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Abstract 

This paper evaluates the viability of anaerobic digestion technology as a treatment process for 

organic waste with an intention of solving the landfill crisis as well as mitigation of greenhouse 

gases. The proposed technology consists of two digesters system using soaking as a pre-treatment 

method, and with recirculation of the process water and digested sludge. A financial model was 

developed to evaluate the economic feasibility of this technology as a renewable energy. Instead 

of the waste decomposing at local landfills, is converted into a source of energy while the by-

products of the process are treated and used as fertilizers. This technology will require a capital 

investment of R 2, 2773,900 with a capacity to treat 730000 kg of waste annually. The annual 

production cost of R1, 269,138 was calculated. The proposed model has debt repayments of R 

2,478,551. The total revenue from year 2 – 5 was R 2,360,800, R 2,930,158, R 3,457,314.6 and 

R 3,988,407.6, respectively. These AD facilities can produce up to 110960 kWh per annum of 

biogas fuel. The net present value of R3, 042,592, internal rate of return (IRR) of 33% and (BCR) 

of 1.96 shows that the technology is economically feasible.  
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1. Introduction 

Looking at the waste management hierarchy which include treatment and disposal of organic 

waste, energy recovery from waste, recycling and only disposing to landfill as a last alternative, 

requires that the external costs of different waste management options are valued in monetary 

terms using appropriate valuation methods, in order to ensure that they are properly understood 
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and accounted for in decision making. This will allow all disposal options to be compared equally, 

on the basis of their overall costs to society per tonne of waste treated. 

Worldwide, countries are embarking on investing in green technologies and jobs. For these 

reasons, governments have recognised the importance of anaerobic digestion, with many of them 

providing financial incentives for farmers to install anaerobic systems. This is because energy 

from anaerobic digestion is considered as biomass energy and, therefore, a form of renewable 

energy (Donoso-Bravo, et al., 2011).  

This model aim to minimise capital investment and create green jobs for both skilled and 

unskilled individuals. In this paper, net costs were estimated based on the following 

considerations. Firstly, the plant was set to 5 year plant operating life with the cost of constructing 

the plant spread over 6 months, a depreciation schedule of 2 year was set. Furthermore, taxation 

rate was defaulted to 29% and the discounted cash flow rate was set at 8%. Lastly, the 

optimization function used is "Net Present Value". 

 

2. Economic evaluation process 

2.1 Production costs 

Factors including durability and price were considered when selecting equipments. Quotations 

obtained from manufacturers were used to estimate all equipment costs. The AD model was 

designed based on a 5 years project life with daily operations of 8 hours. An estimate of the 

variable and fixed costs of generating the gas and the production flow sheet are in Table 1 which 

gives the raw material, labour requirements, and the capital cost estimate. In addition to raw 

material, labour requirements, and the capital cost estimate, factors such as depreciation, debt 

repayments, fixed and variable costs were also taken into account. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Summary of production costs (Sinnott, 2005). 

Description Typical values 

Variable costs 
Raw material from flow-sheets 
Utilities from flow-sheets 
Shipping and packaging 10% of the maintenance cost 
Miscellaneous materials usually negligible 

Sub-total A 
Fixed costs 
Maintenance 5–10% of fixed capital   
Operating labour from manning estimates 
Laboratory cost 20–23% of operating labour 
Supervision 20% of operating labour 
Plant overheads 50% of operating labour 
Capital charges 10% of the fixed capital 
Insurance 1% of the fixed capital 
local taxes 2% of the fixed capital 
Royalties 1% of the fixed capital 

Sub-total B 
Sales expense 20–30% of the direct production cost 
General overheads 
Research and development 

Sub-total C 
Annual production cost= A+B+C 

Production costs £/kg= Annul production cost/ annual production rate 

   

2.2 Cash flow 

Cash flow method (Figure 1) was used to show the cash flow over the 5 year project life, 

where A – B shows the starting point of the plant including construction, investment required to 

design the plant as well as commissioning. Point B – C shows the heavy flow of capital to build 

the plant, and provide funds for start-up. Stage C – D illustrates the cash-flow curve turns up at 

C, as the process comes on stream and income is generated from sales. At this point, the net cash 

flow is positive. However, the cumulative amount remains negative until the investment is paid 

off at point D. Point D is referred as the break-even point which is commonly known as the pay-

back time.  Point D – E shows the cumulative cash flow is positive that is project is gaining a 

return on the investment. Point E – F represents the end of project life where the rate of cash flow 

may tend to fall off, due to increased operating costs and falling sale volume and price, and the 

slope of the curve changes. The point F gives the final cumulative net cash flow at the end of the 

project life. 



 

Figure 1: Typical cash flow diagram (Sinnott, 2005). 

 

2.3 Profitability analysis 

The profitability of the model was evaluated using the net present value (NPV), internal rate 

of return (IRR) and benefit cost ratio (BCR). The NPV substitutes the costs of capital at an interest 

rate for the discounted cash flow rate of return (Garrett, 1989). It is given by the estimated net 

future value in year n over the interest rate percentage (Equation 1). The positive value of the 

NPV will indicate profitability of this technology (SAICA, 2014; KPMG, 2014). 
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Where r is the interest rate/100 and n is the number of years 
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When comparing which project to invest in, IRR is often preferred over other investment 

criteria by financial officers (Brealey, et al., 2007). Internal rate of return is defined as the interest 

rate paid on the unpaid balance of a loan such that the payment schedule makes the unpaid loan 

balance equal to zero when the final payment is made (Newnan, et al., 2004). Conventional 

approach is to invest in only in projects with positive IRR. In this study, IRR were calculated 

using the equation 3. 
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Benefit cost ratio (BCR) is also one of the profitability tool that was used to assess the 

profitability of the model. It is normally expressed as discounted present values in monetary terms 

(Equation 4). For economic viability of process the ratio must always be greater than 1 and the 

higher the ratio the more chances for attraction of investors (Mian, 2010). 
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3. Result and discussion 

The proposed economic evaluation model for AD technology consists of four preparation 

stages prior digestion. The preparation stages include: sorting of raw material achieved through 

hand sorting, screening of the undesired components, size reduction and soaking which was used 

as a pre-treatment method for the feedstock which takes place in the mixer. The raw materials are 

then pumped into the digester and the gas collected is then stored. To ensure accurate costing, the 

quotations supplied by the suppliers were used. For economic viability of this project, the NPV, 

BCR and IRR were considered. 

3.1 Plant layout 

In this section, an AD system was considered. Isometric projections of AD plant layout are 

presented in Figure 2 and Figure 3.  



 

Figure 2: Isometric projection of the AD plant layout (drawn using Autodesk inventor, 2014) 

 

The plant is composed of three interconnected sections: the mixer, digestion and scrubbing. 

With the aim of cost minimization for the AD technology by considering the plant operation 

parameters, feedstock pre-treatment strategies such as particle size reduction and soaking of 

feedstock prior digestion were employed to improve the methane yields. A site selection next to 

the landfill was considered with an intention of cutting costs for transportation of feedstock and 

taking into account the exhaustion of landfills, the demand for reduction of GHG and the carbon 

footprints. The technology offers a mixer to promote homogeneity of the feedstock. It is further 

accompanied by two batch reactors suitable to degrade 2000kg of organic matter. 

The two anaerobic digesters will be aligned in parallel to each other with a working volume 

of 35m3 each (Figure 4), to be located in Germiston, a town near the University of Johannesburg, 

with the intention of treating the organic waste collected in the surrounding area and the 

university. This technology has a total capacity of treating 62 000 kg/ month of organic waste that 

is approximately 730000 kg/year of waste. The generated methane will then be stored in a 

gasometer with a volume of 2500 m3. The heat required by the digester to keep a correct operating 

temperature for bacteria ranges between 35 – 45 ˚C. In addition, the plants estimated to produce 

about 547 500 kg/year of compost which will be treated and used as fertilizers. 



 

Figure 3: Side and top views of the proposed AD plant (drawn using Autodesk inventor, 2014). 

 

 

Figure 4: Orthographic projection of the AD plant layout (drawn using Autodesk inventor, 

2014) 



3.2 Mass balance 

Material and energy balances were conducted to quantify utilities and products on a yearly 

basis. These were linked to the input unit costs in order to calculate the actual treatment cost per 

unit mass of waste taking into account factors such as depreciation, debt repayments, fixed and 

variable costs. Based on plant projections in section 3.1, the reactor have the capacity to 

accommodate 35 m3 working volume with continuous feeding of 1000 kg/d per digester. This 

model allows a working schedule 8 hours per day for 30 days per month based on a 5 year project 

life. Table 2 shows the summary of materials balances for the process model. The information 

presented was used to quantify the costs for utilities and products.  The average biogas production 

from both digesters is about 304 kWh/day, which is equivalent to approximately 110960 

kWh/year (Table 3) of primary energy in the case of 8 hours operation per day and 2000 kg/day 

waste feeding for 7 days per week. 

 

Table 2: Material balance for the model 

  
Mass 
balance 

Energy 
balance Cost 

Monthly 
costs Annual costs 

Waste   1000 kg 51  
Water  1000 L 114.95 R 30 R 13,440 R 161,280 
Electricity  0.325 R 21.28 R 9,536.8 R 114,441.6 
Labour   R 13.39 R 6,000 R 72,000 
Operating costs  R 64.68 R 28,976.8 R 347,721.6 

 

Table 3: Daily, monthly and annual energy production rates 
 Primary energy [kWh] 

Daily  304 

Monthly 9424 

annual 110960 

 

3.3 Summary of costing AD model 

Raw materials used in this technology are biodegradable wastes such as animal manure, food 

waste, and garden waste. These materials are regarded as waste and are disposed to landfills; 

therefore, no raw material costs are involved. The pilot plant will be situated next to a landfill 

site, avoiding any direct transportation cost.  

Detailed cost for AD model with a feeding capacity of 1000 kg/day of organic matter and 850 

L of water per digester was conducted. The model costs were estimated using South African Rand 



at an exchange rate of US$1: R 10.30 (SARB, 2014) 0 with the corresponding funding with a total 

annual rate of 9 % per annum. The proposed annual rate was in accordance with those of Peters 

and Timmerhaus (1991) 0 who reported an interest rate of 9% or more for attraction of investors. 

Company tax rate and value added tax of 29% and 14%, respectively, were assumed (Table 4). 

The cost of R0.065/L for water was used (Anon., 2014). An electricity cost of R0.66 was used 

(rates, 2014). 

Table 4: AD process model assumptions 

Description      Units Value 

Annual Working Hours Hrs/yr 5376 

Plant Estimate Down Time Hrs/yr 960 

Plant Available Time Hrs/yr 4416 

Actual Plant Capacity t/hr 960 

Exchange Rate  R/$ 10.30 

Project Period  Yrs 5 

Depreciation Period  Yrs 5 

Capital Financing Period Yrs 5 

Margin on Investment % per annum 3% 

Dept   % Capital 1 

Equity   % Capital 0 

Bank Finance Fee  % on debt 2.00 

Actual Annual Production kW/yr 714760 

Available Plant Capacity kW/yr 720000 

Actual Production  kW/day 1958.0 

Input Cost   
Electricity Cost  R/KWh 0.66 

Water Cost  R/L 0.065 

Cost of sodium hydroxide R/kg  
Electrical Power Consumption KWh/hr 68.9 

Water Consumption  L/day 500 

Output Cost   
Sale of biogas  R/kg R32.2 

Sale of compost     R/kg R65 

 

The figures presented in this section are estimates based on desktop studies. All capital 

equipment was specified to the expected process duties, electrical and civil requirements. Cost 

calculations were conducted for an AD technology model with the capacity of treating 2000kg 

waste per day production capacity and with a total commissioning cost of R 401,076 (Table 5). 

These include the cost of two digesters (R 43,800), piping and valves (R 23,900), civils (R 

47,000), transportation (R 30,089), wiring (R 56,500) and installation (R 105,859).   



Table 5: AD plant commmissioning costs 

Equipment  Qty Unit Price Total Price 

Reactor  2 R 21,900 R 43,800 

Piping and valves Set R 23,900 R 23,900 

Structural work Set R 97,700 R 97,700 

Civils Set R 43,400 R 43,400 

Electricals and Instrumentation Set R 56,528 R 56,528 

Transport and Logistics 1 R 25,889 R 25,889 

Installation & commissioning 1 R 109,859 R 109,859 

Total R 401,076 

 

The study also focused on the profitability of the technology over the given period of 5 years.  

The cost included fixed and variable costs of the process, taking into account 5% maintenance fee 

per annum as a percentage of capital investment. Management fee of 3% per annum of revenue 

generated was also considered. The total capital investment of the project was R2, 273,900. Again 

the fixed costs for this technology were estimated to be R792, 622 and the corresponding direct 

production costs of R1, 074,671. The annual production cost of R1, 269,138 was calculated (Table 

7). The proposed model has debt repayments of R 2,478,551 calculated using 100% debt funding 

over a 5 year project life at 9% interest rate per annum. 

On the 1st year of the project, R401,076 was used to commission the plant. At this stage, no 

revenue was observed as a result a negative cash flow was obtained. A break point is estimated 

after the first year of operation with two revenue streams. These streams include biogas and 

compost. The total revenue from year 2 – 5 was R 2,360,800, R 2,930,158, R 3,457,314.6 and R 

3,988,407.6 (Table 6), respectively. The proposed model have the fixed capital investments of R 

792, 622 with the running costs of R 28,976.0 per month resulting in annual running costs of R 

347,721.60. 

 

Table 6: AD revenue streams. 

 Period (years) 

Revenue streams 2 3 4 5 

Biogas (R/L) R2128000 R2674419.20 R3165582.288 R3688179.78 

Compost (R/kg) R232800.10 R255738.80 R291732.32 R300227.78 

Total revenue R 2360800 R 2930158 R 3457314.61 R 3988407.60 
 

 



Table 7: Summary of annual production of AD technology model. 
 

Taking into account the interest rate of 9%, the technology will break even after 1 year and 4 

months (Figure 6) that is the payback period of 1 year and 4 months. At this point, the project is 

no making any profit or loss, that is all cost are recovered from sales values. At the end of the 5th 

year the, it will yield the net positive value of R 3,042,592. The project will yield an IRR of 33% 

which is higher than the cost of investment. The corresponding BCR of 1.96 was obtained which 

is acceptable since a higher ratio indicate good investment potential. 

Description Costs 

Capital Investment 

Total physical plant cost R 1,363,658 

Fixed capital cost R 1,977,305 

Working Capital   R 296,595.7 

Total investment required R 2,273,900 

Fixed Costs 

Maintenance R 79,092.19 

Operating labour R 201,600 

Laboratory costs R 30,240 

Supervision R 144,000 

Plant overheads R 80,640 

Capital charges R 197,730.50 

Insurance R 19,773.05 

Local taxes   R 39,546.09 

Sub total R 792,622 

Direct production costs R 1,074,671 

Variable costs 

Raw materials R 0 

Miscellaneous material R 6,327.38 

Utilities     R 275,721.60 

Sub total     R 282,049 

Sales expense R 107,467.10 

General overheads R 57,000 

Research and development R 30,000 

Sub total R 194,467 

Annual production cost R 1,269,138 



 

Figure 5: Cash flow diagram for Anaerobic Digestion technology. 

 

4. Conclusion 

In this paper an economic evaluation of an AD model was carried out on the basis of 8 hours 

per day operation based on a project life cycle of 5 years. The project takes 1 year and 8 months 

to recover initial project costs. Cash flow projections over 5 years indicate project viability as 

revenue is higher than total operating costs. This technology has a total capacity of treating 62 

000 kg/month of organic waste that is approximately 7300000 kg/year of waste. The average 

biogas production from both digesters is about 18,000 Nm3/day, which is equivalent to 

approximately 1958 kW of primary energy. An interest rate of 9% was used. Company tax rate 

and value added tax of 29% and 14% respectively were proposed. A total commissioning cost of 

R401, 076 was calculated. The technology requires a total capital investment of R2, 273,900. 

Fixed costs for this technology were estimated to be R792, 622 and the corresponding direct 

production costs of R1, 074,671. The annual production costs of R1, 269,138 were calculated. 

The proposed model has debt repayments of R 2,478,551. The total revenue from year 2 – 5 was 

R2, 360,800, R2, 930,158, R3, 457,314.6 and R3, 988,407.6, respectively. Based on the total 

revenue cost, the proposed AD technology was found to be feasible for converting waste into 

energy. Again, this study has a considerable better economic and environmental performance. 

Future research is necessary to evaluate relative economic and environmental performance using 
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a greater system boundary through experimental testing. These results suggest that conversion of 

organic waste to energy systems are preferred versus landfill disposal in terms of cost, energy, 

and greenhouse gas emissions. Additionally, development of guidelines on installation, use, and 

maintenance of these renewable energy systems are recommended to promote these technologies 
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