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Abstract—This paper explores a computer-aided detection 
scheme to aid radiologists in making a higher percentage of 
correct diagnoses when analysing chest radiographs. The 
approach undertaken in the detection process is to use several 
proprietary image processing algorithms to adjust, segment and 
classify a radiograph. Firstly, a Difference of Gaussian (DoG) 
energy normalisation method is applied to the image. By doing 
this, the effect of differing equipment and calibrations is 
normalised. Thereafter, the lung area is detected using Active 
Shape Models (ASMs). Once identified, the lungs are analysed 
using Local Binary Patterns (LBPs). This technique is combined 
with a probability measure that makes use of the the locations of 
known abnormalities in the training dataset. The results of the 
segmentation when compared to ground truth masks achieves an 
overlap segmentation accuracy of 87,598±3,986%. The 
challenges faced during classification are also discussed. 
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I. INTRODUCTION 
South Africa is estimated to have the third highest 

incidence of tuberculosis (TB) in the world according to the 
World Health Organisation (WHO) [1]. The high incidence of 
the disease in this region is sustained through a large number 
of new infections each year, with approximately one percent 
of the South African population developing tuberculosis 
infections annually [2]. 

 
People infected with HIV are around 30 times more likely 

to develop tuberculosis than the rest of the civilian population. 
Tuberculosis is also the main cause of HIV-related death [1]. 
Mineral miners exhibit the highest prevalence of the disease 
of any working population in sub-Saharan Africa [3]. Due to 
prolonged exposure to silica dust and the resulting silicosis, 
gold miners are especially susceptible to the development of 
pulmonary tuberculosis during their lifetimes [4]. 

 
These affected civilian and mining populations generate 

large volumes of chest radiographs that must be dealt with 
efficiently and effectively by radiographers and radiologists 
in order to alleviate the burden of this epidemic. The South 
African National AIDS Council (SANAC) has set a goal of 
reducing the number of new infections and deaths from 
tuberculosis by fifty percent between 2012 and 2016 [2]. To 
fulfil this goal every possible approach to early detection and 
diagnosis needs to be evaluated. 

 
This paper seeks to address those issues by providing an 

image processing (IP) based tuberculosis detection scheme to 
assist radiologists in detecting the disease when analysing 
chest radiographs. 

An overview of the problem and the classification 
complexities involved are provided in Section II of this paper. 
In Section III, a detailed description of the proposed work 
flow used during classification is given. The experiments 
performed and the results of these experiments are explained 
in Section IV. Section V concludes the paper and Section VI 
provides suggestions for future work. 

II. THE PROBLEM 
Radiographs captured from separate sources can 

demonstrate different characteristics that complicate the 
further classification of such images when using analysis 
techniques such as machine learning. Factors influencing an 
image’s characteristics include user settings, capturing 
equipment used, post-processing and analogue digitisation. 
Poorly trained or overworked radiographers may also neglect 
to give the correct instructions to the patient when performing 
a chest X-ray (CXR). This can result in a “collapsed” chest 
radiograph. These radiographs are more difficult to assess and 
are usually due to the patient slouching or not raising their 
arms correctly during capture. An indication of the variance 
that can be observed in two radiographs of the same person is 
shown in Figure 1.   

 
 
 
 
 
 

 
 
 
 

Figure 1: Two radiographs captured from the same patient 
 

These radiographs were captured at the same clinic, 6 
weeks apart, by separate radiographers using different 
equipment. Large variances between CXRs are particularly 
noticeable in cases of mine worker radiographs taken in 
clinics associated with rural communities.  It is this level of 
variance that is often the limitation to the application of 
automated tools in TB identification. 
 

To mitigate these factors, the image must be processed 
using some form of image normalisation. Applying the 
correct normalisation method can increase segmentation and 
detection accuracy, especially when analysing data captured 
from more than a single dataset [5] or from more than one 
form of source equipment. To address this issue, the next 
section describes the proposed workflow used to pre-process 
and classify an unnormalised radiograph. 



III. PROPOSED WORKFLOW 
There are three main research areas that can be identified 

from the literature with regards to computer-aided 
radiographic analysis: Normalisation, segmentation and 
analysis [6]. Processing in each of these areas should take 
place to achieve an accurate analysis of the presented 
radiographic material. A diagram describing the order of 
processing is shown in Figure 2. 

Figure 2: An overview of the detection process 
 

The workflow used in this paper is similar to other 
screening systems, such as CAD4TB by Delft Imaging 
Systems [7], but is differentiated by the classification 
approach used during analysis. The datasets used, as well as 
the normalisation, segmentation and classification techniques 
implemented in this paper are described in the following 
sections. 

A. Datasets 
The radiographs used in this study were drawn from three 

different sources: 
 
• Japanese Society of Radiological Technology (JSRT) 

database [8] 
• Perinatal HIV Research Unit (PHRU) digital database 
• PHRU analogue database 

B. Pre-processing 
Since Computer-Aided Diagnosis (CAD) usually relies on 

training data to accurately analyse medical images, it follows 
that it should derive the parameters for normalising an input 
image from its training set. The multi-band energy 
normalisation procedure described by Philipsen et al. [9] 
follows this approach and this is the normalisation step used 
in this paper. The suggested method captures the energy 
values from each of these frequency bands for an entire 
dataset. The image is then reconstituted by weighting each of 
these bands using its corresponding energy value and 
summing them together. By doing this each frequency band 
will contain the same energy and the reconstituted image will 
be normalised. 
 

To start the frequency band separation process, a Gaussian 
blur is applied to the input image with 𝜎 = 1. The output of 
this operation is subtracted from the input image. This results 
in a high frequency image 𝐼%. This process is repeated for 𝑛 −
1  iterations. For each iteration the blurred image from the 
previous step is used as the input image and the 𝜎 used for the 
Gaussian blur is increased according to Equation 1: 

 
𝜎( 	= 	 2(+%																																						(1) 

 
where 𝑖 is the current iteration. 

On the 𝑛 th iteration the blurred image is not subtracted 
from the input image but rather used as the output for this 
iteration. The 𝑛th output image contains all the remaining low 
frequency information of the original input image. The output 
of the whole process is the original input image divided into 𝑛 
frequency sub-bands 𝐼% ⋯ 𝐼0. 
 

The frequency separation process is applied to each 
radiograph in the training set, using 𝑛 = 6	frequency bands as 
described in [9]. To illustrate the output of this process, the 
frequency bands of a sample radiograph are shown in Figure 
3 (The bands have been equalised for better visual clarity). 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Frequency sub-bands 
 
Once an image has been processed, each resulting sub-

band can then be weighted and summed together using 
Equation 2: 

𝐼 = 	 𝜆(𝐼(

0

(3%

																																						(2) 

 
If each weighting 𝜆( is set to 1, the reconstituted image 𝐼 

will be the original input image. 
 
The energy for a sub-band is expressed as its standard 

deviation 𝑒, as described by Equation 3: 
 

𝑒 =
1

𝑁 − 1
	 𝑝( − 	𝜇 8

9

(3%

																							(3) 

 
Given an unnormalised sample radiograph, the energy 

value 𝑒(  is found for each sub-band in the sample and the 
final weighting is calculated as follows: 

 
𝜆( =

𝑟(
𝑒(
																																									 4  

 
The sample image is then reconstituted using Equation 2 

and the calculated weightings found using Equation 4. The 
output of this operation results in an energy normalised 
radiograph. Once normalised, processed radiographs are 
segmented for further processing. 

C. Segmentation 
Deformable model-based segmentation makes use of a 

“shape model” obtained from manual segmentations which 



are defined by “landmarks”. These landmarks are chosen by a 
human observer and they are used to train the system that 
constrains segmentations to shapes that fall within the shape 
model. One of the most popular deformable model-based 
methods used in chest radiograph segmentation is the Active 
Shape Model (ASM) [10]. ASMs have been used to segment 
lungs for texture analysis [11] and a variant of the ASM has 
been shown to segment lungs with a good degree of accuracy 
[12]. Due to the robust nature of the ASM, it is the chosen 
segmentation method used in this paper. 

 
ASMs require a supervised training set, where the 

boundaries of the lungs for several images have been 
identified manually. The corresponding boundary points in 
each image should be placed in a similar position and each 
image should have the same number of boundary points. 
These points are said to form a feature vector and this feature 
vector describes the shape of the lungs in each image. 

 
When performing an ASM segmentation, the first 𝑡 largest 

eigenvalues are extracted from a covariance matrix generated 
from the model shape vectors. The corresponding 
eigenvectors are then placed into a matrix 

 
𝚽 = 𝜙%, 𝜙8,⋯ , 𝜙A 																												(5) 

 
where 𝜙%, 𝜙8,⋯ , 𝜙A are the eigenvectors corresponding to 

the descending eigenvalues 𝜆%, 𝜆8,⋯ , 𝜆A. 
 
The lung shape can be approximated from the first 𝑡 modes 

using the mean shape and a weighted sum of these deviations, 
as described by Equation 6: 
 

𝐱	 ≈ 	 𝐱 	+ 	𝚽𝐛																																		(6) 
 
where 𝐱 is the mean shape and 𝐛	 = 	 𝑏%, 𝑏8,⋯ , 𝑏A H  is a 

vector of weights for the model. 𝐛 is calculated by using the 
following equation: 

𝐛	 = 	𝚽H	(𝐱	 	− 	𝐱)                           (7) 
 
New shapes are generated by varying the weights of the 

elements in vector 𝐛  within a suitable constraint. This 
constraint is defined by Equation 8: 

 
−𝑁 𝜆( ≤ 	 𝑏( 	≤ 	𝑁 𝜆(																												(8) 

 
where 𝑏( is an element in 𝐛, λ( is the 𝑖th eigenvalue and 𝑁 

is a constant. 
 
In order to perform a segmentation, separate manually 

segmented feature vectors are used which delineate the lungs 
for 𝑚 training images. Each feature vector must have a size of 
𝑛 . Using these feature vectors, models are created from 
profiles sampled through each vector point. In this 
implementation, the profiles sample pixels perpendicularly to 
the gradient of the contour at each point using Bresenham’s 
line algorithm. 𝑘 pixels are sampled from either side of the 
corresponding boundary point, resulting in each profile 
having a length of 𝑠	 = 	2𝑘	 + 	1. 

 

Once sampled, the first derivative, or gradient, of each 
profile is found. To create a gradient profile, each element at 
position 𝑖  in the greyscale profile is replaced with the 
difference between that element and the element at 𝑖 − 1. The 
gradient profiles are then normalised by dividing each value 
in the profile by the sum of the absolute values of the profile. 
A gradient profile is represented by a set of values 𝐠	 =
	𝑔% ⋯𝑔P and after normalisation 𝑔(P

(3% = 1. 
 

The assumption is that the profiles are distributed as a 
multivariate Gaussian, which is a Gaussian distribution 
generalised to higher dimensions. An 𝑛 -dimension 
multivariate Gaussian can be described by an 𝑛-dimensional 
mean vector and an 𝑛-by-𝑛 dimension covariance matrix. The 
mean profile 𝐠  and the covariance matrix 𝐒R  are therefore 
calculated for each vector point from the gradient profiles 
𝐠% ⋯	𝐠S in each training image. 

 
Once the system has been trained, the mean shape is used 

as an initial shape vector for an input sample image. New 
profiles are sampled from each point in this mean shape 
vector. The sample points for these profiles are iteratively 
shifted along “whiskers” defined for each point in the feature 
vector. 

 
The Mahalanobis distance between the new profiles and 

the profile model is used to fit the model. The Mahalanobis 
distance is used since it takes into account the covariance of 
the profiles and is invariant to differences in scale and 
correlation of the distance variables. Given a profile 𝐠T from 
the sample image, the Mahalanobis distance 𝑓(𝐠T)  is 
calculated using Equation 9: 

 
𝑓(𝐠T) 	= 	 (𝐠T 	− 	𝐠)H𝐒R+%(𝐠T 	− 	𝐠)                (9) 

 
Each whisker is then iteratively searched for the profile 𝐠𝐢 

that minimises the Mahalanobis distance. The profile that 
minimises the Mahalanobis distance will have the highest 
statistical similarity to the profile model for that point in the 
vector. A new boundary point is located at the centre of each 
of these minimising profiles. This process is applied at 
multiple resolutions, by adjusting the pixel step size 𝑝 of the 
sampling profiles and scale 𝜎 of the images. At the original 
resolution 𝜎 = 0	and 𝑝 = 1. At the next level 𝜎 = 1 and 𝑝 =
2 . Thereafter 𝜎  and 𝑝  are doubled for each sampling 
resolution. For each resolution, coarse to fine, the whiskers 
are searched and the centre of the profile with the smallest 
Mahalanobis distance is used as the starting point for the 
iterations at the next resolution. The detected points at the 
finest resolution are used to plot an accurate segmentation 
vector that delineates the lungs in a sample radiograph. 

 
The accuracy of segmenting images in the JSRT dataset 

using this process, when compared to their ground truth 
segmentations, is discussed in the results section of this paper. 

 
Once the lungs of the images have been segmented, they 

are then analysed for the presence of abnormalities. The 
following sections describe the implemented classification 
approach. 



D. Subdivision 
Before a radiograph can be classified, the mean lung shape 

of the training set must be found. This shape is divided into 
regions using a process similar to the one demonstrated in 
[11]. In total, the lungs are subdivided into 42 regions at 3 
different scales. The first scale has 24 regions, the second 12 
regions and the third has 6 regions. The regions at each scale 
are equal in area. This is applied to the mean shape of the 154 
lung nodule images in the JSRT database, with the lung 
boundary landmarks being provided by the SCR database 
[13]. The result of this subdivision is shown in Figure 4. 

 
 
 
 
 

 
 

Figure 4: Mean lung shape subdivision 
 
Once subdivided, a mask representing these regions is 

warped onto a sample lung shape using radial basis function 
(RBF) interpolation. 

E. Radial basis function interpolation 
Interpolating multi-dimensional scattered data is often 

achieved using an RBF. The characteristic feature of an RBF 
is that its response monotonically decreases or increases as 
the distance from a central point is increased. The RBF 
interpolant is given by Equation 10: 

 

𝑠 𝐱 = 	 𝑤(

0

(3%

𝜙 ∥ 𝐱 − 𝐱( ∥ 																	(10) 

 
where 𝑛  is the number of points in a shape, 𝑤(  is a 

weighting,  𝐱  is a shape vector and 𝜙(𝑟), 𝑟	 ≥ 	0, is a radial 
basis function. 

 
Since the sample shape  𝐬 = 𝑠 𝐱% , 𝑠 𝐱8 ,⋯ , 𝑠 𝐱0 H  and 

mean shape  𝐱	 are known, the weightings  𝐰  are obtained by 
solving a linear system containing the square matrix 𝐀 , 
resulting from radial basis functions 𝜙(∥ 𝐱 − 𝐱( ∥). The linear 
system therefore has the form 𝐀𝐰	 = 	𝐬. 

 
The resulting weightings can then be used to interpolate 

any point within a sample lung shape onto the mean lung 
shape using Equation 10. An illustration of interpolating the 
mean shape onto a sample radiograph is shown in Figure 5. 

 
 
 
 
 
 

 
Figure 5: Interpolation of the mean shape onto a sample 

lung segmentation 
 

After interpolating the mask onto a sample radiograph, 
each region defined by Figure 4 can be classified as normal or 

abnormal. To do this a training set is constructed for each 
region using all of a region’s abnormal feature vectors and the 
same number of randomly selected normal feature vectors 
from the training set. To extract a feature vector from a region 
in a radiograph, Local Binary Patterns (LBPs) are 
implemented. 

F. Local Binary Patterns 
LBPs were first introduced by Ojala et al. [14] and have 

proven to be an effective descriptor in the classification of 
arbitrary textures [15]. 

 
To process an image with the LBP operator it must first be 

converted to a greyscale image. The LBP operator is a grey-
level descriptor and does not take the RGB colour values of 
an image into account. This makes the LBP especially 
suitable to chest radiographs since they do not contain any 
colour information. 

 
After the image has been converted to greyscale, the LBP 

operator is then applied to each pixel within the image. LBPs 
use local neighbourhoods of a set size around each pixel in an 
image. These neighbourhoods generate a binary number for 
each neighbouring pixel based on that pixel’s value in 
comparison with the centre pixel value. The centre pixel is 
then replaced with this binary value in the output image. 

 
Once the LBP operator has been applied to every pixel in 

the image, a feature vector describing the textural properties 
of the image is then obtained from a histogram of the LBP 
values. During classification this feature vector acts as a 
statistical representation of the texture and this is what is used 
to differentiate it from other textures. 

 
The 𝐿𝐵𝑃b,cd(e

f descriptor used in this research is scalable, 
rotation invariant and exhibits reduced dimensionality by 
using uniform patterns. Uniform patterns are the most 
common LBPs present in observed textures. Uniform patterns 
are allocated their own individual bins in a histogram while 
the 𝑃	 + 	1 (non-uniform) patterns are grouped into a single 
bin due to their low individual frequency. The result of 
processing a radiograph with  𝐿𝐵𝑃b,cd(e

f  at three scales is 
shown in Figure 6. 

Figure 6: The result of processing a radiograph with 
𝐿𝐵𝑃g,%d(e

f, 𝐿𝐵𝑃%h,8d(ef and 𝐿𝐵𝑃8i,jd(ef 
 
In the above images, the histogram bins have been spaced 

at equal intervals over the greyscale range. 
 
Once a feature vector has been generated for a region in a 

sample radiograph, the k-Nearest Neighbours are extracted 
from the training set containing both the normal and the 
abnormal feature vectors. If the vector to be classified is in 



the training set, then it is not included by leaving out the zero 
distance neighbour. If a region does not have enough 
abnormal samples then abnormal samples are randomly 
included from other regions to build the training set. A 
sample is then classified as the class (Normal or abnormal) 
with the majority vote of the k-Nearest Neighbours. 

IV. RESULTS 

A. Normalisation 
Using the JSRT dataset as the training set, the effect of 

normalising a subset from the PHRU dataset is illustrated by 
Figure 7 and Figure 8. 

 
 
 
 

 
 
 
 

Figure 7: Three radiographs from the PHRU set 
 

It is observed from Figure 7 that images from the PHRU 
database have varying dimensions, so these images are 
padded to be square before normalisation. In addition to the 
differing image sizes, the samples selected also illustrate the 
dissimilar image characteristics of the radiographs in this 
dataset. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 8: Energy normalised PHRU radiographs (Row 1) 
and reference radiographs from the JSRT set (Row 2) 

 
The images in first row of Figure 8 are the result of 

applying the energy normalisation process to the selection of 
PHRU radiographs in Figure 7. For comparison purposes, 
radiographs from JSRT database are provided in the second 
row of Figure 8. To aid visual observation, the grey values in 
the central 70% of each image in Figure 8 have been used to 
normalise the radiographs between 0 and 255. It is observed 
that the normalised images have similar characteristics to the 
JSRT images and are not easily identified as images from a 
different dataset. 

B. Lung Segmentation 
Once the PHRU set has been normalised, the images are 

segmented before analysis. The JSRT set is used as the 
training set. The JSRT images are also segmented and their 
segmentations compared to the manual segmentations from 

the SCR set. A comparison of three segmented radiographs 
from the JSRT dataset, along with their respective ground 
truths, is shown in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: JSRT inputs (Column 1), ASM segmentations 

(Column 2) and SCR ground truths (Column 3) 
 

To statistically compare segmentations an “overlap” 
measure is used, defined by: 

 

Ω = 	
TP

TP + FP + FN
 

 
where TP (True positive) is the correctly classified lung 

area, FP (False positive) is the area incorrectly classified as 
lung and FN (False negative) is the area incorrectly classified 
as non-lung. 

 
To test the accuracy of the segmentations, half of the 

images in the JSRT database are used to train the system and 
the other half are then used to test the system. When 
compared to the ground truth segmentations from the SCR 
database, the JSRT images achieved an overlap segmentation 
accuracy of 87,598±3,986%. 

C. Classification 

 
Figure 10: The bounded (Green) and unbounded (White) 
JSRT abnormalities warped onto the mean shape (Red) 

 
Taking all of the abnormalities in the JSRT lung nodule set 

(JPCLN), a plot of the original nodule positions and the result 
of warping these points onto the mean shape using RBF 



interpolation is shown in Figure 10. The JSRT set does not 
only contain lung abnormalities or abnormalities that are 
bounded by the landmarks in the SCR database. There are 14 
unbounded abnormalities in the JPCLN set and these points 
are indicated by the white crosshairs in Figure 10. It is 
observed that all of the abnormalities bounded by the SCR 
landmarks are warped onto the mean shape and that none of 
the unbounded abnormalities lie within the mean shape after 
interpolation. 

 
The probabilities generated by these bounded 

abnormalities will be used as an additional parameter during 
the classification process. The number of abnormalities per 
region and the probability of an abnormality occurring in that 
region is listed in Table 1. The total number of bounded 
abnormalities in the JSRT set is 140. 

TABLE I 
THE NUMBER OF ABNORMALITIES AND PROBABILITY PER REGION 

R # P(A) R # P(A) R # P(A) 
1 14 0.1 15 10 0.071 29 11 0.079 
2 20 0.143 16 4 0.029 30 7 0.05 
3 6 0.043 17 1 0.007 31 2 0.014 
4 0 0 18 3 0.021 32 14 0.1 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

14 
13 
0 
4 
8 
3 
4 
3 
1 
1 

0.1 
0.093 
0 
0.029 
0.057 
0.021 
0.029 
0.021 
0.007 
0.007 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

5 
11 
3 
4 
7 
1 
34 
6 
27 
4 

0.036 
0.079 
0.021 
0.029 
0.05 
0.007 
0.243 
0.043 
0.193 
0.029 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

4 
16 
7 
8 
40 
31 
18 
16 
20 
15 

0.029 
0.114 
0.05 
0.057 
0.286 
0.221 
0.129 
0.114 
0.143 
0.107 

 
In preliminary tests, the modified LBP presented in this 

paper did not accurately detect the subtle abnormalities 
present in the JSRT database. This is mainly due to the 
sample size of the regions described in Section III D, which 
often contain a great deal of texture information which is 
similar to the sampled non-nodule regions in the training set. 
Abnormalities present on the edges of more than one region 
are also problematic due statistical nature of the LBP 
descriptor. This will be addressed in future research. 

V. CONCLUSION 
In this paper, a tuberculosis detection workflow was 

proposed using energy normalisation, ASM segmentation and 
modified Local Binary Patterns for classification. The 
normalisation and segmentation steps provided satisfactory 
results through visual inspection and segmentation accuracy. 
Probabilities were gathered from the locations of 
abnormalities in JSRT dataset to generate an additional 
classification parameter. The classification of the subdivided 
regions proved problematic due to the relatively large sample 
sizes used, the subtle abnormalities present in the JSRT 
dataset and the nature of LBP descriptor.  In future work, 
subsets of these regions will be analysed using overlapping 
windows to avoid the problems associated with abnormalities 
that border more than one region. By doing this, the inclusion 
of healthy tissue in sampled abnormal regions will also be 
reduced, resulting in a better statistical representation of the 
abnormal textures during training and analysis. 
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