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Abstract 

Greenhouse gases remain as threat to the environment. Various models employed in greenhouse gases are 

either to determine the causative factors responsible for emission, forecast emission or to optimize. 

Integrating these models would reduce the limitations of individual models to better assess possible 

greenhouse mitigation. This paper addresses the management technique for analyzing, assessing and 

mitigating industry’s carbon dioxide (CO2) emission. The current work offers a different technique based 

on an integrated model utilizing the functions of Index Decomposition Analysis (IDA), Artificial Neural 

Network (ANN) and Data Envelopment Analysis (DEA) composed of activity, structure, intensity and 

energy-mix as inputs responsible for CO2 emission. By considering how the three different models are 

integrated into one system, it will be demonstrated how much percentage of an industry’s CO2 can be 

reduced. The Canadian industrial sector was analyzed using the integrated model and it was discovered that 

3.13% of emitted CO2 from year 1991 to year 2035 could be mitigated.  

Keywords: integrated model; industrial sector; carbon dioxide emission   

1. Introduction 

Carbon dioxide (CO2) has attracted worldwide concern because of their effects on the environment 

especially the climate (Aderemi et al., 2009). With the worldwide concern on the effects of greenhouse 

gases (GHGs) on our environment, it makes it very imperative to find ways of mitigating these gases to 

protect the future. Series of unpleasant impacts on the climate and air quality are due to atmospheric 

emissions (Amann et al., 2011). Climate change could be critical as it sabotages the security of the world 

economy and population. It is commonly agreed amongst scientists that most of the world’s carbon dioxide 

emissions come from the way energy is produced and used. Consequently, energy policy has to undertake 

an exceptional participation in meeting this challenge (Nyamvumba et al., 2010). Thus, every 

establishment, either private or government owned has the obligation to control the fast growth of carbon 

dioxide emissions. To do that efficiently, research concerning which of the factors that has an impact on 

carbon dioxide emissions and the gravity of such impact has been of immense importance. These impact 

factors will directly influence the constitution of carbon dioxide abatement measures, policies and strategies 
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(Fan et al., 2006). Total gas emission can be decomposed into the following components: (1) activity effect, 

(2) structure effect, (3) intensity effect, (4) energy-mix effect and, (5) emission-factor effect. Similar to the 

Kaya identity which has carbon intensity of energy, energy intensity and affluence as three basic factors by 

which emission is decomposed into (Audretsch and Feldman, 1996). These components play unique 

functions in influencing the mitigation of total greenhouse gas emissions. It should be noted that other 

factors like environmental factors, economic and financial market, technological progress as well as 

difficulties and maintenance related issues responsible for plant performance are also important to be 

considered. However, those factors require high level of human resources and intense data input. Energy 

management and the reduction of carbon emission are concerns of the global village for environmental 

sustainability. This study is concerned with the dynamics of the five factors responsible for GHG emission 

in the industry and intends to quantify how many percentages could be mitigated.  

Over the last few decades, a growing number of energy researchers and modelers have been analyzing CO2   

for the purpose of its mitigation.  Even though the objectives of these energy researchers and modelers are 

manifold, it is possible to split them in three broad categories: analyzing past emission of CO2 based on 

causative factors, CO2 baseline and CO2 optimization capability.  Accordingly, this trend towards CO2 

mitigation indicates that energy modelers and researchers have made relative decisions to protect the 

environment. Hence, it mirrors fundamental changes in energy models to the reduction of CO2, since it is 

necessary to think about the ways energy models can and should be integrated for the purpose of CO2 

mitigation. Various models employed in greenhouse gases are either to determine the causative factors 

responsible for emission, forecast emission or to optimize. Integrating these models would reduce the 

limitations of individual models to better assess possible greenhouse mitigation. However, despite a recent 

evolution on energy models, particularly integrated models, the academic literature on the  energy  model  

concept  has  remained relatively scarce so far in relation to mitigating greenhouse gases. In particular, it 

seems that no study so far has tackled the role of the various categories of energy models integrated into a 

single model for the mitigation of greenhouse gases. Yet, it was deemed that it is essential to develop this 

kind of research, given the multiplication of empirical evidences of this evolution. 

Numerous authors have based their study on GHG emissions, among them are the studies of (Liu et al., 

2007) and (Hatzigeorgiou et al., 2008). The change of industrial carbon emissions from 36 industrial sectors 

in China over the period 1998-2005 was assessed based on time series decomposition of the logarithmic 

mean divisia index (LMDI) (Liu et al., 2007). The outcomes of their study showed that raw chemical 

materials and chemical products, non-metal mineral products and smelting and pressing of ferrous metals 

account for 59.31% of aggregate increased industrial carbon dioxide emissions. The great contributors to 

the change of China’s industrial sectors’ carbon emissions in that time were the industrial activity and 



energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift 

was relatively small. Hatzigeorgiou et al., analyzed energy-related carbon dioxide emissions in Greece 

(Hatzigeorgiou et al., 2008) from 1990 to 2002. The Arithmetic Mean Divisia Index (AMDI) and LMDI 

methods were employed and changes in carbon dioxide emissions are decomposed into income effect, 

energy intensity effect, and fuel share effect. The period-wise and time series analyses show that the prime 

contributor to the rise in carbon dioxide emissions is the income effect; on contrary, the energy intensity 

effect is primarily accountable for the decrease in carbon dioxide emissions. Bohm (Bohm, undated) 

analyzed the relationship between emission growth and changes in underlying factors using LMDI method. 

The study covered the biggest carbon dioxide emitting countries and regions that together account for over 

80% of total emissions worldwide in the period from 1971-2005. The results illustrate that gross domestic 

product (GDP) growth is by far the prime contributor to global emissions followed by an increasing 

population, whereas decreasing energy intensity was and still is the most vital factor to mitigate emissions. 

Torvanger (Torvanger, 1991) decomposed the change of carbon dioxide emissions related to energy 

consumption in nine Organization for Economic Cooperation and Development (OECD) countries. He 

employed the Divisia technique. He deduced that the reduction in energy intensity and the production 

allocation of energy intensive sectors contributed to the mitigation of carbon dioxide intensity in the OECD 

countries examined. Boqiang Lin and Xiaoling Ouyang (Lin and Ouyang, 2014) evaluated the CO2 

emissions change from energy consumption underlying the determinants of the emission in a Chinese non-

metallic mineral industry from 1986 to 2010 based on LMDI. The result of their study indicated industrial 

activity as the leading force responsible for increase in emission while intensity is the focal contributor to 

its reduction. The contribution of the above mentioned studies was to use the proposed models to 

disintegrate the factors responsible for greenhouse gases and to identify which of the factors contributed 

more to its emission. 

Forecasting CO2 emissions has been a critical subject in developing policies for climate change (Meng et 

al., 2014). Among these studies carried out in this field include (Sozen et al., 2007, Meng et al., 2014, Wu 

and Xu, 2013). A study on the prediction of greenhouse gas in Turkey was carried out by (Sozen et al., 

2007). The results of the study of showed that the prediction formula of artificial neural network with high 

confidence dependent on sectoral energy consumption can use greenhouse gas emissions in Turkey in order 

to determine the future level of greenhouse gases. Meng et al (Meng et al., 2014) considered the design of 

a hybrid forecasting model integrating a non-homogenous experimental equation with a linear equation. 

The hybrid model was compared with linear model and grey model to forecast China’s CO2 emission from 

1992 to 2011. The result showed that the hybrid model responds quickly to changes in the emission trends 

due to its specialized equation structure. Zhibin wu and Jiuping Xu (Wu and Xu, 2013) used a decision 



support model based on a fuzzy multiple objective programming model to predict CO2 emissions in China 

during 2010-2020. The result revealed CO2 emissions to increase dramatically with rapid economic growth. 

Considering the scenario of their study, 23.26% reduction in CO2 emission intensity was discovered. The 

above mentioned predictive tools were successful in capturing the baselines for potential assessment of 

greenhouse gas study, however, they failed in optimizing the causes of emission. 

All studies reviewed above contributed to identifying various factors that led to greenhouse gas emissions 

and its prediction. As much as various models are developed for different purposes, the concern of this 

study is to have a model responsible for total overhaul of greenhouse gas analysis to assist in its mitigation. 

As such, due to the merits of an integrated approach, the present study takes advantage of the best 

characteristics of various techniques to quantify the possible percentage of emission that could be mitigated. 

As identified by (Schwanitz, 2013), integrated assessment models of global climate change are important 

tools to study human feedbacks and influences on climate change and mitigation of greenhouse gases. 

Integrated models are generally developed to satisfy one of these – prediction, forecasting, management 

and decision-making under uncertainty, social learning, and developing system 

understanding/experimentation (Kelly et al., 2013). The proposed study satisfies prediction which estimates 

quantitative value (CO2 prediction) in a specified time, i.e., between 1991 and 2035. It also satisfies 

management and decision-making under uncertainty through optimization – based simulation. 

It is worth noting that there is no technique which is absolutely reliable and suitable for all problem domains 

and types of data. This present study aims to assess quantitatively the percentage of carbon dioxide that 

could be mitigated in an industrial sector with the use of an integrated technique. This will allow 

policymakers and other stakeholders in climate change to concentrate on how best to mitigate CO2 

emissions. To establish a policy that leads to the safety of the environment, the relative contributions of 

factors that lead to CO2 emissions will also be established. In achieving the objectives, integration of index 

decomposition analysis (IDA), data envelopment analysis (DEA) and artificial neural 

network (ANN) will be employed. Deterministic models based on fundamental mathematical 

descriptions can be used for this study, but those factors not easily acquired makes the application of 

deterministic models problematic (Abdul-Wahab and Al-Alawi, 2002) . The integrated method has been 

successfully utilized in the analysis and assessment of energy studies particularly energy consumption 

studies, including (Olanrewaju et al., 2012, Olanrewaju et al., 2013, Olanrewaju and Jimoh, 2014), but 

yet to be applied to CO2 emission studies. This study will be the first application of the integrated model 

to CO2 emissions.  This study is to assist in achieving a set goal to what amount of greenhouse gas can 

be mitigated. 



The overall objective is to quantify the possible percentage of CO2 emissions that can be mitigated. Thus, 

the purpose of this study is to derive a model capable of advanced diagnosis and analysis of industry’s CO2 

to determine the possible way of minimizing its emission through the following in a single model: analysis 

of industry’s CO2 historical data; prediction of industry’s CO2 baseline; and optimization of industry’s CO2 

emission. The rest of this paper is organized as follows. Section 2 details the methodology with a 

background to the integrated model. Section 3 presents the data and the detailed application of the integrated 

model. In section 4, results and discussion of the application are presented. Conclusion is in Section 5. 

2. Methodology 

Although reducing carbon footprint realization is progressively being more accepted by policymakers 

globally as one of the most valuable means to tackling potential environmental risks and enhancing energy 

security (Sarkar and Singh, 2009), the right model that can analyze historical data, with prediction and 

optimization capability and compute efficiency continues to be a challenge. The aim of this study is to 

employ an integrated framework IDA-ANN-DEA for the analysis and assessment of industry’s greenhouse 

gases for possible minimization. The schematic framework of the proposed methodology is given in Figure 

1. The approach adopted by the study is the integration of Index Decomposition Analysis (IDA), Artificial 

Neural Network (ANN) and Data Envelopment Analysis (DEA) into a single model. This methodology 

combines modeling, which is at the core of an energy-management technique, with a wider interpretation 

of activity effect, structure effect, intensity effect, energy-mix effect and emission-factor effect which 

contribute to changes in greenhouse gases. 

In this study, modeling will be used to explore the implications of industry’s greenhouse gases in a 

quantitative framework. Decomposition analysis will be employed as the first step to understand the factors 

that influence greenhouse gases.  

ANN will be used to capture the non-linear relationship so as to make accurate forecasting of the greenhouse 

gases, considering factors that led to the changes as the input factors. As production and carbon data become 

available, prediction is accomplished as a check on the industrial sector in terms of the factors specified 

through decomposition. The ANN methodology enables reliable prediction which consequently allows for 

planning and conducting necessary measures to reach specified objectives (Kljajic et al., 2012). Among the 

justification of ANN to this approach is the complex nature of the input factors for this study. Statistical 

methods sometimes have limitations when variables interact a complex way (Mas et al., 2004), to avoid 

such limitation, ANN is employed. 



DEA is based on a linear programming that produces a single measure of efficiency using the greenhouse 

gas result calculated from IDA and the predicted greenhouse gas result from ANN as variables. DEA is a 

powerful data analytic tool that is widely used by researchers and practitioners alike to assess relative 

performance of Decision Making Units (DMUs).  

The theoretical framework towards this study combines various energy models labeled “integrated IDA-

ANN-DEA Model”. The integrated model relies on available literature on IDA, ANN and DEA. In the 

integrated model, energy mix, intensity, structure and activity are considered inputs, with total CO2 

emission as the output. To analyze and assess the CO2 emission, the algorithm serves as a management 

technique to mitigate CO2. 
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Figure 1: Schematic framework of the proposed method 

Background to the integrated model 

Index decomposition analysis is designed to understand energy mix, emission factor, intensity, structure 

and activity factors that have a bearing on CO2 emission. It is derived from index numbers used to   link   

the  contributions of  price and quantity levels to changes in aggregate commodity consumption (Fengling, 

2004). To understand the importance for GHG mitigation, it is imperative to first understand the underlying 

factors which led to the historic increases in GHGs. For this reason, decomposition analysis which separates 



changes in GHGs over time into the driving factors was employed. The use of IDA which evaluates CO2 

emission patterns and identifies the dynamic factors leading to changes in emission is important to the 

realization of possible mitigation techniques to factors responsible for emission. This study implements 

IDA for the purpose of understanding changes that lead to CO2 emission. 

Since IDA cannot be used for prediction (Olanrewaju et al., 2012), ANN was used to determine the 

relationship between CO2 emission and its driving factors. This network is able to forecast CO2 accurately, 

while taking into consideration the responsible input factors leading to the emission. The accuracy of ANN 

model used in this study is measured by performing a linear regression analysis between the measured 

emission (output from the neural network) and the predicted emission. The general purpose of regression 

is to learn more about the relationship between a predictor variable and a dependent or criterion variable 

(Yilmaz and Kaynar, 2011). 

For this study, DEA requires only the measured quantities of CO2 emitted as an input and predicted CO2 

emitted as an output. DEA is most considered among other non-parametric methods especially for its 

homogenous nature. The DMUs use the same type of resources to produce the same kind of output (Coli et 

al., 2010). DEA has also gained acceptance as an efficient optimization tool (Olanrewaju et al., 2012), 

which led to its use in this study.  DEA is employed to determine the optimal CO2 emission to ensure the 

safety of the environment from the present and future emission. For this study, it is postulated that the 

integration of IDA, ANN and DEA will result in the optimization of possible CO2 that can be emitted to 

the environment. 

The model derivation follows. The input data obtained from the industry using multiplicative 

decomposition method is given below: 

The variables used for the decomposition analysis 
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The multiplicative decomposition variables serve as input to ANN, whose equation is given by 


i ijijj xwfy )(        (8) 



Substituting the variables (equations (3) – (6)) as input values and equation (7) as the output value into 

equation (8) becomes 


i ijmixijijstrijactijtot DDDDwfU }),,,{( ),()int()()(    (9) 

The goal is to minimize the average sum of the errors between the decomposed total CO2 (output to the 

neural network) and the target total CO2 (predicted CO2). Thus,  
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Where tUtot  is the predicted total CO2 and aUtot , the decomposed total CO2. 

From the DEA, interested readers can refer to (William et al., 2006); substituting )(tUtot as the output 
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Where the srtU rotot ,...1,)(  represent outputs and the ,,...1,)( miaU iotot  represent inputs for each of 

,,...1 nj  DMUs and 0j  identifies DMUj to be evaluated. 
r is the output weight while iv is the input 

weight. Transforming equation (11) into an ordinary linear programming problem; 

ૄr = ߚ	ૄr , vi = ߚ vi is obtained with the same optimum value as equation (11) 
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Equation (12) has a dual form that can be written as  
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Equations (12) and (13) will allow the accountability for the extra CO2 emission while keeping the expected 

CO2 emission at the baseline level. 

3. Data  

Due to the inability of getting most recent data, this method was applied to data from Granel’s thesis on the 

decomposition result on the Canadian industrial data from 1991 to 2000 (Granel, 2003). In his thesis, he 

applied the LMDI on the data to get the results presented in Table 1 below.  As indicated by Granel, CO2 

based on final energy consumption is considered whereas that induced by electricity production is not 

reported.  Fuel considered are coal, coke, coke oven gas, petroleum coke, natural gas, heavy fuel oil, 

lpg/propane, and waste fuels consumption. It should be noted that 52 sectors and subsectors including 

mining and all manufacturing industries excluding oil and gas extraction, forestry and construction were 

observed for this study. The data was extended to year 2035 by a computed least square trend line equation. 

Least squares was employed because it makes good interpolated predictions under the right circumstances 

(Burger and Repisky, 2012). The years are replaced by coded values, that is, year 1991 was replaced by 1, 

1992 by 2, and so forth to year 2035 which is coded by 45. This is called the coded method. With the least 

square trend equation, the following were obtained for the various factors responsible, the t in the equations 

below represent the coded values for the years 

tmixenergy 000315.0987.0        (15) 

tensity 00477.0025.1int         (16) 

tstructure 00571.00169.1        (17) 



tactivity 00954.0982.0         (18) 

 

 

Table 1: multiplicative decomposition on Canada’s greenhouse gas from 1991 to 2000 (Granel, 2003) and 

calculated values from 2001 to 2035 using least square trend equation 

Year Total 
CO2 
emission 

Energy 
mix 

Intensity Structure Activity 

1991 0.99 1.00 1.04 1.03 0.94 

1992 0.98 0.97 1.00 1.00 1.01 

1993 1.03 1.02 0.97 1.01 1.04 

1994 1.02 0.96 1.02 0.97 1.07 

1995 1.02 0.96 1.05 0.98 1.04 

1996 1.02 1.01 1.00 1.00 1.01 

1997 1.01 1.00 0.98 0.97 1.06 

1998 0.99 0.99 0.98 0.97 1.04 

1999 1.01 0.99 0.98 0.98 1.07 

2000 0.99 0.99 0.98 0.95 1.07 

2001 1.00 0.99 0.97 0.95 1.09 

2002 1.00 0.99 0.97 0.95 1.10 

2003 1.00 0.99 0.96 0.94 1.11 

2004 0.99 0.99 0.96 0.94 1.12 

2005 0.99 0.99 0.95 0.93 1.13 

2006 0.99 0.99 0.95 0.93 1.14 

2007 0.99 0.99 0.94 0.92 1.15 

2008 0.98 0.99 0.94 0.91 1.15 

2009 0.98 0.99 0.93 0.91 1.16 

2010 0.98 0.99 0.93 0.90 1.17 

2011 0.98 0.99 0.92 0.90 1.18 

2012 0.97 0.99 0.92 0.89 1.19 

2013 0.97 0.99 0.92 0.89 1.20 

2014 0.97 0.99 0.91 0.88 1.21 

2015 0.96 0.99 0.91 0.87 1.22 

2016 0.96 1.00 0.90 0.87 1.23 

2017 0.95 1.00 0.90 0.86 1.24 

2018 0.95 1.00 0.89 0.86 1.25 



2019 0.95 1.00 0.89 0.85 1.26 

2020 0.94 1.00 0.88 0.85 1.27 

2021 0.94 1.00 0.88 0.84 1.28 

2022 0.93 1.00 0.87 0.83 1.29 

2023 0.93 1.00 0.87 0.83 1.30 

2024 0.93 1.00 0.86 0.82 1.31 

2025 0.92 1.00 0.86 0.82 1.32 

2026 0.92 1.00 0.85 0.81 1.33 

2027 0.91 1.00 0.85 0.81 1.34 

2028 0.91 1.00 0.84 0.80 1.35 

2029 0.90 1.00 0.84 0.79 1.35 

2030 0.90 1.00 0.83 0.79 1.36 

2031 0.89 1.00 0.83 0.78 1.37 

2032 0.89 1.00 0.82 0.78 1.38 

2033 0.88 1.00 0.82 0.77 1.39 

2034 0.88 1.00 0.82 0.77 1.40 

2035 0.87 1.00 0.81 0.76 1.41 

 

Application of the integrated model 

The general proposed model can be summarized as follows: 

I. LMDI based on IDA was performed to assess the respective contribution of energy-mix, emission 

factor, intensity, structure and activity. This was successfully achieved from Granel’s thesis 

(Granel, 2003) from 1991 to 2000 and extended to year 2035 by a computed least square trend line 

equation coded method.  

II. Total CO2 emission, energy-mix, emission factor, intensity, structure and activity are selected as 

ANN inputs and output indicators. Total CO2 emission indicator is the output and energy-mix, 

emission factor, intensity, structure and activity are the input indicators. 

III. The predicted results of ANN are verified and validated by the result of regression analysis. 

IV. With the aid of DEA sub-model, efficient computation for CO2 emission was obtained. 

V. Optimization suggestions for the CO2 emission are proposed for each year for the Canadian 

industrial sectors to determine the possible percentage mitigation. 

Addressing uncertainty 



Estimating greenhouse gases has been one of the subjects of uncertainty (Ballantyne et al., 2012, Rodrigues, 

2015). To address the uncertainty using the proposed model, (Johnson et al., 2011) explained in their study 

the guidelines for addressing model uncertainties. Among the guidelines is that models are expected to 

disaggregate and spatially until they have reached the practical limits of the availability of data. In this 

study, disaggregation was successfully achieved as stipulated using IDA from Granel’s study eliminating 

any possible uncertainty. To address the uncertainty in the data from IDA as well as the extended data 

through the least square method, the data was reported to two significant figures. The uncertainty bound by 

reporting to two significant figures thus represents 1% of the value reported (Johnson et al., 2011). The 

bounding of the uncertainty to the model assists in understanding the range of results that will be attributed 

to estimating the possible greenhouse gas mitigation. 

4. Results and Discussion 

4.1. ANN Results 

To attain the specified objectives of the study, the baseline was predicted using a reliable prediction 

technique, ANN. For the prediction technique; activity effect, structure effect, intensity effect, energy-mix 

effect and emission-factor effect were the inputs while the target CO2 emission was the output.  Table 2 

shows the target and predicted result. The number of hidden neurons was determined by comparing the 

performance of different cross-validated   networks, with 1–15 hidden neurons, and choosing the number 

that produced the greatest network performance.  This resulted in a network with ‘6’ hidden neurons. Years 

1991, 1993, 1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 

2025, 2027, 2029, 2031, 2033 and 2035 were used for training; years 1992, 1996, 2000, 2004, 2008, 2012, 

2016, 2020, 2024, 2028 and 2032 for testing; and years 1994, 1998, 2002, 2006, 2010, 2014, 2018, 2022, 

2026, 2030 and 2034 for validation. In the analyses, network parameters of learning rate and momentum 

were set at 0.06 and 0.7, respectively with activation functions of purelin and tansig under Matlab 2010a 

software. Purelin and tansig gave the best fit compared to other activation functions. It was discovered that 

a strong correlation exists between the baseline (predicted CO2 emission) and the target CO2 emission from 

the visual inspection as presented in Figure 2. 

Table 2: predicted result from ANN 

Year Target CO2 Predicted CO2 Error (Target-Predicted) 
1991 0.99 1.02 -0.03 
1992 0.98 1.02 -0.04 
1993 1.03 1.02 0.01 
1994 1.02 1.02 0.00 



1995 1.02 1.02 0.00 
1996 1.02 1.01 0.01 
1997 1.01 1.00 0.01 
1998 0.99 1.00 -0.01 
1999 1.01 1.02 -0.01 
2000 0.99 1.00 -0.01 
2001 1.00 1.00 0.00 
2002 1.00 1.00 0.00 
2003 1.00 1.00 0.00 
2004 0.99 1.00 -0.01 
2005 0.99 0.99 0.00 
2006 0.99 1.00 -0.01 
2007 0.99 0.99 0.00 
2008 0.98 0.98 0.00 
2009 0.98 0.98 0.00 
2010 0.98 0.97 0.01 
2011 0.98 0.97 0.01 
2012 0.97 0.97 0.00 
2013 0.97 0.97 0.00 
2014 0.97 0.96 0.01 
2015 0.96 0.95 0.01 
2016 0.96 0.95 0.01 
2017 0.95 0.95 0.00 
2018 0.95 0.95 0.00 
2019 0.95 0.94 0.01 
2020 0.94 0.94 0.00 
2021 0.94 0.93 0.01 
2022 0.93 0.92 0.01 
2023 0.93 0.93 0.00 
2024 0.93 0.92 0.01 
2025 0.92 0.92 0.00 
2026 0.92 0.91 0.01 
2027 0.91 0.92 -0.01 
2028 0.91 0.91 0.00 
2029 0.9 0.90 0.00 
2030 0.9 0.90 0.00 
2031 0.89 0.89 0.00 
2032 0.89 0.89 0.00 
2033 0.88 0.89 -0.01 
2034 0.88 0.89 -0.01 
2035 0.87 0.89 -0.02 

 



 

Figure 2: prediction result for CO2 emission baseline 

 

Regression validation 

To confirm and validate the ANN’s result, linear regression analyses is a likely confirmation method to the 

neural network model between the predicted and corresponding target CO2 emission values. The analyses 

lead to a straight line equation bxay   with a correlation coefficient of R2. Figure 3 below shows the 

regression results signaling a good prediction.  



 

Figure 3: Regression validation 

4.2. DEA Results 

To be able to determine the possible percentage CO2 mitigation for the period of study, DEA analysis was 

carried out. DEAFrontier software package on excel has been employed to carry out the DEA analyses. The 

target CO2 emission was selected as the input whereas the predicted CO2 emission was selected as the 

output data for the analyses. The efficiency scores in different years (DMUs) are shown in Table 3. These 

efficiency scores are relative to the best performing years, to determine how best quantitatively the CO2 

emission could be reduced. 

With benchmarking based on the year of CO2 emission, 1992 was discovered to have the optimal 

performance of 100% and can serve as the only benchmark to the other periods considered. The remaining 

years have the rating of 96% - 98.8%. Table 3 presents the efficiency scores based on the comparison of 

the years following the Constant Returns to Scale assumption. For this case study, the year 1992 was 



considered to have the lowest CO2 emission in comparison to the others. The other years would consider 

the year 1992 as a peer to enable them efficient. To be able to register the CO2 emission that will enable the 

inefficient years optimal, they must emulate the efficient year. The efficiency score of each year is a 

coefficient that indicates how optimal and efficient the operations leading to CO2 can be.  

Table 3: efficiency scores based on benchmarking 

DMU No DMU Name Efficiency
1 1991 0.96788 
2 1992 1.00000 
3 1993 0.96325 
4 1994 0.97585 
5 1995 0.96691 
6 1996 0.96492 
7 1997 0.96863 
8 1998 0.96160 
9 1999 0.97770 
10 2000 0.96749 
11 2001 0.97310 
12 2002 0.97253 
13 2003 0.97205 
14 2004 0.97148 
15 2005 0.97081 
16 2006 0.97013 
17 2007 0.96945 
18 2008 0.96867 
19 2009 0.96789 
20 2010 0.96700 
21 2011 0.96611 
22 2012 0.96521 
23 2013 0.96430 
24 2014 0.96349 
25 2015 0.96268 
26 2016 0.96195 
27 2017 0.96132 
28 2018 0.96069 
29 2019 0.96036 
30 2020 0.96012 
31 2021 0.96009 
32 2022 0.96037 
33 2023 0.96076 

34 2024 0.96146 
35 2025 0.96237 
36 2026 0.96362 
37 2027 0.96508 



38 2028 0.96689 
39 2029 0.96903 
40 2030 0.97152 
41 2031 0.97426 
42 2032 0.97735 
43 2033 0.98082 
44 2034 0.98454 
45 2035 0.98865 

 

Reduction of CO2 emission 

Figure 4 shows the years of operation of industrial sectors for reduction in greenhouse gas. The most 

reduction in the greenhouse gas from the sectors will take place in years 2020 and 2021. Apart from the 

most efficient year of 1991, year 2035 will be the least in the reduction of greenhouse gas. Figure 4 is a 

normal graph in nature from year 2001 to year 2035. The normal graph nature is similar to the carbon 

dioxide emission of Indonesia, Brazil and India from year 1971 to year 2050 according to Global Commons 

Institute as depicted from the study of  (Kuntsi-Reunanen and Luukkanen, 2006). This is also similar to the 

reduction in Thailand’s carbon dioxide emission intensity from year 1971 to year 2050 according to 

‘contraction and convergence’ approach. The year 1991 will encounter a reduction in emission of (100-

96.788 = 3.212) % compared to the most optimal practice in 1992 (efficiency of 1). Industrial sectors in 

1991 can reduce their emission by 3.212% and be an efficient industrial sector. Figure 4 relates the emission 

to the percentage amount of CO2 that would have been reduced if the periods emulated 1992 practice. In 

summary, the amount of CO2 that can be possibly mitigated from year 1991 to year 2035 is 3.13% of the 

total CO2 that can be emitted for the whole period under study.  

 

 

Figure 4: percentage reduction in CO2 
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5. Conclusion 

The improvements to be obtained in the reduction of CO2 emission requiring efficiency computation, 

analyzed historical data, predicted and optimized reduction of CO2 emitted in an integrated system is 

advantageous. Various contributions of the key drivers to the emission of CO2 were determined through the 

use of Index Decomposition Analysis. Predicting the CO2 emission baseline after the determination of the 

pattern of the various drivers responsible for the emission was successfully demonstrated with the use of 

Artificial Neural Network. Possible reduction of CO2 emission was achieved using Data Envelopment 

Analysis. Thus, by determining the analysis and assessments of CO2 with an accommodative tool like that 

proposed for this study, CO2 can be mitigated efficiently to the benefits of the global society. The combined 

advantages of IDA, ANN and DEA have greatly expanded the research horizons in the field of energy 

studies. Model development to assessing and mitigating CO2 for this study successfully captured the 

analysis of historical data, CO2 baseline prediction, CO2 efficiency computation and the possible reduction 

of CO2 emission in a combined model as opposed to single models. The approach can assist to make long-

term planning which involves developing a view of the possible future mitigation of GHGs. Without proper 

analysis of the causal effects and its baseline determination, it becomes difficult to have an effective 

assessment for the reduction of CO2 emission. It should be noted that due to the unavailability of data at the 

time of research and the high probability of not getting data from year 2001 to the year of study, data was 

projected for this study. The result of this study projects a least target that is possible for mitigation in the 

future putting in mind the present scenario, using scenario of year 1991 to 2000 as the baseline.  

It is also worth noting that the 52 sectors definitely could change or improve practices before the end of 

year 2035, however, this study has only considered year 1991 to 2000 as a baseline (due to data 

unavailability), leading to the assumption that all practices within the stipulated available data was constant 

throughout the years predicted. Comparing the efficiency of the practices using the DEA singled out 1992 

as the best practice. This probably wouldn’t be so should there be more availability of data. It can also be 

argued as well that any of the years 1998, 1999 or 2000 should have been the most efficient instead of the 

1992 practices. However, it is worth noting that the efficiency of 1992 is not only due to the lower intensity 

in comparison to the later years but also due to the amount of activities. Improved technologies and practices 

in the later years could only mean increased activities leading to more consumption of energy and 

automatically to more emission. Computing the efficiency and minimizing CO2 emissions are very useful 

to understanding how best emission could be mitigated. When compared to the single models, DEA 

computes efficiency and optimizes, ANN computes efficiency and predicts, and IDA analyzes and 

disintegrates historical data, whereas the proposed algorithm integrates all the features. 



However, future work will focus on the following areas (1) creating a single platform for the operations of 

IDA, ANN and DEA that leads to model simplicity (2) application of the model to up-to-date data including 

data of environmental, technological progress, economic and financial market factors. When such factors 

are included, it will definitely change the dynamics of the equation especially that of IDA. (3) Research to 

explore the most appropriate technique to calculate the uncertainty associated to mitigating CO2 emission. 

Results are based on limited data, which may not allow generalization of the findings regarding technical 

progress from 1992 to 2035. Nonetheless, the findings of this study together with the arguments provide 

key insights to assessing potential reduction in greenhouse gases. 
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