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Abstract 

Most animals detect sudden changes in trains of repeated stimuli but only some can 

learn a wide range of sensory patterns and recognize them later, a skill crucial for the 

evolutionary success of higher mammals. Here we use a neural model mimicking the 

cortical anatomy of sensory and motor areas and their connections to explain brain 

activity indexing auditory change and memory access. Our simulations indicate that 

while neuronal adaptation and local inhibition of cortical activity can explain aspects 

of change detection as observed when a repeated unfamiliar sound changes in 

frequency, the brain dynamics elicited by auditory stimulation with well-known 

patterns (such as meaningful words) cannot be accounted for on the basis of 

adaptation and inhibition alone. Specifically, we show that the stronger brain 

responses observed to familiar stimuli in passive oddball tasks are best explained in 

terms of activation of memory circuits that emerged in the cortex during the learning 

of these stimuli. Such memory circuits, and the activation enhancement they entail, 

are absent for unfamiliar stimuli. The model illustrates how basic neurobiological 

mechanisms, including neuronal adaptation, lateral inhibition, and Hebbian learning, 

underlie neuronal assembly formation and dynamics, and differentially contribute to 

the brain’s major change-detection response, the mismatch negativity. 

 

Keywords: 

Neurophysiology, mismatch negativity (MMN), long-term memory traces, neural-

network simulation, language, electro/magneto-encephalography (EEG/MEG) 
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1 Introduction 

The ability of the brain to automatically detect unexpected, rare events amongst 

common, frequently repeated ones can be crucial for survival. A well-known index of 

the human auditory system’s ability to detect novelty and change is the Mismatch 

Negativity (MMN) (Näätänen et al., 1978), an early (latency 100-250ms) event-

related response elicited in oddball experiments by infrequent acoustic events (so-

called “deviant” stimuli, DEV) presented occasionally among frequently repeated  

“standard” stimuli (STD). Importantly, the MMN is elicited even in the absence of 

focused attention, for example when subjects are distracted by a streaming task, 

demonstrating the automatic nature of the brain mechanisms underlying it (Näätänen, 

1990; Schröger et al., 1992). 

Several models have been proposed to explain aspects of the brain’s ability to 

automatically detect change (see (Garrido et al., 2009; May & Tiitinen, 2010) for 

recent reviews). While these different explanations highlight the relevance of different 

processes, they converge on the importance of short-term mechanisms acting upon, or 

being driven by, the most recent sensory input. Mechanisms previously hypothesized 

to underlie the MMN response include cortical inhibition (Näätänen’s (1990) “release 

of tonic inhibition” model), neuronal adaptation (Jääskeläinen et al.’s (2004) 

differential adaptation model), short-term synaptic plasticity (model-adjustment 

hypothesis (Winkler et al., 1996)) or a combination of these mechanisms.  For 

example, the predictive coding model takes into account both synaptic plasticity and 

neuronal adaptation (Friston, 2005), whereas models described by May and 

colleagues (1999; 2010) focus on adaptation and lateral inhibition. 

*** Fig 1 about here *** 
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Closely related to the ability of the brain to automatically detect unexpected, 

“deviant” sensory events is its capacity to become acquainted with, and recognise, 

aspects of the environment that occur regularly and with high frequency. However, 

the ability to learn and later recognise and distinguish large numbers of input patterns, 

including scenes, specific faces, sounds, and words, requires mechanisms for learning 

and storage of long-term memory (LTM) traces. Whereas the former (change-

detection) capacity is shared by a range of animals, the acquisition of large 

“vocabularies” is limited to a set of higher vertebrates, and is believed to have played 

a crucial role in the evolutionary advantage of mammals (Pulvermüller, 1999; Fadiga 

et al., 2002; Wilson et al., 2004; Fagot & Cook, 2006; Voss, 2009; Pulvermüller & 

Fadiga, 2010).  LTM traces, after having formed, act as long-term representations for 

patterns of sensory input, i.e., they can be re-activated, thereby signalling the presence 

of the corresponding elements in the environment. These circuits thus provide a 

mechanism for the recognition of learned meaningful stimuli. Memory representations 

can also emerge at more abstract levels, by means of generalisation over structurally 

similar sequences of sensory patterns (e.g., tone sequences in music, or syntactic 

structures in language). Recent results indeed support the hypothesis that a 

modulation of the MMN response reflects the presence and activation of long-term 

memory traces at different levels (Schröger et al., 1992; Frangos et al., 2005). In the 

domain of language, familiar!speech sounds presented as deviant stimuli in an oddball 

sequence produce larger MMN responses than unfamiliar speech sounds (Dehaene-

Lambertz, 1997; Näätänen et al., 1997), and, similarly, MMNs to familiar and 

meaningful words are larger than to matched unfamiliar and meaningless 

pseudowords (Korpilahti et al., 2001; Pulvermüller et al., 2001; Garagnani et al., 

2009) (see Fig. 1, panel on the right). A similar difference applies to non-linguistic 
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familiar vs. unfamiliar speech sounds (Frangos et al., 2005; Jacobsen et al., 2005; 

Hauk et al., 2006). Even at highly abstract levels, the MMN shows differences 

between tone sequences respecting sequential regularities and those that do not 

(Saarinen et al., 1992; Bendixen & Schröger, 2008; Bendixen et al., 2009), and 

equally between grammatical sentences and ungrammatical or meaningless strings 

(Shtyrov et al., 2003; Pulvermüller & Shtyrov, 2006; Pulvermüller & Assadollahi, 

2007; Shtyrov & Pulvermüller, 2007). 

The available evidence, therefore, suggests that the brain response to an unexpected 

sound results from (at least) two different processes: (1) the automatic detection of 

auditory change based on the most recent sensory input (within a few seconds), and 

(2) the activation of previously established memory traces specific to familiar auditory 

elements, which can emerge in the cortex by means of long-term learning mechanisms 

(Näätänen et al., 2001; Pulvermüller & Shtyrov, 2006). In the work described here we 

aimed at investigating the different contributions that these long- and short-term 

memory mechanisms make to the brain’s change detection response. By “long-term 

mechanisms” we mean long-lasting synaptic changes and plasticity, including long-

term potentiation and depression, and the emergence of memory circuits in the cortex; 

by “short-term mechanisms”, we mean neuronal adaptation, lateral inhibition, and, 

critically, the reverberation of neuronal activity within memory circuits.1  

It should be clarified here that the present approach – which is rooted in 

neurobiological theory – views the formation of long-term memory traces in the 

cortex as the result of correlated activation in sensory and motor brain systems. In 

particular, following Hebb’s postulate (Hebb, 1949), we conjecture that simultaneous 

                                                
1 By “reverberation within memory circuits” here we mean repeated forward and backward 

propagation of firing activity within a set of strongly and reciprocally connected cells – see 

also (Abeles, 1991). 
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neuronal activity in sensory and motor systems leads to the strengthening of synaptic 

links connecting the coactive cells, and to the formation of memory circuits 

distributed over sensory, motor and mediating “higher” areas (e.g., in prefrontal 

cortex and “amodal” temporal cortex (Fuster, 2001)). These distributed action-

perception circuits are the neurobiological basis of long-term memory traces, and their 

temporary activation has been proposed to be the mechanism underlying short-term, 

working or “active” memory (Zipser et al., 1993). In this neurobiological perspective, 

memory and perception are not entirely separate functions, realised by dedicated 

components, but processes that emerge in – and are implemented by – networks of 

neurons governed by the same mechanisms. As such, neuronal adaptation, inhibition, 

activation spreading and synaptic plasticity may all subserve, to different extents, both 

memory and perception. Hence our choice not to describe the relevant effects as either 

perceptual or memory-based, and focus on identifying the distinct neural mechanisms 

at the origins of (and differentially contributing to) the observed cognitive processes 

and neurophysiological effects.  

To investigate the constituents of the brain response to auditory change we 

implemented biologically grounded neural-network models that reproduced important 

structural and functional properties of relevant cortical areas. In a series of simulation 

studies carried out on such models we systematically manipulated short- and long-

term mechanisms, and analysed the effects of the (combined and independent) 

presence (or absence) of these mechanisms on the resultant MMN response. We ran 

two sets of simulations: in Experiment 1, neurophysiological principles applied but no 

long-term memory mechanisms were implemented. The resultant networks (Fig. 2B) 

were thus “tabula rasa” models, i.e. contained no LTM traces. In Experiment 2, 

mechanisms of synaptic plasticity and long-term memory formation were included. 
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The resultant networks (now including memory traces – Fig. 2C) were applied to 

model effects of familiarity on the MMN response. In both Experiments, the influence 

of basic neuronal mechanisms of short-term memory (adaptation and inhibition) was 

examined by systematically varying their availability. 

 

*** Fig 2 about here *** 

 

2 Material and Methods 

2.1 Experiment 1 – MMN to frequency change in auditory areas 

To isolate the contributions of short-term mechanisms to the MMN response, as it is 

elicited, for example, by frequency deviants in auditory oddball stimulation, we used 

tabula rasa networks with the 3-area structure depicted in Fig. 2B, modelling the three 

main auditory areas, primary auditory cortex, auditory belt and parabelt (A1, AB, PB, 

Fig. 2A). Each model area is comprised of two layers of 25-by-25 units each, one 

consisting of excitatory cells, the other of inhibitory ones (not depicted in Fig. 2). 

Each network unit, or “node”, represents a cluster of real neurons, and is realised as a 

graded-response leaky-integrator cell having sigmoid activation function with 

threshold ϕ  (see Appendix A for details). Higher- (lower)-than-average cell 

activation levels produce an increase (decrease) in the threshold ϕ, effectively 

modelling neural (or “spike-rate”) adaptation; the impact of adaptation on the 

activation of a cell (“adaptation strength”) is determined, in the model, by the 

parameter α (see Appendix A, Eq. (A.3)), which was modulated across the 

simulations. Within- (recurrent) and between-area synaptic connections are not “all-

to-all” but random, patchy and topographic, as typically found in the mammalian 

cortex (Gilbert & Wiesel, 1983; Braitenberg & Schüz, 1998). Local reciprocal 



 8 

connections between excitatory and inhibitory layers of each area realise lateral 

inhibition (Braitenberg & Schüz, 1998), as follows: each inhibitory cell I receives 

excitatory input from all excitatory cells situated within an overlying 5x5 

neighbourhood and projects back to the single excitatory cell E located directly above 

it. The parameter wI, indicating the weight of the projection I→E (identical across all 

cells and areas) was manipulated in the simulations to modulate local inhibition 

strength. An area-specific self-regulatory mechanism, termed “global” inhibition, was 

also implemented, in order to prevent the overall network activation from falling into 

non-physiological states (total saturation or inactivity). For further details of the 

model, see (Garagnani et al., 2008). 

2.1.1 Materials 

The presentation of a “sound” to a network was simulated by simultaneously 

activating a predetermined pattern of 17 cells in area A1 (2.72% of all A1 units). 

There were six pairs of randomly generated standard (STD) and deviant (DEV) 

stimulus patterns. The probability that any two patterns shared one or more cells was 

approximately 0.38. All networks used for this experiment (having the 3-area 

structure illustrated in Fig. 2B and described above) had their synaptic links and 

weights initialised at random. Long-term learning mechanisms were not implemented 

to examine the influence of inhibition and adaptation mechanisms separately, 

assuming unfamiliar, new sounds are processed by an untrained, “naïve” auditory 

cortex.  

2.1.2 Design 

To investigate predictions of adaptation, local inhibition, and combined adaptation-

inhibition theories of the MMN, we used four networks of different types. In the first 
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network, adaptation and local inhibition mechanisms were both removed, simulating a 

situation in which cells do not adapt to the input stimulus and the local connections 

implementing lateral inhibition are absent (α=0, wI=0). In the second network, 

neuronal adaptation was effective (α=10) and local inhibition absent (wI=0), whereas 

the opposite (α=0, wI=1.0) was true in the third one; finally, both mechanisms were 

active (α=10, wI=1.0) in the fourth network. 

Oddball experiments were simulated as follows. Each “trial” started with a baseline 

of six simulation time steps, after which a stimulus was presented for four time steps.  

The baseline was also the inter stimulus interval, ISI. The oddball sequence consisted 

of 80% STD trials intermixed with 20% DEV (or critical) trials. The order was 

pseudo-random, with successive DEV trials separated by 2-to-6 intervening STD 

trials. Network’s output was recorded from the penultimate STD stimulus’ offset to 

the onset of the stimulus following a critical trial. For each of six stimulus pairs, ten 

simulated evoked responses were collected in each of the 4 randomly initialised 

networks, producing a total of 60 trials per stimulus type per network.  

2.1.3 Evaluation 

For each of the four networks, we computed and plotted the average (across trials and 

stimuli) of the total network response (sum of the output of all excitatory cells in areas 

A1, AB and PB) to DEV and pre-deviant STD stimuli, and the difference (DEV – 

STD), or MMN, over a period of 14 simulation time-steps.2 Statistical analyses were 

carried out by means of paired two-sample t-tests on the difference values (DEV - 

                                                
2 As ISI was 6 simulation time-steps, the network’s output during the last 4 steps of the ISI 

following the STD stimulus was used to plot both the 4 steps preceding the stimulus onset in 

the evoked DEV response’s baseline, and the last 4 steps of the evoked STD response. 
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STD) obtained from the 60 trials collected. Error bars on the plots give the standard 

error of the mean (SE).  

2.2 Experiment 2 – Long-term memory MMN in the language cortex  

Here we set out to investigate the neurobiological mechanisms underlying the 

formation of memory traces, and the effect of such memory traces’ activation on 

neurophysiological responses. As a paradigm case we chose the learning of the words 

of a language, contrasting it with the lack of formation of such processing devices for 

meaningless unfamiliar pseudowords. More precisely, we aimed at providing a 

mechanistic explanation of experimental data showing larger brain responses to 

familiar words than to unknown pseudowords (Korpilahti et al., 2001; Pulvermüller et 

al., 2001). Words and familiar speech sounds are auditory objects, but are produced 

by articulatory movements. Because in typical language development speech 

production leads to auditory perception of the self-produced sounds, Hebbian learning 

entails a coupling of specific motor and auditory circuits in distributed sensorimotor 

circuits (Fry, 1966; Pulvermüller & Preissl, 1991; Pulvermüller, 1999). The presence 

in the cortex of strong links associating speech sounds with corresponding 

articulations has been confirmed by a significant body of experimental evidence 

(Pulvermüller, 1999; Fadiga et al., 2002; Wilson et al., 2004; Pulvermüller & Fadiga, 

2010). Therefore, the model of the auditory cortex used in Experiment 1 was extended 

here by adding three areas (Fig. 2A, 2C) that mimic the function of inferior-frontal 

motor, premotor and prefrontal cortex (areas M1, PM and PF). 

2.2. 1 Materials  

The extended network structure used in Experiment 2 is shown in Fig. 2C, and 

included the superior-temporal area model used in Experiment 1. Three inferior-
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frontal areas were added, with connectivity reflecting major features of the known 

neuroanatomical links within and between inferior frontal areas (see Methods, 

Experiment 1, and (Garagnani et al., 2008)). Neuroanatomical links between inferior-

frontal and superior-temporal areas were added to mimic long-distance connections 

by way of the extreme capsule and the arcuate fascicle, which have been documented 

to be present in macaques and even richer developed in humans (e.g., Pandya & 

Yeterian, 1985; Catani et al., 2005; Petrides & Pandya, 2009). To enable the network 

to develop memory traces for words, learning was allowed by simulating long-term 

potentiation and depression (LTP/LTD) mechanisms (Malenka & Nicoll, 1999) (see 

Appendix A).  

We built a set of 12 to-be-memorised sensorimotor patterns, thought to represent 12 

words (W). Each sensorimotor pattern pSM comprised one auditory/acoustic pattern 

pA1 and one motor/articulatory neural pattern pM1, identifying, respectively, 17 

specific cells in area A1 (the auditory "word stimulus") and 17 (different) cells in M1 

(the corresponding motor pattern), which were co-activated during the learning of the 

word-pattern pSM. Co-activated cells in A1 and M1 can be thought to represent the 

neural correlates of acoustic and articulatory phonetic features of a word, respectively. 

Twelve not-previously-learnt sensorimotor patterns, or “pseudowords” (PW), 

identical in size to the word patterns, were generated by randomly selecting and re-

combining sub-parts of word patterns. To control for the degree of overlap3 between 

auditory patterns of Ws and PWs, the stimuli were built in such a way that they could 

be arranged into four sets of six pairs – (W, W), (W, PW), (PW, W), and (PW, PW) – 

such that the overlap between any two paired patterns was constant (≈8.3%, see 

Appendix C). After learning, the auditory patterns (neural units in A1) were used to 

                                                
3 The portion of shared active cells. 
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stimulate the network. 

2.2.2 Design 

In the first part of this experiment, the network learned sensorimotor (A1-M1) 

patterns. Each word pattern was presented to the network two thousand times. 

Stimulus duration was two time-steps; stimuli were followed by an ISI of variable 

length4 during which input activity was driven by white noise. As described in detail 

by Garagnani et al. (2008), the presence of Hebbian learning mechanisms in this 

architecture induces the emergence of model correlates of lexical representations – 

cell assemblies (CAs) for words – as strongly connected distributed circuits that 

associate the paired “sensory” (A1) and “motor” (M1) activation patterns through 

neural elements located in areas linking auditory and motor cortex. The present 

network successfully learnt sensorimotor patterns for word pattern. 

In the second part of the study, the resulting trained network was used to simulate 

the neurophysiological responses of the language cortex to W and PW stimuli. In each 

“trial”, the model’s auditory area A1 was stimulated either by a familiar (W) or 

unfamiliar (PW) pattern. An oddball paradigm was implemented in which 93% of 

STD trials were intermixed with 7% DEV trials. DEV trials were always preceded by 

6-to-10 STD stimuli. Other features of the simulation of the oddball experiments were 

the same as in Experiment 1. 

We employed 4 networks of 3 different types (see Experiment 1) which, 

respectively, included adaptation only, local inhibition only, and both adaptation and 

inhibition mechanisms together; networks lacking both adaptation and inhibition were 

                                                
4 During training, we enforced stimulus presentation to occur always at the same initial level 

of network activation. This required the length of the ISI to be varied (dynamically) in 

proportion to the amount of activation that the previous stimulus had produced in the network. 
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omitted, because this type of model was shown in Experiment 1 to be unable to model 

basic MMN responses. To control for overall degree of stimulus suppression (or 

activation) two networks having combined adaptation-inhibition were used: while the 

first, the “full scale” version, had adaptation and inhibition parameters set to values 

applied in the adaptation- and inhibition-only networks (α=10, wI=1.0), the second 

“reduced” version controlled for the overall level of dysfacilitation by halving both 

values (α=5, wI=0.5). Four experiments were run on each of these 4 networks, in 

which the lexicality5 of standard and deviant stimuli was varied systematically 

(congruent lexicality of standard and deviant stimuli: W-W, PW-PW; and incongruent 

lexicality: W-PW, PW-W). All other parameters and features were identical to 

Experiment 1. To assess the variability of the network response due to the random 

elements of the simulations (i.e., neuronal background noise, jittering of the number 

of STD before a DEV) each of these 16 experiments was repeated four times, 

producing a total of 240 trials per stimulus type per lexical context per network. 

2.2.3 Evaluation 

The evaluation was identical to that of Experiment 1, except that average STD, DEV 

and MMN responses (and standard errors) were computed across 240 trials for each of 

the 4 possible lexical combinations (see above) and for each of the 4 networks.  

 

3 Results 

3.1 Experiment 1 – MMN to frequency change in auditory areas 

As shown in Figure 3.(A), in absence of neuronal adaptation and local inhibition 

mechanisms the network does not bring about a MMN – in fact, a larger response to 

                                                
5 The lexical status of a linguistic item (words are lexical items, pseudowords are not). 
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the STD than to the DEV stimulus emerged (time-step 8: t(59)=6.95, p<0.001), a 

behaviour which is contrary to extant experimental evidence. In all three remaining 

cases – inhibition-only, adaptation-only and combined inhibition-adaptation – the 

network exhibits a clear MMN, with the responses to the DEV significantly larger 

than those to the STD stimuli (at time-step 8, all t239 values > 6, all p values < 0.001). 

Note that the largest MMN amplitude was produced by the last type of network.  

*** Fig 3 about here *** 

Figure 4 plots the average area-specific activations contributing to the simulated N1-

to-the-STD and MMN responses6 as extracted from the output of inhibition-only 

networks. The simulated activation peaks (“source strengths”) in areas A1 and AB 

(panels (A)-(C)) were submitted to a weighted-averaging procedure which computed 

the “centre of gravity” (or, more appropriately, centre of mass) of the simulated 

sources, yielding an output similar to that of the Equivalent Current Dipole (ECD) 

estimation (see Appendix B for details). As visible from panel (D), the changes in 

relative activation of the same auditory areas lead to distinct estimates of the 

underlying sources’ locations, thus explaining, in part, the well-known differences 

between ECD loci of the MMN and N1 to the STD responses (Tiitinen et al., 1993; 

Korzyukov et al., 1999).  

*** Fig 4 about here *** 

*** Fig 5 about here *** 

                                                
6 Here, the N1 is calculated as the largest peak of the simulated response to the STD, whereas 

the MMN was calculated as the largest peak of the difference wave, DEV−STD. 
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3.2 Experiment 2 – Long-term memory MMN in the language cortex  

Figure 5 shows the STD, DEV and resultant MMN responses of 6-area networks 

realising adaptation, inhibition, and full and reduced combined adaptation-inhibition 

to “speech” stimuli (familiar auditory “word”, W, and unfamiliar “pseudoword”, PW, 

patterns) presented to the primary “auditory” area (A1). 

The adaptation-only network results (first column on the left of Figure 5) show that 

STD responses tend to be larger for Ws (red curves) than for PWs (blue curves) at 

time steps 7 and 8. A similar trend is evident for DEV responses. As a result, the 

MMN responses depend on the lexical status of both STD and DEV stimuli. As 

shown in the two bottom plots, when the context is PW STDs the DEV responses to 

Ws are larger than those to PWs. Similarly, in the context of STDs that are Ws, the 

MMNs elicited by Ws are larger than those to PWs. MMNs to Ws and PWs presented 

in incongruent contexts (i.e., W in PW STD context and PW in W STD context) are 

also different, with W MMNs being larger than PW MMNs (Fig. 5, bottom panel of 

column 1, time-step 7, t239=5.46, p<0.001). This is consistent with neurophysiological 

evidence (see Introduction and Discussion below). However, in congruent contexts 

there is no difference between simulated MMN responses to Ws in W STD context 

and PWs in PW STD context,  (F < 1, n.s.), which is difficult to reconcile with pre-

existing empirical data. 

The inhibition-only network (second column of Figure 5) shows marginally smaller 

STD responses than the adaptation model, but some relatively large MMNs. Once 

again, W STD responses tend to be larger than PW STD ones and a similar difference 

is present for DEV stimuli, although the onset of differences to DEVs now appears 

already at time step 6 (t(239)=1.95, p<0.03). Numerically, the lexicality difference (W 

minus PW response) seems to be larger in the DEV than in the STD responses, 
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resulting in a general lexicality effect in MMN responses: MMNs to Ws are now 

larger than MMNs to PWs regardless of the familiarity of context or standard stimuli 

(Fig. 5, column 2, bottom panel, time-steps 6: t239=1.95, p<0.03, and 7). In addition, 

word MMNs were larger in W context than in PW context at time step 5 (t239=2.42, 

p<0.02). 

The third and fourth columns of Fig. 5 plot the results of the networks with 

combined adaptation and inhibition. As in the inhibition-only model, a relatively 

small (reduced values, top panel of column 3), or even marginal (maximal values, top 

panel of column 4) lexicality effect emerged in the STD responses (time step 7). The 

enlargement of the DEV response to W relative to that to PW stimuli was more 

substantial at time-step 6 for the reduced values model, and at steps 6 and 7 for the 

maximal values model. This resulted in a generalised lexicality effect on the MMN: 

W MMNs were larger than PW MMNs, regardless of the familiarity of the context or 

STD stimuli (Fig. 5, bottom panels, column 3, time-step 7: t239=1.79, p<0.05; column 

4, steps 6: t239=3.31, p<0.01 and 7). 

In sum, all models reproduced the larger DEV responses to Ws than PWs, which led 

to a word enhancement of the MMN (i.e., W MMN > PW MMN) given the STD 

context was kept constant. Also a lexicality effect on the MMN in incongruent 

contexts was found throughout. However, the adaptation-only model failed to produce 

a larger MMNs to familiar, compared with unfamiliar, stimuli when these were 

presented in congruent contexts. 
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4 Discussion 

4.1 Experiment 1 – MMN to frequency change in auditory areas 

We used a neuronal circuit model fashioned according to the neuroanatomy of the 

auditory system to identify and explain the contribution of short-term mechanisms to 

the change-detection response in the human brain. Mechanisms of neuronal adaptation 

and lateral inhibition, acting independently (Fig. 3B and 3C) or together (Fig. 3D) in 

randomly and sparsely connected networks are sufficient to produce a change 

detection response (i.e., larger responses to deviants compared with standard stimuli) 

as seen, for example, in the MMN elicited by frequency change. The simulation in 

which inhibition worked in synergy with adaptation produced the largest MMNs. 

Our results converge with previous neurocomputational results by May et al. (1999) 

on the conclusion that a combined inhibition-adaptation model best explains 

experimental data on the MMN to frequency deviants. May and colleagues used a 

tonotopically organized array of artificial neural units as a model of the auditory 

cortex and investigated the effects of deviant stimulus frequency on MMN amplitude 

and peak latency. As the non-monotonic shape of the curve plotting MMN peak 

latency against the frequency difference between the deviant and the standard 

stimulus was reproduced by the combined adaptation-inhibition model but not by the 

adaptation-only one, the authors concluded that the frequency MMN is best explained 

by synergistic action of adaptation and lateral inhibition. Our results are consistent 

with these earlier findings, and, in addition, contribute novel evidence, namely, that 

the inhibition-only model produces a frequency MMN very similar to that produced 

by the adaptation-only model (Fig. 3). Thus, the results of our simulations are in line 

with (and integrate) two previous accounts which explained the emergence of an 
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MMN to frequency change either on the basis of release of tonic inhibition (Näätänen, 

1990) or neuronal adaptation (Jääskeläinen et al., 2004).  

To account for the stronger anterior superior-temporal sources observed for the 

MMN response compared with N1 responses, previous adaptation models 

(Jääskeläinen et al., 2004; May & Tiitinen, 2010) assumed different frequency tuning 

of neuronal responses for anterior and posterior areas of the superior-temporal cortex 

(non-specific in posterior parts, sharply tuned in anterior parts). However, these 

assumptions are difficult to maintain in view of current knowledge about adaptation in 

the auditory system. In contrast with these assumptions, neurophysiological evidence 

indicates clear and sharply tuned tonotopy in A1 (which lies medially), but that (i) 

anterior and posterior sections of the lateral belt in the superior-temporal gyrus 

include both sharply and broadly tuned cell populations (Petkov et al., 2006), and (ii) 

neurons in the auditory belt generally respond optimally to more complex patterns, 

including band-passed noise bursts and species-specific monkey calls (Rauschecker & 

Tian, 2000). Therefore, a general anterior-to-posterior gradient in frequency tuning 

appears in lack of support; furthermore, if such a gradient were present, existing 

evidence would suggest a broader tuning when moving away from the primary 

auditory cortex and into the belt, and not the other way around, as these previous 

models assumed. Thus, the anterior shift of the MMN generators compared with N1 

sources cannot be explained by such local functional differences. 

The results of Experiment 1 explain the shift of the MMN generators relative to 

those of the N1 on the basis of well-documented neurobiological mechanisms (lateral 

inhibition and propagation of neuronal firing activity – e.g., see (Matthews, 2001)) 

which apply uniformly across cortical areas. Fig. 3 illustrates how the differential 

activations of the auditory core (A1) and belt (AB) areas can lead to different 
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equivalent current dipole loci underlying MMN and N1, even in absence of 

adaptation, and, crucially, without assuming any frequency tuning gradient. In fact, 

this result can be explained purely on the basis of stimulus-specific inhibition 

occurring in the auditory areas during oddball stimulation. More precisely, as the STD 

stimulus is repeatedly presented to A1, two processes take place at the same time: (i) 

the response of the activated cells in A1 and AB is inhibited; (ii) because of this 

attenuation, the input from A1 into AB is also reduced. The cumulative effect of (i) 

and (ii) leads to a twofold decrease of the AB response, resulting in a particularly 

weak N1’s anterior source. Thus, when a new (DEV) stimulus activates “fresh” cells 

in both A1 and AB, the relative increase in response is larger in AB than in A1 

(panels (A) and (B) of Fig. 3), explaining the shift of the MMN generators. This 

general argument applies equally if adaptation is used instead of (or in addition to) 

inhibition.  

Although the model used in Experiment 1, including only lateral inhibition, 

adaptation and activation spreading mechanisms, goes a long way in replicating a 

number of experimental results on auditory change detection, it cannot explain all 

aspects of the real MMN response (see also Sec. 4.4). In particular, the tabula rasa 

networks used here do not include mechanisms for learning and long-term memory 

(LTM). Because of this, they cannot reproduce MMN differences between, e.g., 

learned tone sequences and unfamiliar ones (Näätänen et al., 1993), MMN dynamics 

mimicking perceptual discrimination, which emerge and vanish with the ability to 

perceive the relevant distinctions (Kujala et al., 2001), the enhanced brain responses 

to learned familiar speech sounds and words as compared with unfamiliar sounds and 

pseudowords (Näätänen et al., 1997; Pulvermüller et al., 2001), the MMN seen to 

violations of highly abstract familiar patterns such as melodic stereotypes or syntactic 
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rules (Saarinen et al., 1992; Pulvermüller & Shtyrov, 2003; Shtyrov et al., 2003; 

Bendixen & Schröger, 2008; Bendixen et al., 2009), and memory-related 

subcomponents of the MMN response to pitch, duration and intensity change 

(Jacobsen & Schröger, 2001; Jacobsen et al., 2003; Jacobsen & Schroger, 2003). In 

order to replicate and explain the above MMN effects, attributable only to LTM 

(Näätänen et al., 2005; Näätänen et al., 2010), a model must be equipped with 

memory representations, or long-term synaptic plasticity (i.e., learning) mechanisms 

that enable their formation. 

4.2 Experiment 2 – Long-term memory MMN in the language cortex  

Experiment 2 investigated the mechanisms underlying long-term memory effects 

manifest  in the MMN using a neurobiological model of the left language cortex in 

which memory circuits for words had emerged by means of Hebbian learning. The 

results obtained with memory networks endowed with both adaptation and inhibition 

were fully consistent with experimental evidence (according to which MMNs to 

familiar sounds and words are larger than those to matched unfamiliar items) 

regardless of the context in which stimuli are presented (e.g., Näätänen et al., 1997; 

e.g., Pulvermüller et al., 2001). This general pattern also arose in the memory network 

with inhibition but lacking adaptation mechanisms. In contrast, the memory plus 

adaptation model failed to reproduce the enhanced MMN to familiar items in 

congruent contexts: deviant word stimuli in word context did not yield larger MMNs 

than deviant pseudowords in pseudoword context, which is in contrast with 

experimental evidence (Korpilahti et al., 2001; Shtyrov et al., 2005). These results 

suggest that the contribution of local inhibition may be more important for eliciting a 

normal pattern of cognitive MMN effects than the functionality of adaptation 

mechanisms. Nonetheless, the activation of, and reverberation of excitation within, 
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neuronal circuits functioning as memory traces is necessary in both combined 

adaptation-inhibition and inhibition models to explain the word enhancement of the 

MMN.7 In all simulations, standard responses were somewhat larger to words than to 

pseudowords, thereby modelling an effect reported experimentally (e.g., Jacobsen et 

al., 2004). However, in most networks with inhibition, this familiarity difference in 

standard responses was small compared with the respective difference in DEV 

responses. We speculate that the lack of lexical enhancement observed in absence of 

inhibition is the result of the failure of lateral inhibition mechanisms to “protect” the 

excitation within a memory trace from the surrounding background noise. Indeed, 

when a memory circuit receives excitation from sensory input, lateral inhibition leads 

to automatic suppression of its (noisy) neighbouring cells, allowing excitation within 

the circuit to propagate and reverberate undisturbed. This type of local “neuronal 

fencing” does not occur, e.g., in adaptation-only networks. 

There are additional results emerging from Experiment 2 which have not been 

reported (or investigated) in previous experimental research. All networks including 

adaptation produced larger word-related MMNs in pseudoword (incongruent) context 

than in word (congruent) context (Fig. 5, columns 1, 3 and 4 from the left, time-step 

7: all t values > 3.2, all p values < 0.001). In addition, all networks except the 

maximal-values combined adaptation-inhibition model showed stronger late (time-

steps 7-8) responses to pseudowords in congruent than incongruent context. Finally, 

only the inhibition-only network yielded stronger earlier (time-step 5-6) word MMNs 

in congruent context than against a background of pseudoword standards.  These new 

predictions can be addressed empirically by future experimental research on the 

                                                
7 Note that all effects obtained in these simulations were activation contrasts induced by 

stimuli that were “perceptually” equivalent and, therefore, could not have yielded any 

difference in the networks employed in Experiment 1. 



 22 

mechanisms underlying MMN to familiar and unfamiliar stimuli, and the results of 

such investigations may be used to weigh the different model types against each other. 

Note that regardless of the familiarity of the stimuli, MMN responses were present 

in all simulations of Experiment 2 already at time-step 5 (all t values > 8, all p values 

< 0.001). In other words, the generation of a change detection response (as observed 

in the tabula rasa networks of Experiment 1) is replicated and extended here to models 

that contained memory traces.  

 

Looking at the results of Experiment 1 alone, one may be tempted to conclude that 

adaptation, inhibition and activation spreading mechanisms are sufficient to explain 

all aspects of the (real) brain response to frequency change. However, in view of the 

results of Experiment 2 and of previous simulations, we believe that this conclusion 

would not to be entirely accurate. In particular, we have previously shown that the 

presentation of not-represented stimuli (the model analogues of uncommon sounds, 

pseudowords, or other not previously  learned items) to a model with memory circuits 

leads to the partial activation of such circuits (Garagnani et al., 2008; Garagnani, 

2009). As mature brains are not tabula rasa entities but are equipped with a range of 

long-term memory traces, we conjecture that the same partial activations may occur in 

the brain when stimulated with pseudowords or other unfamiliar items (such as tone 

pips).  The driving forces behind these partial memory trace activations would be (1) 

the physical similarity between familiar and unfamiliar stimuli – e.g., the fact that 

unfamiliar noise bursts and narrow-band noise patterns are part of the acoustic 

structure of speech stimuli (Rauschecker & Scott, 2009) – and (2) the strong internal 

connection of memory circuits, which allow efficient propagation of neural activity. 

Thus, an explanation of the MMN response based purely on adaptation and inhibition 
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and which ignores the role of long-term memory mechanisms seems incomplete, not 

just in the case of pseudoword stimuli, but also for simple tone sequences. This 

position is both motivated by our simulations and consistent with experimental 

evidence from studies investigating elementary acoustic stimuli (e.g., see (Jacobsen & 

Schröger, 2001; Jacobsen & Schroger, 2003; Näätänen et al., 2010)) and meaningless 

pseudowords (Garagnani et al., 2009; Shtyrov et al., 2010). 

4.3 MMN = N1? 

The present results also enable us to address the long-debated issue of whether the 

MMN is in fact an enhancement of the N1 component of the event-related brain 

response. The N1 to the standard stimulus obtained in the oddball task and the MMN 

(which adds to it in the deviant response) are “the same” in the sense that both 

components are the consequence of the same neurofunctional principles at work 

across the neuronal substrate, and no additional mechanisms (such as prewired 

neurons with a-priori change detection abilities or differential frequency tuning) are 

necessary to explain them. Crucially, however, MMN and standard-elicited N1 

responses involve the activation of different, although overlapping, neuronal 

populations, and these activations are caused by (common) underlying processes that 

contribute differentially to the two responses. In particular, the combined results of 

Experiments 1 and 2 indicate that the simulated MMN responses to learned, familiar 

items (words) and to not previously learnt ones (pseudowords) are strongly driven by 

the activation of both “fresh”, unsuppressed cells and long-term memory circuits; in 

contrast, the N1 responses to the repeated standard stimulus did not show strong 

memory trace related effects, which, if present, were relatively small in comparison to 

the size of the MMN response (see Simulation 2, Figure 5). The N1 to the standard 

stimulus was invariably attenuated because of adaptation and local inhibition 
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mechanisms. However, activation of unattenuated cells in areas A1 and AB accounts 

for only part of the MMN: the other significant contribution comes from activity 

quickly propagating (and reverberating) in unsuppressed memory circuits, which are 

not restricted to the auditory system but can extend to distant (for example, frontal) 

areas. In summary, this suggests that the spreading of excitation through strong links 

in “fresh”, distributed memory circuits plays an essential role in explaining the 

observed MMN difference between familiar and novel stimuli. In this sense, MMN 

elicited by deviant stimuli and N1 to repeated standard stimuli are fundamentally 

distinct. 

A further argument in favour of fundamental differences between MMN and N1 

relates to the cortical sources underlying these responses. Experiment 1 showed that 

adaptation and inhibition mechanisms could underlie the observed source shift in the 

temporal lobe. However, the additional activation in cortical areas distant from 

primary auditory cortex is best explained by distributed memory circuits activated by 

specific types of stimuli. For language stimuli, these circuits link together neurons in 

inferior-frontal and superior-temporal cortex and, because the link between these 

areas is more strongly developed in the left than in the right hemisphere (Catani et al., 

2005), this explains why brain responses to language stimuli, and especially their 

inferior-frontal sources, tend to be left lateralised (Shtyrov et al., 2000; Näätänen et 

al., 2001; Pulvermüller & Shtyrov, 2006). For nonlinguistic stimuli, there may be no 

clear MMN laterality or even laterality to the right. In earlier simulation studies, we 

have highlighted the role of frontotemporal memory circuits in explaining the 

spatiotemporal activation dynamics of frontal and temporal sources in language 

processing (Garagnani et al., 2008). Models solely relying on adaptation or local 

inhibition have difficulty explaining such specific effects in distant cortical areas. 
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It should be added that, depending on the paradigm adopted, the N1 response can be 

elicited either by the repeated presentation of the same stimulus (as in the classic 

oddball paradigm) or by a range of different stimuli. The latter design is preferred in 

psycholinguistic studies trying to avoid the response-reducing effect of stimulus 

repetition (Pulvermüller & Shtyrov, 2006). The N1 is thus often elicited by changing 

stimuli, for example, by large sets of different words (Pulvermüller et al., 1995; 

Sereno et al., 1998; Pulvermüller et al., 2009). In this case, the activation of long-term 

memory circuits can also contribute to the N1 response. Indeed, in these repetition-

free designs it was observed that effects of word frequency and semantic word 

properties were present in late parts of the N1 (or N160) response. Furthermore, even 

the latency of the responses that reflected lexical status and semantic properties of 

words was the same in the non-repeat N100 and the MMN experiments (Pulvermüller 

et al., 2009). This suggests that the family of N1 responses includes variants that are 

similar to the MMN: N1 to unexpected stimuli and MMN responses can both contain 

significant contributions from the activation of memory traces, whereas N1 to 

repeated standards is only marginally affected by it. 

4.4 Towards the neurobiology of change detection 

We used neural network models mimicking structure and function of nerve cell 

circuits in specific cortical areas to simulate and explain different facets of the brain 

dynamics underlying auditory change detection. In Experiment 1 (adopting tabula rasa 

networks lacking memory representations) local inhibition and neuronal adaptation 

were found to explain equally well the short-term effects seen in the MMN response, 

especially the fact that rare deviant stimuli produce larger brain responses than 

frequently repeated standard stimuli from which they differ in frequency. A further 

finding was that these two processes synergistically interacted to produce the clearest 
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(simulated) change-detection response. This finding makes good sense, as in the intact 

brain both of these mechanisms are at work together. As mentioned earlier in the 

discussion, however, a randomly connected network endowed with inhibition and 

adaptation but lacking long-term memory mechanisms cannot account for the 

experimental result that familiar speech sounds and words produce enhanced MMNs 

compared with similar unfamiliar sounds and meaningless pseudowords. Instead, as 

illustrated by Experiment 2, these data can be explained in terms of activation of 

stimulus-specific memory circuits which, due to their strong internal connections, 

effectively amplify sensory-elicited activity. Memory circuits with such 

characteristics spontaneously emerge in randomly and sparsely connected networks 

(as those used here) in presence of Hebbian synaptic learning rules, solely as a 

consequence of repeated activation of specific sets of cells (Garagnani et al., 2008). 

Such circuits may emerge in word learning: when humans use new words, neurons in 

inferior frontal motor, premotor and prefrontal cortex (which control the articulations) 

and neurons in superior temporal neurons in primary auditory, auditory belt and 

parabelt areas – stimulated by the self generated sounds – are active together, leading 

to Hebbian learning and cell assembly formation across areas. Such cell assembly 

formation is a plausible correlate of word learning in early infancy, but can, in 

principle, occur throughout life. Hebbian memory circuits can emerge for static 

sounds or narrowly defined series of perceptual inputs, for example, tone sequences, 

phonemes, syllables, words or the sounds of non-verbal actions (e.g., whistling, finger 

clicks), but also for highly abstract sequences, including syntactic rules (Pulvermüller 

& Knoblauch, 2009). The present simulation results on memory trace neuronal 

dynamics, highlighted here in the context of brain indexes of word and pseudoword 

processing, may therefore explain data on brain responses to learned familiar and 
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unfamiliar patterns at various levels of combinatorial complexity, including the MMN 

to syntactic and abstract rule violations (Saarinen et al., 1992; Shtyrov et al., 2003; 

Bendixen & Schröger, 2008; Bendixen et al., 2009). 

We do not intend to claim that all auditory object representations that the brain 

constructs during the parsing of auditory scenes necessarily consist of learned 

memory circuits; the formation of perceptual representations that predict future sound 

events – as observed in auditory streaming or gestalt perception – can be explained, 

for example, by general (probably inborn) principles of perception (Carlyon, 2004; 

Winkler et al., 2009). However, these general principles may be underpinned by 

neuronal circuits similar to the learned memory traces that our models developed.  

Recent animal studies have shown MMN-like responses (derived from stimulus 

specific adaptation) not just in primary auditory cortex (Ulanovsky et al., 2003) but 

also in the medial geniculate body (Anderson et al., 2009; Antunes et al., 2010) and 

inferior colliculus (Malmierca et al., 2009) of the rat. In addition, deviance-related 

responses have been detected also in the human auditory brainstem (Slabu et al., 

2010; Grimm et al., 2010) very early in time (30-40 ms after stimulus onset). While 

the modelling of subcortical structures was not the main focus of this work8 and 

represents an interesting future direction, we speculate that the generation of change 

detection responses in such structures may be driven by mechanisms of adaptation 

and inhibition similar to those implemented here. Furthermore, the contribution of 

learned memory traces to the MMN should be, according to our model and theory, a 

cortical function.  
                                                

8 Though note that our networks do contain area-specific inhibitory feedback links (see 

(Garagnani et al., 2008) for details) implementing global regulatory functions that are thought 

to be mediated, in the brain, by cortico-striato-thalamic loops (Miller & Wickens, 1991; 

Wickens, 1993). 
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The neurobiological instantiations of memory traces as distributed circuits spanning 

different cortical areas allowed us to explain cognitive long-term memory related 

effects that are well known to be present in the MMN response. Local (or lateral) 

inhibition mechanisms, introducing competition between learned memory circuits, 

were also found to be necessary for replicating the full pattern of MMN responses to 

familiar and unfamiliar stimuli. Neuronal adaptation did not serve this function, 

whereas both adaptation and inhibition interacting together with the memory circuits 

also provided a full explanation of the crucial data considered here. 

The present simulations set the stage for an integration of cognitive models of the 

MMN and N1 with neurobiological models that view action-perception circuits as the 

basis of memory in the cortex. Evidence from animal research indicates that long-term 

memory units in the cortex are best thought of as distributed neuronal assemblies 

bridging frontal (action-related) and posterior (perception-related) areas (Fuster, 1995; 

, 1997; , 2003). Direct neurophysiological recordings in monkeys show activity of 

frontal and temporal neurons in memory tasks, thus suggesting a role of the 

distributed long-term circuits also in short term or working memory (Goldman-Rakic, 

1995). The temporary activation of a circuit would accordingly be the neurobiological 

basis of working memory. This is precisely the mechanism by which temporary 

working memory processes contact long-term memory in our present simulations (see 

also (Zipser et al., 1993)). By using a biologically realistic network model to account 

for MMN dynamics and the related cognitive processes of change detection, 

automatic attention reorientation, and memory trace access, we hope to contribute to 

the integration of cognitive and neurobiological theory. 
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4.5 Conclusions 

The present neurobiologically grounded model of memory and perception provides 

the first unified account for neurophysiological data on both basic MMN effects as 

they are seen in frequency deviance detection and cognitive phenomena, such as the 

enhanced MMNs to meaningful words as compared with unfamiliar pseudowords. 

The model allows integrating recent evidence on familiarity-related enhancement of 

the MMN with previous experimental and computational data on auditory change 

detection. The results demonstrate that, while the activation and reverberation of long-

term memory traces for familiar items realised as distributed neuronal circuits 

(Pulvermüller, 1999) explains the enhanced MMN responses to familiar stimuli 

compared with unfamiliar ones, short-term neuronal phenomena (adaptation and 

inhibition) can explain other features of the brain response observed generally to 

acoustic change. Hence, only the combined presence of basic cortical mechanisms – 

local inhibition, spike-rate adaptation, and long-term synaptic plasticity yielding 

memory circuits and reverberatory short-term memory activity therein – is sufficient 

to provide the brain with two critical skills that played a key role in its evolutionary 

success, namely, the ability to detect change automatically and the capacity to learn, 

store and recognise patterns that are familiar and meaningful. These mechanisms are 

not restricted to the learning, extraction and storage of simple stimulus regularities, 

but can cover vocabularies of learned signs and even highly abstract sequential 

patterns including syntactic rules. 
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Appendix A 

Each cell or “node” of the network represents a cortical column of approximately 

0.25mm2 size (Hubel, 1995), containing ~2.5⋅104 neurons (Braitenberg & Schüz, 

1998)9. The state of each cell x is uniquely defined by its membrane potential V(x,t), 

representing the average of the sum of all excitatory and inhibitory postsynaptic 

potentials acting upon neural pool (cluster) x at time t. The membrane potential V(x,t) 

at time t of a model cell x with membrane time-constant τ is governed by the 

equation: 

   

 

where VIn(x,t) is the total input to x (sum of all excitatory and inhibitory synaptic 

inputs to cell  x at time t; inhibitory synapses are given a negative sign).  

The output of an excitatory cell x at time t is defined as follows: 

 

 

 

O(x,t) represents the average (graded) firing rate (number of action potentials per time 

unit) of cluster x at time t; it is a piecewise-linear sigmoid function of the cell’s 

membrane potential V(x,t), clipped into the range [0, 1] and with slope 1 between the 

lower and upper thresholds ϕ  and ϕ +1. The output O(x,t) of an inhibitory cell is 0 if 

V(x,t)<0, and V(x,t) otherwise.  

                                                
9 These figures are meant to provide only an estimate of the grain of the model; as noted by 

Hubel (1995), the size of a macrocolumn (or “module”) varies substantially between cortical 

layers (ranging from 0.1mm2 in layer 4C to 4mm2  in layer 3) and cortical areas (ibid., p.130). 

 

(A.1) ),(),(),(
txVtxV

dt
txdV

In+−=⋅τ

1         otherwise  

0          if V(x,t)≤ φ 

(A.2) O(x,t) = (V(x,t)− ϕ )  if 0 < (V(x,t)− ϕ ) ≤ 1   
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Neuronal adaptation is realised (in excitatory cells only) by allowing the threshold ϕ  

in Eq. (A.2) to be cell-specific and vary in time. More precisely:  

ϕ (x, t) = α ·ω(x,t)  

where ω(x,t) is the time-average of the cell’s recent output and α is the “adaptation 

strength” (see  below for parameter values used in the simulations). 

For any excitatory cell x, the approximate time-average ω(x,t) of its output O(x,t) is 

estimated by integrating Eq. (A.4) below, assuming initial average ω(x,0)=0: 

 

 

The low-pass dynamics of the cells (Eq. (A.1), (A.2) and (A.4)) are integrated using 

the Euler scheme with step size Δt, where Δt = 0.5 (in arbitrary units of time). Other 

parameter values are reported below. 

The learning rule used to simulate synaptic plasticity is based on the Artola-Bröcher-

Singer model of LTP/LTD (Artola & Singer, 1993). In the implementation, we 

discretized the continuous range of possible synaptic efficacy changes into two 

possible levels, +Δw and −Δw (with Δw<<1 and fixed). We defined as “active” any 

link from a cell x such that the output O(x,t) of cell x at time t is larger than θpre, where 

θpre∈]0,1] is an arbitrary threshold representing the minimum level of presynaptic 

activity required for LTP (or LTD) to occur. Thus, given any two cells x and y linked 

with weight wt(x,y), the new weight wt+1(x,y) is calculated as follows: 

 

 

 

 

 

),(),(),( txOtx
dt
txd

A +−=⋅ ω
ω

τ (A.4) 

wt(x,y)         otherwise  

(A.5) wt+1(x,y) = 

wt(x,y)+Δw if O(x,t)≥ θpre and V(y,t) ≥ θ+    

wt(x,y)−Δw if O(x,t)< θpre and V(y,t) ≥ θ+ 

wt(x,y)−Δw if O(x,t)≥ θpre and θ− ≤ V(y,t) < θ+  

(A.3) 
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Parameter values used for the simulations are: 

(Eq. (A.1))  Excitatory cells: τ  = 2.5 (in simulation time-steps);  

Inhibitory cells: τ  = 5 (in simulation time-steps); 

(Eq. (A.3))  No adaptation: α = 0; 

Average adaptation: α =5;  

Maximum adaptation: α =10; 

(Eq. (A.4))  Time constant for computing gliding-average of cell activity:  

τA = 15 (in simulation time-steps); 

(Eq. (A.5))  Post-synaptic potential thresholds for LTP/LTD: θ−=0.15, θ+=0.25;  

Pre-synaptic output activity required for synaptic change: θpre=0.05;  

Learning rate: Δw = 0.0005. 
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Appendix B 

In general, the centre of mass R of a system of particles is defined as the average of 

their positions, ri, weighted by their masses, mi: 

∑
∑=

i

ii

m
rm

R  

Assuming additive effects of sources of neuronal activity and a localisation procedure 

that finds a point source of this centre (e.g., the equivalent source dipole method), the 

“masses” mi correspond to the activation values in areas A1 and AB emerging from 

the simulations, and their positions, to the locations of A1 and AB. The area-specific 

simulated peak activations (in arbitrary units) for N1 and MMN responses were: 

A1: m N1,A1= 5.38; m MMN, A1= 2.65    

AB: m N1,AB= 1.15; m MMN, AB= 1.19     

Without any loss of generality, we can assume the positions of A1 and AB to be r1= 

+L and r2= –L (with respect to the “centre location” C=(A1–AB)/2, Fig. S2.(D)). 

Thus, by applying Eq. (B.1) above, the locations of the centres of mass (yellow circles 

in Figure 3) of the simulated N1 and MMN responses are CN1≈0.648·L and CMMN ≈ 

0.380·L, respectively; the corresponding total strengths are given by mN1, A1+ mN1, AB = 

6.53 and mMMN,A1+ m MMN,AB = 3.84 (in arbitrary units). 

 

 

(B.1) 
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Appendix C 

The algorithm A for generating pseudoword patterns described in (Garagnani et al., 

2008) takes a set S of n (word, W) patterns (each defined on a grid of size 25-by-25 

cells) as input and produces a new set S* =A (S) as output containing n (pseudoword, 

PW) patterns of the same size, as follows: (1) each word pattern xi∈S (i∈{1, .., n}) is 

divided into 25 five-by-five squares; (2) every new pseudoword pattern y∈S* is built 

by combining 25 squares taken at random (uniform probability distribution) from the 

xi patterns, and preserving all the original squares’ positions. As a result, each new 

pattern y ends up containing, on average, 25/n squares from each pattern xi∈S, with 

i∈{1,.., n}. Thus, given a set S of n patterns, the new set S* =A (S) contains patterns 

that overlap (on average) by 1/nth with the patterns in S.  

Here, we applied algorithm A to a set S1 of 12 randomly generated patterns and 

produced a second set S2=A (S1) of patterns (overlapping by 1/12 ≈ 8.33% with those 

in S1). These two sets were then used as follows: first, we split each set Si into two 

(randomly chosen) halves of six patterns, called Si
W

 and Si
PW

 (for i∈{1,2}). Second, 

we trained the network with the set W=S1
W ∪ S2

W; this changed the lexical status of 

the patterns in W to that of “words”. Third, we used S1
PW ∪ S2

PW as pseudoword 

pattern set, and formed four sets of pairs (STD, DEV) – to be used for oddball 

stimulation – in the following way: we generated six (l=W, r=W) pairs using l∈S1
W 

and r∈S2
W, six (l=W, r=PW) pairs using l∈S1

W, r∈S2
PW; six (l=PW, r=W) pairs 

using l∈S1
PW, r∈S2

W; and six (l=PW, r=PW) pairs using l∈S1
PW, r∈S2

PW. Because 

S2=A (S1), any two patterns l, r such that l∈S1 and r∈S2 overlap (on average) by 
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~8.33%. Thus, any pattern pair in any of the above four sets also exhibits (on average) 

the same, fixed amount of overlap (8.33%).10  

  

                                                
10 The actual overlap between any two binary patterns can only be one of a finite set of values, 

containing only the ratios between number of overlapping cells and pattern size (e.g., if size = 

17 cells, 1 cell overlap ≈ 5.9%, 2 cells overlap ≈ 11.8%, 3 cells overlap ≈ 17.6%, etc.). 
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Figure Legends 

 

Figure 2. Model architectures and their brain-structural basis. (A) Six 

different areas of the left perisylvian language cortex are indicated in different 

colours. M1= primary motor; PM=pre-motor; PF=pre-frontal; A1=auditory core, 

AB=belt; PB=parabelt. Black arrows indicate long-distance cortico-cortical 

connections between auditory (Wernicke’s) and motor (Broca’s) association 

areas. Experimental evidence (Romanski et al., 1999; Petkov et al., 2006) 

indicates that the auditory system consists of three main areas, A1, AB and PB; 

although these systems have been studied mainly in macaques, homologous areas 

of the human auditory cortex (Brodmann Areas 41, 42 and 22) lend themselves to 

an analogous parcellation (Uppenkamp et al., 2006). (B) Network of 3 areas used 

in Experiment 1. Each colour-filled oval represents a pool of (excitatory) 

pyramidal cells; inhibitory mechanisms are not shown. Lines between areas 

represent random, sparse and patchy connections. (C) Network of all 6 perisylvian 

areas used in Experiment 2. [Adapted from Garagnani et al. (2008), their Fig. 3].  

Figure 1. Mismatch Negativity (MMN) responses. Left: responses to rare, 

occasional (deviant) stimuli placed among frequently repeated ones (standard), 

and resulting MMN (shaded area) [adapted from Shtyrov et al. (2005), their Fig. 

4]. Right: MMNs produced by familiar (word) and unfamiliar (pseudoword) 

deviant items; note the enhanced MMN response to words compared to 

pseudowords [adapted from Pulvermüller et al. (2001), their Fig. 4]. 
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Figure 3. Contribution of local inhibition and adaptation to tone-elicited 

standard and deviant responses and to the MMN to frequency change. The 4 

panels (A-D) show the results for the 4 networks used in Experiment 1. Simulated 

STD (dashed lines) and DEV (solid lines) responses are plotted on the left, 

resultant MMNs on the right insets. The x-axes give time (in simulation time-

steps); y-axes give total network activation (averaged across trials  and stimuli). 

Vertical bars in the MMN curves indicate standard errors (SE). Black segments on 

the x axis indicate stimulus onset-time and duration. Note the presence of an 

MMN (DEV > STD response) in all cases except for panel (A), where the STD is 

larger than the DEV response.  

Figure 4. Simulation results on area-specific activations underlying the MMN. 

Simulated activations in areas A1, AB and PB underlying STD (A), DEV (B) and 

MMN responses (C) in networks with inhibition-only are plotted against time. 

Note the strongly attenuated STD response in AB. (D) An illustration of how the 

differential A1 and AB activations contributing to the N1 and MMN responses can 

lead to different locations of the single estimated underlying current dipole (yellow 

circles; circle size indicates “source strength”). A1 and AB peak activations are 

depicted as striped (MMN response) and filled (N1 response) vertical bars.  
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Figure 5. Simulated standard, deviant and MMN responses to familiar and 

unfamiliar stimuli. Simulated responses to familiar “word” (W, red curves) and 

unfamiliar “pseudoword” patterns (PW, blue lines) presented in an oddball design 

for adaptation-only (first column from the left), inhibition-only (column 2) and 

combined adaptation-inhibition (columns 3-4) networks. STD (A), DEV (B) and 

MMN responses (C) are plotted against time. Note the overlap between W and 

PW MMNs (dashed red and dashed blue curves) for the adaptation-only network 

(not present in the others) and the larger MMN to words than to PW at time-steps 

6 & 7 (note the different scale used for panel (C), column 4). Vertical bars indicate 

SE.  
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