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Abstract This paper extends particle aggregate recon-

struction technique (PART), a reconstruction algorithm for

binary tomography based on the movement of particles.

PART supposes that pixel values are particles, and that

particles diffuse through the image, staying together in

regions of uniform pixel value known as aggregates. In this

work, a variation of this algorithm is proposed and a focus

is placed on reducing the number of projections and whe-

ther this impacts the reconstruction of images. The algo-

rithm is tested on three phantoms of varying sizes and

numbers of forward projections and compared to filtered

back projection, a random search algorithm and to SART, a

standard algebraic reconstruction method. It is shown that

the proposed algorithm outperforms the aforementioned

algorithms on small numbers of projections. This poten-

tially makes the algorithm attractive in scenarios where

collecting less projection data are inevitable.

Keywords Binary tomography � Discrete tomography �
Particle aggregation � Underdetermined linear systems �
Reduced projections

1 Introduction

Tomographic reconstruction is the process of inferring the

internal structure of an object from a set of projected

images. The projected images are records of the quantity of

penetrating radiation that has passed through, or has been

emitted from the interior of, the object in question. There

are many applications, ranging from medical imaging (CT,

SPECT, PET and MRI) [4, 5, 18] to oceanography (seismic

tomography) [16] and quantum tomography (quantum state

tomography) [6].

Although an exact reconstruction is possible by use of

the inverse Radon transform, in practice the discrete nature

of the imaging, and the finite number of available projec-

tions, mean that approximate and discrete techniques must

be employed. The continuous density distribution of the

object is modelled as a grid of pixels and the projections

are acquired in bins because cameras consist of arrays of

detectors of finite size [5].

Even after discrete modelling, the remaining mathe-

matical problem may be ill-defined due to underdetermi-

nation: the number of independent relationships amongst

the unknown quantities is fewer than their number. As a

result, the solution of the inverse problem is not unique,

and indeed very many solutions might exist.

This incompleteness of data arises from cost, time and

geometrical concerns. For instance, the importance of cost

reduction in industrial applications results in shortened

scan duration and fewer projected images; similarly, in

electron tomography, the damage caused to the sample by

the electron beam reduces the number of collectable pro-

jections [15].

The classical filtered back projection [8, 13] technique is

a relatively quick and effective reconstruction procedure.

However, increasing computation power means that alge-

braic reconstruction techniques (algebraic-RT or ART) are

gaining prominence. This is due to ART’s potential for

greater accuracy, albeit at increased time of execution.

The first ART algorithm was a rediscovery [7] of the

Kaczmarz method for solving linear equations [12]. An
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improved Kaczmarz method for image reconstruction,

SART, (simultaneous-ART) was proposed by Andersen

and Kac [2]. SART remains popular to this day and has

been the subject of mathematical analysis (for example,

[10]).

Prior knowledge can inform algorithms and speed up

computation. For example, if it is known that the object is

composed of just a few regions of homogeneous density,

discrete tomography can be employed. The aim is to

reconstruct an image that is composed of just a few grey-

scale values. And, as an extreme instance of discrete

tomography, if just two greyscale values are assumed,

corresponding to the interior and exterior of the object, the

problem is to find a binary reconstruction [9].

The aim of this paper is to further investigate a binary

reconstruction technique [1] based on the aggregation of

particles. The idea is to suppose that pixel values 0 and 1

represent particles that may be absent or present in a par-

ticular cell (a pixel), and for particles to move freely until

they meet, and thereupon ‘‘stick’’ to, clusters of other

particles, subject to a concomitant reduction in error. The

underlying assumption is that the preferred solutions to the

inverse problem will be those solutions that are more

homogeneous. Particles will, therefore, tend to move to

unoccupied pixels with a greater neighbourhood count. The

selection of a particle for movement was random in the

previous version of PART [1]; this meant that many moves

had to be rejected. In the updated version of reported here,

isolated particles are preferentially selected for movement.

The paper continues with an overview of tomography

and of reconstruction. Then, the aggregation algorithm,

Particle aggregate-RT (PART) is specified along with its

updated version; after highlighting the importance of

smaller number of projections, a section detailing a

sequence of experiments compares the performance of the

updated version (referred to as PART 2), to the original

PART algorithm, PART 1, SART, random search (RS) and

filtered back projection (FBP) on a number of phantoms

(i.e. pre-prepared exact images). Additionally, in a second

set of experiments, the newly proposed algorithm, is

analysed under several number of projections and is com-

pared against the other algorithms. The paper ends with a

summary of the main findings and suggestions for future

research.

2 Tomography and algebraic reconstruction

There are two important imaging modalities, parallel beam

and fan beam tomography. In either modality, an array of

detectors is rotated to lie at a number of (usually) equally

spaced angles in ½0; pÞ. Figure 1 shows the two modalities

and the pixellated representation of the object. Ideally, if

the detectors have perfect collimators, each detector will

record the amount of radiation received in a finite width

beam.

However, an approximate model of the physical mea-

surement must be built in order to formalise the mathe-

matical reconstruction problem. This approximation is

called the forward model. Beams are typically modelled by

parallel rays (Fig. 1-left). Each ray is incident on the centre

of each detector or projection bin. The imaging process is

approximated by a projection matrix A 2 Rm�n
� 0 where m is

the total number of rays collected (equal to the number of

rays at each projection angle multiplied by the number of

projection angles) and n is the number of pixels in the

reconstructed image. If b 2 Rm is a vector of detector

values, the continuous/discrete reconstruction problem can

be stated as:

find x
2 Rn

2 f0; 1; . . .; k � 1gn; k[ 1

�
such that Ax ¼ b:

ð1Þ

The binary problem is k ¼ 2 i.e. with x 2 f0; 1gn.

Fig. 1 Tomography geometry. Left parallel beam geometry; right fan beam geometry
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The methods used to computed the intersection between

the ray and the pixels vary. One such common method is

the line model, where the entries in the projection matrix,

aij, are computed by measuring the length of the intersec-

tion between the line of the ray and the pixel (see Fig. 2-

left). In this model, when the projection rays are parallel to

the horizontal or vertical axes, the weight function exhibits

two discontinuities; these, caused by floating point error,

could lead to wrongly setting the weight entries to 0 instead

of 1, or vice versa.

In order to overcome this issue, Joseph’s weighting

scheme [11] could be used instead. In this model, the

interpolation coefficients are calculated when following the

line column by column or row by row (based on the pro-

jection angle chosen). Thus, linear interpolation between

the centres of the two adjacent pixels are applied. See

Fig. 2-middle.

In another model, the strip mode, strips are used with

width larger than a unit instead of lines. Therefore, the

intersection area between strip i and pixel j determines the

weight aij as displayed in Fig. 2-right. While in the the strip

model the column sums of the projection matrix is con-

stant, this is does not hold for the line and Joseph models.

In this work, in order to compute the entries Aij of the

projection matrix, a more refined line model which uses the

length of the intersection between the ray and the pixel is

used.

Since the equation Ax ¼ b is, in general, underdeter-

mined, it cannot be inverted. Instead an approximate

solution y must be obtained (for example, by FBP, or

SART). This trial solution is forward projected according

to the measurement model:

Ay ¼ c

with an associated lp projection error

�ðyÞ ¼ jjb� cjjp

where the lp; p� 1, norm is defined

jjvjjp �
X

jxjp
� �1

p

:

An iterative scheme will produce a sequence of candidate

solutions, yðkÞ; k ¼ 1; 2; . . ., of decreasing error.

A zero projection error might yield a reconstructed

solution y that is not identical to the original object x. This

is due to underdetermination. However, in cases where the

reference image is known, the proximity of y to x offers a

second and more stringent measure of algorithm

performance.

Consider the following measures:

e1 ¼ jjb� cjj1 ð2Þ
e2 ¼ jjy� xjj1 ð3Þ

A zero value of e1 solves the problem Ay ¼ b but does not

guarantee reconstruction proximity. e2 provides a check: a

value of zero corresponds to a reconstructed image that is

the exact replica of the original.

3 Reconstruction by particle aggregation

In many applications, the reconstructed image is expected

to consist of patches of various sizes of uniform pixel

value, since many physical objects of interest consist of

uniform structures. Non-uniform regions with randomly

varying pixel values would be construed as noisy and

unphysical. Relevant reconstructed images are therefore

those with low entropy.

This observation suggests the following assumption:

given a number of distinct candidate reconstructions,

fy : Ay ¼ cg, with identical error �ðyÞ, the preferred

reconstruction is the one with the lowest entropy (or one of

the reconstructions of lowest entropy, in the case of non-

uniqueness). It would clearly be beneficial to equip a

Fig. 2 Three projection models. From left to right: line, Joseph and strip models
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reconstruction algorithm with this assumption, under those

conditions where the assumption might be expected to

hold.

The principal idea underlying the aggregation technique

proposed in this paper and motivated by the low-entropy

assumption, is to suppose that pixel values are mobile

particles, moving from pixel to pixel. The low-entropy

assumption is implemented by requiring that particles stick

together in clusters to form aggregates of uniform pixel

value.

A model of aggregation for any random deposition

process that is dominated by diffusive transport, for

example electodeposition and mineral growth, was pro-

posed by Witten and Sander [20]. Their model, known as

Diffusion Limited Aggregation or DLA, is remarkably

simple: a particle is released from a random point on a

boundary and subsequently follows a random walk until it

strikes a stationary particle at some location within the

enclosing boundary. The walking particle sticks to the

stationary particle and another particle is released. Sur-

prisingly complex dendrite-like clusters with fractal struc-

ture are formed by repeated application of this simple rule.

The reconstruction problem is converted into particle

aggregation with the following correspondence:

• image x ! configuration of particles,

• pixels ! cells

• pixel values 1/0 ! presence/absence of a single

particle,

• image ! a grid of cells.

Furthermore, an objective function

• error ! objective function

converts the growth model into an optimisation problem:

only those aggregates that lower the objective function are

permitted to form.

A direct implementation of DLA as a reconstructive

process would be very expensive since a randomly walking

particle might pass by many isolated cells before arriving at

a boundary cell; diffusion can be accelerated by causing a

particle to jump from cell a to a vacant cell b, picked

uniformly at random from all vacant cells. Although a

jump has been made, the particle might not necessarily

‘stick’.

Suppose a particle has jumped from a to b and that b is a

boundary cell of a particle cluster1. We might suppose that

whether the particle sticks or not to the cluster is condi-

tional on the number of occupied neighbours of the

boundary cell b relative to the neighbour count for cell a -

with higher neighbourhood counts being preferred, and on

the fitness of the new configuration. There are a number of

ways to deal with a particle that has jumped to a vacant cell

but does not stick. For example, it could simply return to a.

With these considerations in mind, the particle aggre-

gate reconstruction technique (PART) can be specified.2

Algorithm 1 specifies an application of PART to a single

particle. Here, y is the reconstructed image, SELECT (see

Algorithm 2) returns pixels a; b 2 y; a 6¼ b; such that a is

occupied and b is empty. n is the number of occupied cells

in the neighbourhood (Moore or von Neumann) of a par-

ticular cell and �ða ! bÞ is the error of the new image with

the pixel a set to zero and pixel b set to 1. u is a sample

drawn from U(0, 1) (the uniform distribution on [0, 1]).

Algorithm 1 PART Reconstruction Algorithm
1: {a, b} = Select(y)
2: if n(a) ≤ n(b) OR u ∼ U(0, 1) < p1 then
3: if ε(a → b) ≤ ε(y) OR u ∼ U(0, 1) < p2 then
4: move particle from a to b
5: end if
6: end if
For the Select proceedure, see Algorithms 2 and 3
for PART and PART2 respectively.

The algorithm has two parameters p1 and p2. p1 governs

the influence of the local neighbourhood constraint: the

requirement to move to a neighbourhood of higher local

particle density. p1 ¼ 1 corresponds to a random search

and the neighbourhood constraint is ignored. A move a !
b will always be attempted even if the neighbourhood

function n is lowered.

In contrast, p2 governs the influence of the global con-

straint on the particle configuration as a whole. If p2 ¼ 0, a

move a ! b will always be rejected if it does not lower or

equal the current error. The algorithm is greedy. If p2 [ 0,

the algorithm is not greedy and a configuration with higher

error will be accepted with probability p2. Movement away

from a local minima of � can occur. In principle, p2 might

depend on the change in error (and on a steadily reducing

temperature parameter as in simulated annealing). While

finding the optimal value for p2 is not explored in this

paper (and p2 is set to zero here), optimising this parameter

is a subject of an ongoing research.

Algorithm 1 specifies a trial update of a single particle.

Each application incurs a cost of a single function evalu-

ation (�ðyÞ). The algorithm is iterated until zero error or

until a set number of function evaluations (FEs) has been

achieved.

As stated by Reynolds [17], the three simple rules of

interaction in flocks are collision avoidance, velocity

1 Note that the boundary might lie within the cluster i.e. bounding a

hole.

2 PART source code can be downloaded from http://doc.gold.ac.uk/

*map01mm/PART/.
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matching and flock centring. Swarms differ from flocks in

the sense that there is no velocity matching. The aggre-

gating particles in PART can be considered as individuals

in a swarm. The dynamic rules of particles swarms are of

the form:

1. If too close or colliding to neighbouring particles,

move away

2. Else if too far from neighbours, move closer.

where rule 1 opposes crowding and rule 2 brings the par-

ticles together in a swarm. The single occupancy condition

implements the anti-crowding rule, and the (conditional)

move to a neighbourhood of higher particle density, as

measured by the neighbourhood function n implements

rule 2. The error function �ðyÞ imposes a global constraint

on the swarm as a whole.

In an altered version of PART, further emphasis is

placed on the aggregation of particles by more systemati-

cally choosing isolated particles as more suitable a pixels

to be placed in b pixels. This is arranged by creating an

ordered list of particles’ neighbourhood counts (see Algo-

rithms 1 and 3).

4 Experiments and results

In [1], three experiments were conducted in order to

investigate the performance of PART 1 in the context of

binary image reconstruction: the first and preliminary,

experiment, aimed at finding a suitable value for the local

constraint parameter p1 for a single phantom of one size

only. This value is set to p1 ¼ 0:1; the second experiment

investigated the convergence properties of PART 1 and

random search, which can be seen as a limiting case of

PART 1. The results demonstrate the outperformance of

PART 1 in all cases except when reference images (or

phantoms) are only noise, in which case, as expected,

random search performs better. The final experiment

provided a comparison between random search, the

commonly used reconstruction algorithm, simultaneous

algebraic reconstruction technique (SART), and PART 1

with p1 set to the empirical value determined in the first

experiment. The result of this set of experiments

demonstrated that PART 1 converges rapidly when com-

pared to random search for phantoms with all nonzero

pixel values occurring in connected regions. And in the

case that there are isolated nonzero values pixels, PART 1

will find better reconstructions at fewer iterations. Addi-

tionally, PART 1 performs (statistically) significantly well

when compared to random search and a standard alge-

braic reconstruction technique for 32� 32 and 64� 64

phantoms, except for the case of isolated nonzero pixel

values; it is also shown that for a larger 128� 128

phantom with proportionally fewer angles of projection,

PART wins out over random search and SART.

In this work further experiments are conducted with

the focus on the important issue of reconstruction with

fewer number of projections, as in practice, merely a

small number of projections can be collected, thus giving

rise to what is known as limited data problems. There are

several reasons behind this, including cost, time, and

geometrical constraints. For instance, the importance of

cost reduction in the industry applications results in

shortened scan duration, which in turn leads to less pro-

jections; similarly, in electron tomography, the damage

caused to the sample by the electron beam reduces the

number of collectable projections [15]; and in nuclear

imaging, reducing the number of projection means

reducing the duration in which patients should be exposed

to radioactive materials as well as the inconvenience of

long scanning time.

This stresses that algorithms need to return sufficiently

suitable approximations of the original phantoms even with

smaller number of projections, which is what some of the

experiments in this section are allocated to. In this section,

PART 2 is contrasted against PART 1, RS, SART and FBP

over all the phantoms used in this work.

4.1 Methodology

4.1.1 Forward model

The acquisition geometry used for the experiments is par-

allel beam topology and the experiments use simulated

objects (i.e. virtual phantoms). In all cases, the elements of

the projection matrix were calculated from the line model.

4.1.2 Phantoms

Phantoms 1 and 2 (see Fig. 3) are commonly used in binary

tomography [19] and the third phantom resembles the

Jaszczak phantom used to calibrate the SPECT and PET

scanning machines. The size of all the phantoms is 512 �
512. To carry out the experiments in images with different

sizes, the phantoms or reference images have been scaled

to create images of varying sizes (namely, 64� 64 and

128� 128).

4.1.3 PART 1 & 2

PART is used with the Moore neighbourhood. There are a

number of alternatives for line 1 of Algorithm 1, the

selection step in PART. The purpose of this step is to find

an occupied cell, a, and a vacant cell, b. The following

experiments use random selection: a and b are selected

uniformly at random from the sets of all occupied/
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unoccupied cells. A list implementation would have been

efficient, but since the numbers of occupied/unoccupied

cells is roughly similar, uniform sampling over the entire

grid y was used due to the ease of implementation and

small time overhead. Algorithms 2 and 3 specify SELECT

for PART 1 & 2; U(y) is a uniform random selection of a

single cell from the grid y. The value of the global con-

straint parameter p2 was fixed, in all experiments, to zero.

4.1.4 Random search (RS)

For the purposes of these experiments, random search is

defined as the PART algorithm with the neighbourhood

parameter p1 set to 1 with the consequence that a par-

ticle will always attempt a move to an unoccupied cell

b even if the neighbour count of b, n(b), is less than

n(a).

4.1.5 Simultaneous algebraic reconstruction technique

(SART)

The implementation of SART used here was based on

Andersen and Kac’s algorithm, [2]. The projection angles

were selected uniformly at random [3]. The value of the

relaxation parameter k was set to 1.9 in accordance with

the recommendation of [14].

SART needs to be modified for binary reconstruction

since in the unaltered form SART produces a continuum

of pixel values. The following modifications were made:

any negative pixel values occurring after updating at any

angle were set to zero; the final image y after updating

all projection angles was normalised so that the total

pixel value count of the phantom image and the recon-

structed image were equal; y was thresholded at the

average pixel value so that values below the average

were set to zero, values above or equal tot he average

were set to 1.

4.1.6 Filtered back projection (FBP)

In order to provide a more comprehensive account to

the experiments conducted in this work, FBP algo-

rithm is also used. FBP algorithm is capable of fast

and adequate reconstruction, but requires a large

number of projections. FBP generates an image in a

single iteration.

(a) (b) (c)

Fig. 3 Phantom images used in the experiments. a Phantom 1, b phantom 2, c phantom 3

Algorithm 2 Select in PART 1
1: procedure Select(y)
2: a ∼ U(y)
3: while a is vacant do
4: a ∼ U(y)
5: end while
6: b ∼ U(y)
7: while b is occupied do
8: b ∼ U(y)
9: end while
10: return {a, b}
11: end procedure

Algorithm 3 Select in PART 2
1: procedure Select(y)
2: L = n(i)
3: r = U(0, 1)
4: if r < 0.9 then
5: a =particle from the last 10% of L
6: else
7: a = any occupant particle in U(y)
8: end if
9: b = any vacant particle in U(y)
10: end procedure
L is an ordered list (descending) of neighbourhood count

entries where n(i) = 0.
n(i) returns the number of neighbours

i

(including self). L does not contain

(including self) of particle
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4.1.7 Measure

The principle performance measure is the image proximity

e2 ¼ jjy� xjj1 (defined in Eq. 3) where, for the phantom

image x;Ax ¼ b and for the reconstructed image, Ay ¼ c.

However, while the algorithm uses the projection error

e1 ¼ jjb� cjj1 as the objective function. This is because, in
practice, x is unknown.

4.2 Experiments and results

In this section, phantoms of 64� 64 and 128� 128 are

used with 8 and 5 projections respectively. In these

experiments p1 ¼ 0:10, p2 ¼ 0:00 and 30 runs were con-

ducted for test in order to acquire adequate statistics. The

termination condition for each run is 20, 000 function

evaluations (FEs). For the purposes of this study, the

number of FEs does not vary with the size of the phantoms

and the number of projections.

In this section the five algorithms are used (e.g. PART 1&

2, RS, SART and FBP) on Phantoms I, II, and III (see Fig. 3).

The results of running the five algorithms on the three

phantoms in 64� 64� 8 are shown in Fig. 4. The results

show a clear and almost homogeneous picture on the per-

formance of the algorithms. The algorithms’ performance

ranking appear in the following order: PART 2, PART 1,

RS, FBP and SART. The only exception appears in

phantom 3 where SART outperforms FBP.

Given the large error margin of FBP and SART, Fig. 4

does not clearly show the difference between PART 1 & 2,

where Fig. 5 zooms into the graph to show the difference

between these two variations of PART.

The results of running the five algorithms on the three

phantoms in 128� 128� 5 are shown in Fig. 6. The results

match the previous observations on the smaller phantoms,

with the difference that SART outperforms FBP in phantoms

2 and 3. The performance ranking of the other algorithms is

maintained (i.e. PART 2, PART 1 and then RS).

Again, in order to visually compare the results of PART

algorithms in phantom 3, Fig. 7 illustrates the difference on

a few of the experiments, zooming into the graph.

The summary of figures from which the plots are

derived are reported in Table 1. This table shows the per-

formance of the five algorithms used in this work when

reconstructing three phantoms in 64� 64� 8 and 128�
128� 5 configurations.

Fig. 4 e2 in 64� 64� 8

Fig. 5 e2 in 64� 64� 8 for phantom 3. In the bottom plot, PART 2

is shown in green and PART 1 is highlighted in blue (color

figure online)
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For the purpose of providing a more meaningful analysis

and comparison of results, a statistical analysis would help

identify the presence of any significant difference in the

behaviour of the algorithms (i.e. finding e2) across the

phantoms. For this reason, a Wilcoxon 1� 1 non-para-

metric statistical test is deployed.

Investigating Table 2 validates the previous finding and

confirms that PART 2 exhibit a statistically significant

difference when compared to the rest of the algorithms

used in this study. This result holds both for the experi-

ments conducted on phantoms of size 64� 64 with 8

projection angles and phantoms of size 128� 128 with 5

projection angles.

Figures 8 and 9 present the reconstructed phantoms by

FBP, SART, RS, PART1 and PART2 using two configu-

rations 64� 64� 8 and 128� 128� 5.

These results indicate that the proposed algorithm per-

forms better than the rest of the algorithms when a small

number of projection angles are deployed. In contrast to the

previous experiments reported in [1], where a larger

number of projections where used (i.e. a ¼
ffiffiffi
n

p
=2, where a

is the number of projection angles, and n is the number of

pixels in the phantom), in these experiments a small

number of projections where deployed, therefore adding to

the undeterministic nature and thus complexity of the

problem. Despite this, the proposed algorithm is exhibiting

a competitive performance. To verify the strength of PART

and explore the reduction in the number of projections, a

set of experiments are designed and the results are reported

in the next section.

4.3 Impact of the number of projection angles

In this section one phantom is used with the image size of

64� 64. The aim of this experiment is to investigate the

role of the number of projection angles on the performance

of the reconstructing algorithms. The three algorithms

picked are PART 2 along with the classically used SART

and FBP algorithms. Both SART and FBP are not able to

improve their reconstructed images after the end of the

iteration. However, PART in principle, can iteratively

reconstruct the phantoms. In this experiment each algo-

rithm is run 10 times and the termination criteria for PART

2 is reaching 50,000 FEs.

Fig. 6 e2 in 128� 128� 5

Fig. 7 e2 in 128� 128� 5 for Phantom 3. In the bottom plot, PART

2 is shown in green and PART 1 is highlighted in blue (color

figure online)
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The plots in Fig. 10 clearly illustrate the impact of the

number of projections on the quality of the reconstructed

images (measured using e2). In this set of experiments,

FBP shows a clear impact of a on its performance (i.e. the

higher the number of projections, the smaller the error);

this picture changes slightly in SART where for example,

in several runs, the error in a ¼ 2 is better than a ¼ 4.

Consistent with the previous experiments where PART 2 is

outperforming the other algorithms, the algorithm still

maintains its superiority in terms of the resultant e2.

Table 3 presents the summary of the numerical values of

these experiments.

One of the interesting observations in the PART 2 plot is

the presence of some instances where a ¼ 4 finds equally

Table 1 Comparing PART2,

PART1, RS, SART and FBP in

64� 64� 8 and 128� 128� 5

experiments

Min Max Median Mean StDev

(a) 64� 64� 8

Phantom 1

PART2 510 3060 1530 1445 600.21

PART1 18,360 28,560 23,460 23,749 2966.79

RS 81,090 97,410 87,975 88,281 4263.5

SART 71,145 368,475 169,575 192,508 85,173.71

FBP 156,190 156,190 156,190 156,190 0

Phantom 2

PART2 5100 31,620 16,320 17,493 6556.06

PART1 56,610 77,010 66,555 66,759 4932.56

RS 124,950 143,820 139,230 138,380 4216.93

SART 151,725 560,490 297,585 305,209.5 109,065.36

FBP 238,960 238,960 238,960 238,960 0

Phantom 3

PART2 510 3060 1020 1037 560.01

PART1 2550 10,200 4845 5389 2073.51

RS 30,090 40,800 35,190 35,275 2384.91

SART 52,020 200,430 95,880 95,557 31,399.4

FBP 337,340 337,340 337,340 337,340 0

(b) 128� 128� 5

Phantom 1

PART2 107,610 191,760 135,405 138,669 20,283.75

PART1 313,650 357,510 339,150 339,745 11,298.13

RS 786,930 834,360 809,370 810,662 11,662.70

SART 659,175 2,512,260 1,219,410 1,389,206 588,415.16

FBP 1,070,800 1,070,800 1,070,800 1,070,800 0.00

Phantom 2

PART2 477,870 616,590 548,760 544,561 32,452.80

PART1 609,450 736,950 676,515 678,504 29,424.83

RS 1,049,580 1,095,480 1,069,725 1,070,286 12,500.01

SART 522,750 1,840,845 785,017.5 901,340 330,794.76

FBP 1,654,200 1,654,200 1,654,200 1,654,200 0.00

Phantom 3

PART2 116,280 185,640 151,725 152,507 17,061.81

PART1 170,340 199,920 182,070 182,121 7035.41

RS 302,430 329,460 314,415 315,112 6456.23

SART 294,270 742,305 528,615 533,103 120,685.03

FBP 1,971,500 1,971,500 1,971,500 1,971,500 0.00
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good error values in comparison with a ¼ 8; 16; 32. This

suggests that PART 2 is less dependant on the value of a and
can perform well even in cases where only smaller number

of projections can be obtained in the real-world experiments

and clinical setups. Figure 11 shows a closer view on PART

2 with a ¼ 4; 8; 16; 32. The error of 510 shared by most

trials with a ¼ 8; 16; 32 means that only two pixels are

misplaced (i.e. two white pixels, 510 ¼ 2� 255).

5 Conclusions

This paper extends the previously introduced particle

aggregate reconstruction technique (PART) with

emphasised focus on the aggregation of isolated parti-

cles. PART is based on the idea that an image can be

interpreted as a grid of cells populated by particles.

Pixel values represent cell occupancy; particles are

Table 2 Statistical analysis of

the performance of the

algorithms

PART2–PART1 PART2–RS PART2–SART PART2–FBP

(a) 64� 64� 8

Phantom 1 X–o X–o X–o X–o

Phantom 2 X–o X–o X–o X–o

Phantom 3 X–o X–o X–o X–oP
3–0 3–0 3–0 3–0

(b) 128� 128� 5

Phantom 1 X–o X–o X–o X–o

Phantom 2 X–o X–o X–o X–o

Phantom 3 X–o X–o X–o X–oP
3–0 3–0 3–0 3–0

Based on Wilcoxon 1� 1 Non-Parametric Statistical Test, if the error difference between each pair of

algorithms is significant at the 5 % level, the pairs are marked. X–o shows that the left algorithm is

significantly outperforming its counterpart algorithm; and o–X shows that the right algorithm is signifi-

cantly better than the one on the left. The figures, n – m, in the last row present a count of the number of X’s

and o’s in the respective columns

Phantoms FBP SART RS PART 1 PART 2

Fig. 8 Reconstructed phantoms in 64� 64� 8. From left to right original phantoms, FBP, SART, RS, PART1, PART2
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mobile and diffuse throughout the grid by random

jumps, preferably landing adjacent to regions of

increased particle density. The algorithm is intuitive,

and easily implemented.

This work also puts a particular emphasis on the

reduction in the projection angles and therefore aiming to

use less data to reconstruct the phantom images.

A number of experiments were designed based on three

phantoms in two sizes of 64� 64 and 128� 128 and the

proposed variation of PART algorithm is contrasted against

FBP, simultaneous algebraic reconstruction technique

(SART) as well as random search (RS).

Based on the results and in terms of the error, the

dominance of PART over the aforementioned techniques is

suggestive. Furthermore, the results demonstrate the sta-

tistically significant outperformance of PART in all

instances.

An experiment was designed to show the impact of the

number of projections on the reconstruction quality of the

phantom images. It is shown that PART is less sensitive to

the number of projection angles, making the algorithm

attractive when less data are available, or in situations

where collecting less projection data are inevitable (i.e. in

medical scenarios where patients cannot be kept for long

Phantoms FBP SART RS PART 1 PART 2

Fig. 9 Reconstructed phantoms in 128� 128� 5. From left to right original phantoms, FBP, SART, RS, PART1, PART2

Fig. 10 Varying number of projection angles (a) for PART2, SART and FBP
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duration for the scanning purposes, or where long exposure

to radiation is lethal).

One of the main research questions is whether aggre-

gation by particle diffusion can be extended to the general

discrete case, which is the topic of ongoing research.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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