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ABSTRACT 

In this paper, an adaptive Markov Chain Monte Carlo (MCMC) approach for Bayesian finite element model updating is 
presented. This approach is known as the Adaptive Hamiltonian Monte Carlo (AHMC) approach. The convergence rate 
of the Hamiltonian/Hybrid Monte Carlo (HMC) algorithm is high due to its trajectory which is guided by the derivative 
of the posterior probability distribution function. This can lead towards high probability areas in a reasonable period of 
time. However, the HMC performance decreases when sampling from posterior functions of high dimension and when 
there are strong correlations between the uncertain parameters. The AHMC approach, a locally adaptive version of the 
HMC approach, allows efficient sampling from complex posterior distribution functions and in high dimensions. The 
efficiency and accuracy of the AHMC method are investigated by updating a real structure. 
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1. Introduction  

The Finite Element Model (FEM) [1, 2, 3] is one of the famous numerical methods that can be useful in numerous 
engineering areas such as Mechanical, Civil and Electrical Engineering. This approach derives approximate numerical 
models for real systems (or structures). The obtained numerical models are very accurate for simple structures or 
systems; however, the approximation degrades when the modelled system is sufficiently complex, and the results 
obtained from the Finite Element Models (FEMs) are different from those obtained from experiments. Several factors 
can cause the accuracy degradation of the FEMs, such as the variability of certain model parameters and the errors 
resulting from the modelling process. To improve the FEMs, some of the uncertain model parameters need to be adjusted 
to reduce the error between the measured data and the numerical model [4, 5]. The process of adjusting these uncertain 
parameters, to determine the most probable parameters that accurately describes the structure in the presence of the 
measured responses of the system, is known as “model updating” [4, 5].  

 
They are two main strategies to perform FEM updating: the direct and indirect (iterative) updating strategies [4]. To 

perform a direct updating strategy, the FEM output is directly equated to the measured data. However, in the iterative 
strategy the differences between the measured data and the FEM output are minimized by adjusting some “flexible” 
uncertain variables [4]. The most used iterative algorithms are the sensitivity-based methods [4, 5] and the metaheuristics 
algorithms [5, 6, 7]. These methods are typically optimization problems and their objective functions are described by 
the error between the analytical and experimental data. The objective functions of an iterative updating strategy are then 
minimized by finding the optimal solution of the updated parameters of the FEM. 

 
Other approaches used in FEM updating are to implement statistical theories [8, 9, 10]. Statistical methods (or 

uncertainty quantification methods) are very useful mathematical tools that can be used to update FEMs and to provide 
more information about the variability of the updated parameters. The use of statistical theories in model updating 
problems has become very attractive in the last ten years. The statistical methods that have been use in updating FEMs 
are divided into two main classes: the class of non-probabilistic (possibilistic) methods such as the fuzzy logic method 
[11, 12], which can be used to estimate the uncertainty of the model parameters where the uncertain parameters are 
characterized by membership functions. The second class describes the probabilistic methods where these methods treat 
the uncertain parameter as a random distribution with a joint probability density function (PDF) [8, 9]. The Bayesian 
approach [5, 10, 13, 14, 15, 16, 17], which is one of the most common probabilistic methods along with perturbation 
methods [9], has become very attractive in system identification and uncertainty quantification. This approach has been 
used numerous times for FEM updating and showed promising results for uncertainty quantification [17]. The uncertain 
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parameters, in the Bayesian method, are modelled as random parameters with joint probability density functions (PDFs), 
which is also known as the posterior PDF. In the case that the posterior PDF is analytically unavailable, sampling 
methods can be implemented to obtain numerical solutions for the posterior PDF. The most attractive sampling 
techniques are the Markov chain Monte Carlo (MCMC) methods. The MCMC methods have been widely used for FEM 
updating where the most recognized MCMC algorithm is the Metropolis–Hastings (M-H) algorithm. This algorithm has 
been implemented numerous times in the FEM updating problems and uncertainty quantifications [10, 13, 16, 17]. 
Moreover, several MCMC algorithms were used to solve Bayesian model updating problems. A Monte-Carlo inverse 
approach was used by Mares et al. [18] for stochastic (or Bayesian) model updating. Nichols et al. [19] applied an 
MCMC algorithm to sample from the posterior PDF of some nonlinear systems. The Gibbs sampling technique was 
implemented by Ching et al. [20] for model updating problems. Ching and Cheng [21] introduced a modified version of 
the M-H algorithm called the Transitional Markov Chain Monte Carlo (TMCMC) algorithm. The TMCMC algorithm 
was used by Muto and Beck [22] to update hysteretic structural models. Cheung and Beck [23] implemented the Hybrid 
Monte Carlo (HMC) method to update a structural dynamic linear system with 31 uncertain parameters. The updating 
process was successfully able to characterize uncertainties associated with the underlying structural system.  

 
The HMC method had shown promising results to solve higher-dimensional complex problems. The trajectory of 

the HMC algorithm, which is guided by the derivative of the posterior log-density, facilitates the convergence to areas of 
high probability in a limited time (or limits the number of iterations) during the searching process [17, 24, 25, 26]. In the 
HMC algorithm, a Molecular Dynamic (MD) system is created and its total energy, or the Hamiltonian function, is used 
to draw samples. The total energy is evaluated through time numerically by using the leapfrog integrator (or algorithm). 
Unfortunately, this integrator (or even other integrators that can be used by the HMC algorithm) does not conserve the 
Hamiltonian function, especially when a relatively large time step is needed to speed up the convergence process or 
when the system size is relatively large. Boulkaibet et al. tried to solve this problem by implementing two modified 
versions of the HMC algorithm called the shadow hybrid Monte Carlo (SHMC) [13] and the separable shadow hybrid 
Monte Carlo (S2HMC) [15] algorithms for Bayesian finite element model updating. Both of these algorithms produced 
samples with a relatively large time step and give more accurate results than the HMC algorithm.  

 
In this paper, another modification of the HMC algorithm is proposed.  The idea is to deal with the acceptance rate 

(AR) degradation and to improve the results accuracy. First, the algorithm will adaptively choose the trajectory length to 
obtain a good Acceptance Rate (AR) without wasting computation time. This can be done by adjusting the trajectory 
length at every iteration to keep the AR acceptable (and controlled), and with relatively large trajectory length. Secondly, 
the algorithm should deal with separated regions (two high probability areas are isolated by regions of low probability). 
Most of the MCMC algorithms (including the HMC) have difficulties to move from one search region to another when 
these two regions are separated by other regions with low probability. This can be a problem when the obtained samples 
are only obtained from the regions with local minima. To overcome this problem, the trajectory of the AHMC algorithm 
is adjusted and the samples are obtained from a sequence of distributions that are more diffuse than the original posterior 
PDF. In this paper, an Adaptive HMC algorithm is introduced to sample the posterior PDF. This method is investigated 
by updating two structural examples: a three degree of freedom (DOF) linear system and an unsymmetrical H-shaped 
structure. The advantages and disadvantages of the AHMC technique will be discussed. 
 

This paper is organized as following:  first, the posterior distribution function of the uncertain parameters is 
presented in Section 2.  Section 3 discusses the AHMC algorithm. Section 4 shows the implementation of Bayesian FEM 
updating on a 3 DOF linear system. In Section 5, the AHMC algorithm is used to update an unsymmetrical H-shaped 
structure with real measured data. Section 6 concludes the paper. 

2. The Bayesian Theory 

The Bayesian approach is governed by Bayes rule [13, 15, 17, 27]: 
 

 ( |   )   ( |   ) ( | )          (1) 

where        is the uncertain parameter vector that needs to be updated. The   notation indicates the model class 
of the target system to be updated. Usually, the model classes are separated by the updating vector  .    represents the 
experimental measurements (frequencies    , mode shapes    , …).  The  ( | ) PDF is the prior knowledge of the 
uncertain parameters when the model class is known.  ( |   ) represented the likelihood function, which is obtained 
by the difference between the measurements and the FEM data when both   and   are given. The term  ( |   ) is 
The posterior PDF which represents the probability of update parameters when both   and    are given. Since only a 
single model class is considered in this paper, the notation   will be ignored for the remaining equations.  
 

The posterior  ( | ) PDF used in this paper is the same one used in [13, 15, 17]: 
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where   (    ) is a normalizing constant given by [13, 15, 17] 

  (    )   .
  

  
/
    

∏   
   

   (  )   ∏
 

√  

 
              (3) 

 
   is a constant that can be used to give more weight to the likelihood terms,    and   

  are the     analytical natural 
frequency and the      measured natural frequency.    is the number of measured modes used for the updating process. 
  is the size of the parameter vector ,    is the vector of initial values of the parameters, which are usually the mean 
values.    is the     coefficient of the     updating variable and these coefficients can be used to weight the prior PDF. 
The notation ‖ ‖  represents the Euclidean norm of the quantity  . In complex structures, obtaining an analytical solution 
from the posterior PDF is not possible. Sampling techniques however can provide a numerical solution of the PDF in Eq. 
(1) [13, 15, 17].  In this work, the adaptive HMC algorithm is implemented to sample from the posterior PDF.  

3. Adaptive Hybrid Monte Carlo 

The main idea of the AHMC algorithm is to improve the HMC trajectory by providing an adaptive trajectory length 
as well as a tempered trajectory.  The AHMC algorithm [28, 29] is based on the original HMC algorithm (which is 
introduced by Duane et al. [24]). The HMC algorithm has shown encouraging results for solving higher-dimensional 
complex engineering problems [13, 15, 16, 17, 23, 28]. The main idea of the HMC algorithm is to combine the 
Molecular Dynamic (MD) trajectory and the Monte Carlo (MC) accept/rejection step. The same concepts are used for the 
AHMC algorithm where a new dynamical system is constructed by introducing a new auxiliary variable, called 
momentum,     . The uncertain vector   will be treated as the system displacement while the total energy (the 
Hamiltonian function) of the new dynamical system can be defined as:  (   )   ( )   ( ). The potential energy is 
defined by   ( )     ( ( | )) while the kinetic energy of the dynamic system is given by  ( )          , 
where the matrix        is positive definite.  

The Hamiltonian dynamics are then governed by:  
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In this paper, the joint density function  (   ) follows a Boltzmann distribution [15, 28] where  (   )  
   (    (   )), where    

 

 
 and   is a constant temperature (the Boltzmann constant is neglected). It is easy to see 
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Equation (5) shows that sampling the vector   from the posterior PDF can also be achieved by sampling the pair of 
vectors (   ) from the joint PDF  (   ). The pair (   ) is evaluated through time   by using the following leapfrog 
integrator [13, 15, 16, 17, 23, 28]:  
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where    is the time step and    is the gradient which can be obtained numerically by finite difference as [15, 23] 
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  is a scalar that dictates the size of the perturbation of   , while   ,          - is the perturbation vector. After the 
evaluation of Eqs. (6-8), an MC accept-reject step is added to satisfy the property of Eq. (4). Thus, if the pair (   ) is the 
initial vector while the pair (     ) is the vector after evaluating Eqs. (6-8), then the candidate (     ) is accepted with 
probability    .     {   

 
}/,     (     )   (   ).  Since the AHMC algorithm has the same basics as the 



HMC algorithm, all previous equations and properties will be used by the AHMC algorithm.  However, the AHMC 
algorithm has certain modifications that improves the sampling performance. To avoid the non-ergodicity problem and to 
ensure a good performance of the AHMC algorithm, the evaluation of the leapfrog algorithm needs to be done   steps 
during each iteration.  This will increase the algorithm trajectory and ensure large steps. The value of   can be uniformly 
chosen from the interval *      +. Moreover, since the time step used by the leapfrog integrator is bounded (      
        ), the time step will be careful adjusted after a number of iterations. Adjusting the time step after a fixed 
number of iterations avoids a large rejection rate when the time step is large [28, 29].  Also, the adaptation of the time 
step avoids using a small trajectory length and therefore more iteration are needed to converge.  To adapt the time step, a 
random value of the    is chosen from the interval,           -. Then the Eqs. (6-8) will be evaluated for    iterations. 
The    samples obtained will be used to calculate the acceptance rate  ̅ and used to decide if the time step has to 
increased or decreased as following:  

      {
           ̅   ̅

           ̅   ̅
         (10) 

 
where    is a random variable selected from the interval ,         - and  ̅ is the target acceptance rate. The value of the 
target acceptance rate can be selected high to ensure more different samples are involved in computing the mean values 
of the uncertain parameters. Then, after each    samples (or iterations) the time step will be adapted by increasing or 
decreasing the time step by a small value (between 1% to 5%). This strategy will ensure that the time step does not 
produce small trajectory moves and is not relatively large (significant numbers of iterations are not wasted). The second 
modification proposed in this algorithm is to sample from distributions that are more diffuse than the original posterior 
PDF [30]. This strategy can facilitate the movement between high probability areas separated by regions of low 
probability. This can be done by increasing the temperature   which will eventually give more diffuse distribution (the 
posterior PDF is when    ) [30].  In this paper, the temperature is changed at each iteration by a small value according 
to:  (   )   ̅  ( ), where  ̅   . The AHMC algorithm is than summarised as: 

1) A value    is used to initiate the algorithm 
2) Initiate    such that     (   ) 
3) Run the following steps    times: 

a. Initiate the leapfrog integrator by the previously accepted pair (   ) and run the algorithm for   
time steps to obtain  (     )  

b. Update the FEM and use the obtained analytical frequencies to compute  (     ). 
c. Accept (     ) with probability    .     {   

 ( )
}/. 

d. Change the temperature according to:  (   )   ̅  ( ) 
4) Use the    samples to obtain the acceptance rate  ̅  
5) Adjust the time step according to Eq. (10) 
6) Repeat steps (3-5) to for    samples. 

In the next sections, the performance of the AHMC algorithm is discussed when two different systems are updated. 

4. Application 1: A 3 DOF Linear System  

To investigate the AHMC algorithm, a simulation of a 3 DOF mass-spring linear system is considered. The system 
is shown in Fig. 1. The deterministic parameters of this system are:                     . The nominal mean 
values of the uncertain parameters are:       N/m,      N/m,        and       N/m, and these values are used 
to obtain the following natural frequencies of interest of this structure:                                . 
However, the initial values of the uncertain parameters are:       N/m,      N/m,        and      N/m. Thus, 
the parameters to be updated are:   ,    and   , and can be represented by a vector of     variables   *        +. 

4.1.1 Updating the Stiffness Parameters 

In this subsection, the 3 DOF linear system is updated by adjusting a vector of 3 parameters   *        + using 
the Bayesian approach, while the AHMC algorithm is used to sample from the posterior PDF. The number of samples is 
set to        , the coefficients    in Eq. (2) were set equal to  

  
 , where     is the variance of   . Since only the 

stiffness parameters are updated, the    *       + have equal values and are set to    . The constant   , the weight of 
the likelihood term, in Eq. (2) was set equal to 1. The updating parameters    were bounded with a maximum value of    
N/m and a minimum value of   N/m. 
 



 

Figure 1: The 3 DOF mass-spring linear system 

The initial vector of   is set to    *      +. The initial time step used in the HMC algorithm is           s 
while the time step is bounded with a minimum value of               s and a maximum value of        
    s.  L is uniformly distributed on the interval *    +, the target acceptance rate is  ̅       (95%), the initial value 
of the temperature is  ( )   , and  ̅  is set to            is set to 50, and the results of the updating are given in 
Tables 1 and 2. 

Figure 2 shows the scatter plots for the three uncertain parameters using the AHMC algorithm. The uncertain 
parameters plotted in Fig. 2 are normalised by dividing their values by the initial value    . Also, an error ellipse (or 
confidence ellipse) for the obtained samples is shown in the same figure. The error ellipse represents a contour that 
allows the visualization of the confidence interval, given as the region that contains 95% of the parameter samples. The 
plot shows that the AHMC algorithm has found the high probability areas after a few iterations.  

 

Figure 2: The scatter plots with the error ellipses using the AHMC method 

The updated values of the uncertain parameters are presented in Table 1 along with their initial values, nominal 
values and the coefficient of variation (c.o.v) values. The c.o.v values are obtained by dividing the obtained standard 
deviation by the updated vector  , and can be used to describe the errors in the updated parameters. Table 1 shows that 
the c.o.v values are small for the AHMC algorithm (less than 6%) which indicates that the AHMC algorithm has 
efficiently estimated the uncertain parameters. This can be seen from the updated parameters which are nearly identical 
to the nominal values. 

Table 1: The updated vector of the stiffness parameters using AHMC technique 

Stiffness Parameters (N/m) 

 Initial Nominal values Error 
(%) 

AHMC 
algorithm 

(  ) 

  
  

 

(%) 
c.o.v 

               20          1.77     

             50         2.82     

              30       5.79 

 



Table 2 shows the initial and updated natural frequencies, together with the absolute errors obtained by |  
    |

  
 , the 

total average error (TAE) as a percentage, where      

  
∑

|  
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    (    ), and the coefficient of variation which 

is obtained by dividing the standard deviation of the natural frequencies by the updated values. The results obtained by 
the AHMC algorithm are, on average, better than the initial natural frequencies. The initial error for the first frequency 
was 0.16%, and when the AHMC algorithm is applied to update the FEM the error was reduced to 0.05%. The same 
comment can be made for the other frequencies. In general, using the AHMC algorithm to update the system reduces the 
total average error from 9.13% to only 0.04%. Also, the coefficient of variation obtained by the AHMC algorithm 
indicates that the error for all modes is very small.  

Table 2: Frequencies and Errors when AHMC techniques used to update stiffness parameters. 

Modes Nominal Frequency 
(Hz) 

 

Initial  
Frequency 
(Hz) 

Error 
(%) 

Frequency  
AHMC  
Method 
(Hz) 

c.o.v  
values 
(%) 

Error 
(%) 

1 1.120 1.122 0.16 1.119 
 

0.43 0.05 

2 3.500 2.932     16.23 3.498 0.48 0.07 
3 4.100 3.649 11.01 4.100 0.45 0.01 
Total  
Average  
Error 

_______ _______ 9.13 _______ _____ 0.04 

Figure 3 displays the total average error versus the iteration number for the first 5000 iterations. Figure 3 is obtained 
by computing the mean values of samples at every iteration as  ̂   ( )   

  
∑    
   , where   represents the current 

iteration. Then, the obtained mean value is used to obtain the new natural frequencies from the FEM and the absolute 

total average error is computed by    ( )   

  
∑

|  
    |

  
 

  
   . The result plotted in Fig. 3 shows that the AHMC 

algorithm converges reasonably fast and within the first 300 iterations   

 

Figure 3: The total average error using the AHMC algorithm 

In the next section, an unsymmetric H-shaped aluminium structure with real measured data is used to test the 
AHMC algorithm and the results obtained will be compared with those obtained previously with the HMC algorithm. 

5. The Unsymmetric H-shaped Structure 

In this section, an unsymmetric H-shaped aluminium [5, 17] structure with real measured data is updated using the 
AHMC algorithm. This structure is shown in Fig. 4. The structure was modelled by assembling 12 beam elements where 
each element was modelled as an Euler-Bernoulli beam. The position specified by the double arrow in the middle beam 
(see Fig. 4) showed the location where the structure was excited. An electromagnetic shaker was used to excite the 
structure, and an accelerometer was used to measure the response. A set of 15 frequency-response functions were 
measured. More details about the structure can be found in [5]. 



 

 

Figure 4: The H-shaped aluminium structure 

The measured natural frequencies are: 53.9 Hz, 117.3 Hz, 208.4 Hz, 254.0 Hz and 445.0 Hz. In this example, the 
uncertain parameters are the moments of inertia and the section areas of the three beams (as shown in Fig. 4). The 
AHMC algorithm will be used to obtain the updated vector   *                       +.  

 
5.1 The Unsymmetric H-shaped Structure Simulation  

 
The parameters of the unsymmetric H-shaped aluminium structure are given as follows:  the Young’s modulus is set 

at         N/m2, the density is set to      kg/m3. The same simulation sets and boundaries used in [13, 14, 15, 16, 
17] are used for the AHMC algorithm. To help to keep the uncertain parameters physically realistic, the updated 
parameter vector is bounded by maximum and minimum values equal to: ,                         
                                  - and ,                                             
              -, respectively.  
 

 

Figure 5: The Kernel smoothing density estimation of updating model parameters using the AHMC method 

The likelihood weight    (see Eq. (2)) is set equal to 10. The coefficients    are set equal to   
  
  where   

,                                         -. The number of samples    is set to 1000, the initial time 
step used in the HMC algorithm is             s while the time step is bounded with a minimum value of     
          s and a maximum value of           s.  L is uniformly distributed on the interval *    +, the target 



acceptance rate is  ̅       (95%), the initial value of the temperature is  ( )   , and  ̅  is set to       .   is set to 
20. The results obtained using the AHMC algorithm, namely the updated parameters and the updated frequencies, are 
presented in Tables 3 and 4, respectively.  

Figure 5 shows the Kernel smoothing density estimation of the updating parameters along with the updated values of 
the uncertain parameters. The    refers to the sequential numbering of the updating parameters while the normalisation 
constants     are the initial values of the updated parameters. The obtained results show that the AHMC algorithm 
identified the high probability region. Moreover, the shapes of the density functions are not Gaussian.  

The updated parameter values, the initial values of these parameters and their c.o.v values are given in Table 3. The 
total acceptance rate for the AHMC algorithm is 96.3% which is very good (only 3.7% of the computational time was 
wasted). The AHMC algorithm successfully updated the uncertain parameters (the updated values are different to the 
initial   ). The coefficients of variation obtained by the AHMC algorithm shows that the estimation for the middle beam 
parameters are better than those of the left and the right beams parameters (the c.o.v of the middle beam is smaller than 
that for the other two beams). This is obvious since structure was excited in the middle beam, and more information on 
the middle beam was used in the updating process.  
 

Table 3: Initial and updated parameters using the AHMC algorithm 

    vector 
Initial 

  vector, 
AHMC 
Method 

  

  
  (%) 

                        15.56 

                        2.80 

                        14.50 

                        1.35 

                        2.83 

                        3.98 

 

The correlation between all updated parameters, when the AHMC algorithm is used to update the structure, is shown 
in Fig. 6. The uncertain parameters are weakly correlated except for the pair (       ) which are highly correlated (the 
correlation is equal to     ). 

 

Figure 6: The correlation between uncertain parameters 

 



The unsymmetric H-shaped aluminium structure has been updated many times by different (deterministic and 
statistic) methods [5]. The Nelder Mead (NM) Simplex method gave a total average error equal 2.14% [5] while the 
Genetic Algorithm (GA) [5] reduced the TAE to 1.1%. On the other hand, the Response-Surface (RS) method [5] 
produced a higher TAE than the GA algorithm (the total average error was equal to 1.84%). The Particle Swarm 
Optimization (PSO) algorithm [5] gave better results and the error was reduced to 0.4%. Moreover, three MCMC 
algorithms were applied to this structure, the M-H, SS and HMC algorithms [17], and the results were 3.01%, 2.98% and 
0.73%, respectively. Another two modified versions of the HMC algorithm (SHMC and S2HMC algorithms) were also 
applied to update this structure and the results were 0.66% and 0.58%, respectively.  

Table 7 presents the updated frequencies obtained by the AHMC algorithm. The initial error for the first measured 
natural frequency was 4.63%. When the AHMC algorithm was used to update the structure the error was reduced to 
0.85%. In general, the resulted obtained by the AHMC algorithm are far better than the initial FEM.  The AHMC 
algorithm reduced the total error to 0.48% which is good compared to the results obtained in previous works (better than 
all algorithms except for the PSO algorithm).   

Figure 7 shows the variation in the total average error through time (iterations). The strategy used in the first 
example to plot Figure 3 is used again to plot Figure 7. The plotted results show that AHMC algorithm converges fast 
and within the first 100 iterations (100 samples will be enough for the structure to be updated).  

Table 4: Natural frequencies and errors when AHMC algorithm is used to update the structure 

Mode Measured 
Frequency 

(Hz) 
 

Initial Frequency 
(Hz) 

Error 
(%) 

Frequencies 
AHMC Method 

(Hz) 

Error 
(%) 

1 53.90 51.40 4.63 53.44 (0.87%) 0.85 

2 117.30 116.61 0.59 118.96 (0.96%) 1.42 

3 208.40 201.27 3.42 208.38 (1.04%) 0.01 

4 254.00 247.42 2.59 254.30 (1.40%) 0.12 

5 445.00 390.33 12.28 445.08 (1.21%) 0.02 

Total 
average 

error 

_______ _______ 4.70 ______ 0.48 

 

 

Figure 7: The total average error for the AHMC algorithm 

 



6. Conclusion 

 

In this paper, an adaptive MCMC algorithm, the Adaptive Hybrid Monte Carlo algorithm, is proposed to solve the 
Bayesian FEM updating formulation. In this method, the time step was adaptively selected to improve the trajectory 
length of the algorithm. The method was tested by updating two structural systems: a simulated 3 DOF linear system and 
an unsymmetric H-shaped aluminium structure. In the first simulation the AHMC technique gave good results and 
reduced the error to less than 0.05%. In the second example, the AHMC method also gave good results and reduced the 
total error to 0.48%. The results obtained by the AHMC algorithms are better than those obtained by HMC, SHMC and 
S2HMC algorithms in previous works.  The SHMC and S2HMC methods use relatively larger time steps (which means 
large trajectory moves in the search space), whereas the AHMC algorithm adjusts its time step and temperature at each 
iteration and this gave the algorithm a significant advantage to escape local solutions. Further work will consider the 
differences between the above method and other adaptive MCMC algorithms. Also, the AHMC algorithm will be used to 
update more complex structures. 
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