
High Value Products from Seaweed

Dr John J Milledge

Algal Biotechnology Research Group, University of Greenwich

Seaweed Potential

Commercial seaweed market 2021- US\$ 17.6 billion (Research and Markets, 2016)

Commercial Macroalgae Production ~100 * microalgae

China accounts for >70% of the world's total macroalgal production.

Oceans cover 70% of the Earth Seaweed only ~0.3% of world food tonnage

TIWARI, B. & TROY, D. (eds.) 2015. Seaweed Sustainability: Food and Non-Food Applications, Amsterdam: Academic Press.

UK Commercial seaweed

27 Seaweed-related businesses

16 use UK harvested seaweed

Primarily for food and condiments

CAPUZZO, E. & MCKIE, T. 2016. Seaweed in the UK and abroad – status, products, limitations, gaps and CEFAS role. Lowestoft: Centre for Environment, Fisheries & Aquaculture Science. Worldwide 221 species of macroalgae are currently known to be commercially exploited

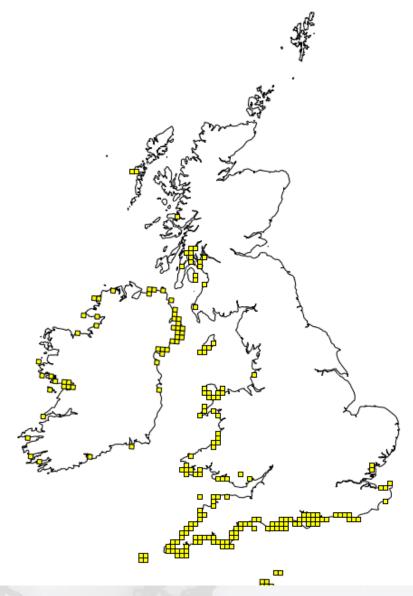
Species with annual production > 1million wet tonnes

- Laminaria
- Undaria
- Porphyra
- Gracilaria
- Eucheuma
- Kappaphycus

Commercially harvested seaweed in Ireland

Species	Annual Harvest (tonnes)
Ascophyllum nodosum	25,000
Fucus serratus	200
Palmaria palmata	<100
Chondrus crispus / Mastocarpus stellatus	<100
Laminaria digitata	<150
Himanthalia elongata, Saccharina latissima, L. hyperborea,	<10
Ulva sp., Porphyra sp., F. vesiculosus, Alaria esculenta etc.	

EDWARDS, M. & WATSON, L. 2011. Aquaculture Explained Cultivating Laminaria digitata. Galway: Irish Sea Fisheries Board


Sargassum muticum (Japanese Wireweed)

Found in Europe early 1970s.

Now found from Norway to Portugal S. muticum has spread along the south-coast and around the British Isles

- Very invasive
- Most 'successful' invasive, rate of spread in UK
- Higher growth rate
 >10 * Ascophyllum nodosum
- High priority EU's Water Framework Directive

S Muticum growth site reported to National Biodiversity Network

Courtesy of National Biodiversity Network

Attempts to eradicate Sargassum muticum failed • Mostly harvested by hand

- Costly ~ £60 tonne^{-1*}
- Large quantities for disposal
- No major commercial exploitation

* Updated from: Critchley AT, Farnham WF, Morrell SL (1986) An account of the attempted control of an introduced marine alga, Sargassum-muticum, in southern England Biological Conservation 35:313-332

theguardian

Caribbean-bound tourists cancel holidays due to foul-smelling seaweed Monday 10 August 2015

Massive inundations of pelagic Sargassum known as Golden-tides on the beaches of the Caribbean, Gulf of Mexico and West Africa

The Economist Caribbean resorts Plaguing paradise Smelly piles of seaweed are ruining holidays Aug 29th 2015 |

Food, Feed & Fertiliser

Abalone-farming courtesy Namibian Sun

"Gathering Seaweed" by Harold Harvey, courtesy of David Messum Fine Art

Potential high levels of heavy metals ?

Sargassum muticum feedstock

Season	Ash	С	Н	0	Ν	S	HHV
% total wt.		% dry weight					KJ g⁻¹ dw
Spring	29.5	30.7	4.0	29.6	4.9	1.5	16.3
Summer	33.3	30.1	4.2	28.1	3.6	0.8	12.0

- High moisture ~85%
- High ash
- High Sulphur
- HHV lower than terrestrial energy crops

Biofuels

Method	Utilises entire organic biomass	Utilises wet biomass	Primary energy product
Direct combustion	\checkmark	X	Heat
Pyrolysis		X	Primarily solid by slow pyrolysis
Gasification		(conventional)	Primarily Gas
Biodiesel production	×	Хc	Liquid
Hydrothermal treatments	\checkmark	\checkmark	Primarily Liquid
Bioethanol production	X a	\checkmark	Liquid
Biobutanol production	X a		Liquid
Anaerobic digestion	\checkmark	\checkmark	Gas

^a Polysaccharides require bydrolvsis to fermentable sugars. Some of the sugars produced from the breakdown of seaweed polysaccharides are not readily fermented; ^b Supercritical water gasification (SCWG) an alternative gasification technology can convert high moisture biomass; ^c No current commercial process for the wet trans-esterification of wet macroalgal biomass

Pyrolysis

- Pyrolysis is the thermal decomposition of the organic component of <u>dry</u> biomass by heating in the absence of air.
- The distribution between solid, liquid and syngas depends on the biomass and the pyrolysis temperature and time

Slow Pyrolysis of Sargassum Muticum

		kJ g ⁻¹
Biochar	67.6%	15.7
Syngas	16.5%	2.9
Biocrude	11.7%	15.6
Tar 'hold-up'	4.4%	30.1

Slow pyrolysis (<400 °C) produces more solid char

Energy yield 98 %

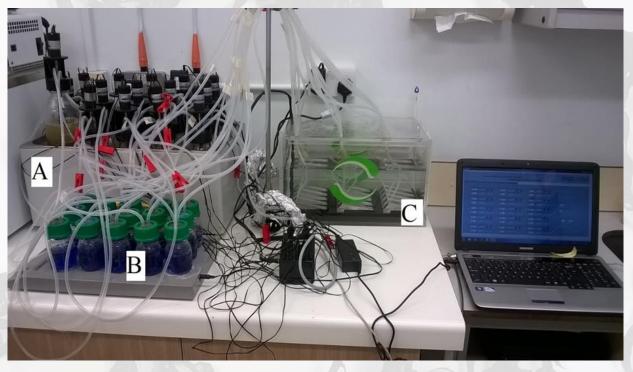
Energy Balance Pyrolysis of Sargassum Muticum

	MJ
Energy to raise temp 1kg of dry seaweed by 400 °C	0.5
Energy in Biocrude & Syngas	2.9
Energy in all Pyrolysis Products	14.9
Heat energy to produce 1kg dry seaweed	10.4
Sufficient energy in the biocrude and syngas to power pyrol	ysis
70% of energy produced Insufficient energy within the seaweed for dr	ving

Anaerobic Digestion

- Uses wet biomass no drying required
- A relatively simple process with proven technologies
- Used commercially in Scotland in 19th century

Theoretical Methane Potential


VS Empirical Formula Methane yield $L CH_4 g^{-1} VS$ $L CH_4 g^{-1} TS$ $C_1 H_{1.66} O_{0.7} N_{0.1} S_{0.01}$ 0.42 0.28

Buswell equation stoichiometric calculation

C_cH_hO_oN_nS_s + ¹/₄(4c - h - 2o +3n + 2s)H₂O= ¹/₈(4c + h - 2o -3n - 2s)CH₄ + ¹/₈(4c - h + 2o +3n + 2s)CO₂ + nNH₃ + sH₂S molecular formula subscripts, c, h, o, n and s = molar proportion of elements CHONS Symons, G. E. and A. M. Buswell (1933) The methane fermentation of carbohydrates. Journal of the American Chemical Society 55(5): 2028-2036.

Buswell, A. M. and H. F. Mueller (1952) Mechanism of methane fermentation. Industrial and Engineering Chemistry 44(3): 550-552.

Methane Potential

Automatic Methane Potential Test System (AMPTS)

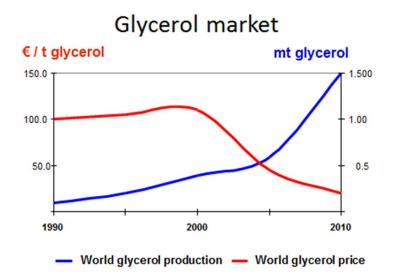
A) water-bath withcontrolled temperature and15 digestion bottles

B) 15 CO2 fixing bottles,

C) A tipping cup volumetric gas measuring device

Average Methane Yield% of Theoretical YieldL CH4 g⁻¹ VS25%

Considerable conjecture about low practical methane yields


- Inoculum
- Cell structure
- Resistant organic compounds
- Inhibition by anti-bacterial
- polyphenols and other
 - compounds
- Salt and other inorganics
 Ammonia inhibition

Ammonia inhibition

 Due to degradation of proteincontaining materials

- Recommended C:N ~ 20:1.
- S. muticum has a C:N 8:1
- Co-digestion with low C:N substrate ?

Co-digestion with Crude Glycerol

Co-digestion with Crude Glycerol

	Ave Methane Yield	% of Theoretical Yield
	L CH ₄ g ⁻¹ VS	
Crude Glycerol	0.26	46%
Sargassum muticum	0.07	17%
50% Crude Glycerol & S. muticum	0.21	43%

Co-digestion increased biogas yield by 27%

Maintaining Year Round Supply

 Harvesting is seasonal Need to preserve and store for a continuous supply

Little research on how to preserve seaweed biomass year round in order to satisfy continuous process demand

"An understanding of ensiling of seaweed is absolutely crucial for a substantial seaweed biofuel industry"

Herrmann C, FitzGerald J, O'Shea R, Xia A, O'Kiely P, Murphy JD (2015) Ensiling of seaweed for a seaweed biofuel industry Bioresour Technol 196:301-313

Ensilage

- Routinely used for the storage of forage for animal feed
- Lactic acid fermentation under anaerobic conditions converts water-soluble carbohydrates into organic acids, mainly lactic acid.
- Initiated by naturally-present bacteria
- pH decreases and the moist crop is preserved

Ensiled seaweed composition

	Moisture	С	н	Ο	Ν	S	Ash	Salt	HHV
	% total wt.			% dry ۱	weight			% of ash	KJ g⁻¹ dw
Unensiled	85.4	30.1	4.2	28.1	3.6	0.8	33.3	46.1	12.05
Ensiled									
whole	85.5	30.0	4.2	29.3	3.3	<0.1	B3.1	43.6	12.13
Ensiled							/ \		
chopped	85.2	29.4	3.9	29.8	3.5	<0.1	33.3	45.9	12.36

- No sig difference in CHON, ash and HHV
- Ensiling results in a significant reduction in salt
- Chopping reduces salt loss
- Ensiling results in virtual total loss of organic sulphur

Leachate composition

	Moisture	VS	Ash	Salt	w/w % of feedstock
				% of	
	% total wt.	% d	W	ash	
Ensiled whole					
leachate	92.3	38.8	61.2	43.6	7.8
Ensiled chopped					
leachate	92.2	49.2	50.8	45.9	3.2

- Leachate losses low 3.2-7.8% wet weight
- Leachate is mainly water, ash and salt
- VS losses low 2.8-8.4% of original VS
- Chopping reduces overall leachate losses

Energy Losses due to Ensiling

<8 % original Higher</p> Heating Value (AFTER 60 DAYS STORAGE)

Effect of Ensilage on CH₄ Yield

Methane	production
	1 \ (C

	L CH ₄ g ⁻¹ VS		
	Average	StdV	
Untreated	0.10	0.05	
Ensiled whole	0.11	0.08	
Chopped prior to ensiling	0.06	0.01	

No statistically significant effect on methane yields

UK Roadmap for Algal Technologies

Main opportunity in the UK are In the short to medium term

High value products
➢ Condiments and premium sea vegetables
➢ Hydrocolloids
➢ Bioactives

SCHLARB-RIDLEY, B. & PARKER, B. 2013. A UK roadmap for algal technologies. NERC-TSB.

Alginates

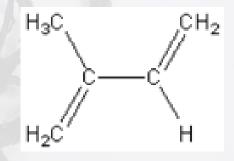
- Major component of the cell-wall of brown algae
- Worldwide annual production 30,000 tonnes

• Yield is relatively low, 5-11% from *S. Muticum* compared to 16 -30% for commercially exploited brown algae

Critchley AT *et al.*(1986) An account of the attempted control of an introduced marine alga, *Sargassum-muticum*, in southern England Biological Conservation 35:313-332 Gonzalez-Lopez N *et al.*((2012) Hydrothermal fractionation of *Sargassum muticum* biomass J Appl Phycol 24:1569-1578 Liu F *et al.*((2013) Intraspecific genetic analysis, gamete release performance, and growth of *Sargassum muticum* (Fucales, Phaeophyta) from China Chin J Ocean Limnol 31:1268-1275 Rehm BHA (ed) (2009) Alginates: Biology and Applications. Microbiology Monographs, , vol 13. Springer, Heidelberg. Zhao FJ *et al.*((2008) Genetic structure analysis of natural *Sargassum muticum* (Fucales, Phaeophyta) populations using RAPD and ISSR markers J Appl Phycol 20:191-198

Sulphated Carbohydrates

- Chemically very different from land plants
- S. muticum 8% dw
- Anticoagulant
- Antiviral
- Inhibiting parasite, Toxoplasma gondi


Phenolics

- Phenolic compounds play a primary role in the structure of seaweed cell walls, and are a chemical defence against grazers
- *S. muticum* > 5% polyphenols
- Antibacterial
- Antioxidant

Terpenes & Terpenoids

50,000 have been isolated from algae, terrestrial, and fungi

Predominate new compounds isolated from brown seaweed in 2013

isoprene

Carotenoids

Do I

- Fucoxanthin
- antioxidant,
- anti-inflammatory
- anti-obesity,
- antitumor

Biorefinery

Fucoxanthin € 9000 g⁻¹

The seaweed made the world.

John B. Keane (Irish Writer)

Seaweed has potential But challenges remain

Publications

- Milledge JJ, Harvey PJ (2016) Golden-tides: problem or golden opportunity? The valorisation of Sargassum from beach inundations J Marine Sci and Eng
- Milledge JJ, Harvey PJ (2016) Ensilage and anaerobic digestion of Sargassum muticum J Appl Phycol
- Milledge JJ, Harvey PJ (2016) Potential process 'hurdles' in the use of macroalgae as feedstock for biofuel production in the British Isles Journal of Chemical Technology & Biotechnology
- Milledge JJ, Nielsen BV, Bailey D (2015) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum Rev Environ Sci Biotechnol 15:67-88
- Milledge JJ, Staple A, Harvey P (2015) Slow Pyrolysis as a Method for the Destruction of Japanese Wireweed, *Sargassum muticum* Environment and Natural Resources Research 5:28-36
- Milledge JJ, Smith B, Dyer P, Harvey P (2014) Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass Energies 7:7194-7222

A large number of different sources of information have been used in this presentation. Citations for all the information can be found in the publications listed above. Thank you to all those who have published data that is included in this presentation

Acknowledgements

- High Value Chemicals from Plants
- The Engineering and Physical Sciences Research Council EPSRC – MacroBioCrude
- IOTA Pharmaceuticals
- University of Greenwich colleagues

Photographic Credits

- Chris Wood, Marine Conservation Society
- H. Powell
- Steve Schoenherr
- Namibian Sun
- Kelly (Robinson) de Schaun

EPSRC

ΙΟΤΑ

Pharmaceuticals

Thank you

