
   

  

   

   
 

   

   

 

   

   298 Int. J. Applied Pattern Recognition, Vol. 1, No. 3, 2014    
 

   Copyright © 2014 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Classification in e-procurement 

Paul J. Roberts 
@UK plc, 
5 Jupiter House, Calleva Park, Aldermaston, RG7 8NN 
E-mail: paul.roberts@ukplc.net 

Richard J. Mitchell* and Virginie F. Ruiz 
School of Systems Engineering, 
University of Reading,  
Whiteknghts, Reading, Berks RG6 6AY, UK 
E-mail: r.j.mitchell@reading.ac.uk 
E-mail: v.f.ruiz@reading.ac.uk 
*Corresponding author 

J. Mark Bishop 
Department of Computing, 
Goldsmiths, University of London, 
New Cross, London, SE14 6NW, UK 
E-mail: m.bishop@gold.ac.uk 

Abstract: Three coupled knowledge transfer partnerships used pattern 
recognition techniques to produce an e-procurement system which, the National 
Audit Office reports, could save the National Health Service £500 m per 
annum. An extension to the system, GreenInsight, allows the environmental 
impact of procurements to be assessed and savings made. Both systems require 
suitable products to be discovered and equivalent products recognised, for 
which classification is a key component. This paper describes the innovative 
work done for product classification, feature selection and reducing the impact 
of mislabelled data. 
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1 Introduction 

Three coupled knowledge transfer partnerships (KTP) between the University of 
Reading, Goldsmiths College and @UK plc, a leading electronic marketplace provider, 
have generated the SpendInsight system. This uses artificial intelligence techniques  
to enable e-procurers to analyse their purchases and identify potentially significant 
savings. As an added benefit, the carbon footprint of products can be found and an 
environmentally friendly procurement policy developed. 

The overall aim of the three KTP projects was to develop a product- and  
location-aware search engine which would be a key component in the @UK plc  
e-procurement and e-marketplace platform, adding value by improving the user 
experience. One project concentrated on spidering the web to determine available 
products. A second ensured that user queries were ranked suitably. The third developed 
systems to classify the products found. Classification is the focus of this paper. 

The products are categorised into popular product classification systems such as 
eClass used by the UK’s National Health Service (NHS), National Supplier Vocabulary 
(NSV) and United Nations Standard Products and Services Code (UNSPSC). Such 
classifications are important to large purchasing organisations for spend analysis, but 
manually classifying supplier catalogues is a time consuming and expensive process. 



   

 

   

   
 

   

   

 

   

   300 P.J. Roberts et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Therefore, automatic classification would provide an important unique selling point for 
the marketplace platform. 

The projects contributed to an integrated system named SpendInsight (2012). Key to 
the system is the ability to classify numerous different products from a variety of 
suppliers, determine equivalent products from different suppliers, assess the economic 
cost of each and hence choose the cheapest. Significant savings could then be made in 
various domains. This was confirmed in the report from the National Audit Office 
(2011), which concludes that across the 165 hospital trusts in England, annual savings of 
£500 m pounds could be made, over 10% of the £4.6 bn spending on consumables. 

In addition, the ‘environmental’ cost of each classified product can also be  
allocated, and this is available in the associated system GreenInsight (2012). This allows 
e-procurers to assess the environmental cost of their purchases. 

Classification is the central component of these systems, for which there is 
considerable research even in the domain of text classification (product information is 
textual). However, the text being processed here is very different from that used in most 
text classification problems. The purpose of this paper is to consider the approaches taken 
in the three stages needed to classify product data: fuller details are in Roberts (2011). 

2 Product classification 

The systems need to classify textual descriptions of products, that is they must assign one 
of a number of predefined classes to a document based upon the natural language therein. 
This is almost always achieved with supervised learning: the process of using a set of 
pre-classified example documents to predict the class of unseen documents. 

Aggarwal and Zhai (2012) provide a comprehensive survey of text classification 
methods. Although text classification has been used for many practical purposes, the 
focus of the work here is product classification, in particular from purchase order (PO) 
lines, in a real-world setting. A labelled dataset is formed using 2,179,122 PO lines, taken 
from 87 NHS trusts. It has 909 distinct labels, each PO line is described only by a short 
description and there are many mislabelled documents. The large numbers of training 
items and classes mean that implementing classification algorithms so that they complete 
in an acceptable amount of time and use an acceptable amount of resources is difficult 
and many standard implementations are unusable. 

The purpose of classifying NHS PO lines is to allow the expenditure to be analysed. 
An NHS trust typically buys around 15,000 distinct products in a given year. If these 
products are classified to a formal schema, analysis of spending patterns is possible, and 
areas can be found where negotiating contracts with suppliers would be particularly 
beneficial. If the average carbon footprint per pound spent on products of a class is 
known, then classified PO lines can be used to estimate the carbon footprint of an 
organisation, and to track how it changes over time. 

Product classification is, in general, more difficult than standard document 
classification. This is because there are more numerous classes, the textural descriptions 
of products are generally very short (typically four or five words); they do not necessarily 
employ correct English spelling or grammar; and they contain irrelevant or subsidiary 
information such as trademarks or codes. For instance 

Pinnacle sector, acetabular cup/duofix HA sz 52 mm.  
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Here ‘Pinnacle sector’ is the brand name of an acetabular cup, which is used in hip 
replacements, ‘duofix HA’ is its name, and its size is 52 mm. Very few if any of such 
words could be found in a standard dictionary with the meaning intended here. 

In general there are far more categories in product schemata: over 20,000 in UNSPSC 
(Hepp et al., 2005) than in typical document classification tasks [in the oft-used Reuters 
corpus (Yang, 1999) there are between 93 and 113 classes]. The class distribution is very 
skewed: few classes are very common, before a long tail of infrequent classes. Product 
classification also differs from many text classification tasks due to the presence of a 
formal schema into which products are classified. 

Three stages are needed for this to be achieved: automatic product classification; 
feature selection and noise reduction. These are briefly introduced below, with more 
detail given in later sections. 

For NHS trusts that wish to gain access to information on products, manual 
classification is usually used. This requires domain expertise (Fensel et al., 2001), is 
expensive (as much as £1 per item), and tends to have a large error rate. Therefore, 
suitable algorithms are needed to classify the data automatically. 

Feature selection is the process of identifying which of the inputs are crucial in the 
process: when done correctly this reduces the amount of data which needs to be 
processed by the classifier and thus its complexity. Yang and Pedersen (1997) show that 
it also reduces the risk of overfitting and making the classifier more accurate. Liu and Yu 
(2005) give an overview of relevant feature selection methods. 

Noise reduction is needed to address the two forms of noise in training data: textual 
noise, such as spelling mistakes, unconventional abbreviations and irrelevant text; and 
label noise, when the data have been incorrectly labelled. In the application here, data 
have been labelled by different people at different times, which lead to inconsistencies. 
Of these problems, textural noise is less of an issue (Agarwal et al., 2007), particularly 
when feature selection is used. Occasional label noise can be detected easily by looking 
at outliers. The main issue addressed here is systematic label noise often caused by 
overlapping and ambiguous classes. 

In three sections below classification, feature selection and noise reduction are 
discussed and the associated experiments are described which were performed on two 
forms of data: the PO data, and, as a control, the Reuters corpus (Yang, 1999). First, 
however, an overview is given of previous research in these areas. 

3 Overview of previous research 

3.1 Automatic product classification 

The two main published product classifiers are GoldenBullet and AutoCat. The 
GoldenBullet (Ding et al., 2002) product classifier uses vector space models, k-nearest 
neighbour and Naïve Bayes to classify products into UNSPSC. 41,913 products were 
manually classified into 421 UNSPSC categories as training and test sets. The best 
method was Naïve Bayes, where an accuracy of 78% was reported. They also attempted 
to take advantage of the hierarchical nature of the UNSPSC by building a classifier at 
each of the four levels of the UNSPSC which, surprisingly reduced the accuracy to 38%. 

The AutoCat classifier (Wolin, 2002) uses a vector space model for product 
classification. It was tested with 206,301 products belonging to 272 commodities related 
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to computing, reporting an accuracy of 79.5%. They attempted to use numeric attributes 
such as product cost to alter class confidences, but this did not work well as category 
descriptions were too broad, and because of the bundling of multiple products. The 
standard deviation of product cost exceeded the mean in 82.5% of categories. 

Neither classifier repeated their tests on the full UNSPSC tree; both used around 5% 
of it. 

3.2 Feature selection 

Yang and Pederson (1997) compared five feature selection methods in the domain of text 
classification, with a focus on very aggressive feature selection. They found that 
information gain, document frequency thresholding and χ2 can remove over 90% of terms 
without losing accuracy, whereas term strength and mutual information performed 
poorly. 

Forman (2003) compared eleven feature selection methods with a support vector 
machine, and analysed the effects of skew. He found that only his algorithm, bi-normal 
separation (BNS), and information gain improved performance, the latter being better 
when skew was low or when a high percentage of features was removed. 

Li et al. (2001) identified two basic measurements upon which many feature selection 
methods are based. They show theoretically and experimentally that a spectrum can be 
defined, with a preference for higher class ratio and lower document frequency at one 
end, and the reverse at the other. Mutual information and BNS are at the former end of 
this spectrum, document frequency thresholding is at the other, and information gain and 
χ2 are in between. They present a new method that uses cross-validation to find the 
appropriate place for the given domain to be on this spectrum. They tested their 
hypotheses on four corpora, all with class skew removed. It would be interesting to know 
how their method performed with class skew, and whether the best place on the spectrum 
is calculable. 

Zheng et al. (2004) compared one-sided feature selection measures (such as the odds 
ratio) with two-sided measures (such as χ2 and information gain). They found the implicit 
two-sided measures performed better, and so adapted the methods to be explicitly  
two-sided. They found that these measures were best, especially on imbalanced data. 

3.3 Label noise reduction 

Brodley and Friedl (1996) proposed a method of cross-validation, where training items 
are identified as noise if they are classified incorrectly by a validation classifier. Their 
tests of detecting artificial noise in satellite data were encouraging. When 20% of items 
had their classifications changed, 7.3% of good data was removed, and 35.5% of 
erroneous data was kept. Other studies have found that the method suffers from a high 
false positive rate (Gamberger et al., 1999; Verbaeten and van Assche, 2003). 

Daza and Acuna (2007) created QcleanNoise, which uses the distance between 
training items and class centroids, and the training items’ nearest neighbours to identify 
noise. They tested the method by switching the labels of a proportion of the two largest 
classes in the dataset. They reported high levels of precision without much cost in recall. 
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Verbaeten and van Assche (2003) compared cross-validation techniques with some 
based upon bootstrap aggregating (bagging) for detecting artificial noise in a training set 
with Boolean classes. They found that bagging was more precise but conservative, 
whereas majority-voting cross-validation was less conservative but less precise. 

Ramakrishnan et al. (2005) used expectation maximisation to estimate probabilities of 
documents being mislabelled. They do not state how much noise they were able to 
identify, but report significant improvements in the performance of the classifier. 

Gamberger et al. (1999) presented a method of finding noise and other outliers by 
iteratively reducing the complexity of the least complex correct hypothesis. This method 
performed very well on their test set of 327 items, but would be too expensive for large 
training sets. 

Dave (1991) introduced the concept of a ‘noise cluster’, which is designed to be more 
distant than correct items are to their clusters of their class, but less distant than noisy 
items are to clusters of their assigned class. 

4 Experiments and performance measures 

The rest of the paper considers the research performed by Roberts (2011) in these three 
areas. For automatic product classification, different classification algorithms were tried, 
and their performance compared both on PO data and the Reuters corpus: see Roberts  
et al. (2012) for more details. Eight methods for feature selection were also tested, and 
again tested on PO and Reuters data. For noise reduction, a novel hill climbing technique 
has been developed, processing the PO data: more details are in Roberts et al. (2010). 

The methods are assessed using precision p, recall r and the F measure which 
combines them (Yang, 1999). These are given for one class or for multiple classes where 
they are amalgamated either as micro averaging, where these formulae are applied  
to the sum of all classes, or by averaging each class’s measures which is known as 
macro-averaging. More details are in Roberts et al. (2010). 

5 Automatic product classification 

Of the various classification algorithms available, the ones used in this research are 
arguably the five most popular methods in the literature: k-nearest neighbour (Yang, 
1994), Rocchio (Ittner et al., 1995), Naïve Bayes (Lewis, 1998), support vector machines 
(Joachims, 2001) and decision trees (Quinlan, 1993). Two trivial classifiers were also 
used, ‘null hypothesis 1’ where classes are assigned at random and ‘null hypothesis 2’ 
where the most frequently occurring class in the dataset is assigned. The detailed 
equations for the methods used are in Roberts (2011). Preliminary studies were carried 
out on subsets of the data in order to determine the best parameters for each classifier. 

For Naïve Bayes, the Bernoullii event model was used as the presence or absence of a 
word in a document is treated as a Boolean event across all experiments. This is because 
repetitions of a word are rare because PO data documents are so short. As Naïve Bayes’ 
performance improved as the prior was reduced, while it exceeded zero, prior was set to 
10–11. 
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k-nearest neighbour worked best when k = 5. When k exceeded 5, the algorithm was 
poor at predicting rare classes. When it was less than 5, the classifier was poorer at 
generalisation. 

It was found that Rocchio performed better with an equal balance between the 
negative and positive prototype. 

Linear kernals were used for SVM, as text classification tends to be linear and the 
SVM took far too long to train with non-linear kernals on PO data. It performed best with 
squared slack variables and a trade-off between training error and margin of C = 1:0. 

5.1 Main results 

The five classification algorithms and two null hypotheses were compared on the PO and 
the Reuters data: each algorithm using the same data to make the comparisons valid. 
Figure 1 shows the results of this experiment, with more details in Table 1 where 
precision, p, recall, r, and F measures are given for the PO and Reuters datasets. 

Figure 1 Performance of classifiers for the two datasets – using both the macro and micro 
measures (see online version for colours) 
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Table 1 The performance of the classifiers on the datasets 

Dataset Classifier 
Macro Micro 

C 
p r F p r F 

PO C4.5 0.738 0.662 0.698 0.853 0.853 0.853 679 
 k-NN 0.753 0.649 0.697 0.845 0.845 0.845 663 
 Naïve Bayes 0.719 0.734 0.726 0.817 0.817 0.817 691 
 Rocchio 0.604 0.350 0.443 0.712 0.689 0.700 614 
 SVM 0.723 0.277 0.400 0.728 0.728 0.728 388 
 Null Hyp 1 2.8 * 10–3 1.5 * 10–5 3.0 * 10–5 5.0 * 10–3 4.6 * 10–6 9.2 * 10–6 177 
 Null Hyp 2 2.8 * 10–3 1.5 * 10–5 3.0 * 10–5 5.0 * 10–3 4.6 * 10–6 9.2 * 10–6 177 
Reuters C4.5 0.733 0.653 0.691 0.846 0.837 0.841 40 
 k-NN 0.736 0.550 0.630 0.914 0.913 0.914 35 
 Naïve Bayes 0.734 0.400 0.518 0.794 0.789 0.792 34 
 Rocchio 0.852 0.243 0.378 0.737 0.737 0.737 23 
 SVM 0.899 0.741 0.812 0.954 0.953 0.954 39 
 Null Hyp 1 0.023 0.018 0.021 0.023 0.016 0.019 43 
 Null Hyp 2 0.418 0.023 0.043 0.418 0.418 0.418 1 

5.2 Discussion 

Although the SVM significantly outperformed all other methods in the Reuters data, as 
expected from the literature (Joachims, 1998; Dumais et al., 1998), it performed poorly 
with the PO data. Rocchio performed badly in all experiments, which agrees with the 
literature (Joachims, 1997). C4.5, k-NN, and Naïve Bayes performed similarly well in the 
PO data, but in the Reuters data Naïve Bayes performed worse than the other two. 

All classifiers performed much better than the null hypotheses. Unsurprisingly,  
null hypothesis 2 performed better than null hypothesis 1, especially in the  
micro-averaged results. Due to the large number of classes, the performance of the null 
hypotheses in the PO data was much lower than in the Reuters. 

Skew in the datasets results in large numbers of rare classes which dominate the 
measures, and hence the macro measures are lower. For the PO data, the Naïve Bayes 
method performs best, the Rocchio and SVM the worse (apart from the null hypotheses). 
However, SVM is the best for the Reuters data. Except for Naïve Bayes in the PO set,  
all classifiers have much higher macro-averaged precisions than recalls, whereas their 
micro-averaged values are closer. This suggests that rarer classes have lower false 
positive and higher false negative results. 

Significantly, although SVMs are normally recommended for text classification  
(and they work best for the Reuters data), they perform less well on the PO data. Roberts 
et al. (2012) hypothesise this may be due to class distribution or noise, and recommend 
further work in this area. However, the performance of classifiers can be influenced by 
pre-processing. The next section considers the use of feature selection for this purpose. 
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6 Feature selection 

One recurring issue with text classification algorithms is the high dimensionality of the 
data. Having a dimension for every potential word in the vocabulary is expensive both for 
storage and for processing. Feature selection is a technique for reducing the number of 
words used by the classifier, and thus its complexity. Yang and Pedersen (1997) showed 
that due to the reduction in the risk of overfitting, rigorous feature selection can make 
algorithms more accurate. 

In this section, eight methods of feature selection and weighting are presented. They 
are compared in both the PO and the Reuters datasets. The feature selection methods are 
also compared with a method that selects features at random. The methods used are 
briefly introduced below. 

In document frequency thresholding (Apte et al., 1994), where frequency is the 
number of documents in which a word occurs, inclusion of a term is determined by 
comparing the frequency with some threshold. Opinions are divided as to whether 
classification algorithms perform better when common terms or rare terms are removed. 
Mendonca et al. (2001) found in the domain of medical documents that data that  
occur often are less important than data that occur rarely. Yang and Pedersen (1997), 
however, found that common words are more informative. Mendonca et al. (2001) used 
standardised attribute pairs rather than Yang and Pedersen’s (1997), ‘bag of words’, so 
the latter’s findings are more likely to be relevant to feature selection in free text. 

Information gain has been used successfully as a feature selection technique for a 
variety of algorithms (Quinlan, 1986; Jirapech-Umpai and Aitken, 2005). It uses the 
conditional probability of classes given the word, to calculate the information gain the 
presence of the word brings. Words that have an information gain above a threshold are 
selected. It has been found to be very accurate, but is computationally expensive. 

Mutual information measures the connection between a word and a class (Ding et al., 
1997). It compares the joint probability of observing the class and word together with the 
probabilities of observing the class and word independently. 

The χ2 statistic (Huang, 2003) has been a successful feature selection method for a 
number of classification tasks (Cohen et al., 2004; Cantu-Paz et al., 2004). It measures 
the lack of independence between a word and a class. It is known to perform badly  
for infrequent terms (Dunning, 1994), which make up a large portion of most text 
documents. 

Term strength (Yang and Pedersen, 1997) uses the assumption that the words in 
common between two closely related documents of the same class are more important for 
classification than the words that are not. It uses clustering techniques to find pairs of 
documents whose similarity is above a threshold, and the term strength over these 
documents is the estimated conditional probability of a term appearing in the second of 
these documents, given that it has appeared in the first. 

Term frequency * inverse document frequency, TFIDF, uses the intuition that 
important words appear frequently in a document, but only appear in a small number of 
documents. This intuition is supported in Mendonca et al. (2001). It is thus the product of 
the term frequency within the document, and the inverse document frequency. 

ConfWeight (Soucy and Mineau, 2005) replaces the inverse document frequency 
term of TFIDF with a term that favours the features that are proportionally more frequent 
in documents of one class than in documents of all other classes. It outperforms TFIDF 
with both k-nearest neighbour and support vector machine classifiers. 
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BNS (Forman, 2003) uses the idea of modelling the occurrence of a feature in a 
document as the event of a random normal variable exceeding a threshold. The area 
under the normal curve past this threshold is the prevalence of the feature. BNS measures 
the difference in area between when measured over documents of a class, compared to 
with documents not of a class. BNS has been found to perform well compared to other 
methods when the performance is measured by recall. 

The normalised probability of word given class (Roberts, 2011), denoted here  
NP(ω | c), is a measure based upon the idea that a feature is useful if there exists a class in 
whose documents it is often found, but the total number of classes in whose documents it 
exists is small. 

These methods were first tested to see the effect of feature selection upon the 
performance of a classifier – in this case the Naïve Bayes. In each case, unique features 
are given weights according to the method listed. A threshold, t, describes the ratio 
(chosen by weight) of unique features that are made available to the classifiers, and the 
remainder are removed. If no features remain in a document, it is assigned the 
‘unclassified’ class and marked wrong. 

6.1 Results 

The macro and micro measures for the PO and Reuters data are shown in Figure 2, as the 
threshold t is varied. 

Information gain and document frequency thresholding performed best on the  
PO data, followed by BNS and χ2. χ2 performed best in the Reuters data, followed by 
NP(ω | c), information gain and document frequency thresholding. 

Mutual information and cTFIDF both performed worse than random, as measured by 
micro F, and not much better than random by macro F. ConfWeight performed better on 
PO than Reuters, but under-performed other methods. BNS performed well with the PO 
data, but less so with the Reuters. Forman (2003) found that his BNS outperformed most 
feature selection methods, especially in cases with large class skew. 

The micro results are very similar between the PO and Reuters data, but feature 
selection can raise the macro F measure in the Reuters, while it can only be maintained in 
the PO. The PO results were much smoother than the Reuters results, which is likely to 
be due to the larger size of the dataset. 

The second tests were on feature weighting. Here every feature is made available but 
with weights that describe how much impact they have upon the classifier. As Naïve 
Bayes is probabilistic, feature weighting was tried on the Rocchio classifier. As with the 
feature selection experiment, where a weight calculated for a (feature, class) pair, these 
are aggregated into a single weight for the feature by taking a maximum. 

Table 2 gives the macro and micro F measures for the Rocchio classifier with 
different feature weighting methods for both the Reuters and PO data. The last entry in 
the tables can be used as a baseline. This is the performance of the classifier when all 
features are weighted equally. The numbers in brackets give the ratio between the result 
and the baseline. 

In both data, document frequency and information gain both performed badly. In the 
PO test, the best method was cTFIDF, which raised the macro F measure by 18.3% and 
the micro by 5.9%. In the Reuters data, χ2 and NP(ω | c) performed the best, raising the 
macro F by 2.4% and 0.6%, and the micro by 63.3% and 61.0% respectively. 
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Figure 2 Effect of varying threshold on macro and micro measures for (a) PO data and  
(b) Reuters data (see online version for colours) 

  
(a) 

  
(b) 

Table 2 Comparison of feature weighting methods on the data 

Method 
PO data  Reuters data 

Macro F Micro F Macro F Micro F 

χ2 0.4768 (1.029) 0.6593 (0.955)  0.7545 (1.024) 0.6287 (1.633) 

cTFIDF 0.5479 (1.183) 0.7310 (1.059)  0.6243 (0.848) 0.491 (1.276) 

Document frequency 0.3362 (0.726) 0.5581 (0.809)  0.4402 (0.598) 0.0717 (0.186) 

Information gain 0.3539 (0.764) 0.5841 (0.846)  0.5915 (0.803) 0.2618 (0.680) 

Mutual information 0.5199 (1.122) 0.6924 (1.003)  0.7079 (0.961) 0.5492 (1.427) 

NP(ω | c) 0.5054 (1.091) 0.6839 (0.991)  0.781 (1.060) 0.6199 (1.610) 

TFIDF 0.5295 (1.143) 0.6949 (1.007)  0.6402 (0.869) 0.4674 (1.214) 

Uniform 0.4633 (1.000) 0.6902 (1.000)  0.7365 (1.000) 0.3849 (1.000) 
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6.2 Discussion 

While in the Reuters control set performance can be increased with feature selection, the 
results show that it can merely be maintained in the PO data. This makes intuitive sense, 
as there is an order of magnitude more features in the average document in the Reuters 
data than in the PO. Therefore, features in the PO data are much more likely to be 
pertinent. 

In PO data, therefore, there is little advantage to feature selection where the 
dimensionality of the data is not limiting. Where the dimensionality is a problem, some 
80% of unique features can be removed without much loss to performance. 

This work agrees with Yang and Pederson (1997) that mutual information does not 
compare well with other methods. The similarity between the results for information gain 
and document frequency thresholding in the PO data supports their findings that they are 
closely correlated. As document frequency thresholding is much simpler to calculate than 
information gain or χ2, this could well be the best method of feature selection in this 
domain. 

Notably, methods that are good at feature selection with Naïve Bayes are not 
necessarily good at feature weighting with Rocchio. Both information gain and document 
frequency feature weighting caused Rocchio to perform badly. However, care should be 
taken when comparing the results of feature selection with those of feature weighting. 
They are not directly comparable as they are being used by different classification 
algorithms. 

The best method for weighting features on the PO data is cTFIDF, which supports 
common wisdom that TFIDF-related methods are best for weighting features. 

7 Noise reduction 

The issue considered finally is that of the reduction of label noise in the data used to train 
classifiers. This occurs when documents in the training or testing set are erroneously or 
inconsistently labelled into potentially ambiguous and overlapping classes. Occasional 
errors can be detected as outliers. The method described here addresses the cases where 
there are systematic errors, which has happened with the PO data which have been hand 
classified by different people. 

The approach taken [described in full in Roberts (2011)] aims to identify pairs of 
classes in the training documents where there is insufficient information to distinguish 
them in the classification stage. Sometimes further labelled data can be sought or training 
data for the classes can be corrected to resolve the classes. If not, then the two classes can 
be merged together. 

In many cases, these merged class pairs will be more useful than they were 
individually as there is more confidence in the labels, and the schema will contain fewer 
arbitrary choices for future manual classifiers. As an example, a number of classes of 
different types of medical stent were generated which subsequently were able to be 
merged into one class. 

Decisions on whether to merge classes are based on information measures. For two 
variables X and Y, the entropies H(X), H(Y) and H(X, Y) are found together with the 
information content between X and Y as measured by their mutual information, I(X, Y). 
The performance of a classifier is then I(X, Y) normalised over H(X, Y) to give a value 
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J(X,Y). The relevant equations and approach is described in detail in Roberts et al. 
(2010). 

The noise reduction process is then achieved by splitting the training data into a 
training set and a validation set. A classifier is trained on the former and predicts classes 
in the latter. For each pair of classes, X, Y, the change in J(X, Y) which would occur if X 
and Y were merged is found. The pairs for which this change is the greatest are then 
found using hill climbing and, assuming the change is positive. The information measures 
are updated and the process continues until there is no benefit to merging the classes. 

The hill climbing process is made more robust by splitting the training data into n 
equal subsets (similar to n-fold cross validation). The n classifiers are each trained on the 
other n – 1 subsets. Roberts shows that this method is robust. Here n = 10. 

7.1 Results 

A control classifier was trained and tested first. Then hill climbing was run on five 
occasions, each time splitting the training set randomly into ten equal subsets, but using 
different combinations. For each the change in H(X, Y), I(X, Y) and J(X, Y) were 
measured. Finally, single hill-climbing was performed on the complete dataset, known as 
the ‘complete’ run. Here the complete training set is used to train the classifier, and the X 
and Y distributions are taken from the actual and predicted labels in the test set. In 
normal use, of course, this would be impossible as the actual labels of the test set are 
unknown. The lists of merges produced by each experiment were compared to assess the 
robustness of the method. Finally, the results of manual inspection of the actual merges 
are given. 

The combined hill climbing algorithm produces a ranked list of suggested merges. 
There were 104, 101, 108, 105 and 104 merges suggested on the five runs of combined 
hill climbing, respectively, with a high level of consistency between the five runs. 82.8% 
of unique class pairs were suggested in all five runs. 96.1% of the distinct suggested 
merges ranked 1–50 were suggested in all five runs. There were 116 unique merges 
suggested across all five runs. The suggested merges ranked 1–10 were identical in each 
run. 

For comparison, hill climbing was performed separately on each of the ten splits for 
one run. The results were far less consistent than in the combined run, giving 165, 156, 
165, 171, 173, 156, 162, 161, 150 and 162 class pairs, respectively. All ten put the same 
class pair at the top of the list, but they deviated on the second. One class pair was put in 
ninth or tenth place in three of the splits, and not included in the other seven’s lists at all. 
There were a total of 712 unique class pairs over all lists. 

By comparing this with the consistency between the five combined hill climbing runs, 
it can be concluded that the combined hill climbing is very robust. Table 3 shows the 
values of H(X, Y), I(X, Y), and J(X, Y) for the control, for each of the five hill climbing 
runs, and for the complete run. 

The different hill climbing runs give very similar results, being 96.7% of the way 
between the control and the complete run. The combined hill climbing using a validation 
set gets very close to the information levels that can be obtained from the entire dataset. 

The precision, recall and F measures for macro- and micro averaging are shown in 
Table 4. The results are given for the control, and then for the hill climbing and then one 
can see what they would be if the identified classes were merged. 
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Table 3 The entropy and information, before and after hill climbing 

 H(X, Y) I(X, Y) J(X, Y) 

Control 5.70199 4.40894 0.77322 
Hill climbing 1 5.52451 4.33484 0.78466 
Hill climbing 2 5.52444 4.33479 0.78466 
Hill climbing 3 5.52432 4.33463 0.78465 
Hill climbing 4 5.52439 4.33477 0.78466 
Hill climbing 5 5.52441 4.33480 0.78466 
Complete 5.51681 4.33099 0.78505 

Table 4 Macro and micro averaged precision, recall and F values 

 Macro averaging  Micro averaging 

Precision Recall F Precision Recall F 

Control 0.7190 0.7338 0.7263  0.8172 0.8170 0.8171 
Hill climbing 1 0.7779 0.7690 0.7735  0.8828 0.8826 0.8827 
Hill climbing 2 0.7771 0.7661 0.7716  0.8828 0.8826 0.8827 
Hill climbing 3 0.7797 0.7690 0.7743  0.8828 0.8826 0.8827 
Hill climbing 4 0.7779 0.7680 0.7729  0.8828 0.8826 0.8827 
Hill climbing 5 0.7767 0.7681 0.7724  0.8828 0.8826 0.8827 
Complete 0.8058 0.7812 0.7933  0.8830 0.8829 0.8829 

It is clear from the information and performance measures in Tables 3 and 4 that the best 
result is achieved by the ‘complete’ process. 
Table 5 Suggested classes to merge 

WAP (computer consumables) WAT (laser printer consumables and cartridges) 
FDC (bag and mask) FXU (respiratory items Laryngeal mask) 
MKC (cleaning cloths dishcloths and dusters) VEP (tissues and medical wipes) 
KBB (laboratory and pathology apparatus) KBD (laboratory and pathology – other 

consumables) 
PMP (general electrical equipment dryers 
heaters radiators amplifiers) 

PNB (batteries and battery chargers) 

EHQ (elastic adhesive) EIH (plaster elastic fabric) 
BCZ (workwear protective and chemical 
protection) 

BYC (coveralls – laboratory wear) 

ERF (shoes – podiatry products) GOX (footwear adaptation  
maintenance and repair) 

HAC (immunoassay) HBB (analytical kits) 
GFE (audiometers tympanometers  
test boxes REM) 

GFS (hearing aids spares) 

AFD (chilled pork) AFM (processed pork ham bacon and sausages) 
BWD (dresses – theatre wear) WCN (audiovisual equipment) 
TUK (pedestals) TKS (cupboards, stationery storage) 
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Some of the suggested merges from the ranked lists are shown in Table 5. The first five 
are examples of the 71 classes to merge which were at the top of each ranked list. The 
next three were suggested by all runs, but it varied as to where they were in the lists. The 
next three were merges suggested by only some of the runs. All of these seem to make 
sense. The last two, however, look wrong, but can be explained. For the first, the  
30 training items labelled as BWD are in fact mislabelled electronic headsets. As regards 
the pedestals, while there are 261 items classified (mostly accurately) as pedestals, five 
out of the ten items classified to TKS are actually pedestals. These are examples of 
systematic noise affecting an entire class that hill climbing can discover. 

8 Further work 

The methods outlined above are used successfully in the SpendInsight and GreenInsight 
systems. However there is scope for further work on the algorithms. Cross-validation is 
often used in classifier design – it may be of interest to see if its inclusion could improve 
performance. Further work on data processing and normalisation could be investigated as 
these can be significant. A comparison of classifiers as applied to the different feature 
selection methods may also be of benefit. 

9 Conclusions 

Successful automatic classification has been demonstrated on purchase order data, where 
the best methods to use are k-nearest neighbour and Naïve Bayes, not a support vector 
machine, usually used for text classification. For the PO data, there are relatively few 
features, so feature selection does not improve performance significantly here. The PO 
data suffers from systematic label noise, but the novel hill climbing method described 
here is shown to robustly improve the classification system. The research has contributed 
significantly to an e-procurement system which has allowed for significant savings for 
NHS trusts. 
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