 

surface in the fluid. We refer the readers to the work of Yu (2007) [21] and T. Mènard (2007) [22] for details of the 

equations (3) ~ (5) and the implementation of the immersed boundary method.  

                             (3) 

                                                                     
(4) 

                                                                           
(5) 

In addition, both energy equation and the state equation of the gaseous mixture were also taken into account in 

this study. The detailed formulas are presented as follows: 

The energy equation for a droplet is [23]: 

m s

de
q Q

dt
                                         (6) 

where 0
vs s fe c T h  , 

s L

dm
Q h

dt
 ―the energy of phase transitions, 

vsc ―specific heat capacity,
Lh ―the latent heat 

of evaporation, q―heat flux to a single droplet from the surrounding gas flow. It is determined by the following 

forms[24]： 
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where 2 3 1 3 2 32 0.16 Re Pr , Pr
2

d
t

C
Nu S   g g , dr

u
dt


r

r ―fluid velocity vector, r
r
―droplet coordinate,  v

r
―droplet 

velocity, T―gas temperature, 
sT ―droplet temperature. 

The state equations for gaseous mixture has the following form [25] 

/g k k
k

p R T Y W                             

2( ) 2k vk ok
k

E Y c T h u k    r                                 (8) 

where E is the gas energy, k ―the turbulent kinetic energy, 
kW ―the molar mass of the kth gas component, 

okh ―the 

specific chemical energy,  vkc ―the specific heat capacity, 
kY ―the mass concentration of the kth gas component, 

T―the gas temperature, 
gR ―the universal gas constant. 

For all simulations reported in this paper, the pressure-based (coupled) double precision solver was used to solve 

the governing equations, i.e. Reynolds averaged Navier-Stokes (RANS) equations. The boundary conditions for the 

CFD modeling were defined to mostly match the experimental scenarios reported by Liu so that the simulation results 

can be compared with those from the coming tests. Since the model ignored the flange, uniformly distributed speed, 

pressure and temperature were assumed on the air inlet. The strut was not considered in this study due to no related 

component available in the present experimental setup. Thus, the airflow model around the strut was not considered 

in the current predictions.  

In the present study, the turbulence was modeled using Menter’s two-equation shear stress transport (SST) k-ω 

model [26]. This is because the SST model combines the advantages of the k-ω model near solid surfaces with the k-

ɛ model. Consequently, this model is less sensitive to the specification of free stream turbulence level compared with 

the k-ω model and performs comparatively well in adverse pressure gradients and separated flows. Moreover, the 

SST model has been used successfully for transverse injection flow in previous studies [27]. Following the foregoing 

turbulence model, the turbulence characteristic values used here were: turbulence intensity―8%, hydraulic 

diameter―0.5, 1.0, 1.5mm. In addition, the courant-Friedrichs-Levy (CFL) number remained at 0.5 with suitable 

under-relaxation factors to ensure stability. 

For the coming air, it was assumed to be a thermally and calorically perfect gas, and the mass-weighted-mixing 

law of viscosity was utilized; the key operation properties were separately set to be a Mach number of 2.2 and a 

stagnation pressure P0 of 7.85 MPa. For kerosene jet flow, the performance parameters were specified as an injection 

velocity of 70ms-1, injection angle of 90º, and injection pressure drop of 2MPa, respectively. At the inlet and outlet 

of the scramjet combustor, a fixed pressure of 1.013×105 Pa was specified. At the wall no-slip boundary conditions 

were used for the channel wall, in which the standard wall functions defined in FLUENT were applied to model the 

near-wall region flow. The stagnation temperature T0 was designated as 300K. The other parameters of kerosene, e.g. 

density 3=0.78 g cm , viscosity =2u mPa s , and surface tension 3=23.6 10 N m  were also included. 

 

3. Results and Discussion 
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In this section, the 3D scramjet combustor, previously depicted from Liu’s experiment, is tested numerically to 

characterize the mixing between incident shock wave and transversal cavity injection, i.e. the kerosene atomization, 

in a cold supersonic cross airflow. The mixing characteristics under the different kerosene-injecting diameters are 

carefully investigated through the following four key behaviors of droplets, e.g. penetration depth, span expansion 

area, angle of shock wave and sauter mean diameter (SMD) distribution.  

 

3.1. Numerical accuracy 

 

 

 

 

The grid-dependency study demonstrated that the grid scale has a slight effect on the transverse injection flow 

field in supersonic flows [28]. As such, as depicted in section 2.2, the medium sized domain (330,000 hexahedron 

cells) was considered to be sufficient to produce analogous results for the current numerical predictions [28].   

The method of convergence and discretization error analysis used in this study is based on previous numerical 

investigations [29]. In detail, the computational model is believed to reach a state of convergence once the residuals 

for the flow field parameters (such as continuity, momentum, etc.) fall below a certain order of magnitude.  

For all simulations in this study, the solution convergence is judged according to the residuals of the governing 

equations. The numerical results reported were based on the criteria that when the residual of each equation is smaller 

than 1.0×10-3, the computations are stopped and remain stable. The average time step was around 10 μs, and a typical 

run actually took 2107 time steps to simulate a real time of about 21 ms. Figure 4 shows the residual variations of 

different flow field parameters with the iteration number, in which the primary operation parameters include 

Fig.4. Residual variation with iteration number under various injection diameters (A) 0.5mm, (B)1.0mm and 

(C) 1.5mm 
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continuity, velocity, energy, k and omega for the computational domain. The k and Omega are both the flow 

parameters related with the used viscous model, i.e. SST . As observed, the literation number for the injection 

diameters of 0.5mm, 1.0mm and 1.5mm are approximately 450, when the computational model of the scramjet is in 

convergence. Note that the situation that all but energy is less than a certain value, e.g. 10-3 is also considered to be 

converged [28].   

 

3.2. Penetration height 

 

Figure 5 shows the penetration heights of the kerosene jet, in the scramjet combustor (Fig. 2), under the different 

injection diameters. For different injection diameters, the main flow structures obtained herein are identified, which 

includes primary compression shock, compression shock normal to the wall and curved central compression shock. 

These are in qualitative agreement with [30]. Furthermore, as observed along the Y direction, for orifice diameter of 

0.5mm, most of the kerosene droplets are located in the range of -40 to 10 mm, far away from the outlet of the 

combustor (Fig. 5 (a)); for 1.0mm orifice diameter, some of the droplets lie at the outlet between 10 mm and 25mm 

(Fig. 5 (b)); when the injection diameter is increased to 1.5mm, the majority of the droplets appear at the outlet , i.e. 

ranging from 0 to 35mm (Fig. 5 (c)). It is therefore inferred that at the identified injection velocity, angle and pressure 

drop the penetration height of the kerosene droplets increases when the injection diameter is increased. This can be 

explained as follows: an increase in injection diameter results in an increase in total momentum of liquid jet from the 

orifice and, hence, in inertia force of liquid jet. The increased inertia force causes the liquid jet to deflect difficultly, 

thereby enlarging its penetration height.  

 

 

 

3.3. Span expansion area 

 

 

Figure 6 shows the span expansion variation of the kerosene jet, within the plane XOZ in the scramjet combustor, 

with the injection diameter ranging from 0.5mm up to 1.5mm. The span expansion area is 60 mm vertically away 

k 

Fig.5. Penetration heights of the kerosene jet under the different injection diameters (a) 0.5mm, (b) 1.0mm and 

(c) 1.5mm

Fig.6. Span-wise expansion area of the kerosene jet under the different injection diameters 
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from the orifice in the cavity shown in Fig. 2. As observed, when the injection diameters are separately 0.5, 1.0 and 

1.5mm the span area of the kerosene jet is increased. The expansion breadths and angles of the kerosene jet in the 

plane XOZ approximately increase from 35 mm, 37º to 40 mm, 50º and 49 mm, 59º, respectively. This may possibly 

be attributed to the fact that an increase in injection diameter is accompanied with an increase in flow rate of the 

kerosene jet. The more flow rate in turn results in the greater expansion breadth and angle of the span area. 

 

3.4. Angle of shock wave 

 

Figure 7 shows the angle of shock wave of the kerosene jet from the orifice in the cavity when the injection 

diameter varies. When the orifice diameter is increased from 0.5 to 1.5mm, as shown in Fig. 7, the shock wave angle 

is increased from 57º to 65º and 69º, respectively. Furthermore, the injection distance of the kerosene droplets, at 

the outlet of the combustor shown in Fig. 2, is also separately increased from 26 to 29 and 38 mm. The foregoing 

results are in good agreement with those in Fig. 5. It is therefore concluded that kerosene droplets are prone to mixing 

with incoming flow and atomization with an increase in shock wave angle. This phenomenon can be explained by 

the increase in total momentum of liquid jet from the orifice and, hence, in inertia force of liquid jet. Generally, the 

increased inertia force causes the liquid jet to deflect difficultly, thus enlarging the shock wave angle of kerosene jet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.7. Angle of the shock wave of the kerosene jet under the different injection diameters 
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3.5. Sauter mean diameter (SMD) distribution 

 

As for the droplet atomization supplied by SMD distributions, for simplicity Blob model was utilized for the 

primary atomization, in which the droplet size was designated as the injection diameter, i.e. 0.5, 1.0 and 1.5mm, 

respectively [31]; an improved K-H & R-T model, i.e. K-H & R-T model II was used for the description the droplets’ 

breakup due to the fact that the numerical results using the foregoing model are in good agreement with the 

experimental evidences at the same settings in supersonic crossflow [31~32].The detailed description on K-H & R-T 

model II is presented as follows: according to [31], firstly, the shear interaction occurs between liquid jet and 

supersonic flow as the liquid jet injects from the orifice, when K-H wave appears on the liquid jet and so many 

droplets peel off from the liquid jet. Thus, K-H model is appropriate to calculate the process. Then, as the liquid jet 

enters into the combustion chamber, droplets continuously peel off the liquid jet and most importantly, the peeled 

droplets break up. It is true to consider the foregoing phenomenon affected by both K-H wave and R-T wave. For this 

reason, a combined K-H and R-T model, i.e. K-H & R-T model II is better to characterize the process. However, there 

is another important issue to determine, or the time when the R-T model is incorporated into K-H model for 

calculating the atomization process of the droplets. The related formulas for the above description are [32]: 

1) K-H model 

                              
0.5 0.7

1.67 0.6

(1 0.45 )(1 0.4 )
9.02

(1 0.87 )g

Oh T

r We

  



                              (9)    

                                
0.5 1.53

0.6

0.34 0.38

(1 )(1 1.4 )
gd

Wer

Oh T




 
    

                             (10) 

wher is the surface wave length of liquid jet at the maximum growth rate , Red dOh We ―Ohnesorge number 

of droplet, 2
d dWe rv  ―Weber number of droplet, 

d dRe rv v ―Reynolds number of droplet, 
d ―the density of 

liquid jet, 
d gv    ―the relative velocity between droplet and gas, r―the radius of droplet,

g ―the density of 

gas, σ is the surface tension at the interface , 
gWe ―Weber number of gas, 

dT We Oh .  

   The mean radius of droplets r* after breakup can be determined by 

0 0

* 2 0.33

02 0.33

r (3 / 2 )
min

(3 / 4)

B B r

r v
B r

r



  
     

                           (11) 

The breakup velocity of droplets is  
*( )

b

dr r r

dt 


                                       (12) 

where
13.726 /b B r   ;

0B ,
1B are constant, 

0 1.22B  ,
1 30B  . 

2) R-T model 

                                 
3/ 2[ ( )2

3 3
d d g

RT
d g

g  
 

 
 


                             (13) 

where 
RT is a frequency of an unsteady wave at the maximum growth rate,  dg ― an acceleration of droplets   



10 
 

   The wave number
RTK is  

( )

3
d d g

RT

g
K

 


 
                                                                 (14) 

   The breakup time for droplets
RT is  

RT
RT

C 


                                                                             (15) 

The mean radius of droplets r* after breakup is 

* RT

RT

C
r

K


                                                                              (16) 

whereC
,

RTC are constant; 1C  , 0.35RTC   in this study. 

3) Time criterion on incorporating R-T model into K-H model 

As discussed previously, as the liquid jet enters into the combustion chamber, droplets continuously peel off 

from the liquid jet and the peeled droplets break up. This is caused by a combined effect of both K-H wave and R-T 

wave. Due to the fact that either the breakup of droplets or the split of liquid jet is caused by the drag forces of gas, 

the criterion ,i.e. time scale herein can be determined based on [32] 

*

*

/ 5.0

( / ) /

b

d d g

t t

t d v 

 


 
                                 (17) 

where 
bt is the breakup time of droplets, *t ―the characteristic time,

dd ―the diameter of droplet. 

According to formula (17), if
bt t , the breakup of droplets is calculated using K-H model, whilst if

bt t , it is 

simulated by a competing effect of K-H and R-T models. The advantages of the criterion are that 1) it can be used at 

various gas velocities and in the wide range of Weber number, e.g. 102~106 and 2) it has most simple form and even 

do not need any experimental values for numerical prediction [32].   

In addition, in order to provide the true data for evaluating mixture quality, the evaporation of kerosene droplets 

was also taken into account in all simulations. Due to the non-uniformity interaction between fuel and air in 

supersonic cross flow, the non-equilibrium evaporation model was utilized to determine the evaporation rate [32, 33]   

                           log(1 1 )g e wm d D N Y Y    & g g g                             (18) 

where d is the diameter of droplet, 
g ―the density of gas, D―mass diffusion coefficient, N ―Nusselt number 

of mass transfer, 0
2

0

21 1
exp[ ( )]

( )
sN b

w
p b s e

RTW P H
Y m

W R T P T pd




   & . We refer the readers to the work of Nickolay 

N.Smirnov [33] for details of the above expression. For the foregoing evaporation model, the related thermal 

characteristics for gas and droplets are: ambient pressure p=1.013×105 Pa, Initial droplet temperature ― T=300K, 

static temperature of gas (considering evaporation) ― T=536K, gaseous phase―air, liquid―kerosene, mass 

diffusivity (m2/s) ―2.88×10-5, thermal conductivity (W/m·k) ―0.0454, the latent heat of evaporation
Lh ―226kj/kg. 

Figures 8 and 9 separately show the sauter mean diameter (SMD) distributions of the kerosene droplets 

without/with the evaporation of kerosene along the x direction, as shown in Fig.2. These were based on the different 

injection diameters, i.e. 0.5, 1.0 and 1.5mm. Note that the SMD distribution herein indicates the kerosene droplet 
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distribution at the cross-section vertical to the supersonic flow direction (Fig.11). The distance in Figs. 8~10, i.e. 50, 

100, 150 and 200mm is the length between cross-section and orifice in the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 shows the SMD distribution of the kerosene droplets, along the x direction, under the different injection 

diameters without considering evaporation. As observed, when the injection diameter is increased from 0.5 to 1.5mm 

the concentration of the kerosene droplets gradually varies along the x direction. One interesting finding is that 

without the evaporation 94.53% of the smallest droplets (0~50 um) appears at the location, about 50mm away from 

the orifice, when the injection diameter is 0.5 mm, and that when the injection diameter is increased to 1.5mm about 

93.02% of the 50 um droplets are located at the region, 200mm far from the orifice, right at the outlet of the combustor. 

Note that 94.53%, 93.02% are separately accounted for the smallest droplets of all kerosene jets in this study. As such, 

it is inferred that the injection diameter in the combustor is strongly accompanied with the number of the smallest 

kerosene droplet. This can basically be explained as due to the fact that an increase in injection diameter results in an 

increase in total momentum of liquid jet from the orifice. The greater momentum generally causes the greater 

concentration of the smallest kerosene droplet. This can also schematically be demonstrated by Fig.11, which presents 

Fig.8. SMD distribution of the kerosene droplets under the different injection diameters (A) 0.5mm, (B) 1.0 

mm and (C) 1.5mm without considering evaporation 
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the velocity distributions of the kerosene droplets, along the cross-section vertical to the air-stream direction, under 

the different injection diameters, i.e. 0.5mm, 1.0mm and 1.5mm. At the outlet of the combustor, as observed, the 

expansion area of the kerosene droplets with high speed in Fig. 11 (c) is really greater than those in Figs. 11 (a) and 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows the SMD distribution of the kerosene droplets, along the x direction, under the different injection 

diameters with evaporation. As observed, for the injection diameters of 0.5 and 1.5mm, about 96.21% and 85.02% of 

the smallest droplets appear at the identified positions with those in Fig.8. Compared the number of the kerosene 

droplets (0~50um) without evaporation and that with evaporation, it is further seen that for the injection diameter of 

0.5mm, the number of the smallest droplets reduces from 89% without evaporation to 71% with evaporation at the 

outlet of the combustor, whilst for the injection diameter of 1.5mm, at the outlet the number reduces from 93% to 85% 

(Fig.10). Consequently, it is concluded that evaporation also strongly affects the droplet breakup. This may be 

explained as due to the fact that evaporation causes the broken-up droplets to gradually disappear during the 

interaction of fuel and air. From the foregoing analysis, it is therefore concluded that the injection diameter in the 

combustor is strongly accompanied with the number of the smallest kerosene droplet. The injection diameter therefore 

Fig.9. SMD distribution of the kerosene droplets under the different injection diameters (A) 0.5mm, (B) 

1.0 mm and (C) 1.5mm with considering evaporation
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has a great scale effect on the injection breakup and, hence, on the droplet atomization in cold supersonic flow. The 

breakup condition of the kerosene droplet is based on the fact that the lower concentration of kerosene indicates the 

smaller diameter of the droplet [34]. This can basically be attributed to the fact that an increase in injection diameter 

results in an increase in total momentum of liquid jet from the orifice. The greater momentum generally causes the 

greater concentration of the smallest kerosene droplet. Under the effect of evaporation, a wider expansion area appears 

along the x direction, which is good to improve the mixture quality. 

 

 

 

 

 

 

4. Comparison of Results with Published Data 

 

Though the numerical predictions in this study are based on the prototype of the 3D scramjet combustor used in 

Liu’s experiment, there are no experimental data available in literature. Hence, in order to verify the CLSVOF-based 

predictions obtained in this study the mixing characteristics, between incident shock wave and transversal cavity 

injection, i.e. the kerosene injection in a cold supersonic cross airflow, are compared against the published results. 

These results were achieved by the following experimental approaches: high speed photography, high speed 

shadowgraph and particle image velocity (PIV) [35]. The comparisons, including penetration depth, span expansion 

area and angle of shock wave, are implemented for identified injection angle, i.e. 90º and pressure drop, i.e. 2MPa. 

The discrepancies between the experimental measurements and this study are 1) 3D model of the scramjet combustor 

(see Figs. 2 and 12), and 2) injection velocity of the supersonic air-stream. The injection speeds in this study and the 

measurements are separately 70 ms-1 and 63.2 ms-1.  

Fig.10. Comparison of the number of the kerosene droplets (0~50um) (A) without and (B) with evaporation 

Fig.11. Velocity distribution of the kerosene droplets along the cross-section vertical to the air-stream direction 

in the combustor (a) 0.5mm, (b) 1.0mm and (c) 1.5mm  
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4.1. Penetration height 

 

Figure 13 shows the boundary curve variations of kerosene jet under different injection diameters (0.4 and 1.0 

mm) and pressure drops (0.5, 1, 2, 3, 4 MPa).These experimental evidences came from the original image photos 

previously obtained by using high speed photography, high speed shadowgraph and particle image velocity (PIV) 

[35].Compared with the similar scenario in Fig. 5, as observed, there is a qualitative agreement between the numerical 

predictions in this study and the experimental results in [35]. That is, the penetration height of the kerosene jet trends 

to increase when the injection diameter is increased. For example, for the pressure drop of 2MPa, as shown in Fig. 

13, when the injection diameter D is 0.4 mm, the penetration height of the kerosene jet is measured as 5mm, whilst 

when D is 1.0 mm the penetration height is approximately increased to 12.5mm. The discrepancy in magnitude 

between CFD predictions and practical observations can be predominantly due to the different geometric structure of 

the scramjet combustor. And also it can be attributed to the different operation parameters, e.g. injection speed and 

diameter. Besides, another comparison is also implemented between Fig.5 and [36]. The qualitative agreement is also 

found: literature [37] shows that the penetration height is increased with the pressure, and the pressure is considered 

to be equal to jet velocity. The jet velocity increase indicates the total momentum increase of the liquid jet, which 

agrees well with section 3.2. 

 

 

 

4.2. Span expansion area 

 

Figure 14 shows the span expansion areas under different injection diameters, i.e.0.4 and 1.0 mm, and identified 

pressure drop, i.e. 2 MPa. These measurements were achieved at the position of 15mm vertically away from the 

orifice of the combustor by using a combined high speed photography, high speed shadowgraph and particle image 

velocity (PIV) with image processing technique[36]. From Figure 14, it can be seen that an increase in span expansion 

area is accompanied with an increase in injection diameter. For the orifice diameters of 0.4 and 1.0mm, their 

Fig.12. (a) experimental setup of the scramjet combustor; (b) 3D model of the combustor [35]          

Fig.13. Measured penetration height of liquid jet under different injection diameter (a) 1.0mm and (b) 0.4mm [35]  
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expansion width and angle are approximately 20 and 32mm, 16ºand 31º, which are in qualitative agreement between 

the numerical results (Fig. 6).The discrepancy in magnitude between CFD predictions and experimentally 

measurements is also attributed to the different geometric structure of the combustor and attributed to the different 

operation parameters. 

 

 

 

4.3. Angle of shock wave 

 

Figure 15 presents the measured shock wave angle of the kerosene jet when the pressure drop is 2MPa and the 

injection diameter varies from 0.4 to 1.0mm. The used measurement methods herein are the same as those in Figs.13-

14. As observed, the shock wave angle values obtained from the experimental tests are in good qualitative agreement 

with those predicted by CFD simulations. The angle of shock wave is increased from 35.3ºto 39.9ºcorresponding to 

the injection diameter of 0.4 and 1.0 mm, respectively. However, another important issue is noted in designing the 

scramjet combustor that the CLSVOF-based predictions showed that the stronger shock wave incurs the greater total 

pressure loss (table 2), which was also demonstrated by the experimental evidences in [35]. 

 

 

 

Table 2 Pressure loss under different injection diameter  

Injection diameter     Inlet pressure (Pa)    Outlet pressure (Pa)    Pressure loss (Pa)   

 D=0.5mm       785000         637495         147505        

D=1.0mm       785000         617033        167967        

 D=1.5mm      785000         581672        203328        

 

Based on the forgoing comparisons between published evidences and numerical results, though there are the 

discrepancies in magnitude, the findings in this study suggest that the predicted scale effects of the different injection 

diameters on mixing in the cold supersonic flow using the combined CLSVOF approach with improved K-H & R-T 

model are in qualitative agreement with the those in literature. 

 

5. Conclusions 

 

The scale effect of various injection sizes, in a cold kerosene-fueled scramjet combustor, on the interaction 

between incident shock wave and transversal cavity injection was studied using a combined three dimensional Couple 

Fig.14. Measured span-wise expansion area under different injection diameter (a) 0.4mm and (b) 1.0 mm [35]  

Fig.15. Measured angle of the shock wave of the kerosene jet under the different injection diameters (a) 0.4mm 

and (b) 1.0 mm [35] 
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Level Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model. The numerical simulations 

were mainly focused on penetration depth, span expansion area, angle of shock wave and sauter mean diameter (SMD) 

distribution when the injection angle, velocity and pressure drop were all constant. This work demonstrates that the 

penetration height, span expansion area and shock wave angle of the kerosene droplets are separately increased with 

the injection size, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the 

combustor for the orifice diameter of 1.5mm. The calculation predictions are compared against the reported 

experimental measurements and published literatures with good qualitative agreement. The results shown here 

demonstrate the great effect of kerosene-based injection size on the interaction between incident shock wave and 

transversal cavity injection in the scramjet combustor and the mixing characteristics in cold supersonic flow. However, 

the current results suggest further investigations. More work is required to quantitatively validate the obtained 

simulations based on Liu’s experimental setup. The numerical results obtained in this study can provide the evidences 

for better understanding the underlying mechanism of kerosene atomization in cold supersonic flow and the scramjet 

design improvement. 
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