
User-extensible sequences in Common Lisp

Christophe Rhodes
Goldsmiths, University of London

New Cross Road, London, SE14 6NW
c.rhodes@gold.ac.uk

ABSTRACT
Common Lisp is often touted as the programmable program-
ming language, yet it sometimes places large barriers in the
way, with the best of intentions. One of those barriers is a
limit to the extensibility by the user of certain core language
constructs, such as the ability to define subclasses of built
in classes usable with standard functions: even where this
could be achievable with minimal penalties. We introduce
the notion of user-extensible sequences, describing a proto-
col which implementations of such classes should follow. We
show examples of their use, and discuss the issues observed
in providing support for this protocol in a Common Lisp, in-
cluding ensuring that there is no performance impact from
its inclusion.

1. INTRODUCTION
Common Lisp is recognized as being an extremely flexible
language: one in which linguistic experimentation can take
place, one where the method of solving a problem in a do-
main is first to write an interpreter or a compiler for a lan-
guage to express concepts in the domain of interest, and
then to use that domain-specific language to solve the prob-
lem. To some extent, then, it might be surprising to find
some of the ways in which extension of Common Lisp (by
the implementor or user) is limited. This is at least partially
explained by the aims of the standardizers, which included
“stricter standardization for portability” (Pitman and Chap-
man, 1994, section 1.1.2): codification of existing practice
was a large part of the X3J13 committee’s work, and it is
difficult to ensure portability with a highly-extensible lan-
guage core.

However, the standardization process was not intended to
close the door to language development: merely to provide
a stable platform which could be agreed on. For example,
the CLOS system for object orientation was standardized
without very much scope for extensibility; however, it was
intentionally (Steele, 1990, chapter 28) upwardly compatible
with something close to the Metaobject Protocol described

in Kiczales et al. (1991), often (though not always) sup-
ported by contemporary Lisp implementations.

Meanwhile, other languages and language environments
have not stood still; many of Lisp’s once-unique features are
now to be found in other languages (Norvig, 2002), though
some are still not1; additionally, sometimes these languages
have features not found in any available Lisp implementa-
tion. In some cases, such as Aspect-Oriented Programming
(Kiczales et al., 1997) these features can be straightforwardly
implemented by any interested user – this itself is one of
Lisp’s unique features not often found elsewhere – but some
features need implementation support for them to be used to
maximum effect: addition of features by the Lisp program-
mer can suffice for certain needs, but they are not perva-
sive in the way that one would want; such extensions, even
upwardly-compatible extensions, need to be explicitly used
by third-party code.

One such extension is the ability for the user to define new
sequence types. For the purposes of this paper, a sequence
is a finite ordered collection; more concretely, a sequence has
a number of elements, addressable by an integer between 0
(inclusive) and the sequence’s length (exclusive). The mo-
tivation for allowing the definition of new sequence types
is primarily to eliminate the need for new names for essen-
tially the same concept: examples of such from real-world
code include climacs-buffer:size and flexichain:nb-

elements (Strandh et al., 2004) as analogues for length on
user-defined data structures, and tabcode-syntax:buffer-

position-if (Rhodes et al., 2005) for position-if; these
multiple names are a barrier to clear expression and under-
standing of Common Lisp code which defines objects which
are conceptually sequences. Additionally, the implementa-
tion of sequence functionality is tedious and error-prone2,
and it is more convenient to require of the datastructure im-
plementor only a few simple method definitions to achieve
all the standard sequence functionality.

We describe in this paper a proposal for implementations
to allow users to define new sequence classes which interop-
erate seamlessly with the standard Common Lisp sequence
functions. The basic mode of operation of our design is as

1and it has been argued that their inclusion would convert
their host language into a Lisp of some form.
2The author, in developing this extension, wrote the imple-
mentation first and test cases second: the test cases revealed
five implementation errors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/74244386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=position-if

(defun foo (x)
(handler-case

(etypecase (ignore-errors (make-sequence x 42))
(null ...) ; make-sequence threw an error
(list ...)
(vector ...))

(type-error (c)
;; we get here if make-sequence returned a non-list non-vector
(error "BUG: system threw ~S on ~S" c ’make-sequence))))

Figure 1: How to detect formally nonconforming implementations of make-sequence. If calling foo with any
argument causes the type-error handler to be called, the Common Lisp implementation is, strictly speaking,
nonconforming.

follows: implementors of sequence classes write methods on
generic functions named by symbols in the sequence pack-
age; users of sequence classes call the standard functions
named by symbols in the common-lisp package: it is in-
tended that sufficiently generic existing code may be run
unmodified using extended sequences. The implementor of
this proposal is responsible for arranging that the calls to
the standard functions invoke applicable methods on the
appropriate functions in the sequence package. Further,
users wishing to construct new functions involving iteration
over sequences should call the iteration operators included
in this proposal, so that their new functions will work on
user-defined sequence classes.

The rest of this paper is organized as follows: we intro-
duce the design considerations of this proposal in section
1.1; then, after discussing compatibility issues and related
work in sections 1.2 and 1.3, we give an introduction for the
prospective user of extensible sequences in section 2, and
some examples in section 3, and some details of our imple-
mentation are given in section 4. As a snapshot of our work
in progress, a more formal specification of the protocols is
presented in appendix A, intended in the first instance to
stimulate discussion rather than to be the definitive specifi-
cation.

1.1 Design considerations
Our design for this extension as a whole was influenced by
a number of desiderata:

• We wish to minimize incompatibility with the existing
Common Lisp standard, introducing such incompat-
ibility only where strictly necessary. There are only
a few corner cases where the existing standard docu-
ment needs to be clarified or reinterpreted; see section
1.2 for discussion of this point.

• We wish to make defining new sequence classes sim-
ple and convenient for users, so that simply defining a
subclass of sequence and a few methods specialized on
that class suffices for the entire sequence functionality
to be available, and also to provide enough hooks for
sequence class implementors to be able to customize
the behaviour for their own needs.

• We wish not to overly constrain implementations of
this protocol, allowing implementors to make trade-
offs to reflect the needs of their users. In particular,
we wish to allow both a simple implementation (where

the Common Lisp implementation supports this proto-
col natively for all sequence types) and an implemen-
tation where existing code suffers no run-time perfor-
mance penalty; additionally, we do not wish to render
a portable implementation impossible, though we be-
lieve that such an implementation would necessarily
have visible seams.

While it is possible to recommend ways of accessing and it-
erating over both Common Lisp sequences and other objects
in userspace3, there is no way of having those other objects
(conceptually sequences though not of type sequence) seam-
lessly interoperate with the standard Common Lisp sequence
functionality, or with third-party code which does not follow
such a recommendation.

The desire not to constrain implementations of this pro-
posal leads to the creation of a new package name to name
the operators providing the extensible functionality, allow-
ing dispatch from the standard function to the extensible one
through trampolining or defadvice-like mechanisms. How-
ever, an implementation of Common Lisp wishing to support
this proposal natively may choose to implement some of its
CL symbols as direct imports from the new sequence pack-
age.

In what follows, there will be reference to new operators
without explicit package prefixes: in such cases, the symbols’
package should be assumed to be the sequence package. A
number of new operators have the same name as standard-
ized operators of Common Lisp; except in appendix A, the
operator without an explicit prefix should be taken to mean
the Common Lisp operator, while the new operators will
have an explicit sequence: prefix.

1.2 Compatibility
The types [sic] vector and the type list are dis-
joint subtypes of type sequence, but are not nec-
essarily an exhaustive partition of sequence.

Pitman and Chapman (1994, System Class sequence)

Although the quote above might suggest that there would be
no problem from the point of view of formal standard con-

3By ‘userspace’ in this paper, we mean the realm of conform-
ing or de-facto acceptable code written by users of an im-
plementation, as opposed to code written by implementors
themselves to provide an implementation with extensions.

http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence

sequence:length sequence:elt (setf sequence:elt)

sequence:adjust-sequence sequence:make-sequence-like

Table 1: The protocol functions which must be implemented for a sequence class. Three correspond directly
to primitive sequence operations in Common Lisp; adjust-sequence and make-sequence-like provide support
for components of higher-level destructive and consing operations respectively (see table 2).

formance for an implementation to offer non-standard types
of sequence, the outline code in figure 1, as a result of Issue
CONCATENATE-SEQUENCE (Pitman, 1991), is defined by ANSI
CL never to get to the type-error branch of the handler-

case, which was probably not intended by the standardizers.
For a fuller discussion of this issue, and a suggestion for a
resolution, see Rhodes (2006).

An additional issue with formal compliance is that ANSI CL
specifies for the length function and the elt accessor that
their sequence argument should be a proper sequence, which
is defined in the normative glossary as a sequence which is
not an improper list; that is, a vector or a proper list ; again,
this definition was probably not intended to prohibit non-
standardized sequences, even though, interpreted strictly,
the second half of it implies that no non-standard sequence
is a proper sequence.

We must also consider the issue of cultural compatibility
with the body of Common Lisp code available in the wild.
Perhaps because of the historical lack of generic sequences
offered by Common Lisp implementations, there seems to
be little in the way of packages written to exploit the ab-
stract sequence data type; instead, packages choose a con-
crete sequence type and implement their functionality atop
that, manipulating a particular kind of sequence rather than
sequences in general4. However, it is likely that if user-
extensible sequences become available, code will be modified
or written afresh to take advantage of it.

It would be possible to implement this proposal (or some-
thing like it) entirely portably (in ‘userspace’), by defining
a new package shadowing many of the standard Common
Lisp functions and macros, and implementing the generic
functionality on the standard types by trampolining to the
standard functions. However, such an implementation strat-
egy has drawbacks:

• Implementation-specific compiler optimizations (such
as compiler macros) for the shadowed functions would
essentially be lost. As an example, if an implementa-
tion has a specialized implementation of map-into for
arguments known at compile-time to be certain types
of vector, that optimization will go unused in a pu-
tative userspace implementation in function calls to
sequence-cl:map-into.

• The userspace implementation of extensible sequences
would not interoperate with third-party Common Lisp
code: programs already written with generic (not nec-

4There are exceptions: for instance, the split-sequence li-
brary, designed by readers of news:comp.lang.lisp in 2001,
works without modification on generic sequences of the form
described in this paper.

essarily user-extensible) sequences in mind, using the
common-lisp package, will not be able to interoper-
ate cleanly with sequences defined using this portable
implementation.

• Innocuous-looking uses of explicit package prefixes (for
example, cl:sequence) would have surprising and po-
tentially difficult-to-debug effects. Other maintenance
headaches include how to support both native and
portable implementations in library code.

A userspace implentation might be better than nothing, for a
transition period, but support from the Lisp implementation
is required for seamless operation.

That said, there is an issue regarding portability of libraries
using extensible sequences: until it is ubiquitously imple-
mented, use of this facility in bodies of code render those
bodies of code unportable in practice. Whether this un-
portability itself becomes a problem in practice is largely a
matter for the user community to decide.

1.3 Related Work
Much inspiration for this proposal was drawn from the Dylan
(Shalit, 1996) iterator protocol, which provides for iteration
over collections with the open generic function forward-

iteration-protocol. Where our design is similar to this
protocol, it is largely for the same reasons: we do not wish to
impose unnecessary run-time overhead (in space or speed)
for those uses which need high performance. However, in
this proposal, we aim to provide a little more of a layer
of convenience for the user who does not need to minimize
overhead.

Many other languages provide some form of iteration or col-
lection protocol. Python, for instance, allows the imple-
mentor of a collection to define a method on __iter__() to
return an iterator object, which itself must have methods
on __iter__() and next(). Apparently for reasons of effi-
ciency, the Python iterator protocol (Yee and van Rossum,
2001) provides no explicit means for checking for termina-
tion of an iteration, instead requiring the iterator to signal
an exception when next() is called on an iterator represent-
ing a terminated iteration.

The Scheme language (Kelsey et al., 1998) definition has
little built-in support for user-extensible or even generic
sequences. Its community has made one attempt (Miller,
2004) at defining an interface and conventions for collec-
tions; however, this SRFI has apparently not seen many
Scheme implementations decide to support it natively; as of
two years after its finalization, the SRFI status page reports
no implementation as supporting it.

http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=handler-case
http://www.xach.com/clhs?q=handler-case
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=map-into
news:comp.lang.lisp
http://www.xach.com/clhs?q=sequence

Common Lisp Function Extensible Generic Function
copy-seq, subseq sequence:copy-seq, sequence:subseq
reduce, fill sequence:reduce, sequence:fill
reverse, nreverse sequence:reverse, sequence:nreverse
sort, stable-sort sequence:sort, sequence:stable-sort
count, find, position sequence:count, sequence:find, sequence:position
count-if, count-if-not sequence:count-if, sequence:count-if-not
find-if, find-if-not sequence:find-if, sequence:find-if-not
position-if, position-if-not sequence:position-if, sequence:position-if-not
search, mismatch, replace sequence:search, sequence:mismatch, sequence:replace
substitute, nsubstitute sequence:substitute, sequence:nsubstitute
substitute-if, substitute-if-not sequence:substitute-if, sequence:substitute-if-not
nsubstitute-if, nsubstitute-if-not sequence:nsubstitute-if, sequence:nsubstitute-if-not
remove, delete sequence:remove, sequence:delete
remove-if, remove-if-not sequence:remove-if, sequence:remove-if-not
delete-if, delete-if-not sequence:delete-if, sequence:delete-if-not
remove-duplicates, delete-duplicates sequence:remove-duplicates, sequence:delete-duplicates

Table 2: Common Lisp functions, and the corresponding generic functions specified to be extensible in this
protocol. Calling the Common Lisp function with an extended sequence as an argument will cause applica-
ble methods on the extensible generic function to be invoked; whether this is achieved through defadvice,
trampolining or function identity is left unspecified.

The Factor language’s sequence interface is conceptually
very similar to that described in the following sections for
Common Lisp, including the distinction between sequence
protocol (defining the fundamental operations that must be
implemented for sequence objects) and ‘utility words’, anal-
ogous to functions performing computations over sequences
(Pestov, 2006, Sequences), which will work on any object
implementing the sequence protocol.

In the Common Lisp world itself, an early (pre-CLOS) at-
tempt to provide generic sequence functionality was pre-
sented in Haible (1988) for the GNU CLISP implementa-
tion; however, that proposal was never formally exported or
documented (Haible, 2006); the author’s primary concern
with this attempt was in supporting the necessary opera-
tions efficiently. Some of these issues of efficiency remain in
this proposal, though we believe that they might be resolved
in a Lisp implementation supporting sealing and inlining of
methods.

2. USER-DEFINED SEQUENCES
In this section, we must draw the distinction between the
implementor of a sequence class, and the implementation of
Common Lisp which supports this user-extensible sequence
facility. Most of the time, we will use ‘user’ to mean the im-
plementor of a sequence class, and ‘implementor’ to mean
implementor of a Common Lisp implementation, and we
hope that it will be clear from context when this does not
apply.

The names of the various operators have been chosen to
maximize both backward- and forward-compatibility (with
Common Lisp as standardized, and with potential related
extensions to Common Lisp such as a collections protocol);
we specify operators corresponding to standardized func-
tions such as find to be named like sequence:find, so that
an implementation of Common Lisp ‘natively’ implementing
this proposal can simply import the relevant symbols from
the sequence package5. Thus, we specify sequence:adjust-

5According to some interpretations of the standard, the im-

sequence rather than (setf sequence:length), so that an
implementation can import sequence:length into the stan-
dard common-lisp package without inadvertantly causing
there to be a setf function for length, in contravention of
the constraints on implementations (Pitman and Chapman,
1994, Section 11.1.2.1.1).

We also aim to be not incompatible with similar extensions
to Common Lisp, such as a protocol for accessing and iterat-
ing over general collections; in this proposal we are dealing
with user-defined sequence classes because Common Lisp
as standardized has a large library of functions acting on
generic sequences, while it has no functions acting on generic
collections – and so a ‘userspace’ implementation of a collec-
tions protocol would not pose the interoperability problems
discussed in section 1.2.

2.1 Sequence Datatypes
Under this proposal, the user may define a direct subclass
of sequence using defclass, specifying sequence6 as one
of the superclasses (but not the only one: for code portable
between implementations of this proposal, standard-object
must be in the superclasses list too). The resulting class is
subtypep sequence, and instances of the class are typep

sequence.

The fundamental operations defined in Common Lisp re-
lating to sequences are length, elt, and (setf elt); in
order to support these, the user of the extensible sequence
facility (the implementor of the sequence class) should de-
fine methods on sequence:length, sequence:elt and (setf

sequence:elt).

plementation may not simply make sequence a nickname for
the common-lisp package, as the list of package nicknames
is standardized as cl only.
6Reviewers of this paper have raised concerns about the
use of sequence as a direct superclass, suggesting instead
a protocol class, maybe sequence-object, as the user-
specializeable class. The author wishes to acknowledge re-
viewer concerns in this matter, while continuing to present
the protocol as currently implemented.

http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=subseq
http://www.xach.com/clhs?q=reduce
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=reverse
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=sort
http://www.xach.com/clhs?q=stable-sort
http://www.xach.com/clhs?q=count
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=count-if
http://www.xach.com/clhs?q=count-if-not
http://www.xach.com/clhs?q=find-if
http://www.xach.com/clhs?q=find-if-not
http://www.xach.com/clhs?q=position-if
http://www.xach.com/clhs?q=position-if-not
http://www.xach.com/clhs?q=search
http://www.xach.com/clhs?q=mismatch
http://www.xach.com/clhs?q=replace
http://www.xach.com/clhs?q=substitute
http://www.xach.com/clhs?q=nsubstitute
http://www.xach.com/clhs?q=substitute-if
http://www.xach.com/clhs?q=substitute-if-not
http://www.xach.com/clhs?q=nsubstitute-if
http://www.xach.com/clhs?q=nsubstitute-if-not
http://www.xach.com/clhs?q=remove
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=remove-if
http://www.xach.com/clhs?q=remove-if-not
http://www.xach.com/clhs?q=delete-if
http://www.xach.com/clhs?q=delete-if-not
http://www.xach.com/clhs?q=remove-duplicates
http://www.xach.com/clhs?q=delete-duplicates
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=setf
http://www.xach.com/clhs?q=setf
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=defclass
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=standard-object
http://www.xach.com/clhs?q=subtypep
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=typep
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=sequence

The set of functions making up the sequence protocol of
this proposal (see table 1) consists of the analogues to the
three Common Lisp functions above, along with two oth-
ers: sequence:adjust-sequence, which is similar to the
adjust-array function, but generalized to sequences; and
sequence:make-sequence-like, which creates a sequence of
the the same kind7 as its first argument, with length given
by its second argument.

The rationale for make-sequence-like is to support the
subseq and copy-seq operators, and the sequence functions
which are defined to return a freshly-consed sequence (such
as substitute). Additionally, this operator is easier both
to specify and to implement efficiently than one like the
make-sequence function, which requires a full understand-
ing of the Common Lisp type system; make-sequence-like
can operate as a simple generic function specialized on its
sequence argument.

To support the delete and delete-duplicates functions,
we provide adjust-sequence, which adjusts various prop-
erties, including the length, of a sequence. Users of this
protocol are encouraged to document the circumstances un-
der which their methods on this operator will preserve the
identity of its sequence argument, and must arrange that if
a new sequence is allocated, the original sequence argument
must not be modified; however, in general, callers (either
explicit or implicit) may not assume that the sequence re-
turned from adjust-sequence is the same sequence as its
argument.

Once methods for these generic functions have been imple-
mented for a sequence class, all the regular Common Lisp
sequence functionality will work as expected. However, some
sequences may not admit implementations of all these op-
erations, or indeed might offer means to implement certain
operations more efficiently, so in the following sections we
describe the protocol by which the Lisp implementation pro-
vides the sequence functionality.

2.2 Iteration
It is common to iterate over sequences, both in the concep-
tion of many of the Common Lisp sequence functions, and in
user-defined operations. In this section, we describe the pro-
tocol and interface for iterating over sequence contents, both
built-in and user-defined. The protocol discussed here has
a set of default methods specialized on the sequence class,
so that any sequence class for which methods on the proto-
col functions of section 2.1 have been implemented will obey
the protocol. However, these default methods cannot take
into account the characteristics of any particular sequence
class, and so for efficiency users may wish to override them
for their own classes.

The essential concept is the use of an iterator object to rep-
resent the current state of an iteration. It is not necessary
for this iterator object to have a distinguished class, as the
sequence over which it is iterating is present in all function
calls in this protocol (and therefore its class can be used for
specialization of methods); indeed, the conceptual object is

7Neither ‘type’ nor ‘class’ is quite right here, as cons and
null are distinct types and classes, while both being sub-
types of the sequence type list.

represented in this protocol by three objects and six func-
tions. This iteration protocol is close to the one available in
Dylan (Shalit, 1996).

The make-sequence-iterator operator constructs one of
these iterator objects: after the required sequence argument,
it accepts keyword :start, :end and :from-end arguments,
and returns nine values. The first three of those values are
an iterator state, a limit and the from-end argument; the re-
maining six are functions which, respectively, return a state
one step ahead, if possible; test the state against the limit
for termination; retrieve the element at the current iteration
state from the sequence; set the element at the current iter-
ation state to a new value; return the index corresponding
to the current iteration state; and return a distinct iteration
state representing a copy of the current one.

The default method on make-sequence-iterator is in-
tended for convenience: for most uses, it is unnecessary to
construct the nine return values; instead, the default method
(specialized to sequence) on make-sequence-iterator gen-
erates the first three of the return values by calling make-

simple-sequence-iterator, and returns in addition six
protocol generic functions: #’iterator-step (which ad-
vances the iteration state); #’iterator-endp, testing an
iteration for termination; the #’iterator-element reader
and the #’(setf iterator-element) writer; #’iterator-

index, returning the sequence index corresponding to the it-
erator state; and finally #’iterator-copy, returning a copy
of the iteration state. These functions have methods special-
ized to list and vector to provide iterators for the built-in
sequence classes.

While implementors of sequence classes may choose to use
this CLOS-based iterator protocol (at the potential loss of
efficiency through generic function dispatch at each step),
users of the iteration protocol (who define functions which
perform iterations over sequences) may not assume that the
sequence class implementor has done so, and so must call
make-sequence-iterator or the operators discussed below.

A small dose of syntactic sugar around make-sequence-

iterator is provided by with-sequence-iterator, which
binds as if by multiple-value-bind the variables in its
first argument to the result of applying make-sequence-

iterator to its second argument, and then executes the
body. A slightly simpler macro to use is with-sequence-

iterator-functions, which binds the six names in its first
argument to six local functions (which have dynamic ex-
tent and close over the return values from make-sequence-

iterator) which perform the various iterator manipula-
tions.

For programmer convenience, we also provide a dosequence

macro, behaving as dolist (but for arbitrary sequences),
and an extension for loop using the loop keywords element
and elements, in a similar fashion to the for-as-package

loop path (Pitman and Chapman, 1994, Section 6.1.2.1.7).

It is intended that the iteration protocol described here will
be compatible with an iteration protocol for general collec-
tions (including hash tables, trees and other similar data
structures); at the minimum, any such protocol should be

http://www.xach.com/clhs?q=adjust-array
http://www.xach.com/clhs?q=subseq
http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=substitute
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=delete-duplicates
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=cons
http://www.xach.com/clhs?q=null
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=multiple-value-bind
http://www.xach.com/clhs?q=dolist
http://www.xach.com/clhs?q=loop

some every notany

notevery map map-into

concatenate merge

coerce make-sequence

Table 3: Common Lisp functions applicable or oth-
erwise relevant to sequences which are not specified
as extensible in this protocol; however, the imple-
mentation’s versions are specified to be applicable
to arbitrary sequence types, and to produce the ex-
pected result.

able to specify its behaviour for sequences in terms of the
operators described here.

2.3 Sequence Functions
For most of the functions in the sequences chapter of the
standard, there is an analogous generic function with the
same argument list which can be specialized for user-defined
sequence classes. The complete list of generic functions spec-
ified to be extensible, and their corresponding Common Lisp
function, is given in table 2. Implementations of this pro-
posal may choose to make the Common Lisp function eql

to the extensible generic function, or even make the sym-
bols themselves eql to each other; however, users may not
assume this.

2.4 Other Affected Functions
The Common Lisp functions in table 3 are not extensible
in this proposal. We discuss the interaction of this proposal
with the behaviour of those functions below; in summary,
where ANSI CL specifies that they accept sequence argu-
ments, the implementation must accept any user-defined se-
quence, and where ANSI CL specifies that they accept a
sequence type-specifer, they must accept a user-defined se-
quence name or class object (see also Rhodes (2006) for a
discussion of the implications of this with respect to the
standard behaviour).

Six functions in the SEQUENCES chapter of the ANSI CL stan-
dard do not have the structure for user-extensibility in the
same straightforward way as the functions discussed in sec-
tion 2.3: they are concatenate, map, merge, make-sequence,
coerce and map-into.

Taking map-into first, we simply specify that an imple-
mentation of user-extensible sequences must implement the
map-into function such that target sequences and source
sequences of arbitrary subtype of sequence are supported
given a complete implementation of the sequence and itera-
tion protocol of sections 2.1and 2.2. An implementation is
not prohibited from providing a means of customizing the
behaviour of map-into, but neither is it required to.

A means of extending the behaviour of concatenate, map,
merge, make-sequence and coerce is likewise left unspeci-
fied, though again an implementation of this document must
provide for the functionality of these functions to be avail-
able for objects of arbitrary sequence type and type speci-
fiers naming a concrete subtype of sequence; for details of
how this interacts with the ANSI CL specified behaviour of

these functions, see Rhodes (2006). It is likely that any doc-
umented fashion of extending these five functions will use
the same mechanism for all of them.

As for functions which are not in the SEQUENCES chapter of
the ANSI CL specification, the intent is that where a par-
ticular behaviour is specified for a sequence argument, that
behaviour should be implemented for the user-extensible se-
quences. For instance, the short-circuiting quantifiers some,
every, notevery and notany should accept sequence argu-
ments of arbitrary class; make-array’s :initial-contents

argument (and the #a array reader) should accept a se-
quence of sequences, as specified, including user-extended
sequences. Note that we do not specify a different behaviour
of the equalp function from the standard-mandated one (of
using eq on objects of type standard-object): although
equalp is specified to descend arrays and conses, it does not
do so in a sequence-like way, and in particular a list and
a vector with the same content are not considered to be
equalp. Equality over sequence contents can be computed
with mismatch.

Particular attention must be paid to the read-sequence

and write-sequence functions. Although Gray (1989) does
not suggest that these functions be extensible in the man-
ner of the other stream functions, it is likely that this is
because read-sequence and write-sequence were added
to the language after the extensible streams proposal was
made, and indeed Common Lisp implementations have pro-
vided stream-read-sequence and stream-write-sequence

generic functions for user customizeability. Lisps provid-
ing both an implementation of this proposal and extensible
streams based on Gray (1989) should document the effect of
calling read-sequence and write-sequence with arguments
being instances of non-standardized classes. The simple-
streams (Franz Inc., 2006, Chapter 83) extensible analogue
is documented to signal an error for all sequence types other
than strings and octet vectors; if this restriction is relaxed,
there are similar interactions as with Gray streams over
which extensibility (sequence or stream) takes precedence.

3. EXAMPLES
In this section, we present two examples of uses for the pro-
tocols discussed in this paper. Firstly, in section 3.1, we
present the implementation of a distinct sequence type along
with the method definitions to allow it to interoperate; then,
in section 3.2, we demonstrate the definition of a mixin class
and methods specialized on it to provide additional function-
ality to generic sequences implemented as in this paper.

3.1 Queue
As an example of a non-standard sequence, consider imple-
menting a queue data structure, which supports the oper-
ations enqueue and dequeue. Figure 2 shows one way in
which such a queue could be implemented, using a list as
the storage for the data, and keeping a reference to the cons
cell at the back of the queue. Purely for interest, we also
implement a variant of the queue which is also funcallable,
and arrange so that calling the funcallable queue with no
arguments performs dequeueing, while with one argument
it enqueues that argument.

An implementation of the sequence and iteration protocol

http://www.xach.com/clhs?q=some
http://www.xach.com/clhs?q=every
http://www.xach.com/clhs?q=notany
http://www.xach.com/clhs?q=notevery
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=map-into
http://www.xach.com/clhs?q=concatenate
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=some
http://www.xach.com/clhs?q=every
http://www.xach.com/clhs?q=notevery
http://www.xach.com/clhs?q=notany
http://www.xach.com/clhs?q=make-array
http://www.xach.com/clhs?q=equalp
http://www.xach.com/clhs?q=eq
http://www.xach.com/clhs?q=standard-object
http://www.xach.com/clhs?q=equalp
http://www.xach.com/clhs?q=equalp
http://www.xach.com/clhs?q=mismatch
http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence
http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence
http://www.xach.com/clhs?q=read-sequence
http://www.xach.com/clhs?q=write-sequence

(defclass queue (sequence standard-object)
((%data :accessor %queue-data) (%pointer :accessor %queue-pointer)))

(defmethod initialize-instance :after ((o queue) &key)
(let ((head (list nil)))

(setf (%queue-data o) head (%queue-pointer o) head)))

(defgeneric enqueue (data queue)
(:argument-precedence-order queue data)
(:method (data (o queue))

(setf (cdr (%queue-pointer o)) (list data) (%queue-pointer o) (cdr (%queue-pointer o)))
o))

(defgeneric dequeue (queue)
(:method ((o queue))

(prog1 (cadr (%queue-data o))
(setf (cdr (%queue-data o)) (cddr (%queue-data o))))))

(defclass funcallable-queue (queue funcallable-standard-object)
() (:metaclass funcallable-standard-class))

(defmethod initialize-instance :after ((o funcallable-queue) &key)
(flet ((fun (&optional (new nil new-p)) (if new-p (enqueue new o) (dequeue o))))

(set-funcallable-instance-function o #’fun)))

Figure 2: Basic definitions of a queue data structure, including a funcallable variant. The layout of the code
in this and subsequent figures is not idiomatic for reasons of space.

(defmethod sequence:length ((o queue)) (length (cdr (%queue-data o))))
(defmethod sequence:elt ((o queue) index) (elt (cdr (%queue-data o)) index))
(defmethod (setf sequence:elt) (new-value (o queue) index) (setf (elt (cdr (%queue-data o)) index) new-value))
(defmethod sequence:make-sequence-like ((o queue) length &key (initial-element nil iep) (initial-contents nil icp))

(let ((result (make-instance (class-of o))))
(cond
((and iep icp)
(error "supplied both ~S and ~S to ~S" :initial-element :initial-contents ’make-sequence-like))
(icp (unless (= (length initial-contents) length)

(error "length mismatch in ~S" ’make-sequence-like))
(setf (cdr (%queue-data result)) (coerce initial-contents ’list)

(%queue-pointer result) (last (%queue-data result))))
(t (setf (cdr (%queue-data result)) (make-list length :initial-element initial-element)

(%queue-pointer result) (last (%queue-data result)))))
result))

(defmethod sequence:adjust-sequence ((o queue) length &key initial-element (initial-contents nil icp))
(cond

((= length 0)
(setf (cdr (%queue-data o)) nil (%queue-pointer o) (%queue-data o)))
(t (sequence:adjust-sequence (%queue-data o) (1+ length) :initial-element initial-element)

(setf (%queue-pointer o) (last (%queue-data o)))
(when icp (replace (%queue-data o) initial-contents :start1 1)) o)))

(defmethod sequence:make-simple-sequence-iterator ((q queue) &rest args &key from-end start end)
(declare (ignore from-end start end))
(apply #’sequence:make-simple-sequence-iterator (cdr (%queue-data q)) args))

(defmethod sequence:iterator-step ((q queue) iterator from-end)
(sequence:iterator-step (cdr (%queue-data q)) iterator from-end))

(defmethod sequence:iterator-endp ((q queue) iterator limit from-end)
(sequence:iterator-endp (cdr (%queue-data q)) iterator limit from-end))

(defmethod sequence:iterator-element ((q queue) iterator)
(sequence:iterator-element (cdr (%queue-data q)) iterator))

(defmethod (setf sequence:iterator-element) (new-value (q queue) iterator)
(setf (sequence:iterator-element (cdr (%queue-data q)) iterator) new-value))

(defmethod sequence:iterator-index ((q queue) iterator)
(sequence:iterator-index (cdr (%queue-data q)) iterator))

(defmethod sequence:iterator-copy ((q queue) iterator)
(sequence:iterator-copy (cdr (%queue-data q)) iterator))

Figure 3: Implementation of the sequence protocol for the queues of figure 2. The first five method definitions
are sufficient to allow all sequence functionality to run correctly; the methods on the iterator functions reduce
the complexity for our simple queue implementation from O(N2) to O(N) for most operations.

(length #[a b c d]) ; => 4
(count 1 #[1 2 3]) ; => 1
(remove-if-not #’oddp #{1 2 3}) ; => #{1 3}
(remove-duplicates #[1 2 3 4 5] :end 4

:key #’oddp :from-end t)
; => #[1 2 5]

#2a#{#[1] #(2)} ; => #2A((1) (2))

Figure 4: Examples of using the queues as se-
quences. For the #[and #{ reader macros and queue
print functions, see figure 7 in the appendix.

for a queue implemented in this fashion is shown in figure 3.
The first five method definitions are required under this pro-
posal, for implementing the primitive sequence operations.
The default method on make-sequence-iterator would suf-
fice to make all Common Lisp sequence functionality work;
however, an index-based iteration scheme as provided by
that default method would suffer from poor performance for
our implementation of queues based on lists, so we define
methods for the iterator functions of section 2.2, calling the
system-provided methods for lists (assumed to be efficient
at least for forward iteration).

Given the code in figure 3, queues can be used wherever
Common Lisp specifies that a sequence is acceptable. For
instance, one can ask for the position of an element in the
queue using position, with all the keywords (:test, :key,
:start etc.) that the Common Lisp function accepts; some
examples are given in figure 4. Furthermore, this queue
implementation will potentially interoperate with bodies of
code written for generic sequences, as long as there are
no uses of the formal interpretation of the requirements of
make-sequence and friends.

3.2 Undoable mixin
To illustrate possible uses of the sequence protocol discussed
in this document, we present in figure 5 a mixin for im-
plementing some undo functionality for a sequence. The
undoable-mixin class contains a record slot, which records
enough information to reconstruct the state of the sequence
before an operation; if the user calls the undo function on a
sequence with this class mixed in, the previous state of the
sequence will be reconstructed using undo-using-record

methods. A more sophisticated version of this might be
useful as a component of an editor buffer implementation,
for example.

For (setf elt), we record the index and the value at that
index before performing the mutation; clearly, this permits
reconstructing the previous state of the sequence. For oper-
ations such as fill and nreverse, we could simply make do
with this (and an analogous change for the setter function
of the iterator protocol; see figure 8 in the appendix for that
detail), but this would have the consequence that a single
logical operation such as fill would require multiple calls
to undo to undo the state.

Instead, therefore, for fill, we record the contents between
the bounding index designators, while for nreverse we need
record nothing, as it is a reversible operation8. An alter-

8We assume for expository purposes that the destructive

native strategy for grouping multiple primitive operations,
used in the method for recording calls to nsubstitute and
delete, is shown in figure 8 in the appendix.

4. IMPLEMENTATION DETAILS
We have implemented the above proposal in Steel Bank
Common Lisp (Newman et al., 2000); the overall strategy
was to modify the implementations of the standard Common
Lisp sequence functions to call into their sequence package
analogues instead of signalling an error, if their sequence
arguments were neither lists nor vectors. This way of im-
plementating this proposal was motivated by changing the
run-time performance characterstics of the system as little
as possible for existing code.

The first aspect of SBCL itself which needed to be modified
was the type system: the system needed to be informed that
sequence was no longer simply an alias in that implemen-
tation of (or list vector), but was an unsealed (that is,
subclassable) class with its own identity in the type system;
since the SBCL compiler makes heavy use of type inference,
both when compiling user code and when cross-compiling it-
self, it was also important for the compiler’s version of sub-
typep to know that the types (and sequence vector) and
(and sequence list) are equivalent to vector and list

respectively, irrespective of the extensibility of sequence.

Additionally, the declared return type of various sequence
functions such as copy-seq needed to be altered: SBCL
has the type consed-sequence, which was previously aliased
to (or list (simple-array * (*))), expressing that (in
SBCL) freshly consed vectors do not have fill-pointers, are
not displaced and are not adjustable. In an implementa-
tion supporting extensible sequences, this type alias needs to
be changed to (or (simple-array * (*)) (and sequence

(not vector))) to correctly represent the implementation’s
behaviour9.

After these modifications to the type system, the implemen-
tation of the remainder of this proposal involved two distinct
parts: modifying SBCL itself to insert calls to the sequence
generic functions (say, sequence:length) from the standard
functions (length), and implementing those generic func-
tions in a userspace library. Incremental development of
the SBCL internals was eased by the use of a seq-dispatch

macro, taking a sequence argument and expanding into ei-
ther two or three cases: one for when the argument is a list,
one when it is a vector, and (optionally) one for neither:
the third case is only executed when a generic sequence is
encountered.

The various compiler transformations and optimizations of
sequence functions (such as find, position, map, coerce)
were largely unaffected, as either the various checks on their
applicability were already restrictive enough, or else the op-
timizations performed were generic to all sequences. The
implementation of find and position (and -if and -if-

not relatives) needed a small amount of alteration to allow

sequence functions such as nreverse act in-place on the user-
extended sequences in which this class will be mixed.
9SBCL has a sophisticated understanding of the Common
Lisp type system, so such complex types do not cause diffi-
culty in type inference.

http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=make-sequence
http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=undo
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=nsubstitute
http://www.xach.com/clhs?q=delete
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=subtypep
http://www.xach.com/clhs?q=subtypep
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=copy-seq
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=simple-array
http://www.xach.com/clhs?q=or
http://www.xach.com/clhs?q=simple-array
http://www.xach.com/clhs?q=and
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=not
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=coerce
http://www.xach.com/clhs?q=find
http://www.xach.com/clhs?q=position
http://www.xach.com/clhs?q=nreverse

(defclass undoable-mixin ()
((recording :initform nil :accessor recording) (record :initform nil :accessor record)))

(defclass setelt-record ()
((index :initarg :index :reader index) (value :initarg :value :reader value)))

(defclass fill-record ()
((start :initarg :start :reader start) (end :initarg :end :reader end)
(contents :initarg :contents :reader contents)))

(defclass nreverse-record () ())
(defmacro without-undoing ((object) &body body)

‘(let ((old (recording ,object)))
(unwind-protect (progn (setf (recording ,object) t) ,@body)
(setf (recording ,object) old))))

(defmacro define-undo-method (name arglist &body body)
‘(defmethod ,name :around ,(substitute ’(o undoable-mixin) ’o arglist)

(if (recording o) (call-next-method) (without-undoing (o) ,@body (call-next-method)))))
(define-undo-method (setf sequence:elt) (new-value o index)

(push (make-instance ’setelt-record :index index :value (elt o index)) (record o)))
(define-undo-method sequence:fill (o item &key (start 0) end)

(push (make-instance ’fill-record :start start :end end :contents (subseq (coerce o ’vector) start end))
(record o)))

(define-undo-method sequence:nreverse (o) (push (make-instance ’nreverse-record) (record o)))
(defun undo (object)

(undo-using-record object (car (record object))) object)
(defmethod undo-using-record ((o undoable-mixin) (r null)) (error "Nothing to undo"))
(defmethod undo-using-record :after ((o undoable-mixin) r) (pop (record o)))
(defmethod undo-using-record ((o undoable-mixin) (r setelt-record))

(without-undoing (o) (setf (elt o (index r)) (value r))))
(defmethod undo-using-record ((o undoable-mixin) (r fill-record))

(without-undoing (o)
(with-accessors ((start start) (end end) (contents contents)) r (setf (subseq o start end) contents))))

(defmethod undo-using-record ((o undoable-mixin) (r nreverse-record))
(without-undoing (o) (sequence:nreverse o)))

Figure 5: Illustration of a simple implementation of undo for sequences: an undoable-mixin class which can be
mixed in to a sequence class, providing undo functionality (illustrated here for (setf elt), fill and nreverse).

the protocol for sequence:find and sequence:position de-
scribed in section A.3 to be implemented, while the imple-
mentation of map was improved in the process of develop-
ment, being rewritten to use dynamic-extent support, re-
solving a long-standing issue in the system.

Support for defining subclasses of sequence from the cus-
tomized PCL (Bobrow and Kiczales, 1988) which SBCL in-
corporates to implement CLOS was as simple as modifying
the system method for the MetaObject Protocol function
mop:validate-superclass to allow sequence as a direct
superclass of classes with metaclasses standard-class and
mop:funcallable-standard-class. In addition, to support
the operations involving sequence type specifiers (such as
map and merge), we used make-sequence-like acting on
the mop:class-prototype of the class named by the type
specifier, if that class was a subclass of sequence.

SBCL’s loop facility is based on the MIT implementation, so
it was straightforwardly extended using the add-loop-path

operator as shown in figure 6.

In the implementation of this proposal for SBCL, there is
no run-time performance impact for bodies of code which
does not use the facilities provided by user-extensible se-
quences (see http://sbcl.boinkor.net/bench/ for bench-
mark data: the relevant changeset is labelled 1.0.0.22).
This is understandable, as all that has been done to the run-
time code in this implementation is to convert cases which
used to signal errors (usually the type-error for the datum

not being a sequence) into calls to the analogous function
of the sequence package. Changes in compile-time perfor-
mance are potentially present but unmeasurable: the only
likely contributor is the additional work in computing type
relationships between sequence and other types. There is
an increase of approximately 1% of the heap size of a fresh
SBCL instance, because of the extra code used in implement-
ing this proposal; however, this extra space is in a tenured
generation and behind a write barrier, and therefore does
not significantly increase garbage-collection times.

5. CONCLUSIONS
We have described an extension to Common Lisp to allow
users to define their own sequence classes in an interoper-
able manner, and have described the changes necessary to
implement this extension in a contemporary implementa-
tion. Additionally, we have attempted to justify the need
for this extension in terms of expressivity and parsimony,
and given simple examples of using it.

We leave for future work the related task of defining a proto-
col for user-defined collections; Common Lisp sequences are
a specialized form of collection, finite and ordered. How-
ever, preliminary work suggests that such a collection pro-
tocol can be defined to interoperate with the proposals in
this document for sequences.

It is intended that a revised and expanded version of ap-
pendix A should be submitted to some suitable forum for
standardization of some form; it is likely that feedback gath-

http://www.xach.com/clhs?q=elt
http://www.xach.com/clhs?q=fill
http://www.xach.com/clhs?q=nreverse
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=dynamic-extent
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=standard-class
http://www.xach.com/clhs?q=map
http://www.xach.com/clhs?q=merge
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=loop
http://sbcl.boinkor.net/bench/
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sequence

(defun loop-elements-iteration-path (variable data-type prep-phrases)
(let (of-phrase)

(loop for (prep . rest) in prep-phrases do
(ecase prep

((:of :in) (if of-phrase
(sb-loop::loop-error "Too many prepositions")
(setq of-phrase rest)))))

(destructuring-bind (it lim f-e step endp elt seq)
(loop repeat 7 collect (gensym))

(push ‘(let ((,seq ,(car of-phrase)))) sb-loop::*loop-wrappers*)
(push ‘(sequence:with-sequence-iterator (,it ,lim ,f-e ,step ,endp ,elt) (,seq))

sb-loop::*loop-wrappers*)
‘(((,variable nil ,data-type)) () () nil (funcall ,endp ,seq ,it ,lim ,f-e)
(,variable (funcall ,elt ,seq ,it) ,it (funcall ,step ,seq ,it ,f-e))))))

(sb-loop::add-loop-path
’(element elements) ’loop-elements-iteration-path sb-loop::*loop-ansi-universe*
:preposition-groups ’((:of :in)) :inclusive-permitted nil)

Figure 6: Extension of loop for a loop path to iterate over the elements of generic sequences.

ered from discussion of this paper will mean that there will
be some changes in detail in the revision process, so users
should not rely on the description in this paper remaining
authoritative.

Acknowledgments
We thank Nikodemus Siivola, Marcus Pearce, Gábor Melis,
Eric Marsden, Peter Housel, Cyrus Harmon, Peter Graves
and Pascal Costanza for fruitful and helpful discussions, and
acknowledge financial support from EPSRC grant number
GR/S84750/01. We also wish to thank the reviewers for
their valuable feedback.

References
Bobrow, D. G. and Kiczales, G. (1988). The Common Lisp

Object System Metaobject Kernel: A Status Report. In
Lisp and Functional Programming, pages 309–315.

Franz Inc. (2006). Allegro CL version 8.0 documentation.
http://tinyurl.com/3cfu66.

Gray, D. N. (1989). Issue STREAM-DEFINITION-BY-USER.
Failed Issue, X3J13, ANSI. http://tinyurl.com/2d4csd.

Haible, B. (1988). The Abstract Datatype Sequence. Tech-
nical report, University of Karlsruhe. http://tinyurl.

com/yy3eys.

Haible, B. (2006). personal communication.

Kelsey, R., Clinger, W., and Rees, J. (1998). Revised5 Re-
port on the Algorithmic Language Scheme. Higher-Order
and Symbolic Computation, 11(1).

Kiczales, G., des Rivières, J., and Bobrow, D. G. (1991).
The Art of the Metaobject Protocol. MIT Press.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-
Oriented Programming. In European Conference on
Object-Oriented Programming, pages 220–242.

Miller, S. G. (2004). Collections. SRFI 44, schemers.org.
http://srfi.schemers.org/srfi-44/srfi-44.html.

Newman, W. H. et al. (2000). SBCL User Manual. http:

//www.sbcl.org/manual/.

Norvig, P. (2002). Large-Scale Web Services, and the Pro-
gramming Languages that Build Them. In International
Lisp Conference Proceedings.

Pestov, S. (2006). Factor documentation. http://

factorcode.org/responder/help/.

Pitman, K. and Chapman, K., editors (1994). Information
Technology – Programming Language – Common Lisp.
Number 226–1994 in INCITS. ANSI.

Pitman, K. M. (1991). Issue CONCATENATE-SEQUENCE. Is-
sue 73, X3J13, ANSI. http://tinyurl.com/2zt4d6.

Rhodes, C. (2006). Revisiting CONCATENATE-SEQUENCE. Doc-
ument 3, Common Lisp Document Repository. http:

//cdr.eurolisp.org/document/3.

Rhodes, C., Strandh, R., and Mastenbrook, B. (2005). Syn-
tax Analysis in the Climacs Text Editor. In International
Lisp Conference Proceedings.

Shalit, A. (1996). The Dylan Reference Manual. Addison-
Wesley, Redwood City, CA, USA. http://www.

opendylan.org/books/drm/Title.

Steele, Jr, G. L. (1990). Common Lisp: The Language.
Digital Press, second edition.

Strandh, R., Villeneuve, M., and Moore, T. (2004). Flexi-
chain: An editable sequence and its gap-buffer imple-
mentation. In European Lisp and Scheme Workshop.
http://tinyurl.com/yhqwp3.

Yee, K.-P. and van Rossum, G. (2001). Iterators. PEP 234,
Python Software Foundation. http://www.python.org/

dev/peps/pep-0234/.

APPENDIX
A. SPECIFICATION
In the sections below, all of the generic functions and
macros being specified are named by symbols external in
the sequence package. In cases where the generic func-
tion being defined corresponds to a standardized Common
Lisp function, it is not specified whether the correspond-
ing Common Lisp function is distinct from the specified

http://www.xach.com/clhs?q=loop
http://tinyurl.com/3cfu66
http://tinyurl.com/2d4csd
http://tinyurl.com/yy3eys
http://tinyurl.com/yy3eys
http://srfi.schemers.org/srfi-44/srfi-44.html
http://www.sbcl.org/manual/
http://www.sbcl.org/manual/
http://factorcode.org/responder/help/
http://factorcode.org/responder/help/
http://tinyurl.com/2zt4d6
http://cdr.eurolisp.org/document/3
http://cdr.eurolisp.org/document/3
http://www.opendylan.org/books/drm/Title
http://www.opendylan.org/books/drm/Title
http://tinyurl.com/yhqwp3
http://www.python.org/dev/peps/pep-0234/
http://www.python.org/dev/peps/pep-0234/

;;; syntax: #[1 2 3 ...] for ordinary queues, #{1 2 3 ...} for funcallable ones
(macrolet ((def (name open close)

(let ((reader-name (intern (format nil "~A-~A" name ’reader))))
‘(progn

(defun ,reader-name (stream char n)
(declare (ignore char n))
(let ((contents (read-delimited-list ,close stream t))

(result (make-instance ’,name)))
(dolist (o contents result) (enqueue o result))))

(set-dispatch-macro-character #\# ,open ’,reader-name)
(set-syntax-from-char ,close #\))
(defmethod print-object ((o ,name) stream)

(when (and *print-readably* (not (eq (class-of o) (find-class ’,name))))
(call-next-method))

(format stream "#~C" ,open)
(do ((data (cdr (%queue-data o)) (cdr data)) (i 0 (1+ i)))

((null data) (format stream "~C" ,close) o)
(unless (or *print-readably* (not *print-length*))

(when (= i *print-length*)
(format stream "...~C" ,close)
(return o)))

(let ((*print-level* (and *print-level* (1- *print-level*))))
(write (car data) :stream stream))

(unless (null (cdr data)) (format stream " "))))))))
(def queue #\[#\]) (def funcallable-queue #\{ #\}))

Figure 7: Implementation of reader macros and print functions for queues and funcallable queues. Note the
support for correct behaviour in the presence of non-nil values of printer control variables.

generic functions, nor indeed whether the symbol in the
common-lisp package is distinct from that in the sequence

package; that is, #’length might or might not be eql to
#’sequence:length, and length might or might not be eql

to sequence:length. The sequence package may have ad-
ditional, implementation-specific names; sequence need not
be the package-name of the package.

It is not specified whether the methods specified on list and
vector are in fact called when the Common Lisp function
corresponding to the generic function is called on such data.
It is not specified whether the methods specified on sequence
are called when the Common Lisp function corresponding to
the generic function is called on data of type vector or list.

In implementations which support the Metaobject Proto-
col as defined in Kiczales et al. (1991), suitable methods on
mop:validate-superclass should be provided such that no
error is signalled for user-defined sequence classes of meta-
class standard-class; such implementations are addition-
ally encouraged to allow mop:funcallable-standard-class

as a compatible metaclass for user-defined sequence classes.

A.1 Basic sequence operations
We specify generic functions length, elt and (setf elt)

to correspond to the Common Lisp functions with the same
name. In each case, there are two primary methods with the
sequence argument specialized on list and on vector, pro-
viding the standard-defined behaviour for the Common Lisp
operator, and a third method with the sequence argument
specialized on sequence, which signals an error of type type-
error, for compatibility with the standard requirement of
the sequence argument to be a proper sequence.

In addition, we specify two new generic functions and cor-
responding methods (with a similar pattern of behaviour)

described below.

Generic Function make-sequence-like

Syntax:
make-sequence-like sequence length &key

initial-element initial-contents

This generic function returns a sequence of the same class
as its sequence argument, with the specified length. If nei-
ther initial-element nor initial-contents is supplied, the con-
sequences are undefined if any element of the resulting se-
quence is read before being written. If initial-element is
provided, it is used to initialize the resulting sequence; if
initial-contents is provided, it must be a sequence of length
length, which is used to initialize the resulting sequence.
The consequences are undefined if both initial-element and
initial-contents are supplied.

Primary Method make-sequence-like (l list) length &key

initial-element initial-contents

Primary Method make-sequence-like (v vector) length
&key initial-element initial-contents

No behaviour for these methods is specified beyond that for
the generic function.

Primary Method make-sequence-like (s sequence) length
&key initial-element initial-contents

This method signals an error of type type-error.

Generic Function adjust-sequence

Syntax:
adjust-sequence sequence length &key initial-element

initial-contents

http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=length
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=package-name
http://www.xach.com/clhs?q=standard-class
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=type-error

(defmethod sequence:make-sequence-iterator :around ((o undoable-mixin) &key from-end start end)
(declare (ignore from-end start end))
(multiple-value-bind (s l f step endp elt setelt index copy) (call-next-method)

(values s l f step endp elt
(lambda (nv s i)
(if (recording s)

(funcall setelt nv s i)
(without-undoing (s)

(push (make-instance ’setelt-record :index (funcall index s i) :value (funcall elt s i))
(record s))

(funcall setelt nv s i))))
index copy)))

(defmacro with-compound-recording ((object) &body body)
‘(let ((old (recording ,object)) (or (record ,object)))

(unwind-protect
(progn (setf (recording ,object) nil) (setf (record ,object) nil) ,@body)

(setf (recording ,object) old)
(setf (record ,object) (cons (make-instance ’compound-record :records (record ,object)) or)))))

(defclass compound-record () ((records :initarg :records :reader records)))
(defmethod undo-using-record ((o undoable-mixin) (r compound-record))

(dolist (r (records r)) (undo-using-record o r)))
(defmacro define-compound-undo-method (name arglist)

‘(define-undo-method ,name ,arglist
(with-compound-recording (o) (call-next-method))))

(define-compound-undo-method sequence:nsubstitute (new old o &key from-end start end test test-not key count))
(define-compound-undo-method sequence:nsubstitute-if (new old o &key from-end start end key count))
(define-compound-undo-method sequence:nsubstitute-if-not (new old o &key from-end start end key count))

(defclass adjust-sequence-record ()
((previous :initarg :previous :reader previous) (discarded :initarg :discarded :reader discarded)))

(define-undo-method sequence:adjust-sequence (o length &rest args)
(push (make-instance ’adjust-sequence-record :previous (length o)

:discarded (when (< length (length o)) (coerce (subseq o length) ’vector)))
(record o)))

(defmethod undo-using-record ((o undoable-mixin) (r adjust-sequence-record))
(sequence:adjust-sequence o (previous r))
(when (discarded r) (setf (subseq o (- (length o) (length (discarded r)))) (discarded r))))

(define-compound-undo-method sequence:delete (item o &key from-end (start 0) end test test-not key count))
(define-compound-undo-method sequence:delete-if (item o &key from-end (start 0) end key count))
(define-compound-undo-method sequence:delete-if-not (item o &key from-end (start 0) end key count))
(define-compound-undo-method sequence:delete-duplicates (o &key from-end (start 0) end test test-not key))
(define-undo-method sequence:replace (o sequence2 &key (start1 0) end1 (start2 0) end2)

(push (make-instance ’fill-record :start start1 :end end1 :contents (coerce (subseq o start1 end1) ’vector))
(record o)))

(define-undo-method sequence:sort (o predicate &key key)
(push (make-instance ’fill-record :contents (coerce o ’vector) :start 0 :end nil) (record o)))

(define-undo-method sequence:stable-sort (o predicate &key key)
(push (make-instance ’fill-record :contents (coerce o ’vector) :start 0 :end nil) (record o)))

Figure 8: Implementation details of the undoable mixin. The setter in the iterator protocol is wrapped by
the :around method on make-sequence-iterator; a specialized undo record is defined for adjust-sequence; and
undo records for nsubstitute and delete are represented as sequences of primitive undo records, treated as
an atom for the purposes of running undo.

http://www.xach.com/clhs?q=nsubstitute
http://www.xach.com/clhs?q=delete

This generic function changes the length or elements of se-
quence. It returns a sequence of length length, with contents
as specified by initial-contents if provided, otherwise with
the original contents in their original position and initial-
element as any additional elements. The return value may,
but need not, share structure with or be identical to the
sequence argument.

Primary Method adjust-sequence (l list) length &key

initial-element initial-contents

Primary Method adjust-sequence (v vector) length &key

initial-element initial-contents

This method functions in a similar manner to adjust-array,
though the implementation may choose to preserve the iden-
tity of the argument if it has a fill pointer and the length
argument is not greater than the size of the vector.

Primary Method adjust-sequence (s sequence) length
&key initial-element initial-contents

This method signals an error of type type-error.

A.2 Iteration
Generic Function make-sequence-iterator

Syntax:
make-sequence-iterator sequence &key from-end start

end

This generic function returns nine values: three values cor-
responding to an iterator state, a limit state and from-end,
and six functions with signatures and functionality like the
iterator- functions below.

Primary Method make-sequence-iterator (s sequence)
&key from-end (start 0) end

This method returns the three values returned by calling
make-simple-sequence-iterator, along with the iterator
functions #’iterator-step, #’iterator-endp, #’iterator-
element, #’(setf iterator-element), #’iterator-index

and #’iterator-copy defined below.

For the seven following generic functions, we describe both
the generic function and also in more detail the return val-
ues of the primary method, specialized on sequence. The
primary methods described here are suitable for iteration
across data structures with efficient random access, such as
vectors, and less suitable for iteration across some other data
structures, such as lists. We expect implementations of this
protocol to provide additional methods to perform more ef-
ficient iteration on lists than is possible with the primary
method described; however, we do not impose additional
requirements on the behaviour of such methods.

Generic Function make-simple-sequence-iterator

Syntax:
make-simple-sequence-iterator sequence &key

from-end start end

This generic function returns three values: an iterator ob-
ject, a limit state and from-end. These values, along with
sequence, are to be used for calling to the iterator generic

functions, below; the consequences are unspecified if objects
not returned by a call to make-simple-sequence-iterator

are passed as arguments to the iterator functions. The pri-
mary method returns the three values start, end (or the
length of sequence if end is nil) and nil, if from-end is
false; if from-end is true, it returns the three values (1- (or

end (length sequence))), (1- start), and from-end.

Generic Function iterator-step

Syntax:
iterator-step sequence iterator from-end

This generic function returns a new iterator state represent-
ing the advancement of the iteration across sequence in the
direction indicated by from-end. The primary method re-
turns (1- iterator) if from-end is true; otherwise, it returns
(1+ iterator).

Generic Function iterator-endp

Syntax:
iterator-endp sequence iterator limit from-end

This generic function tests the iterator for having reached
its end state for iteration across sequence indicated in the di-
rection indicated by from-end. The primary method returns
the value of (= iterator limit).

Generic Function iterator-element

Syntax:
iterator-element sequence iterator

This generic function returns the element of sequence at the
point of iteration indicated by iterator. The primary method
returns the value of (elt s iterator).

Generic Function (setf iterator-element)

Syntax:
(setf iterator-element) new-value sequence iterator

This generic function sets the element of sequence at the
point of iteration indicated by iterator to new-value. The
primary method returns the value of (setf (elt s itera-
tor) new-value).

Generic Function iterator-index

Syntax:
iterator-index sequence iterator

This generic function returns the index of the point indi-
cated by iterator in sequence. The primary method returns
iterator.

Generic Function iterator-copy

Syntax:
iterator-copy sequence iterator

This generic function returns an iterator state identifying
the same point in an iteration as iterator, such that changes
to one do not affect the other. The primary method returns
iterator.

Macro with-sequence-iterator (&optional state limit
from-end step endp elt setelt index copy) (sequence &key

from-end (start 0) end) &body body

http://www.xach.com/clhs?q=adjust-array
http://www.xach.com/clhs?q=type-error
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=nil

This macro binds the names in its first argument list as
if by multiple-value-bind to the values returned by make-

sequence-iterator applied to its second argument list, and
then executes body.

Macro dosequence (var sequence-form &optional

result-form) &body body

This macro iterates over a sequence, in a similar fashion to
dolist iterating over a list. The body is like a tagbody,
consisting of a series of tags and statements.

dosequence evaluates sequence-form, which should produce
a sequence. It then executes the body once for each ele-
ment in the sequence, in the order in which the tags and
statements occur, with var bound to the element. Then
result-form is evaluated with var bound to nil.

An implicit block named nil surrounds the entire dose-

quence form. return may be used to terminate the loop
immediately without performing any further iterations, re-
turning zero or more values.

The scope of the binding of var does not include the
sequence-form, but the result-form is included.

It is implementation-dependent whether dosequence estab-
lishes a new binding of var on each iteration or whether it
establishes a binding for var once at the beginning and then
assigns it on any subsequent iterations.

Loop Path for-as-sequence

This allows using an iteration variable, as with other loop
for-as- clauses, as if the following clause were added to the
loop grammar (Pitman and Chapman, 1994, Macro loop):

for-as-sequence::=

var [type-spec] being {each | the}

{element | elements} {in | of} sequence

and as if the for-as-subclause clause permitted this for-

as-sequence clause along with the standardized clauses. As
with other iteration control clauses, the variable argument
may be a destructuring list. The effect of this clause is to
iterate through the contents of a sequence, starting from the
zeroth element and terminating at the end of the sequence10.

A.3 Sequence Function Specifications
Except as specified here, it is implementation-dependent
whether methods on these generic functions call other such
generic functions or not. For each of these generic functions
there is a method, called the “default method” below, where
all sequence parameters are specialized on sequence, im-
plementing the default behaviour given an implementation
of the iteration and basic sequence protocol in the sections
above. The user of this protocol is permitted to extend or
override these generic functions, but is not permitted to spe-
cialize any non-sequence argument.

10Note that this behaviour is different from that of the for-
as-across loop clause on vectors with fill pointers.

It is unspecified whether the generic functions specified be-
low are called when the corresponding Common Lisp func-
tion has only list and vector arguments for sequences;
however, the implementation is required to provide methods
for these generic functions implementing similar behaviour,
so that the user may call these generic functions on list

and vector sequences.

For each Common Lisp function in table 2, we specify a
generic function of the same name in the sequence package
with the same argument list, each with a default method
where all sequence arguments are specialized on sequence.
Given that the sequence argument to these functions is
named sequence, we enumerate the specified calling relation-
ships between these functions as follows:

• the default method on copy-seq calls subseq with pa-
rameters sequence and 0;

• the default method on substitute calls copy-seq on
sequence, and then calls nsubstitute on its arguments
with the provided sequence replaced by the copy. This
pattern is repeated for the -if and -if-not variants of
substitute, and for remove, remove-if, remove-if-
not and remove-duplicates calling the corresponding
delete- function.

• the default method on sort behaves as if it constructs
a vector with the same elements as sequence, calls sort
on that vector, then replaces the elements of sequence
with the elements of the sorted vector.

The rationale behind specifying these calling relationships is
to make clear the work needed by a sequence class implemen-
tor to install specialized implementations of these functions
for particular sequence classes.

http://www.xach.com/clhs?q=multiple-value-bind
http://www.xach.com/clhs?q=dolist
http://www.xach.com/clhs?q=tagbody
http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=nil
http://www.xach.com/clhs?q=return
http://www.xach.com/clhs?q=loop
http://www.xach.com/clhs?q=loop
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=list
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=sequence
http://www.xach.com/clhs?q=sort

	Introduction
	Design considerations
	Compatibility
	Related Work

	User-Defined Sequences
	Sequence Datatypes
	Iteration
	Sequence Functions
	Other Affected Functions

	Examples
	Queue
	Undoable mixin

	Implementation Details
	Conclusions
	Specification
	Basic sequence operations
	Iteration
	Sequence Function Specifications

