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We describe a Monte Carlo study examining the impact of assuming item isomorphism

(i.e., equivalent construct meaning across levels of analysis) on conclusions about

homology (i.e., equivalent structural relations across levels of analysis) under varying

degrees of non-isomorphism in the context of ordinal indicator multilevel structural

equation models (MSEMs). We focus on the condition where one or more loadings are

higher on the between level than on the within level to show that while much past research

on homology has ignored the issue of psychometric isomorphism, psychometric

isomorphism is in fact critical to valid conclusions about homology. More specifically,

when a measurement model with non-isomorphic items occupies an exogenous position

in a multilevel structural model and the non-isomorphism of these items is not modeled,

the within level exogenous latent variance is under-estimated leading to over-estimation

of the within level structural coefficient, while the between level exogenous latent variance

is overestimated leading to underestimation of the between structural coefficient. When

a measurement model with non-isomorphic items occupies an endogenous position in a

multilevel structural model and the non-isomorphism of these items is not modeled, the

endogenous within level latent variance is under-estimated leading to under-estimation of

the within level structural coefficient while the endogenous between level latent variance

is over-estimated leading to over-estimation of the between level structural coefficient.

The innovative aspect of this article is demonstrating that even minor violations of

psychometric isomorphism render claims of homology untenable. We also show that

posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to

violations of isomorphism even when they lead to severely biased within and between

level structural parameters. We highlight conditions where poor estimation of even

correctly specified models rules out empirical examination of isomorphism and homology

without taking precautions, for instance, larger Level-2 sample sizes, or using informative

priors.
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Guenole Isomorphism and Homology

INTRODUCTION

Researchers in the social sciences deal with phenomena that
are inherently multilevel. In management research, for instance,
individual employees are embedded in teams, teams comprise
business units, and business-units form organizations. In
educational psychology, students are nested within classrooms,
classrooms are nested within schools, and schools are nested
in school districts. In these research settings it is commonly
the case that intrinsically micro level attributes of individuals
are measured and that these measurements are aggregated for
analysis to the meso (e.g., classrooms or teams) or macro levels
(e.g., schools or firms). The newly formed higher-level constructs
can be related to other variables that are similarly aggregated or
to variables that were measured directly at the higher level of
aggregation. Such analyses are considered multilevel in nature.

This article focuses on structural relations between constructs

measured at some lower level of analysis, (i.e., a micro level, such
as the individual) and aggregated to some higher (i.e., meso or

macro) level. We use the terms meso and macro to represent

any level of aggregation of interest that is higher than the level
at which the construct was measured.

Parsimony and generalizability are important goals in

statistical modeling (Forster, 2000). With this perspective

in mind, a natural question to ask in multilevel contexts
is whether the constructs measured at lower micro levels

have similar conceptual interpretations to their aggregated

counterpart constructs. It is also natural to inquire about
whether nomological (i.e., structural) relationships between

psychological attributes at the micro level are equivalent to
nomological relationships observed at the aggregated level.

Should constructs have similar measurement interpretations

and similar nomological relations with other variables at micro

and meso or macro levels of a multilevel model, the multi-

level model can be considered more parsimonious than one
that specifies different construct interpretations and structural

relations across levels. It can also be considered a model that
generalizes across levels of analysis. Equivalence of construct
meaning in a psychometric sense for psychological constructs
across micro, meso and macro levels is referred to as isoporphism
in the psychometric literature (Muthén, 1994; Dyer et al., 2005;
Tay et al., 2014), while equivalence of nomological relations
across levels is referred to as homology (Chan, 1998; Morgeson
and Hofmann, 1999; Chen et al., 2005). Tay et al. (2014) discuss
three further important advantages bestowed on multilevel
research designs incorporating isomorphic measurement models
(i.e., measurement equivalence across levels of analysis). First,
individuals within the higher-level units represent a tangible
instantiation of the higher-level concept, and vice versa. Second,
concern about anthropomorphizing individual level attributes
at the team level or inappropriate generalizing team level
concepts to individuals is removed. Finally, these authors suggest
isomorphism permits generalizing theories developed at one level
of analysis for explanation at another level of analysis. Overall,
isomorphism, or cross level invariance in multilevel modeling, is
an important topic in educational and organizational sciences.

Similarities in Approaches to Multi-Group
Equivalence and Multi-Level Equivalence
Early thinking about isomorphism and homology in the
multilevel literature bears resemblance to early thinking
about the relationship between measurement equivalence and
relational equivalence in single level contexts. For some time,
researchers studied whether structural relationships between
variables were equivalent across groups without first examining
measurement equivalence. Today, however, it is recognized
that measurement invariance is an important pre-requisite for
interpreting results of analyses of structural invariance (Drasgow,
1982, 1984; Millsap, 1995, 1998; Chen, 2008). Several articles in
a special issue on measurement invariance in this journal edited
by van de Schoot et al. (2015b) illustrate the necessity of and
steps for correcting for non-invariant measurement indicators
when structural relations across groups are the focus on research
interest (e.g., Guenole and Brown, 2014; Hox et al., 2015).

Similarly, earlier work on homology suggested that the
structural equivalence across levels could be investigated based
on what might be referred to as loose evidence of construct
isomorphism. For instance, Chen et al. (2005, p. 375) stated
“We do, however, take the position that the coupling of
construct meaning across levels is first and foremost a theoretical
issue and that measures of the construct at different levels
need not be psychometrically equivalent (i.e., they need not
be isomorphic).” Chen et al.’s (2005) rationale was that true
isomorphism is not possible for psychological constructs because
the processes that led to the emergence of constructs at each
level differ. These processes tend to be a blend of biological
and psychological at the level of the individual, but primarily
sociological at higher levels of aggregation. However, there
is a growing realization today that informal approaches to
isomorphism are better replaced by formal modeling approaches
that test this assumption (e.g., Muthén, 1994; Chan, 1998; Bliese,
2000; Kozlowski and Klein, 2000; Bliese et al., 2007; Zyphur
et al., 2008) and that the process of emergence should be
considered separately from issues psychometric isomorphism
(Tay et al., 2014). Indeed, this position is similar to that taken by
applied measurement practitioners who wish to eliminate items
that show measurement bias without too much regard for the
processes that led to the non-invariance.

Recent research on isomorphism, using the multilevel
structural equation modeling (MSEM) technique, has focused
on methods to examine equivalence across clusters (i.e., cluster
bias) that sit within levels at both lower and higher levels of
aggregation as well as the relationship between measurement
invariance across groups within levels and invariance across
levels (Jak et al., 2013, 2014a; Ryu, 2014, 2015; Kim et al., 2015).
In addition, MSEM research has witnessed a considerable and
necessary focus on research design requirements for accurate
estimation of measurement and structural parameters in MSEM
under different estimation methods (e.g., Hox et al., 2012,
2014). However, there has been little or no research into the
consequences of what we argue below is a potentially convenient
misspecification in MSEMs, i.e., small to moderate violations
of invariance across levels (i.e., isomorphism) for relations with
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Guenole Isomorphism and Homology

external variables (i.e., homology). This is a notable gap in the
context of MSEM, which is widely agreed as one of the most
rigorous methods for testing isomorphism and homology.

A Taxonomy of Levels of Isomorphism
Tay et al. (2014) proposed a new taxonomy of levels for multilevel
isomorphism. These authors differentiate the following levels
of configural and metric isomorphism, or “across level”
measurement invariance. Strong configural isomorphism exists
when the same number of factors exists on the within and
between levels and the factor structure contains the same pattern
of fixed and free loadings. When the same number of factors
exists on multiple levels of analysis but the pattern of fixed and
free factor loadings is not the same, weak configural invariance
is said to exist. It is possible, and in fact common, for fewer
factors to be required at higher levels of analysis and for the
higher-level model to exhibit an entirely different pattern of
loadings. In this case, there is no basis for claims of isomorphism.
However, if some of the factors are reproduced with the same
zero non-zero loadings patterns, partial configural isomorphism
is said to exist. Strong metric isomorphism is said to exist
when a model that shows strong configural isomorphism also
exhibits equivalent loadings across levels of analysis.Weakmetric
isomorphism exists when the rank ordering of the loadings of
items is equivalent across levels but the precise magnitudes are
not. If even the rank ordering of loadings is not equivalent across
levels, there is no basis for claiming metric isomorphism.

Implications of Isomorphism for Homology
As yet, no consideration has been to the consequences of
these levels of invariance for relations with external variables,
i.e., structural relations between measurement models across
levels. Investigating this issue is the goal of the current
study, which can be considered an example of examining the
practical consequences of convenient model misspecifications.
Studies of such misspecification abound in the psychometric
literature. Instances include exact vs. approximate fit in
structural equation models (Hu and Bentler, 1999), whether
data are “unidimensional enough” that item parameters can
be considered dependable (Drasgow and Lissak, 1983; Bonifay
et al., 2015) and the extent to which measurement invariance
can be ignored in multiple group confirmatory factor analyses
without detrimentally impacting substantive conclusions about
regression between latent constructs across groups (Chen, 2008;
Guenole and Brown, 2014). Similar studies have also examined
the impact of model misspecification in bi-factor contexts. For
example, Reise et al. (2013) examined the effect of ignoring bi-
factor structures on structural parameter bias as a function of
the percentage of “contaminated correlations” in the covariance
matrix.

More recently, general methods have been proposed that
examine the consequences of model constraints for particular
parameters in models (Oberski, 2014; Kuha and Moustaki, 2015;
Oberski et al., 2015) although these approaches are so far
untested in the context of isomorphism in multilevel modeling.
In this article, we show that absent strong evidence of metric
isomorphism, evidence about structural relations across levels is

rendered difficult to interpret at best and at worst uninterpretable
due to bias in the estimation of structural relations. Isomorphism
must be addressed before drawing conclusions about homology.

Theoretically Derived Research Question
The goal of the current article is to examine the implications
of psychometric isomorphism for conclusions about homology
in the context of MSEMs with categorical indicators. We
investigate empirically whether there is any good reason to expect
whether or not psychometric isomorphism (or its absence) is
accurately modeled has important implications for conclusions
about construct homology (i.e., the equivalence of structural
relations across levels of analysis). We use a Monte Carlo
experimental design to investigate what degree of psychometric
non-isomorphism can be countenanced while still reaching
accurate conclusions about psychometric evidence for homology.
This is an important issue representing a trade off applied
researchers primarily interested in homology will often face. If
evidence of non-isomorphism is minor, the temptation could
be to ignore the non-isomorphism and impose the same
measurement models across levels of analysis. This would permit
the claim of a consistent meaning of constructs across levels.

For instance, along with all the ensuing benefits we have
discussed, this would allow researchers to say that the same
psychological constructs exist across levels with the same
nomological relationships instead of needing to say that similar
constructs exist across levels with similar relationships with
external variables. However, applied researchers would be less
likely to take this course of action if imposing equivalence across
levels led to inaccurate conclusions about homology, which is
often a researcher’s primary interest. Here we concern ourselves
with the situation where researchers recognize that separate
models should be estimated for each level rather than the case
where researchers erroneously estimate models at one level when
data are in fact multilevel. For more on the problems with this
approach see Zyphur et al. (2008).

Multilevel Structural Equation Modeling
In this article we adopt the MSEM framework to examine
our hypotheses regarding multilevel isomorphism. MSEM has
several advantages that place it among the primary choices for
measuring multilevel constructs (Bliese et al., 2007). For instance,
MSEM allows simultaneous estimation of measurement models
on within (disaggregated) and between (aggregated) levels while
in parallel permitting the estimation of structural relationships
between measurement models on within and between levels. In
addition, a formal statistical test of model fit in the form of the
likelihood ratio test is available. Widely known close fit indices
provided by common software programs are available for MSEM
models under frequentist and Bayesian estimation approaches.
Readers may refer to Hox (2010) and Ryu and West (2009)
for discussions of the adjustments necessary for the calculation
of these indices when using MSEM with maximum likelihood.
While the Posterior Predictive checking approach is available as
a model fit index under Bayesian estimation, its suitability for
testing isomorphism in MSEMs with ordinal indicators has not
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yet been explored. A secondary goal of this article is to examine
this issue.

The model used as the basis of simulations is presented in
Figure 1. This model is a two level structural equation model
with categorical factor indicators on the within level and random
continuous latent indicators on the between level. The solid
circles at the ends of the arrows that emanate from the latent
within factors fw1 and fw2 indicate random intercepts that vary
across clusters. On the between level these are cluster level
random intercepts which serve as the indicators of fb1 and
fb2. These random intercepts are presented in circles since they
are the continuous latent random variables that vary across
clusters. For an equation based representation of the parameters
of MSEMs with categorical outcomes readers are referred to
Grilli and Rampichini (2007) or Jak et al. (2014a). Parameter
values used in the Monte Carlo study for this model are included
on Figure 1 and are discussed further in the simulation design
section below.

Bayesian Estimation of Multilevel
Structural Equation Models
MSEM involves sampling at both individual and group levels.
At level-2, i.e., the group level, samples are often characterized
by small numbers of groups, particularly when the population
itself is small such as when countries are studied. Modeling
of effects at level-2 (or higher) also requires some variation
at the higher level (i.e., between groups) as captured by the

intraclass correlation for variables. The precise lower limit of
the ICC required for modeling group level effects is not firmly
established, and sometimes level-2 effects are studied even if ICCs
for variables are low indicating little variation between groups.
This is especially if the group level effects are of theoretical
interest.

However, the combination of low ICCs and low numbers
of level-2 units creates problems for maximum likelihood
estimation of MSEMs, which assumes large samples and
normality. Recent research has shown Bayesian estimators to be
more accurate than maximum likelihood and to produce fewer
inadmissible solutions with lower numbers of level-2 units (Hox
et al., 2012, 2014; Depaoli and Clifton, 2015). As summarized
by Depaoli and Clifton (p. 330): “a Bayesian approach to
multilevel SEM should produce more accurate and efficient
estimates because of shrinkage [toward the mean of the prior]. It
should also eliminate problems with convergence due to negative
variance estimates because priors can be used to bound estimates
to positive values.” In addition to these benefits, Hox et al. (2015)
report that Bayesian estimation is more reliable in small samples
and is better for complex models.

For these reasons, in the current study we adopted a
Bayesian approach to model estimation. Whereas, frequentist
estimation methods obtain a single value for parameters, under
Bayes estimation a distribution for parameters is obtained. This
distribution reflects uncertainty about parameters before data are
collected and the likelihood of data that is collected to create the

FIGURE 1 | Least isomorphic and homologous multilevel structural equation model from which all other models can be obtained.
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posterior distribution. In Mplus, the software used in the current
study, this posterior distribution is sampled using Markov Chain
Monte Carlo (MCMC) methods based on the Gibbs Sampler to
produce point estimates and confidence intervals. For further
details we refer readers to Kruschke (2011), van de Schoot
et al. (2014), Zyphur and Oswald (2013), or Lynch (2007) for
introductory treatments and to Gelman et al. (2004) for more
advanced discussion.

Hypotheses
Our expectations of the impact of construct isomorphism on
construct homology (i.e., equivalence of structural parameters)
are as follows. First, when measurement models appropriately
model the simulated invariance and simulated non-invariance
(i.e., correctly modeled lower loadings on the within levels
of models, we anticipate that structural relationships will
be accurately recovered according to all model performance
statistics we shortly introduce. Second, where measurement
models specify loadings on the within and between levels as
invariant when in fact they are not (i.e., ignoring non-invariant
loadings on the within and between levels in the case of higher
between level factors) the direction of regression parameter
bias will depend on whether the ignored non-invariance in the
measurement model is for the exogenous or the endogenous
variable. In the exogenous case, we expect overestimation of the
structural coefficient on the between level and underestimation
of the structural coefficient on the between level. When
the non-invariant measurement model is in the endogenous
position, we expect underestimation of the within level structural
coefficient and overestimation of the between level structural
coefficient.

MATERIALS AND METHODS

Fixed Features of Simulation Design
Our design and reporting approach to examine these hypotheses
broadly follows the stages discussed by Paxton et al. (2001),
Bandalos (2006), and Boomsma (2013).

Test Length and Rating Scale
We used six items for the independent and dependent latent
variable measurement models in the current study. This falls
between the three itemmeasurement models reported by Depaoli
and Clifton (2015) and eight item models reported by Kim
et al. (2012). The reason for adopting six items was that early
simulations showed this number was sufficient to illustrate the
pattern of the effects of ignored isomorphism on structural
coefficients. We used binary indicators for all measurement
models, the most discrete response scale possible.

Number of Replications
A review of sample sizes used in recently reported Monte Carlo
studies showed that among the largest number of simulations
per cell was the study reported by Guenole and Brown (2014)
who used 1000 replications per cell of their Monte Carlo design,
as did Depaoli and Clifton (2015). We also implemented 1000
replications per cell.

Types of Non-Isomorphism
In categorical indicator multilevel models there are no threshold
parameters on the within level as the mean and threshold
structure is on the between level. The latent mean and thresholds
on the between level in this study were set at zero in the
population and freely estimated in models. Neither are there
any residual variances on the within level, rather, the variances
on the within component of the MSEM are fixed at 1 due to
the probit link functions used by the estimation software. The
only common parameters on within and between levels are the
factor variances and loadings. In this study we therefore focus on
loading isomorphism.

Direction of Non-Isomorphism
Pornprasertmanit et al. (2014) observed standardized loadings
are often higher on the between level, and Zyphur et al.
(2008) stated “another notable result of the multi-level EFA was
the much larger factor loadings found at the between-groups
level of analysis, indicating that the between-groups variance
may be considered much more reliable than the within-groups
variance.” Higher between level loadings are also observable in
applied examples of multilevel CFA. For instance, Dyer et al.
(2005) presented results of a multilevel CFA of a procedural
leadership scale that assessed the extent to which being formal,
habitual, cautious, procedural, or ritualistic relate to effective
leadership found that loadings were considerably higher on the
between level. Hanges and Dickson (2006) showed a similar
result for an uncertainty avoidance scale. Accordingly, we study
the situation where the non-isomorphism manifests as a higher
factor loading on the between level. We note, however, that equal
unstandardized loadings or items that are lower on the within
level are certainly not impossible and represent cases not covered
in the current Monte Carlo design.

Missing Data
We did not simulate missing data in the Monte Carlo results we
report below. Missing data can impact conclusions in MSEM,
but this issue is beyond the scope of the current study. We refer
readers to Hox (2010) or Heck and Thomas (2015) for further
discussion ofmissing data issues in the context ofmultilevel SEM.

Experimental Conditions
Modeling Approaches (2 Levels)
Two modeling approaches were examined. In the first approach,
model parameters on the within and the between level were
freely estimated regardless of the fact that the population
model specified that they were non-invariant. We did not
constrain loading parameters equal for items that were known
to be equivalent by design, since equating of probabilistically
equivalent items could have confounded conclusions. To also
constrain the items that are probabilistically isomorphic to be
exactly isomorphic runs the risk of contaminating conclusions
by mixing the effects of ignoring the non-isomorphism in items
that are non-isomorphic by design with the effects of ignoring
probabilistic non-isomorphism due to chance. In the second
approach, loadings on the within and between levels for non-
isomorphic items were constrained to be equal across levels,
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regardless of the fact that the populationmodel specified that they
were not equivalent.

Structural Models (4 Levels)
Chen et al. (2007) looked at the relationship between leader
relationships (LMX), empowerment, and performance. The
individual level relationship between LMX and empowerment
was 0.31. The relationship between team LMX and team
empowerment was 0.44. We adopted these in non-homologous
models. In homologous conditions we set the value of the within
path at 0.44, the same value as the between level structural path.
We included conditions where the non-invariant measurement
model occupied the exogenous and endogenous positions.We do
not consider non-isomorphic measurement models in exogenous
and endogenous positions.

Level 1 and Level 2 Sample Sizes (3 Levels)
Sample size must be considered at level-1 and level 2. Hox
(2010) suggested 10–20 as an appropriate level-1 sample size
range. We use one condition of 20 at level-1 because level-1
sample size is rarely a problem in multilevel modeling. Even
singletons can be incorporated if the average cluster size is larger
and the Level-2 sample size is not too small (Bell et al., 2010).
Multilevel Monte Carlo studies by Meuleman and Billiet (2009)
and Hox et al. (2012) did not vary level-1 cluster sizes either,
albeit they used an imbalanced design to match the cluster sizes
reported in European Social Survey data. Maas and Hox (2005)
reported minimal detrimental impact on estimator accuracy with
even extreme levels of cluster imbalance and hence we only
study balanced cluster conditions. More pertinent is the level-
2 sample size. Mass and Hox observed sizes as small as 20 can
produce accurate estimates of regression parameters, but that
if the interest is in the variance parameters then 50 clusters is
appropriate for small models and 100 are needed for complex
models. We incorporated three level-2 sample sizes of 30, 50, and
100 units.

Size of Intra-Class Correlations (ICCs) (4 Levels)
At least two approaches have been presented in recent Monte
Carlo studies with regard to ICCs. Kim et al. (2012) focused on
varying the latent ICC by setting the within factor variance at one
and varying the between level factor variance to produce latent
ICC values between 0.09 and 0.33. Depaoli and Clifton (2015)
varied the ICCs for the observed indicators by fixing the factor
loadings at one on the within and between levels and varying the
variances and residual variances. We follow Depaoli and Clifton’s
approach to create observed indicator ICC values of 0.05, 0.10,
0.20, and 0.30.

Proportion of Non-Equivalent Items (4 Levels)
We incorporated four levels of loading non-isomorphism. These
were zero ignored non-isomorphic loadings, one ignored non-
isomorphic loading, two ignored non-isomorphic items, and
three ignored non-isomorphic items. Our rationale for not going
any higher than this is that researchers would be unlikely to be
confident that constructs had the samemeaning across levels with
greater than 50% level of non-invariant loadings unless partial

metric isomorphism was the focus of the investigation, and here
we focus on strong metric isomorphism.

Summary of Experimental Design
The total number of conditions considered in this Monte
Carlo experiment equals 2 modeling approaches × 4 structural
models × 3 sample size conditions × 4 ICC conditions × 4◦ of
non-invariance= 384 conditions.

Analyses
Model Identification
Parameters for simulation models are illustrated in Figure 1

which presents the least isomorphic and least homologous model
studied in the simulation with an intra-class correlation of
0.05 where the non-isomorphic measurement model occupies
the exogenous position in the structural model. Remaining
models can be reached by making models less isomorphic and
homologous according to the specifications in the experimental
design section above. To identify the metric of the latent factors
we fixed the first factor loading of each factor on within and
between levels. This allowed the independent latent variable
variances and dependent latent variable residual variances to
be freely estimated on both within and between levels in the
structural components of the models. This approach was also
used to identify multilevel models by Ryu (2014). It is important
to note that this approach assumes that the reference indicator
must be invariant. In the current article, the referent indicator
was indeed invariant, it was so by design. In practice, researchers
might consider other approaches. For instance, Jak et al. (2013,
2014a) recommended fixing the within-level factor variance at
1, and freeing the between-level factor variance when factor
loadings are constrained to be equal across levels to avoid the risk
of picking the “wrong” item for scaling.

Estimation
All models were fitted to the simulated item responses in
MPlus 7.3 (Muthén and Muthén, 1998–2010). The simulations
were executed by calling MPlus from the statistical computing
environment R 3.0 using the package MPlusAutomation
(Hallquist, 2011). We use a Bayesian estimator with
uninformative priors and a single chain, which closely parallels
the set-up reported by Depaoli and Clifton (2015) and Hox et al.
(2012), due to the expected superior performance under these
conditions. Mplus default settings were used for burn-in while
the MCMC process reached target distributions and thinning to
reduce dependence in the MCMC draws. The Proportional Scale
Reduction (PSR) criterion was used to determine convergence
along with visual inspection of trace plots. As we discuss below,
we further investigated convergence with runs for extreme calls
that incorporated multiple chains and many more iterations.
Mplus input and output files for all cells of the design are
available at the following link https://dx.doi.org/10.6084/m9.
figshare.2069337.v1.

Prior Specification
Uninformative priors were used since in the small sample
conditions an informative prior could overpower the information
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in the data (Hox et al., 2012). On the within and between levels
variance parameter priors were inverse gamma corresponding to
a uniform distributionU∼[0, infinity]. Loading parameter priors
on the within and between levels were N∼(1, 0.1). Threshold
priors on the between level were N∼(0, infinity). Regression
mean hyper-parameters were set to the population values with
variance of 0.10 so that the estimates would have greatest density
in the region of the generating value. For a technical discussion
of the details of Bayesian estimation in the context of MSEMs
readers are referred to Hox (2010) or Asparouhov and Muthén
(2010).

Model Performance
We examined the following indicators of model performance
a) the proportion of non-converged and inadmissible solutions
b) the average posterior predictive p-value across replications b)
the sum of loading errors across items within levels (since these
were always in the same direction within conditions and the sum
indicated the direction of the bias whereas the absolute bias does
not) and c) the relative bias of latent variances and latent residual
variances, defined as the observed regression parameter minus
the true parameter divided by the true parameter (relative bias of
less than 10% was considered acceptable, between 10 and 20%
as substantial, and greater than 20% as unacceptable). Finally,
while the section of our design that ignored non-isomorphism
contained model set ups that were non-isomorphic by design, we
also comment on the ability of posterior predictive p-values to
distinguish correctly and incorrectly specified models reflecting
the varying degrees of non-isomorphism in the study.

RESULTS

Convergence Checks and Admissibility
All models in all conditions converged to admissible solutions.
This finding is consistent with research by Depaoli and Clifton
(2015) that reported that the convergence rates for Bayesian
estimation were near 100% even with uninformative priors. The
only conditions that these researchers reported did not show
100% convergence and admissibility rates were for combinations
of very low ICCs and very small level-2 sample sizes, two
conditions that were not incorporated in this simulation study
for that reason.

van de Schoot et al. (2015a) observed that variance parameters
estimated with Bayesian methods can be subject to spikes
(i.e., extreme estimates) especially for variance terms, which
inflate parameter estimates. To examine whether this occurred
in the current Monte Carlo study we checked trace plots for
the within and between exogenous latent variance and latent
residual variance parameters for a sample run from each of
the 384 cells in the design. These showed that in general the
trace plots displayed tight horizontal bands without any obvious
increasing or decreasing patterns in the plots. These sample files
are uploaded to figshare at the following link: https://dx.doi.org/
10.6084/m9.figshare.1619654.v3.

We then examined the issue of convergence further using
the following approach. As a first step, we first identified the
cells of the Monte Carlo design that had the largest estimate

variability for the four latent variance parameters in the models,
the within latent exogenous variance, within latent residual
variance, and the between latent exogenous variance and between
latent residual variance. For the within latent exogenous variance
and within latent exogenous residual variance, these cells turned
out to be from the correctly specified section of the design, they
were cells numbered 100 and 148. These cells had the lowest
number of level 2 units and the smallest ICC values (j = 30, ICC
= 0.05) in the simulation.

These cells showed poor parameter recovery for the regression
parameters of either or both within and between level structural
coefficients, even though they were correctly specified models. As
we explain below, they are excluded from the results presented
below because of the impact of ignored non-isomorphism on
regression parameter recovery since they were poorly estimated
even when correctly specified. In addition to running further
checks on the accuracy for these excluded cells, therefore, we also
identified the cells with the greatest variation in these parameters
that were retained for further investigation of convergence.
These cells where cell 100 and cell 148, respectively. Finally, we
identified the cells with the largest estimation variability for the
between level latent exogenous variance and between level latent
residual variance, which were cells 15 and 156, respectively.

For all six specified cells we followed the following steps.
First, we re-ran each of these cells using two chains with
100,000 iterations, retaining the PSR criterion, and we requested
Kolmogorov-Smirnov tests using the Tech 9 option in Mplus
and confirmed there were no significant results. In addition to
these precautions, trace plots for a random run from each of
these conditions inspected to ensure visual inspection of the
plots showed good mixing and no obvious spiking. Results of
these analyses for cells 100 and 148 showed that the structural
regression parameters were still too poorly estimated to warrant
inclusion in the comparison of the isomorphismmisspecification
just as was the case when using the default convergence criteria.

The estimates of the within latent exogenous variance and
within latent residual variance in these cells were extremely
close to the estimates from letting Mplus converge based on
the program’s default criteria. For the within latent exogenous
variance, the population value was 1.000, the default criteria
converged to 0.962 and the longer run with additional diagnostics
converged to 0.956. For the within latent residual variance these
values were 1.000, 1.086, and 1.065.

For the within latent exogenous variance in cell 16 the
population variance was 1.000, the Mplus default convergence
criteria produced 0.970, while the longer run with additional
diagnostics converged to 0.963. For cell 156, the retained cell
with the greatest estimate variability for the within latent residual
variance, the population parameter was 1.000, the estimate
produced byMplus defaults was 1.053, and the estimate produced
by the longer run with greater iterations and the additional
convergence checks was 1.059.

Next we examined the cells with the greatest estimate
variability for the between latent exogenous variance and between
latent residual variance, cells 303 and 256, respectively. For the
between latent exogenous variance the population value was 0.44,
the estimate produced by Mplus default convergence criteria
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was 0.614 and the estimate produced by the greater iterations
and multiple convergence criteria was 0.609. The corresponding
values for the between latent residual variance were 0.44, 0.674,
and 0.664.

Given that these checks on the cells with the largest variability
in estimates show that the defaultMplus convergence criteria lead
to very similar estimates to much longer iterations in the context
of this study, we concluded that the other cells in the design which
showed less variability in estimates of these parameters have very
likely converged too under the default convergence criteria used
by the Mplus software.

Results of Posterior Predictive Checking
Posterior predictive p-values were examined as an indicator
of global fit for all models. The first results we consider are
for the correctly specified conditions. It was important to
incorporate this condition because if we did not, it would
be impossible to know to what extent parameter bias in the
misspecified conditionwas due to poor estimation and howmuch
was due to the misspecification under study. In other words,
we needed to ensure that the correctly specified models were
estimated accurately so that any error in the models for the
misspecified condition could clearly be attributed to the ignored
non-isomorphism. The ppp-values for the correctly specified
conditions showed that the minimum proportion of replications
in each cell with a PPP > 0.50 was 0.45. For this reason, we do
not discuss global fit or parameter estimation accuracy for the
correctly specified conditions further in this article. However, a
zip file of all Mplus input and output files, as well as a summary
excel file where all parameters are extracted for convenient
reading, are available at the following link https://dx.doi.org/10.
6084/m9.figshare.2069334.v1.

The ppp statistic is known to be insensitive to small
model misspecifications with categorical data (Asparouhov and
Muthén, 2010). Our results confirmed this finding. Moving from
the correctly specified models through with zero items with
ignored non-invariance through to three items with ignored
non-invariance did not result in deterioration in the ppp-values,
suggesting that the ppp-value is insensitive to the degrees of
ignored isomorphism examined in this design, even for many
ignored non-isomorphic items, large intra-class correlations, and
the highest number of level-2 units. While examining the efficacy
of the ppp-value to test isomorphism was not the central focus of
this article, it is nevertheless an important topic and we discuss
future research directions for testing isomorphism in multilevel
modeling with Bayesian estimators in our Discussion section.

Local Accuracy Results for Correctly
Specified Models
All results we now discuss are available at the following
link https://dx.doi.org/10.6084/m9.figshare.2069334.v1. We
examined local fit in terms of the relative bias of the regression
parameters on the within and between levels, as the regression
coefficients summarized the key result we are focusing on in
this study. The relative bias for the regression parameters on the
within and between levels for the correctly specified conditions
were always acceptable on average with a single exception. The

only conditions where this pattern was violated was for the
lowest level of ICC = 0.05. In this condition, even the largest
level 2 sample size of 100 was not enough to offset the effect of
small ICCs on estimation accuracy, despite that level-2 sample
size and ICC values are known to have an interactive impact on
accuracy in the context of multilevel models.

In the current study, increasing the sample size from 30
to 50 and 100 while maintaining the 0.05 ICC for the latent
variable ameliorated, but did not eliminate the estimation error.
For this reason, in the results that follow for the misspecified
condition, we remove conditions where the ICC was 0.05, since
any estimation error in the incorrectly specified model would not
be uniquely attributable to the intended model misspecification.
Estimation in these other conditions was deemed acceptable
and we therefore do report these conditions were the items
were misspecified as being invariant. We do not discuss the
parameter accuracy of the correctly specified conditions further
in this article, however, these results can be examined in both the
original Mplus input and output scripts and excel summary file
mentioned earlier.

Local Accuracy Results for Misspecified
Model Conditions
All results we now discuss are available at the following link
https://dx.doi.org/10.6084/m9.figshare.2069334.v1.We now turn
to discussion of local estimation accuracy, beginning with
discussion of the within and between loadings and latent variance
and residual latent variances, before turning to within and
between regression coefficients. The tables of results for each of
these sets of parameters are presented along with discussion of
results below. Tables 1, 2 below present an overall summary of
trends in estimation error of regression coefficients, variances,
and loadings on within and between levels. Each cell of this
table contains two pieces of information. First the table lists
the sign of the misestimation of the specific parameter for the
highest degree of ignored non-isomorphism. These values always
take on one of the following three values: negative, acceptable,
or positive. Second, each cell also contains the direction of
change in the estimation error due to increasing levels of ignored
non-isomorphism. These cells entries read either yes or no. A
yes indicates that increased ignored non-isomorphism led to
increased bias in the specified direction, while no indicates that
there was little or no change in the estimation accuracy from the
lowest to the highest degree of ignored non-invariance.

Within and between Loadings
Tables 3–6 contain the sum of bias across factor loadings for
conditions where the non-isoporphism was on the exogenous
and endogenous measurement models and when the structural
coefficient was homologous and non-homologous. Within the
exogenous and endogenous conditions the bias for loadings
was always in the same direction, and so here we report the
sum of bias. Given that the bias was generally very small
loadings about zero or positive (or negative) within conditions
this is similar to reporting the absolute bias except the sign
of the bias is maintained. When the misspecified measurement
model was in the exogenous position the exogenous loading
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TABLE 1 | Summary of impact of ignored isomorphism on structural

coefficients.

Misspecified IV Misspecified DV

Within beta Positive Yes Negative Yes

Between beta Negative Yes Positive Yes

Each cell of this table contains two pieces of information, the sign of the misestimation

of for the parameter under the highest degree of ignored non-isomorphism (negative,

acceptable, or positive), and the direction of change in the estimation error due to

increasing levels of ignored non-isomorphism where yes indicates that increased ignored

non-isomorphism led to increased bias in the specified direction and no indicates that

there was little or no change in the estimation accuracy from the lowest to the highest

degree of ignored non-invariance.

TABLE 2 | Summary of impact of ignored isomorphism on loadings and

variances.

Misspecified IV Misspecified DV

Latent IV Latent DV Latent IV Latent DV

Within loading Negative Negative Negative Negative

Yes No Yes No

Between loading Positive Acceptable Positive Acceptable

Yes Yes

Within variance/

Residual variance

Negative Positive Negative Negative

Yes No Yes Yes

Between variance/

Residual variance.

Positive Acceptable Acceptable Positive

Yes Yes

Each cell of this table contains two pieces of information, the sign of the misestimation

of for the parameter under the highest degree of ignored non-isomorphism (negative,

acceptable, or positive), and the direction of change in the estimation error due to

increasing levels of ignored non-isomorphism where yes indicates that increased ignored

non-isomorphism led to increased bias in the specified direction and no indicates that

there was little or no change in the estimation accuracy from the lowest to the highest

degree of ignored non-invariance.

bias was negative and the bias increased with greater ignored
non-isomorphism. On the between level the exogenous loading
bias was positive and the positive bias increased with greater
ignored non-isomorphism. The endogenous latent loadings were
negative and stable with increased non-invariance on the within
level and were acceptable on the between level. When the
misspecifiedmeasurementmodel was in the endogenous position
the exogenous latent loadings on the within level were negatively
biased and the bias increased with further un-modeled non-
isomorphism while the loading bias on the between level was
positive and increasingly so with greater non-isomorphism. The
loading bias for the endogenous latent variable was negative and
stable with further non-isomorphism while the loading bias on
the between level for the endogenous latent was acceptable.

Within and between Latent Variances and Latent

Residual Variances
Tables 3–6 present the relative bias for the latent variances and
latent residual variances. These tables show that when the non-
invariant measurement model occupied an exogenous position

in the structural model, the relative bias in exogenous latent
variance on the within level was negative and this negative
bias increased with increased ignored non-isomorphism, while
the between level exogenous latent variance was positive and
the positive bias increased with higher levels of ignored non-
isomorphism. The endogenous latent residual variance on
the within level was negatively biased, but was stable with
increased ignored non-isomorphism. On the between level the
latent residual variance relative bias was acceptable. When the
misspecifiedmeasurementmodel was in the endogenous position
the within level relative bias was negative and increasingly so
with further ignored non-isomorphism. On the between level the
latent variance relative bias was acceptable. The residual latent
variable variance on the within level was increasingly negative
with greater ignored non-isomorphism while the between level
residual variance was positively bias, with bias increasing as more
non-isomorphism was ignored.

Within and between Structural Coefficients
Tables 7–10 below summarize the accuracy for structural
coefficients on the within and between level where the non-
invariant measurement model was in the exogenous and
endogenous position in the structural model and when the
structural relationship was homologous and non-homologous.
This table reveals consistent patterns across simplify reporting of
the results. First, increased levels of misspecification consistently
led to increased relative bias. Unacceptable increases in relative
bias occurred for even a single equated but non-isomorphic
item.When the ignored non-isomorphism was on the exogenous
measurement model, the within level structural coefficient
became increasingly positively biased and the between level
structural coefficient became increasingly negatively biased with
increased ignored non-isomorphism. When the ignored non-
isomorphism was on the endogenous measurement model
the within level structural coefficient became increasingly
negatively biased and the between level structural coefficient
became increasingly positively biased with greater ignored non-
isomorphism.

DISCUSSION

Psychometric isomorphism is an important topic in the social
sciences, but until recently it has been viewed as a consideration
of secondary importance to applied researchers who have
emphasized the importance of homology. Recently, research in
multilevel modeling has focused on methods for testing different
forms of isomorphism in the context of MSEMs (Jak et al., 2013,
2014b; Ryu, 2014, 2015; Kim et al., 2015) as well as the aspects
of the research design that produce accurate parameter estimates
under different estimation approaches, for example, the number
of level-2 clusters required for accurate estimation of parameters
using maximum likelihood and Bayesian estimators (Hox et al.,
2012, 2014). Until now, however, the connection between
psychometric isomorphism and homology in the context of
MSEMs has not been thoroughly explored. In this article, we
used a Monte Carlo design to explore the impact of ignoring
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TABLE 3 | Latent variable parameter accuracy for homologous condition with non-invariant IV measurement models.

j ICC Items Within Latent IV Within Latent DV Between Latent IV Between Latent DV

Load Var Var Load Var Var Load Var Var Load Var Var

Sum Rel Cov Sum Rel Cov Sum Rel Cov Sum Rel Cov

Bias Bias (%) Bias Bias (%) Bias Bias (%) Bias Bias (%)

30 0.10 0 −0.38 1 0.92 −0.18 8 0.89 −0.36 −3 0.73 0.10 4 0.89

1 −0.55 −6 0.87 −0.19 7 0.90 0.73 35 0.86 0.02 13 0.91

2 −0.75 −13 0.80 −0.18 7 0.91 1.20 58 0.88 0.06 10 0.90

3 −0.94 −21 0.70 −0.19 7 0.90 1.40 72 0.84 0.07 10 0.91

0.15 0 −0.39 0 0.89 −0.18 8 0.89 −0.44 1 0.86 0.20 6 0.94

1 −0.70 −10 0.81 −0.21 7 0.89 0.62 32 0.95 0.21 4 0.93

2 −1.05 −21 0.67 −0.18 7 0.91 1.02 52 0.87 0.10 5 0.93

3 −1.31 −31 0.54 −0.21 6 0.90 1.15 59 0.83 0.08 9 0.93

0.20 0 −0.39 0 0.90 −0.22 6 0.90 −0.37 3 0.93 0.22 5 0.95

1 −0.90 −15 0.76 −0.19 7 0.90 0.50 27 0.93 0.16 6 0.94

2 −1.32 −28 0.57 −0.19 8 0.90 0.83 41 0.89 0.20 6 0.94

3 −1.66 −39 0.40 −0.17 8 0.90 0.89 46 0.87 0.18 7 0.93

50 0.10 0 −0.19 1 0.91 −0.08 5 0.92 −0.24 2 0.84 0.07 5 0.94

1 −0.40 −6 0.87 −0.11 5 0.91 0.80 34 0.92 0.06 7 0.91

2 −0.42 −8 0.87 −0.09 5 0.91 0.72 25 0.93 0.09 5 0.93

3 −0.84 −23 0.62 −0.12 3 0.91 1.47 75 0.68 0.06 7 0.91

0.15 0 −0.19 0 0.92 −0.10 4 0.94 −0.20 1 0.91 0.16 3 0.93

1 −0.61 −12 0.79 −0.09 5 0.91 0.72 31 0.91 0.13 4 0.93

2 −0.95 −23 0.59 −0.10 4 0.91 1.09 51 0.80 0.07 6 0.94

3 −1.23 −33 0.40 −0.07 5 0.92 1.19 56 0.75 0.05 6 0.93

0.20 0 −0.22 0 0.89 −0.10 5 0.91 −0.23 1 0.93 0.12 5 0.93

1 −0.79 −17 0.73 −0.12 4 0.91 0.59 26 0.90 0.14 2 0.94

2 −1.25 −31 0.43 −0.11 4 0.92 0.88 39 0.83 0.11 5 0.95

3 −1.66 −43 0.20 −0.12 4 0.90 0.87 40 0.84 0.12 3 0.95

100 0.10 0 −0.09 0 0.94 −0.09 1 0.91 −0.15 0 0.89 0.12 1 0.91

1 −0.33 −8 0.84 −0.04 3 0.91 0.89 37 0.86 0.06 2 0.92

2 −0.33 −9 0.83 −0.03 3 0.91 0.81 24 0.91 0.02 4 0.93

3 −0.78 −24 0.44 −0.05 2 0.92 1.52 69 0.43 0.04 4 0.93

0.15 0 −0.11 0 0.91 −0.05 2 0.91 −0.17 0 0.92 0.07 1 0.94

1 −0.47 −12 0.78 −0.04 3 0.92 0.80 30 0.84 0.06 2 0.93

2 −0.90 −25 0.41 −0.05 2 0.90 1.13 48 0.62 0.05 2 0.95

3 −1.17 −35 0.18 −0.07 2 0.91 1.22 53 0.50 0.05 2 0.94

0.20 0 −0.10 0 0.91 −0.05 2 0.92 −0.08 2 0.94 0.04 2 0.93

1 −0.68 −17 0.62 −0.05 2 0.91 0.67 26 0.85 0.06 1 0.94

2 −1.26 −34 0.12 −0.06 1 0.92 0.87 36 0.70 0.07 1 0.93

3 −1.61 −44 0.04 −0.05 2 0.92 0.89 37 0.68 0.06 2 0.94

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number of ignored non-isomorphic items; IV, Independent variable; DV, dependent variable; Load, Loading;

Sum Bias, sum of absolute bias on loading parameters; Var, latent factor variance if it is under a latent IV heading and latent residual variance if it is under a latent DV heading; Rel Bias,

relative bias expressed as a percentage; Cov, coverage expressed as a proportion.

isomorphism on conclusions about homology. We note that our
results apply to the condition of higher between level loadings.

Main Findings
The results of this study reveal that the connection is an
intimate one. In particular, the direction of the estimation
error for the within and between level structural coefficients

depends on the degree of the bias in within and between
factor loadings and within and between latent variances. Even
minor levels of item non-isomorphism cannot be ignored
without jeopardizing the accuracy of structural parameter
estimates across levels of analysis in MSEM studies. When
the item non-isomorphism exists and is ignored on the
exogenous measurement model, the within structural coefficient
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TABLE 4 | Latent variable parameter accuracy for homologous condition with non-invariant DV measurement model.

j ICC Items Within Latent IV Within Latent DV Between Latent IV Between Latent DV

Load Var Var Load Var Var Load Var Var Load Var Var

Sum Rel Cov Sum Rel Cov Sum Rel Cov Sum Rel Cov

Bias Bias (%) Bias Bias (%) Bias Bias (%) Bias Bias (%)

30 0.10 0 −0.21 3 0.90 −0.33 7 0.89 −0.10 −1 0.74 0.34 9 0.92

1 −0.41 1 0.92 −0.36 1 0.89 0.84 2 0.76 0.28 8 0.94

2 −0.59 2 0.89 −0.32 −7 0.86 1.31 2 0.76 0.14 8 0.90

3 −0.77 1 0.68 −0.39 −14 0.89 1.42 0 0.76 0.05 76 0.86

0.15 0 −0.20 0 0.91 −0.36 7 0.89 −0.20 4 0.88 0.38 8 0.94

1 −0.57 1 0.91 −0.35 −5 0.87 0.73 3 0.86 0.34 36 0.92

2 −0.85 1 0.88 −0.35 −15 0.77 1.15 −1 0.87 0.37 52 0.86

3 −1.12 1 0.90 −0.34 −26 0.67 1.29 3 0.87 0.40 69 0.76

0.20 0 −0.20 0 0.90 −0.37 7 0.92 −0.22 2 0.95 0.42 3 0.94

1 −0.69 1 0.91 −0.35 −10 0.85 0.61 3 0.92 0.36 30 0.89

2 −1.16 −1 0.88 −0.39 −23 0.69 0.96 0 0.91 0.43 34 0.93

3 −1.46 1 0.89 −0.34 −33 0.57 1.03 1 0.92 0.35 53 0.79

50 0.10 0 −0.17 2 0.91 −0.22 2 0.87 −0.12 5 0.84 0.17 0 0.88

1 −0.29 0 0.90 −0.23 −4 0.92 0.98 −8 0.78 0.32 47 0.87

2 −0.56 1 0.91 −0.15 −12 0.71 1.35 11 0.85 0.18 54 0.81

3 −0.72 2 0.93 −0.18 −18 0.73 1.58 3 0.83 0.16 77 0.69

0.15 0 −0.09 1 0.92 −0.19 6 0.92 −0.11 2 0.90 0.26 3 0.94

1 −0.52 1 0.92 −0.20 −9 0.83 0.77 3 0.91 0.16 33 0.88

2 −0.85 1 0.91 −0.17 −20 0.69 1.15 4 0.91 0.24 50 0.78

3 −1.06 1 0.89 −0.18 −29 0.52 1.30 1 0.89 0.23 63 0.67

0.20 0 −0.11 1 0.90 −0.21 4 0.90 −0.15 1 0.93 0.22 4 0.93

1 −0.70 1 0.90 −0.21 −14 0.80 0.65 5 0.93 0.17 29 0.88

2 −1.17 0 0.91 −0.21 −28 0.53 0.95 1 0.92 0.25 42 0.78

3 −1.47 1 0.91 −0.18 −38 0.32 1.00 0 0.91 0.23 46 0.74

100 0.10 0 −0.06 0 0.90 −0.10 2 0.91 −0.07 −1 0.89 0.17 3 0.94

1 −0.29 0 0.90 −0.09 −6 0.85 0.91 1 0.88 0.15 35 0.83

2 −0.53 0 0.91 −0.10 −15 0.70 1.37 3 0.88 0.09 59 0.57

3 −0.74 0 0.92 −0.10 −23 0.49 1.54 2 0.90 0.09 70 0.39

0.15 0 −0.06 0 0.92 −0.11 2 0.93 −0.04 2 0.92 0.08 3 0.94

1 −0.43 1 0.92 −0.11 −10 0.78 0.81 1 0.90 0.15 30 0.80

2 −0.30 1 0.92 −0.09 −23 0.49 1.17 2 0.92 0.12 48 0.57

3 −1.14 1 0.92 −0.09 −34 0.21 1.24 1 0.93 0.10 55 0.45

0.20 0 −0.04 1 0.90 −0.09 3 0.90 −0.07 1 0.94 0.12 1 0.93

1 −0.61 0 0.91 −0.10 −16 0.68 0.71 2 0.93 0.10 26 0.82

2 −1.19 1 0.91 −0.08 −32 0.23 0.93 3 0.93 0.08 37 0.67

3 −1.55 0 0.90 −0.10 −43 0.05 0.94 1 0.93 0.09 112 0.64

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number of ignored non-isomorphic items; IV, Independent variable; DV, dependent variable; Load, Loading;

Sum Bias, sum of absolute bias on loading parameters; Var, latent factor variance if it is under a latent IV heading and latent residual variance if it is under a latent DV heading; Rel Bias,

relative bias expressed as a percentage; Cov, coverage expressed as a proportion.

is overestimated and the between structural coefficient is
underestimated. When the non-isomorphism exists and is
ignored on the endogenous measurement model the within
structural coefficient is underestimated and the between
structural coefficient is overestimated. In other words, if you fit
a model with equality constraints on the non-isomorphic items
with categorical data your structural parameter estimates will be

biased. In addition, under Bayesian estimation the ppp-value will
tell you that your model fits. Where detecting non-isomorphism
is important and assuming the models will converge it may be
advisable to try maximum likelihood approaches (e.g. Jak and
Oort, 2015).

Another important finding was despite the high convergence
and admissibility rates with Bayesian estimation. The current
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TABLE 5 | Latent variable parameter accuracy for non-homologous condition with non-invariant IV measurement model.

j ICC Items Within Latent IV Within Latent DV Between Latent IV Between Latent DV

Load Var Var Load Var Var Load Var Var Load Var Var

Sum Rel Cov Sum Rel Cov Sum Rel Cov Sum Rel Cov

Bias Bias (%) Bias Bias (%) Bias Bias (%) Bias Bias (%)

30 0.10 0 −0.35 3 0.91 −0.20 8 0.91 −0.36 −4 0.74 −0.17 5 0.91

1 −0.59 −6 0.85 −0.18 7 0.91 0.63 32 0.88 −0.09 6 0.93

2 −0.76 −13 0.80 −0.20 6 0.90 1.19 63 0.89 0.02 11 0.92

3 −0.96 −23 0.70 −0.20 5 0.90 1.38 74 0.83 0.06 13 0.91

0.15 0 −0.35 0 0.91 −0.19 8 0.92 −0.40 3 0.85 −0.20 4 0.95

1 −0.73 −11 0.81 −0.22 5 0.92 0.62 32 0.92 −0.17 8 0.94

2 −1.02 −21 0.69 −0.18 7 0.89 1.04 50 0.89 −0.09 10 0.94

3 −1.32 −31 0.53 −0.18 7 0.91 1.13 59 0.86 −0.15 8 0.94

0.20 0 −0.35 2 0.91 −0.23 6 0.90 −0.38 5 0.90 −0.23 7 0.95

1 −0.92 −16 0.77 −0.23 6 0.91 0.52 31 0.92 −0.19 5 0.95

2 −1.39 −29 0.57 −0.18 8 0.91 0.81 −11 0.94 −0.17 40 0.89

3 −1.68 −39 0.40 −0.24 5 0.88 0.86 44 0.88 −0.21 4 0.95

50 0.10 0 −0.22 0 0.91 −0.13 4 0.90 −0.21 3 0.84 −0.09 6 0.93

1 −0.44 −7 0.83 −0.12 3 0.91 0.77 35 0.90 −0.02 6 0.92

2 −0.67 −15 0.72 −0.10 5 0.90 1.28 60 0.82 −0.06 7 0.92

3 −0.90 −25 0.59 −0.09 0 1.00 1.43 74 0.69 −0.03 7 0.91

0.15 0 −0.23 −3 0.92 −0.12 4 0.92 −0.26 1 0.90 −0.15 2 0.95

1 −0.60 −12 0.79 −0.12 4 0.92 0.72 32 0.90 −0.12 4 0.93

2 −0.96 −23 0.59 −0.10 5 0.91 1.09 50 0.80 −0.05 6 0.94

3 −1.23 −33 0.40 −0.11 4 0.89 1.19 58 0.74 −0.15 3 0.94

0.20 0 −0.21 0 0.90 −0.11 5 0.91 −0.20 1 0.92 −0.14 5 0.94

1 −0.78 −17 0.72 −0.12 4 0.91 0.61 27 0.89 −0.13 4 0.93

2 −1.32 −32 0.42 −0.13 4 0.91 0.85 38 0.83 −0.16 1 0.94

3 −1.68 −43 0.21 −0.13 3 0.92 0.84 41 0.83 −0.16 2 0.94

100 0.10 0 −0.08 1 0.94 −0.06 2 0.93 −0.14 1 0.89 −0.10 2 0.90

1 −0.34 −8 0.84 −0.05 1 0.92 0.86 35 0.86 −0.02 4 0.93

2 −0.60 −17 0.67 −0.03 3 0.92 1.32 59 0.60 −0.02 4 0.93

3 −0.80 −25 0.40 −0.06 2 0.92 1.48 69 0.45 0.01 7 0.95

0.15 0 −0.10 1 0.91 −0.06 1 0.91 −0.12 3 0.89 −0.05 3 0.94

1 −0.37 −9 0.81 −0.06 2 0.92 0.87 33 0.86 −0.04 4 0.93

2 −0.58 −16 0.67 −0.06 1 0.93 1.32 54 0.64 −0.03 3 0.92

3 −0.79 −24 0.45 −0.04 2 0.92 1.49 68 0.44 −0.01 4 0.93

0.20 0 −0.10 1 0.93 −0.07 1 0.91 −0.10 2 0.92 −0.07 2 0.94

1 −0.72 −19 0.59 −0.06 1 0.92 0.64 24 0.84 −0.05 3 0.94

2 −1.25 −34 0.17 −0.05 2 0.91 0.89 37 0.70 −0.08 2 0.94

3 −1.65 −45 0.03 −0.05 2 0.92 0.87 37 0.71 −0.05 2 0.94

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number of ignored non-isomorphic items; IV, Independent variable; DV, dependent variable; Load, Loading;

Sum Bias, sum of absolute bias on loading parameters; Var, latent factor variance if it is under a latent IV heading and latent residual variance if it is under a latent DV heading; Rel Bias,

relative bias expressed as a percentage; Cov, coverage expressed as a proportion.

study showed that even Bayesian estimation has limits with
regard to estimation accuracy with very low level-2 sample
sizes and low ICCs. This finding affirms the results of Hox
et al. (2014) and Hox et al. (2012) who also observed limits
on the estimation accuracy of Bayesian methods, even though
Bayesian estimation outperformed Maximum Likelihood in
their studies in this regard. In this study the smallest ICC

condition of 0.05 led to unacceptable relative bias in the between
regression parameters even in the correctly specified conditions
of the simulation. This estimation error was mitigated but not
eliminated by increasing the level-2 sample size to 100 units. It
is generally accepted that small ICCs can still warrant Level-2
modeling if the Level-2 factor is of theoretical interest. However,
it is advisable that researchers investigating isomorphism and
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TABLE 6 | Latent variable parameter accuracy for non-homologous condition with non-invariant DV measurement model.

j ICC Items Within Latent IV Within Latent DV Between Latent IV Between Latent DV

Load Var Var Load Var Var Load Var Var Load Var Var

Sum Rel Cov Sum Rel Cov Sum Rel Cov Sum Rel Cov

Bias Bias (%) Bias Bias (%) Bias Bias (%) Bias Bias (%)

30 0.10 0 −0.20 1 0.90 −0.36 7 0.92 −0.16 −1 0.76 −0.30 3 0.89

1 −0.45 2 0.91 −0.36 −2 0.85 −0.76 −1 0.75 −0.33 33 0.96

2 −0.70 1 0.88 −0.35 −11 0.82 1.28 2 0.74 −0.13 58 0.91

3 −0.82 1 0.91 −0.38 1 0.91 1.49 3 0.76 −0.22 79 0.87

0.15 0 −0.23 1 0.91 −0.38 7 0.90 −0.19 2 0.87 −0.42 8 0.93

1 −0.61 0 0.90 −0.38 −7 0.87 0.71 4 0.87 −0.41 33 0.93

2 −0.89 2 0.91 −0.32 −16 0.80 1.13 4 0.88 −0.34 53 0.83

3 −1.14 1 0.89 −0.32 −25 0.67 1.25 3 0.89 −0.36 65 0.80

0.20 0 −0.22 1 0.90 −0.36 6 0.92 −0.26 5 0.96 −0.39 2 0.92

1 −0.71 0 0.91 −0.38 −10 0.83 0.61 1 0.90 −0.37 29 0.91

2 −1.28 1 0.90 −0.35 −27 0.64 0.86 2 0.89 −0.43 42 0.86

3 −1.51 0 0.90 −0.37 −34 0.52 0.98 2 0.92 −0.34 48 0.82

50 0.10 0 −0.15 1 0.90 −0.21 3 0.93 −0.14 2 0.85 −0.30 5 0.93

1 −0.38 1 0.91 −0.19 −5 0.87 0.84 0 0.84 −0.27 35 0.91

2 −0.59 1 0.91 −0.20 −13 0.81 1.32 2 0.85 −0.28 59 0.81

3 −0.81 1 0.91 −0.19 −21 0.68 1.49 5 0.84 −0.24 70 0.73

0.15 0 −0.14 1 0.90 −0.19 3 0.92 −0.12 4 0.90 −0.22 4 0.94

1 −0.53 2 0.90 −0.19 −9 0.82 0.75 6 0.92 −0.19 32 0.90

2 −0.91 1 0.90 −0.19 −22 0.65 1.10 2 0.90 −0.23 52 0.77

3 −1.19 1 0.91 −0.17 −31 0.48 1.21 3 0.90 −0.21 57 0.73

0.20 0 −0.11 1 0.94 −0.21 5 0.91 −0.13 0 0.92 −0.26 4 0.95

1 −0.76 1 0.91 −0.20 −15 0.76 0.62 2 0.94 −0.16 25 0.88

2 −1.27 0 0.90 −0.22 −30 0.47 0.88 3 0.92 −0.23 40 0.81

3 −1.64 0 0.91 −0.22 −42 0.28 0.90 3 0.93 −0.20 43 0.77

100 0.10 0 −0.06 1 0.91 −0.09 2 0.92 −0.08 1 0.90 −0.13 4 0.94

1 −0.33 1 0.92 −0.10 −8 0.84 0.90 3 0.89 −0.11 32 0.84

2 −0.57 0 0.91 −0.11 −16 0.67 1.34 3 0.87 −0.16 59 0.60

3 −0.80 0 0.90 −0.10 −25 0.45 1.48 4 0.90 −0.08 67 0.44

0.15 0 −0.05 1 0.90 −0.08 2 0.92 −0.07 1 0.91 −0.17 2 0.93

1 −0.33 0 0.92 −0.08 −7 0.83 0.89 2 0.89 −0.14 33 0.86

2 −0.56 1 0.90 −0.08 −15 0.68 1.33 2 0.89 −0.12 55 0.61

3 −0.83 0 0.91 −0.10 −25 0.43 1.46 3 0.91 −0.11 66 0.48

0.20 0 −0.05 2 0.91 −0.10 0 0.88 −0.06 0 0.94 −0.12 1 0.93

1 −0.69 1 0.91 −0.09 −17 0.63 0.67 3 0.94 −0.08 25 0.83

2 −1.29 1 0.93 −0.09 −34 0.21 0.86 0 0.94 −0.09 35 0.69

3 −1.66 0 0.91 −0.09 −45 0.03 0.85 2 0.94 −0.10 35 0.67

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number of ignored non-isomorphic items; IV, Independent variable; DV, dependent variable; Load, Loading;

Sum Bias, sum of absolute bias on loading parameters; Var, latent factor variance if it is under a latent IV heading and latent residual variance if it is under a latent DV heading; Rel Bias,

relative bias expressed as a percentage; Cov, coverage expressed as a proportion.

homology with small ICCs get very large sample sizes, i.e.,
in excess of 100 units. In many cases, this is a difficult task.
For instance, when countries are studied the average level-
2 sample size is often much lower. In cases such as this, it
is recommended that researchers consider adopting a weakly
informative or informative prior and examine the sensitivity
of the modeling results to the choice of prior by following

techniques described, for example, by Depaoli and van de Schoot
(2015).

Limitations and Future Directions
As one of our reviewers pointed out, if larger factor loadings
are at the within level, factor loadings at the within level could
be underestimated and factor loadings at the between-level
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TABLE 7 | Structural parameter accuracy for homologous condition with

non-invariant IV measurement model.

j ICC Items Within Beta Between Beta

Rel bias (%) Coverage Rel bias (%) Coverage

30 0.10 0 5 0.93 7 0.96

1 8 0.91 −15 0.95

2 15 0.90 −17 0.91

3 20 0.87 −21 0.89

0.15 0 7 0.91 7 0.95

1 10 0.90 −10 0.95

2 20 0.86 −19 0.92

3 28 0.82 −17 0.92

0.20 0 5 0.93 2 0.95

1 15 0.89 −9 0.95

2 24 0.84 −12 0.93

3 35 0.77 −15 0.92

50 0.10 0 4 0.94 −1 0.95

1 6 0.93 −11 0.93

2 9 0.91 −11 0.93

3 18 0.83 −23 0.86

0.15 0 3 0.94 5 0.95

1 10 0.89 −12 0.96

2 18 0.83 −16 0.90

3 28 0.74 −17 0.90

0.20 0 3 0.93 4 0.96

1 13 0.88 −10 0.94

2 24 0.78 −16 0.93

3 37 0.63 −15 0.92

100 0.10 0 1 0.93 1 0.93

1 6 0.90 −15 0.90

2 7 0.90 −12 0.91

3 17 0.74 −24 0.82

0.15 0 1 0.93 1 0.95

1 8 0.89 −11 0.92

2 18 0.73 −17 0.89

3 25 0.61 −19 0.85

0.20 0 2 0.91 2 0.94

1 11 0.83 −9 0.93

2 24 0.62 −14 0.92

3 37 0.37 −14 0.90

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number

of ignored non-isomorphic items; Rel bias, relative bias expressed as a percentage; Cov,

coverage expressed as a proportion.

over-estimated. Consequently, to compensate for the lower
(higher) loadings, the factor variance at the within level would
be overestimated and the factor variance at the between level
would be underestimated. This could then have consequences
for the structural coefficient in the opposite directions from
the current study. This thought experiment highlights that the
current conclusions are specific to the situation with larger factor
loadings at the between level and non-isomorphism in one of the
measurement models.

TABLE 8 | Structural parameter accuracy for homologous condition with

non-invariant DV measurement model.

j ICC Items Within Beta Between Beta

Rel bias (%) Coverage Rel bias (%) Coverage

30 0.10 0 3 0.94 3 0.97

1 0 0.92 10 0.95

2 −3 0.92 31 0.94

3 −7 0.87 38 0.94

0.15 0 5 0.92 1 0.96

1 −1 0.93 19 0.95

2 −7 0.89 23 0.95

3 −13 0.86 33 0.94

0.20 0 6 0.94 2 0.95

1 −4 0.91 14 0.96

2 −12 0.85 34 0.93

3 −18 0.80 29 0.94

50 0.10 0 4 0.90 17 0.88

1 3 0.96 27 0.92

2 −4 0.91 26 0.90

3 −10 0.87 36 0.91

0.15 0 3 0.92 4 0.95

1 −4 0.91 13 0.95

2 −11 0.85 25 0.93

3 −16 0.78 33 0.93

0.20 0 2 0.92 2 0.96

1 −7 0.95 13 0.95

2 −15 0.78 22 0.93

3 −22 0.67 26 0.94

100 0.10 0 1 0.94 2 0.95

1 −3 0.92 16 0.94

2 −8 0.86 28 0.89

3 −13 0.75 33 0.88

0.15 0 1 0.93 0 0.95

1 −5 0.89 16 0.94

2 −12 0.78 21 0.90

3 −19 0.56 27 0.89

0.20 0 2 0.92 1 0.94

1 −8 0.86 11 0.95

2 −18 0.61 18 0.92

3 −24 0.38 20 0.91

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number

of ignored non-isomorphic items; Rel bias, relative bias expressed as a percentage; Cov,

coverage expressed as a proportion.

In terms of methodological limitations, the current study
shares certain similar characteristics to the BayesianMonte Carlo
study reported by Hox et al. (2012) in that we were also unable
to inspect trace plots for parameter convergence for all models
due to many thousands of models that were estimated, but
we emphasize inspection of convergence is critical in applied
applications. We also undertook extensive further investigations
of the extreme cells in our study. We adopted not to use
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TABLE 9 | Structural parameter accuracy for non-homologous condition

with non-invariant IV measurement model.

j ICC Items Within Beta Between Beta

Rel bias (%) Coverage Rel bias (%) Coverage

30 0.10 0 4 0.94 15 0.96

1 9 0.93 −8 0.95

2 14 0.91 −22 0.92

3 20 0.90 −19 0.90

0.15 0 6 0.93 3 0.96

1 12 0.93 −8 0.95

2 16 0.92 −10 0.93

3 29 0.86 −17 0.92

0.20 0 2 0.92 5 0.96

1 13 0.92 −5 0.96

2 25 0.88 −11 0.94

3 34 0.84 −14 0.93

50 0.10 0 3 0.93 8 0.94

1 7 0.93 −12 0.94

2 13 0.92 −17 0.88

3 20 0.88 −18 0.88

0.15 0 2 0.94 3 0.93

1 9 0.93 −10 0.95

2 19 0.88 −15 0.92

3 27 0.81 −19 0.91

0.20 0 4 0.94 3 0.94

1 13 0.88 −7 0.95

2 25 0.83 −14 0.92

3 36 0.75 −13 0.92

100 0.10 0 1 0.94 2 0.95

1 6 0.90 −12 0.93

2 12 0.88 −19 0.87

3 17 0.82 −19 0.85

0.15 0 1 0.94 2 0.95

1 6 0.93 −12 0.92

2 11 0.88 −18 0.88

3 17 0.81 −21 0.84

0.20 0 1 0.93 1 0.95

1 12 0.87 −9 0.94

2 25 0.67 −13 0.89

3 37 0.53 −13 0.91

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number

of ignored non-isomorphic items; Rel bias, relative bias expressed as a percentage; Cov,

coverage expressed as a proportion.

informative priors, preferring not to risk the prior overwhelm
the data in our smaller sample conditions. Finally, we also only
looked at the case where loadings are higher on the between
level.

Future Research Directions
The average observed ppp-value for just about all cells of
the Monte Carlo design met the criterion specified for

TABLE 10 | Structural parameter accuracy for non-homologous condition

with non-invariant DV measurement model.

j ICC Items Within Beta Between Beta

Rel bias (%) Coverage Rel bias (%) Coverage

30 0.10 0 5 0.93 9 0.97

1 −1 0.91 25 0.95

2 −5 0.91 31 0.95

3 −8 0.90 46 0.94

0.15 0 5 0.93 5 0.96

1 −4 0.94 20 0.93

2 −9 0.92 33 0.92

3 −14 0.87 35 0.95

0.20 0 3 0.94 6 0.94

1 −4 0.93 18 0.95

2 −14 0.88 25 0.94

3 −18 0.83 26 0.94

50 0.10 0 1 0.94 2 0.96

1 −2 0.94 19 0.94

2 −6 0.92 40 0.92

3 −12 0.87 34 0.51

0.15 0 2 0.93 3 0.95

1 −6 0.91 16 0.96

2 −11 0.28 22 0.94

3 −17 0.79 29 0.91

0.20 0 3 0.94 1 0.96

1 −8 0.89 15 0.94

2 −15 0.82 22 0.92

3 −24 0.70 22 0.94

100 0.10 0 1 0.93 2 0.95

1 −4 0.92 18 0.91

2 −7 0.88 28 0.90

3 −13 0.78 34 0.86

0.15 0 2 0.94 3 0.95

1 −4 0.93 20 0.93

2 −9 0.86 29 0.89

3 −14 0.78 32 0.87

0.20 0 2 0.94 2 0.95

1 −10 0.86 12 0.95

2 −19 0.65 16 0.92

3 −25 0.44 18 0.92

j is the number of level-2 units; ICC, intra-class correlation; items refers to the number

of ignored non-isomorphic items; Rel bias, relative bias expressed as a percentage; Cov,

coverage expressed as a proportion.

good fit, including the most misspecified models with
high ICCs and largest level-2 sample size. Moreover,
the ppp-value did not deteriorate with increased ignored
non-isomorphism and in some cases improved. It seems
important to examine the conditions under which the ppp-
value, a key model fit criterion in Bayesian estimation of
structural equation models, can and cannot be relied on
when examining isomorphism in MSEMs with ordinal
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indicators. For now, based on these results and assuming
the models run successfully, more powerful approaches to test
isomorphism available in a frequentist frameworkmay be a viable
option.
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