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The extraction of symmetries as quench points of propagating orientation elements
from edge maps of grey scale images for object recognition is faced with funda-
mental theoretical and computational challenges. The theoretical issues arise since
object symmetries are drastically altered due to missing edges (gaps), introduc-
tion of new parts and occluders, and spurious edges. While the full symmetry
set retains much of the original figure’s symmetries and as a result is less sensi-
tive to such changes, it brings to bear many unintuitive branches, thus requiring
further selection for object recognition. In this paper, we view the full symmetry
set as the superposition of shocks arising from multiple generations of waves: the
quenching points of the waves from the initial edge map constitute the first gener-
ation of shocks. A second generation of waves initiated at these points, simulate
interpenetrating waves and generate a second generation of shocks, and so on until
no further shocks can be formed. This view of the full symmetry set supports
a selective continuation of waves, e.g., at shock loops to remove spurious edges,
and at shock-hypothesized limbs to partition shape and close boundary gaps. This
selective continuation of waves brings out relevant symmetries, but avoids the am-
biguity of the full symmetry set. The computational challenge is addressed by a
framework based on the Contour-based Euclidean Distance Transform (CEDT) for
shock detection, classification, labeling, as well as for simulating interpenetrating
waves and multiple generation shocks described above. The key feature of CEDT
that makes this possible is the explicit simultaneous propagation of orientation and
distance, as well as additional features, e.g. labels. In addition, CEDT is exact and
of very low numerical complexity. The results for a number of illustrative exam-
ples indicate the suitability of this framework for the recovery of object symmetries
from real imagery.

1 Introduction

The versatility of symmetry-based representations for object recognition from
unsegmented real imagery is seriously challenged by at least three fundamental
theoretical issues. First, the extraction of symmetries is ill-conditioned in that
the removal of a small portion of the boundary introduces a large change in
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the object symmetry, Figure 1a. Second, the changes induced on the object’s
visible boundary by an occluder, or as result of changes in the visibility of a
part, induce large changes in the object symmetry, Figure 1b. Finally, spurious
edges due to surface markings, texture edges, specularity highlights, noise, etc.
alter the underlying object symmetry, Figure 1c. Thus, symmetries recovered
in a straightforward fashion from edge responses from real images often contain
(i) additional skeletal points due to gaps; (ii) missing skeletal points due to
occluders and parts; and (44) distorted symmetries due to spurious elements,
such that the resulting skeletons are not recognizable, nor lead to figure/ground
segmentation. These difficulties have prompted several approaches to extract
the full symmetry set from unsegmented gray-scale images. Scott et al.' prop-
agate waves to recover the full symmetries. They also suggest a convolution
approach for implementing the full symmetry set. Pizer et al.? use a similar
approach where by a voting scheme, edges measured at each scale vote for me-
dialness at a point which is a constant proportion of scale away. The ridges of
the resulting surface constitute the core, a skeleton in z, y and o (scale). Kelly
and Levine® use annular symmetry operators in a similar fashion to derive the
full symmetry set. In related work, Tari and Shah* define symmetries as the
curvature maxima of level sets constructed consistently with an edge strength
functional. August et al.® use the notion of a gap skeleton to group certain
nearby endpoints identified by a depth separation process.

It has been argued that since the full symmetry set represents all the
symmetries of a shape, spurious elements and gaps affect the full symmetry
set less than the SAT. We argue that while some of the full symmetry set is
revealing, not all of it is useful, and some additional unintuitive branches can
infact lead to ambiguities for object recognition, Figures 6 and 8e. Rather, we
propose that only in select situations should further symmetries be recovered.
First, we observe that the full symmetry set can be viewed as the union of the
quench points of a series of waves: the first generation of waves is launched at
the edges of the image, while the second is launched at the quench points of
the first generation shocks. In general, the nth generation wave is launched
at the quench points of the (n — 1)th generation wave. The union of the
multiple generations of shocks constitutes the full symmetry set. Second, we
observe that the maze of unwanted symmetries can be avoided by launching
the secondary and future generations of shocks selectively, e.g., at loops, to
bring out relevant symmetries, Section 4.

The computational challenges posed by the ideas of inter-penetrating waves
and multiple generation shocks can be met by a framework based on the contour
based distance transform (CEDT). Previously, many approaches were devel-
oped to obtain skeletons from the distance transform. However, such schemes
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Figure 1: Gaps (a), occluders (b) spurious edges (c)

drastically alter object symmetries. Top row: Original Figure 2: (a) SAT and (b)

image; middle row: edge map; bottom row: skeletons Full symmetry set from
pertaining to the object. CEDT

do not make propagation of orientation and additional labels explicit. The
CEDT not only propagates distances but also orientation and shock labels
such that it is immediately clear at each point on the wavefront not only how
far a wave has traveled, but also what the direction of propagation is, which
point on the original boundary gave rise to it, and whether it is a regular or a
rare-faction wavefront. This is the fundamental advantage of the CEDT which
we utilize for the recovery of shocks, shock classification, and shock-labeling
as an alternative to curve evolution. Two additional key advantages of CEDT
over traditional raster-scan based schemes are its lower numerical complexity
and its accuracy %7.

2 Wave Propagation for Skeleton Computations

The classic paper by Blum?® has motivated a number of approaches for extract-
ing the symmetries of binary segmented shape in the form of a “skeleton” or
“stick figure”, including extracting the center of maximally inscribed circles?,
fitting generalized cylinders, computing mid chords of double-tangent circles'®,



Figure 3: (a) Three iterations of the propagation of a boundary 6O at one pixel per

iteration. (b) The minimal set of masks (only a mirror image constructs the bottom

half of the full picture): The black pixel represents the source while the grey and

white pixels represent subsequent propagation of waves. Black lines represent directly

supported directions of propagation. for the intermediate directions of propagation,
larger masks are required. (Adapted from ¢)

extracting ridges of distance transforms '':'213 Voronoi diagram methods 4,
and thinning algorithms ®. Blum’s original idea was based on a “grass fire”
initiated at the contours of the shape which quenches at the skeleton. The
reaction-diffusion space and the formation of shocks (singularities) implements
and generalizes this idea '>1718  The reaction process can be simulated much
more efficiently, however, by the distance transform methods which map a
binary image into an image where the value at each point is the Euclidean dis-
tance from the object !'. Each constant distance sets then represents a front
where distance represents “time”.

Distance transform methods may be classified into those based on raster
scans or those that are contour-based. Danielsson showed that Euclidean Dis-
tance Transform (EDT) can be computed by comparing neighborhood pixels
with vector-valued masks used to evaluate distance steps along the axis of the
supporting grid. A raster scan version for EDT (REDT) was described in'? and
later extended to signed EDT 2% and then to contour-based EDT (CEDT) 7.
Previously, REDT and CEDT have been considered of similar usefulness when
used for wave propagation and symmetry computation mainly because REDT
is relatively simpler to implement, due to independence of embedded shapes.
In addition, CEDT implementations for symmetry set elicitation have relied
upon dilation/erosion of chain-coded representations of contour ?'??, requiring
a pre-processing of contour features. Thus, CEDT has received relatively little
attention. However, for simulating wave propagation, we propose that CEDT
has a key advantage over REDT in that it provides an explicit representation
of orientation in addition to distance of propagation. This is particularly at-
tractive since CEDT can be initiated at points, open and closed contours, and
surface patches, without requiring chain-code pre-processing, leading to a more
efficient and direct simulation of wave propagation.

The basic design of CEDT follows ideas originated in Montanari??, brought



to the foreground by more recent work, e.g.,?*?? and, Ragnemalm %7. While

Montanari had the key insight that wave propagation from boundary feature
was potentially more efficient than raster-scan sequential DT, Ragnemalm im-
ported the idea of using vectored values for DT ' and studied different masks
and their properties for propagating various metrics from contours. Figure 3
illustrates the minimal complete set of masks required for Euclidean metric
propagation on a 2D rectangular distance grid from a point source. Each
masks maintains a distance vector (L, L,) from its origin, thus ezplicitly rep-
resenting the direction and distance of the propagating wavefront. Note that
the distance vector values may in addition propagate other features, e.g., a la-
beling of original front waves into regular or rarefaction, Section 3. The metric
L? = (L3 + L) is also carried to optimize operations. A further optimization
uses buckets to store wavefront distance values in order of metric L2, thus lead-
ing to constant speed propagation. Other advantages of CEDT include: CEDT
is exact, is nearly optimal in terms of numerical complexity when compared
to raster-scan based DT, and is easily extended to 3D by defining additional
masks.

The extraction of skeleton from distance transform is faced with a number
of difficulties. First, most approaches for computing skeletons from DTs rely
on non-Euclidean metrics giving rise to highly inaccurate results, and in partic-
ular failing to provide rotation invariance !*:25. Second, approaches relying on
a raster-scan implementation to compute DTs, extract skeleton by some post-
processing of the ridges of the computed distance map!!26. Third, approaches
based on the retrieval of a smooth contour representation, such as splines, to
compute skeletons from a derived distance map 27 suffer from the two major
difficulties: (i) an additional complexity due to the contour modeling (find-
ing good nodes) and (ii) the creation of artifacts due to non-smooth contour
features. Finally, extensions to the third dimension usually leads to high nu-
merical complexity. We now consider an alternative approach by tailoring a
previous framework based on curve evolution to use CEDT.

3 Shock Detection and Classification by CEDT

Shape can be completely described as the collection of four types of shocks
which form in the course of deformations of shape in the reaction-diffusion
space 151718 9¢ — (3, — Bi1k)N. The four types of shocks correspond to
intuitive elements of shape, namely, parts, protrusions, and bends 6. The de-
formations are implemented via the curve evolution paradigm by embedding
the curves C(s,t) as the level set of a surface {¢(z,y,t) = 0} evolving by

%—'f = (8o — B1k)|V1|. Table 1 shows a classification of shocks from 1 which



Second-Order Shock
First-Order Shock

Shock Type Orientation Curvature
First-Order non- vanishing @ high level set curvature
Second-Order isolated vanishing ¢ Ki Ky, <0
Thi-Order Shocks Fourth-Order Shock Third-Order non-isolated vanishing 7@ KiKy=0
Fourth-Order isolated vanishing ¢ KiK;>0
a Tabl e 1: This table depicts the classification of shock types based on the

the gradient level set curvature and the principal curvatures of the surface.

Figure 4: Each of the four types of shocks each is correlated with a percep-
tual/semantic category, i.e., protrusion, part, bend, and seed.

has been implemented to sub-pixel accuracy '8. While the derived shock struc-
ture when 31 = 0 is related to skeletons, several properties of shocks relating
to the notions of type, velocity, grouping, salience, and hierarchy are signif-
icant. (i) certain deformations, e.g., bending, affect shock types selectively,
e.g., third-order shocks of a rectangle; (i) the skeletal representation lacks suf-
ficient explicit dimensions for qualitative approximation, e.g., the addition of
shock type substantially narrows down the range of shapes it can generate; (1)
topological and differential properties of shocks, e.g., velocity, directly reflect
boundary properties; (iv) the notion of time of formation induces a hierar-
chy on shocks; and (v) a notion of shock grouping and salience based on the
diffusion process (31 # 0) leading to a stability of representation with small
changes.

We now argue that the explicit and simultaneous propagation of orienta-
tion and distance in the CEDT leads to an alternate and more efficient frame-
work for the detection and classification of shocks. Observe that each point
on the original shape (or even partial contour) can be considered a source for
propagation of waves. Since both orientation and distance are available, the
source of each point on the front can be determined. Thus, waves arriving at
a point from two distinct sources can be identified and distinguished. Since
shocks are the quench point of such waves, all image points receiving two or
more waves can be easily detected. In addition, since the direction of propa-
gation of each wave is explicit the shock type can be determined. Specifically,
the CEDT approach updates the wavefront by propagating each point in the
direction where the point had propagated from. In the discrete domain, the
propagation continues until the propagating wave meets an incoming wave, as
determined by the minimal distance carried by the waves. The collision signals
the formation of a shock. Observe that two distinct directions must necessarily



have arrived at the shock points. If these two directions are not aligned, a first
order shock has formed. The velocity of the shock is the vector sum of the
two front velocities; i.e., shock speed is — times front speed where 6 is the
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angle between the two fronts. If the two directions are aligned, a higher-order
shock has formed. Table 1 shows a classification based on an embedding sur-
face, which in this case we take to be the CEDT generated surface: negative,
zero and positive Gaussian curvatures gives second-, third, and fourth-order
shocks, respectively. Observe that the crucial advantage of CEDT in repre-
senting the angle at which wavefronts meet or cross each other, in contrast to
REDT which necessitates a cumbersome and inaccurate post-processing of the
distance map ''+26.

The removal of some portions of shape’s complete boundary does not sim-
ply only lead to the removal of portions of its symmetries, e.g., as represented
by shocks, but also to generation of seemingly un-intuitive symmetries, Fig-
ure 5. These newly formed “spurious” shocks must be distinguished from
shocks common with the previous case. Tek et al. 2® suggest that such a
distinction should be based on whether propagating waves carry “true” ori-
entation information as supported by the original boundary or carry “bogus”
orientation arising from rare-fraction waves, e.g., as arising from a concave
corner. This distinction between two types of waves leads to labeling of shocks

into three classes 28:

Definition: Contour points with regular tangent give rise to regular wave-
fronts. Contour points without a uniquely defined tangents give rise to degen-
erate wavefronts. A shock point arising from the interaction of two regular
wavefronts is reqular. A shock point arising from one regular and one degen-
erate wavefront is semi-degenerate. A shock point formed from the interaction
of two degenerate wavefronts is degenerate2®.

It is suggested that (i) regular shocks represent the only symmetries arising
from partial contour segments, (i) the semi-degenerate shocks are altered form
of the underlying symmetries, and (7i7) the degenerate shocks arise represent
potential candidates for contour continuity and grouping, as in-partitioning
shape??, or arising in completing gaps3®. The latter statement (ii) has similar-
ities to August et al.® who use a notion of gap skeleton to group certain nearby
endpoints in the edge map segregated by a depth process. However, there are
several important distinctions, as (i) they operate on depth-segregated not full
edge maps, (i7) our approach is motivated by the notion of orientation propaga-
tion and rare-faction waves2®. Thus, waves simulated by CEDT carry not only
orientation and distance but also a rarefaction/regular label which forms the
basis of subsequent shock labeling by CEDT, Figures 5. In summary waves
can be labeled and propagated, and shocks can be detected, classified, and
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Figure 5: Extracting partial shocks from partial contours. (b) original image with

complete boundary and its shocks, (c) partial boundary and the introduction of

“spurious” shocks, (d) a labeling of shocks into regular (green, semi-degenerate (yel-

low) and degenerate (red). Observe that the regular shocks are the partial shocks
extracted from partial contour (black).

(a) (b)

Figure 6: Edge evidence in real images often suggests a multiplicity of groupings, e.g.,

(a) suggesting a rectangle and a triangle. While the SAT representation does not

capture triangular and rectangular symmetries (b) the full symmetry set is capable

of bringing out the appropriate symmetries, but also introduces superfluous ones (c).

Shocks of secondary waves exclusively initiated at loops (d), however, bring out only
the missing pieces leading to two appropriate groupings (e).

labeled via the CEDT framework.

4 Inter-penetrating Waves and Multiple Generation Shocks

The sensitivity of SAT and the ambiguity of the full symmetry set prompts us
to propose an alternative which is based on a view of the full symmetry set as
the union of quench points of a series of waves:

Definition: The first generation wave is the wavefront initiated at the edge
map of an image. The first generation shock set is the set of quenched points
(shocks) arising from the propagation of first generation wave. The n'® gen-
eration wave is the wavefront initialized at the (n — 1)*" generation shocks at
the time indicated by its formation. The n*" generation shocks are the shocks
corresponding to the n'? generation wavefront.



Figure 7: (a) waves Wi and Wy, are quenched by waves from the spurious boundary,

W, resulting in a loop in the shock structure. The shocks on the loop can now

simulate the passage of the original flow of waves W; and W5 via secondary waves,

(b), which are initiated at the shock in a delayed manner, resulting in the formation
of shocks due to the top and the bottom boundaries.

Proposition: The union of all generations of shocks is the full symmetry set.
Proof: Each point in the full symmetry set can be viewed as the quench point
of two waves traveling without interruption from two boundary segments. Since
wave initialized at quench points are the continuation of waves quenched at
these points all two boundary segments eventually interact. Conversely, each
multiple generation shock is clearly a point of the full symmetry set by the
same argument, Figure 7.

The shock-based representation can implement such a process since com-
plete information about the incoming waves is stored as shock location, time
of formation, and velocity. The second observation is that multiple generation
waves and shocks can recover the distorted or missing symmetries. The idea is
to launch second and further generation of waves only at select groups of shocks
as indicated by special properties of the shock itself. For example, an isolated
spurious edge or equivalently a hole in the object interferes with the formation
of appropriate symmetries, Figure 6, but also always leads to a loop in the
shocks arising from it. Thus, selectively launching second generation waves at
shock loop effectively removes this element Figure 7 and recovers appropriate
symmetries, Figure 8f without generating additional symmetries, Figure 8e.
Figure 9 illustrates two interacting spurious shocks requiring a second gener-
ation of waves. As a second example consider how symmetries are affected
by the appearance of a newly visible part, Figure 10a. The partitioning the-
ory of shape 2? cast in the language of shock labels 2%, proposes that salient
semi-degenerate and degenerate shocks signal parts. This provides a second
criterion for selectively launching a new generation of shock, namely, at these
semi-degenerate shocks and at a hypothesized limb part-line, Figure 10b to
recover each object’s part symmetry axes. A similar argument holds for gaps,
which are viewed as “null parts” 30, FigurelOe-g. Observe the need for multiple
generation shocks to lead to an appropriate grouping essential for segmentation
and recognition tasks, e.g. in indexing into image databases, Figure 11.
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(f)

(d)

Figure 8: Multiple generation shocks of the image is Figure 1c; (a), (b), (c), and

(d) depict first-, second-, third-, and fourth-generation shocks, respectively. (e) the

superposition of all generations of shocks constitutes the full symmetry set. Observe

that un-intuitive nature of the full symmetry set; (f) second generation of waves

exclusively initiated at the loops gives rise to shocks which complete the rectangular
symmetry set.
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(a) (b) () (d)
Figure 9: (a) original image; (b) first generation of shocks: (c) and (d) loop transfor-
mations to remove the effect of spurious edge elements. (e) the superposition of all

generations of shocks.
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Figure 10: (a) A shape with two parts and its shocks. (b) The recovery of individ-
ual part’s shocks by shock labeling followed by a second generation shocks of waves
initiated at limbs. (c) a shape with a gap (null part) and its shocks. (d) Second gen-
eration waves initiated at salient limbs remove the degenerate shocks and correct for
the distortion at semi-degenerate shocks. (e) a spurious edge element’s interference
with contour grouping can be removed by considering multiple generation of shocks
as shown in (f) where second generation shocks arising from the shocks loops (com-

pleted by the image boundary) generate a new grouping hypothesis thus completing
the rectangle symmetries (g).

Figure 11: Role of interpenetrating wave in the segmentation of shape and the result-
ing graphs.



