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Abstract5

Predicting the effective thermo-mechanical response of heterogeneous materials such as composites,
using virtual testing techniques, requires imposing periodic boundary conditions on geometric
domains. However, classic methods of imposing periodic boundary conditions require identical
finite element mesh constructions on corresponding regions of geometric domains. This type of
mesh construction is infeasible for heterogeneous materials with complex architecture such as
textile composites where arbitrary mesh constructions are commonplace. This paper discusses
interpolation technique for imposing periodic boundary conditions to arbitrary finite element
mesh constructions (i.e. identical or non-identical meshes on corresponding regions of geometric
domains), for predicting the effective properties of complex heterogeneous materials, using a
through-thickness angle interlock textile composite as a test case. Furthermore, it espouses the
implementation of the proposed periodic boundary condition enforcement technique in commercial
finite element solvers. Benchmark virtual tests on identical and non-identical meshes demonstrate
the high fidelity of the proposed periodic boundary condition enforcement technique, in comparison
to the conventional technique of imposing periodic boundary condition and experimental data.
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1. Introduction8

Virtual tests can reduce the cost of experimental testing in the aerospace industry by 50% [1].9

Furthermore, virtual testing techniques are precluded from the physical limitations of conventional10

experiments such as specimen size, testing conditions etc. [2]. Thus, virtual testing is suitable for11

characterising the entire intrinsic mechanical response of composites. Nevertheless, the predictive12

fidelity of virtual testing is determined chiefly by the accuracy of the geometric domain, material13

models and imposed boundary condition(s) (BC) [2]. In comparison with common BCs such14
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as Dirchlet and Neumann BCs, periodic BC is the most efficient with respect to predictive15

accuracy, convergence rate and geometric domain size for virtual testing of heterogeneous ma-16

terials [3, 4]. However, imposing periodic BC on textile geometric domains is arduous because17

the classic implementation method requires homologous finite element meshes at the boundaries18

of a geometric domain. This homologous mesh requirement is difficult to satisfy for textile19

composites because of their complex geometric topologies which yield non-homologous boundary20

mesh constructions [5, 6]; therefore arbitrary mesh constructions are the norm in virtual testing21

of textile composites. Thus, it is desirable to develop techniques for imposing periodic BC on22

arbitrary mesh constructions amenable to textile composites.23

Nevertheless, some authors have devised techniques to generate homologous mesh construction on24

boundary surfaces of textiles. For example, Lomov and associates [5] used meshed shell structures25

to facilitate the generation of homologous meshes. Although, this technique requires a periodic26

geometric structure on boundary surfaces of the textile; thus it is inapplicable to a majority of27

textile structures. Other authors [7, 8] have adopted voxel mesh construction techniques to enforce a28

homologous mesh construction on boundary surfaces of textile composites. Voxel meshing, however,29

introduces numerical artefacts to geometric domains by virtue its discretisation process. These30

geometric artefacts inadvertently affect the predictive fidelity of such models. Thus, a more robust31

technique of imposing periodic BC to arbitrary conformal FE mesh constructions is necessary.32

Jacques and co-workers [6] proposed a technique for imposing periodic BC to arbitrary textile33

meshes. Jacques and co-workers introduced several reference nodes in a Euclidean grid strructure34

which were kinematically coupled to existing nodes on corresponding surfaces on the textile RVE.35

However, the use of Laplacian spatial averaging to determine the location of these reference36

nodes violates the strict enforcement of spatial ’homologousness’ between boundary surface pairs,37

which is a pre-requisite for PCBs. Thus, numerical artefacts can ensue from this anomaly which38

may become apparent in finite deformation regimes. Tyrus and associates [9] imposed periodic39

BC to arbitrary unidirectional (UD) composite meshes in 2D using polynomial interpolation40

techniques. The displacement fields of fibres and matrix were interpolated using linear and cubic41

interpolants, respectively. Recently, Nguyen and co-workers [4] generalised the technique of Tyrus42

and associates [9] and extended the formalisms to 3D cases of UD and particulate composites.43

The authors used Lagrange and piecewise cubic Hermite polynomial interpolants to determine44

the displacement fields along independent boundary edges. Displacement fields on RVE surfaces45

were interpolated using a bi-linear Coons patch formulation.46

In this communication, we describe and implement a dual-scale homogenisation model for pre-47

dicting the entire effective elastic properties of textile composites, using periodic BCs amenable to48

arbitrary textile meshes. We extend and implement a robust variant of the periodic BC method49

proposed by Nguyen and co-workers [4]. Furthermore, a method for implementing this technique50

in commercial FE solvers using conventional MPC equations is delineated, using ABAQUS’s FE51

solver as a case study. Section 2 recalls the essentials of downscaling and describes the proposed52

periodic BC technique amenable to arbitrary meshes. Section 3 describes a method for its FE53

implementation in commercial FE solvers. In Section 5, the proposed periodic BC method is54

validated. Lastly, Section 6 describes the adopted virtual testing technique used to determine55
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the entire effective elastic properties of textile composites.56

2. Periodic Boundary Condition (PBC)57

Consider a macroscopic continuum volume, Ωcontinuum, subjected to an arbitrary loading config-58

uration as shown in Fig 1.59

X∈Ωcontinuum

RVE
x∈ΩRVE Matrix, Ωm

Weft yarns, Ωwe
Warp yarns, Ωw

Binder yarns, Ωb

ΩRVE=Ωm+Ωwe+Ωw+Ωb

t

Figure 1: Schematic of isolation of an RVE domain, ΩRVE, from an arbitrarily loaded macroscopic domain,
Ωcontinuum.

Furthermore it is assumed that a local RVE volume, ΩRVE, with boundary, ∂ΩRVE, is sufficiently60

resolved at a randomly sampled macroscopic material point, X∈Ωcontinuum. In order to impose61

PBC on ΩRVE in R
N , where N is the dimensionality of the RVE’s solution space, N , ∂ΩRVE must62

consist of at least N pairs of faces. This is achieved by decomposing the entire boundary into63

two distinct parts: a positive part, ∂Ω+
RVE, and a negative part, ∂Ω−

RVE. Each corresponding pair64

of ∂Ω+
RVE and ∂Ω−

RVE have material points x+ and x
−, respectively, such that, x+

∈∂Ω+
RVE and65

x
−
∈ ∂Ω−

RVE. These have unit outward normals, n+=−n
−, respectively. Thus, the following66

relationship is satisfied67

∂Ω+
RVE∪∂Ω

−

RVE=∂ΩRVE. (1)

Periodic BC is imposed on ∂ΩRVE with the foregoing characteristics by enforcing periodicity of
boundary fluctuation fields, ũ, and anti-periodicity of boundary traction fields, t, such that

(∀x+
∈∂Ω+

RVE and x
−

∈∂Ω−

RVE) ũ(x+)=ũ(x−), (2)

(∀x+
∈∂Ω+

RVE and x
−

∈∂Ω−

RVE) t(x+)=−t(x−). (3)

In practice two different types of FE mesh construction exists: a homologous mesh construction and
a non-homologous mesh construction. Homologous FE meshes satisfy specific conditions such that

#∂Ω+
RVE=#∂Ω−

RVE and (4)

(∀x+
∈∂Ω+

RVE and homologous x−

∈∂Ω−

RVE) n
+
×n

−=0, (5)
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where # represents the cardinality of a set. Imposing PBC on homologous meshes is achieved by
enforcing only Eqn (2) using classic methods that kinematically tie homologous boundary node
pairs [3]. This kinematic tying is achieved using multi-point constraint equations [10]. Conversely,
non-homologous FE meshes satisfy specific conditions such that

#∂Ω+
RVE

?
=#∂Ω−

RVE, and (6a)

(∃x+
∈∂Ω+

RVE and x
−

∈∂Ω−

RVE) n
+
×n

−

6=0. (6b)

The conditions described by Eqn (6) are illustrated in Fig 2. In these cases, the classic kinematic68

tying of node pairs is unsuitable; therefore, more robust methods such as that proposed herein69

should be utilised.70

(a) (b)

Figure 2: Typical examples of non-homologous FE meshes in 2D (a) Eqn (6a), and (b) Eqn (6b). The red and
light blue circles ( , ) represents nodes on the -ve and +ve RVE boundaries, ∂Ω−

RVE
and ∂Ω+

RVE
, respectively.

The black circles ( ) represents vertex nodes which are shared by ∂Ω−

RVE
and ∂Ω+

RVE
.

2.1. Imposing PBC on Arbitrary FE Meshes71

The underlying premise of the proposed periodic BC technique hinges on the proposition that
the displacement field of ∂ΩRVE can be interpolated. Interpolation functions, D(s), are adopted
such that Eqn (2) is satisfied. To this end, the following conditions are evoked to interpolate the
displacement fields of the negative and positive parts of ∂ΩRVE, respectively

u(s)−=D(s)=
n

∑

k=1

Nk(s)ak, and (7)

u(s)+=D(s)+εεε(x+
−x

−), (8)

where Nk(s) for k∈{k=1,2,···,n} are shape functions which solely depend on spatial variable(s),72

s, ak represents independent variables, εεε is the strain tensor imposed at the continuum scale,73

and (x+
−x

−) depends of the RVE’s dimensions. Therefore the displacement field of ∂ΩRVE, is74
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determined from the independent variables ak and the applied far-field continuum scale strain εεε.75

The independent variables are selected as DOFs of specific nodes located at ∂Ω−

RVE: these nodes76

are herein called independent nodes..77

In R
3, ΩRVE may be decomposed into edges and surfaces. Therefore, two different kinds of78

polynomial interpolants are necessary to interpolate ΩRVE in R
3: an edge interpolant and a surface79

interpolant. In principle, many univariate interpolation functions suffice for interpolating the80

displacement field of an RVE’s edge; however, a piecewise cubic Hermite spline is adopted in this81

work because of its versatility [11]. Similarly, many bivariate interpolation functions suffice for82

interpolating the displacement field of an RVE’s surface; however, a piecewise linear triangulation83

interpolation is adopted in this work because of its versatility [11]. These interpolants are discussed84

in Section 2.1.1 and Section 2.1.2, respectively.85

2.1.1. Piecewise Cubic Hermite Interpolation for RVE Edges86

To implement a piecewise cubic Hermite interpolant for an RVE’s Edge, the edge is decomposed into
n segments Si−1 for i∈{1,2,···,n} defined from n+1 triples {(ξ0,u0,θθθ0),···,(ξn,un,θθθn)}. Subsequently,
the displacement field in each segment is interpolated using a third order Hermite polynomial:

H1(ζ)=1−3ζ2+2ζ3, (9)

H2(ζ)=l(ζ−2ζ2+ζ3), (10)

H3(ζ)=3ζ2−2ζ3, (11)

H4(ζ)=l(−ζ2+ζ3), (12)

where ζ(ξ)= ξ−ξi−1

l
, l=ξi−ξi−1 and ξi−16ξ6ξi. Thus, the displacement field in each segment87

is represented as88

u(ξ)=H1(ζ(ξ))ui−1+H2(ζ(ξ))θθθi−1+H3(ζ(ξ))ui+H4(ζ(ξ))θθθi, (13)

which can be written concisely in matrix form89

u(ξ)=Ñq̃, (14)

where Ñ is the local shape function matrix for the interpolant, and q̃=
[

u
T
i−1 θθθ

T
i−1 u

T
i θθθTi

]

is the90

local vector of independent variables within each segment. Fig 3 shows a schematic representation91

of implementing the PBC interpolation technique for RVE edges using univariate polynomial92

interpolation functions.93

2.1.2. Piecewise Linear Triangulation Interpolation for RVE Surfaces94

To implement a piecewise linear triangulation interpolant for an RVE’s surface, the surface is
decomposed into a collection of n triangles Ti for i∈{1,2,···,n} which define a triangulation P . The
number of triangles, n, in the triangulation, P , is defined as n=2k−b−2, where k is the number
of points in P and b is the number of points in P that lie on the boundary of the convex hull of P .
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Figure 3: Schematic showing the implementation of PBC interpolation technique for RVE edges using univariate
polynomial interpolation functions where u represents a displacement field, ε represents the macroscopic strain
tensor and xNi

represents a material point of node Ni for i∈{A,B,C,D}.

Many different triangulation techniques may be used to decompose the RVE’s surface [11]. This
work adopts a Delaunay triangulation because it produces optimally shaped triangles which are
necessary for good interpolation [11]. Subsequently, the displacement field within each triangle,
with vertices v1,v2 and v3, is interpolated using a linear barycentric polynomial:

B1(ξ,η)=
area(v(ξ,η),v2(ξ,η),v3(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (15)

B2(ξ,η)=
area(v(ξ,η),v1(ξ,η),v3(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (16)

B3(ξ,η)=
area(v(ξ,η),v1(ξ,η),v2(ξ,η))

area(v1(ξ,η),v2(ξ,η),v3(ξ,η))
, (17)

where B1+B2+B3=1. Thus, the displacement field within each triangle is represented as95

u(ξ,η)=B1(ξ,η)uv1+B2(ξ,η)uv2+B3(ξ,η)uv3, (18)

which can be written concisely in matrix form96

u(ξ,η)=Ñq̃, (19)
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where Ñ is the local shape function matrix for the interpolant, and q̃=[uv1 uv2 uv3] is the local97

vector of independent variables within each triangle. Fig 4 shows a schematic representation of im-98

plementing the PBC interpolation technique for RVE surfaces using piecewise linear triangulation99

interpolation functions.100

u
−β=

f(ξ,η,u
N

T
k

j

,

uNA
,uNB

,uNC
,uND

)

u
+β = f(u−β(ξ,η),ε,
uNE

,uNF
,uNG

,uNH
)

T6 T5

T4 T3

T2
T8

T10 T9

T15

T11
T7

T12

T1 T14

T16
T17

T13

NA

NB

NC

ND

NE

NF

NG

NH

η

ξ

β

uNi
=f(ε,xNi

) for i∈{A,B,···,H}

Figure 4: Schematic showing the implementation of PBC interpolation technique for RVE surfaces using
piecewise linear triangulation interpolation functions. Note that u represents a displacement field, ε represents
the macroscopic strain tensor, xNi

represents a material point of node Ni for i∈{A,B,···,H} and u
N

Tk
j

represents

the displacement field of node Nj in triangle Tk for i∈{1,2,3} and k∈{1,2,···,17}.

3. FE implementation of PBC Enforcement for Arbitrary Meshes101

Directly implementing Eqns (8), (14) and (19) in R
3 within commercial FE solvers presents two102

major challenges. First, the dependent nodes shared by two or more faces (i.e. edge and vertex103

nodes) are over-constrained because each node has uniquely defined DOFs which must not be104

specified more than once. Therefore, the constraint equations for these shared nodal sets must105

be treated carefully. This requires proper decomposition of nodal sets on, ∂ΩRVE, to preclude106

repetition. Second, the independent ’rotation’ terms in the Hermite shape functions and the εεε107

are naturally inaccessible in the FE problem. These inaccessible DOFs are introduced to the FE108

problem as additional DOFs using supplementary nodes.109

3.1. Decomposition of RVE domain ∂ΩRVE110

Consider ∂ΩRVE of a parallelepiped in R
3 to be imposed with PBC as shown in Fig 5. The YZ111

plane located at the minimum X dimension represents the negative X-axis boundary, ∂ΩX−

RVE.112
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Similarly, the YZ plane located at the maximum X dimension represents the positive X-axis113

boundary, ∂ΩX+

RVE. Similar arguments apply for the other surfaces of the RVE as shown in Fig 5.114

The aforementioned surfaces of the RVE’s boundary are decomposed further into a set of vertex,115

edge and internal surface regions.

∂ΩX−

RVE
∂ΩX+

RVE

(a)

∂ΩY−

RVE ∂ΩY +

RVE

(b)

Z

X

Y
∂ΩZ−

RVE

∂ΩZ+

RVE

(c)

Figure 5: Schematic of nodal decomposition of ∂ΩRVE, in R
3 (a) ∂ΩX−

RVE and ∂ΩX+

RVE, (b) ∂Ω
Y −

RVE and ∂ΩY +

RVE,

and (c) ∂ΩZ−

RVE and ∂ΩZ+

RVE.

116

3.1.1. Identification of RVE vertex regions117

Vertex regions of the RVE are shared by three mutually perpendicular surfaces and are isolated118

as follows119

∂ΩX−Y−Z−

RVE =∂ΩX−

RVE∩∂Ω
Y−

RVE∩∂Ω
Z−

RVE,

∂ΩX+Y−Z−

RVE =∂ΩX+

RVE∩∂Ω
Y−

RVE∩∂Ω
Z−

RVE,

...

∂ΩX−Y +Z+

RVE =∂ΩX−

RVE∩∂Ω
Y +

RVE∩∂Ω
Z+

RVE.

(20)

The vertex regions defined in Eqn (20) are depicted schematically in Fig 6.120
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∂ΩX−Y−Z−

RVE

∂ΩX−Y +Z−

RVE

∂ΩX+Y−Z−

RVE
∂ΩX+Y +Z−

RVE

∂ΩX−Y−Z+

RVE

∂ΩX−Y +Z+

RVE
∂ΩX+Y−Z+

RVE

∂ΩX+Y +Z+

RVEZ

X

Y

Figure 6: Isolation of 8 vertex regions, ∂ΩX−Y −Z−

RVE , ∂ΩX+Y −Z−

RVE , ∂ΩX+Y +Z−

RVE , ∂ΩX−Y +Z−

RVE , ∂ΩX−Y −Z+

RVE ,

∂ΩX+Y −Z+

RVE ,∂ΩX+Y +Z+

RVE ,∂ΩX−Y +Z+

RVE , on ∂ΩRVE.

3.1.2. Identification of RVE edge regions121

Independent edge regions of ∂ΩRVE, shared by two mutually perpendicular faces, are isolated as122

follows123

∂ΩY−Z−

RVE =
(

∂ΩY−

RVE∩∂Ω
Z−

RVE

)

\

(

∂ΩX−Y−Z−

RVE ∪∂ΩX+Y−Z−

RVE

)

,

∂ΩY +Z−

RVE =
(

∂ΩY +

RVE∩∂Ω
Z−

RVE

)

\

(

∂ΩX−Y +Z−

RVE ∪∂ΩX+Y +Z−

RVE

)

,

...

∂ΩX+Y−

RVE =
(

∂ΩX+

RVE∩∂Ω
Y−

RVE

)

\

(

∂ΩX+Y−Z−

RVE ∪∂ΩX+Y−Z+

RVE

)

.

(21)

The edge regions defined in Eqn (21) are depicted schematically in Fig 7.124

3.1.3. Identification internal surface regions on ∂ΩRVE125

Internal surface regions on ∂ΩRVE are isolated as follows126

∂ΩX−int
RVE =∂ΩX−

RVE\

(

∂ΩY−

RVE∪∂Ω
Y +

RVE∪∂Ω
Z−

RVE∪∂Ω
Z+

RVE

)

,

∂ΩX+int
RVE =∂ΩX+

RVE\

(

∂ΩY−

RVE∪∂Ω
Y +

RVE∪∂Ω
Z−

RVE∪∂Ω
Z+

RVE

)

,

...

∂ΩZ+int
RVE =∂ΩZ+

RVE\

(

∂ΩX−

RVE∪∂Ω
X+

RVE∪∂Ω
Y−

RVE∪∂Ω
Y +

RVE

)

.

(22)

The internal surface regions defined in Eqn (22) are depicted schematically in Fig 8.127
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∂ΩY−Z−

RVE
∂ΩY +Z−

RVE

∂ΩY +Z+

RVE

∂ΩY−Z+

RVE

(a)

∂ΩX−Z−

RVE

∂ΩX+Z−

RVE

∂ΩX+Z+

RVE

∂ΩX−Z+

RVE

(b)

Z

X

Y

∂ΩX−Y−

RVE

∂ΩX+Y−

RVE

∂ΩX+Y +

RVE

∂ΩX−Y +

RVE

(c)

Figure 7: Isolation of 12 RVE edge regions; edges aligned along the principal (a) X− direction:

∂ΩY −Z−

RVE ∂ΩY +Z−

RVE ∂ΩY +Z+

RVE , and ∂ΩY −Z+

RVE (b) Y− direction: ∂ΩX−Z−

RVE ∂ΩX+Z−

RVE ∂ΩX+Z+

RVE and ∂ΩX−Z+

RVE , and

(c) Z− direction: ∂ΩX−Y −

RVE ∂ΩX−Y +

RVE ∂ΩX+Y +

RVE and ∂ΩX+Y −

RVE .

Eqns (20)–(22) ensure that no decomposed boundary region is a proper subset of another; thus,128

eliminating the possibility of over-constraining ∂ΩRVE.129

3.2. Identification of independent vertex, edge and internal surface regions on ∂ΩRVE130

Having decomposed ∂ΩRVE, proper enforcement of PBC to requires the definition of two distinct131

sets of boundary regions: independent and dependent regions, respectively. Dependent regions are132

obtained by translational symmetry of independent regions. In this work, regions comprising ∂Ω−

RVE133

are regarded independent regions. Furthermore, to prevent over-constraint of regions mutually134

present in ∂Ω−

RVE and ∂Ω+
RVE, only a subset of ∂Ω−

RVE are considered an independent. Considering135

∂ΩRVE in Fig 5, a region is considered independent ⇔ ∂Ω−

RVE∩∂Ω
+
RVE=∅. Thus, in honouring136

this condition, independent node, edge and surface regions of this RVE are shown in Figs 6–8.137
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∂ΩX−int
RVE

∂ΩX+int
RVE

(a)

∂ΩY−int
RVE ∂ΩY +int

RVE

(b)

Z

X

Y

∂ΩZ+int
RVE

∂ΩZ−int
RVE

(c)

Figure 8: Isolation of 6 RVE internal surfaces regions, (a) internal X surfaces regions corresponding to ∂ΩX−

int
RVE

and ∂ΩX+
int

RVE , (b) internal Y surfaces regions corresponding to ∂ΩY −

RVE and ∂ΩY +

RVE, and (c) internal Z surfaces

regions corresponding to ∂ΩZ−

RVE and ∂ΩZ+

RVE.

3.3. Application of multi-point constraint equation to the RVE domain ∂ΩRVE138

The segregation of independent and dependent boundary regions of the RVE, performed in the139

preceding paragraph, permits the proper implementation of periodic BC on the RVE without140

over constraints. In practice, the periodic BC given in Eqns (8), (14) and (19) represent non-141

homogeneous linear multi-point constraints (MPCs). The canonical form of representing these142

MPCs in FE solvers is143

A1u
A
i +Â1û

Â
i +A2u

B
j +Â2û

B̂
j +···+ANu

R
k +ÂM ûR̂j =0, (23)

where uRk represents the FE nodal variable (e.g. displacement) at node R, degree of freedom i,144

and the coefficient AN determines the relative magnitude of contribution from its conjugate nodal145

variable to the constraint equation, for i,j,k∈{1,2,3}. The terms with hats ‘ˆ’ in Eqn (23) are146

associated with supplementary nodes introduced into the FE problem. These supplementary147

nodes are not attached to any element within the original model being analysed but are only148

introduced to facilitate implementation of the constrain equations. Therefore, the nodal variable149

of these supplementary nodes can be used to introduce the independent rotation terms in the150

Hermite shape functions and the continuum strain tensor components; for example, û≡θθθ or û≡εεε.151

Considering Eqns (8), (14) and (19) with respect to Eqn (23), the sets of MPCs the enforce the
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periodic BC to the cubical/parallelipipied RVE with an arbitrary FE mesh are

u
∂ΩX
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Y
−

Z
−

RVE

i −u
∂ΩX

−

Y
−

Z
−

RVE

i −(x
∂ΩX

+
Y
−

Z
−

RVE

j −x
∂ΩX

−

Y
−

Z
−

RVE

j )ûε̂
i

j =0,

u
∂ΩX

+
Y
+
Z
−

RVE

i −u
∂ΩX

−

Y
−

Z
−
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j )ûε̂
i

j =0,

u
∂ΩX

−

Y
−

Z
+

RVE

i −u
∂ΩX

−

Y
−

Z
−

RVE

i −(x
∂ΩX

−

Y
−

Z
+

RVE

j −x
∂ΩX

−

Y
−

Z
−

RVE

j )ûε̂
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where ε̂i for i∈{1,2,3} represents supplementary nodes which are used to enforce the continuum152

strain tensor on the RVE.153
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4. Computational Homogenisation154

Computational homogenisation is used to bridge Ωcontinuum and ΩRVE. The principal aim is to
obtain the continuum scale Cauchy stress, σ from an imposed continuum strain ε. Consequently,
continuum scale parameters such as effective elastic constants are obtained thereafter. It is
assumed that ΩRVE is in equilibrium such that

∂σij
∂xj

=0 ∀x∈ΩRVE, and (25)

σijnj=ti ∀x∈∂ΩRVE. (26)

Based on classical averaging theory, σij, and εij, are defined as the volume average of the
corresponding RVE scale stresses, σij, and strains, εij, given by

σij=
1

V

∫

ΩRVE

σijdV , and (27)

εij=
1

V

∫

ΩRVE

εijdV . (28)

The principle of virtual work to homogenise the response of ΩRVE is given by [12]155

δWext+δWint=0, (29)

where, δWext is the virtual external work performed by external loads on ΩRVE and δWint is the156

virtual internal work performed by the average Cauchy stresses within ΩRVE. The external virtual157

work can be expressed as158

δWext=

∮

∂ΩRVE

σiknkδuidS=

∮

∂ΩRVE

tiδuidS, (30)

where δui represents a virtual displacement in the i direction. The Cauchy stress is work conjugate159

to true strain, hence the internal virtual work is expressed as160

δWint=−V σijδεij. (31)

Combining Eqns (29)–(31) yields161

∮

∂ΩRVE

tiδuidS=V σijδεij. (32)

In this work, the components continuum scale strain tensor, which drive the deformation of the162

RVE, are introduced via the nine degrees of freedom of the supplementary nodes, ε̂i, such that163

ûε̂
i

j =εij. (33)
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Therefore, the external virtual work can be in terms of the degrees of freedom of the supplementary164

nodes, and their work conjugate forces, Υi
j , such that,165

δWext=Υ̂i
jδû

ε̂i

j , (34)

where Υi
j is the reaction force of supplementary node i at degree of freedom j corresponding to166

its assigned displacements. Using Eqns (31) and (34), the macroscopic Cauchy stress becomes167

σij=
Υ̂i

j

V
. (35)

To predict the effective elastic properties at Ωcontinuum, the relationship between the stresses and168

strains for an orthotropic material is given by169

εij=Sijklσij, (36)

where Sijkl represents the compliance of the material from which its effective elastic constants170

are retrieved [3].171

5. Validation of PBC Enforcement for Arbitrary Finite Element Meshes172

Evaluating the robustness of the proposed PBC enforcement technique necessitates a comparison173

between predictions obtained from its implementation and the classic PBC enforcement by kine-174

matic tying of nodal pairs [3]. For the purpose of comparison with PBC enforcement by kinematic175

tying, a homologous RVE mesh was considered. However, for the case of a non-homologous176

mesh, only the proposed PBC enforcement using polynomial interpolation was amenable (see177

Fig 9). For this validation analysis, we adopt a unidirectional (UD) composite. In this validation178

exercise, a UD composite was selected because the FE mesh generation of such RVE’s can be179

easily controlled to produce homologous or non-homologous Besides, since the proposed technique180

is applicable to general FE mesh constructions, the validity of the technique can be scrutinised181

for both homologous and non-homologous mesh constructions.182

5.1. Test material for PBC validation183

The selected test material for the validation analysis is a carbon fibre-reinforced epoxy composite184

(T300/BSL914C) with a 60% fibre volume fraction (i.e. Vf=60%), used in the world-wide failure185

exercise [13]. This composite was chosen because experimental data on eight, out of the nine186

independent effective elastic properties, were available. The properties of constituents comprising187

T300/BSL914C are reported in Tab 1.188
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Table 1: Mechanical properties of constituents comprising T300/BSL914C with Vf =60% [13].

Elastic constant Fibre (T300) Matrix (BSL914C)

Longitudinal modulus (GPa), E11 230 4
Transverse modulus (GPa), E22 3.45 4
In-plane shear modulus (GPa), G12 15 1.481
Transverse shear modulus (GPa), G23 7 1.481
Major Poisson’s ratio, ν12 0.2 0.35

5.2. Geometric model generation and set-up189

The spatial morphology of fibres in typical UD composites is seemingly random [3]. However, most190

geometric algorithms for generating random spatial morphologies are unsuitable for generating191

RVE’s with Vf&50% [3]. Hence, an in-house UD geometric modelling algorithm, HEXGenRVE,192

was used to generate a hexagonally packed UD RVE for this work.193

5.3. Results and discussion of validation exercise194

The experimental data alongside predictions from the various PBC enforcement techniques are195

reported in Tab 2. Furthermore, computational FE contour plots from the different types of196

periodic BC enforcement techniques are depicted in Figs 10–12.197

Y

X

(a)

Y

X

(b)

Z

X

(c)

Z

X

(d)

Figure 9: Illustration of the non-homologous mesh of T300/BSL914C (a) ∂ΩZ−

RVE, (b) ∂Ω
Z+

RVE, (c) ∂Ω
Y −

RVE, and

(d) ∂ΩY +

RVE

For the homologous mesh, predictions from the periodic BC enforcement by kinematic tying198

and the proposed polynomial interpolation technique coalesce qualitatively and quantitatively.199
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This coalescence is expected in this special case because for a homologous mesh where the entire200

nodes on the independent boundary regions are used as the independent degrees of freedom in the201

interpolation functions, the method reduces to a kinematically tied case periodic BC enforcement.202

Therefore, the kinematic tying periodic BC enforcement technique is a degenerate form of the203

proposed polynomial interpolation PBC technique for homologous meshes provided all the entire204

independent nodal regions of the RVE is used in the interpolation functions. Nevertheless,205

predictions based on the non-homologous and homologous RVEs equally coalesce qualitatively206

and quantitatively. Although negligible differences are present within the FE contour plots, these207

differences stem from inevitable discretisation errors inherent within the RVEs due mesh differences.208

The similarities between predictions from the homologous and non-homologous mesh is recovered209

because the proposed PBC enforcement technique by polynomial implementation faithfully210

reproduces the appropriate boundary constraints on the RVE. Consequently, this induces the exact211

stress-strain response within the RVE when compared with the PBC enforcement by kinematic212

tying which is verified by a comparison of the contour plots and deformations generated for the213

kinematic tying and polynomial interpolation cases (see Figs 10 and 12). Finally, all the predicted214

effective elastic constants agree excellently with experimental data because appropriate boundary215

conditions have been enforced. Therefore, this virtual testing technique is well-suited for use in216

determining a holistic range of effective elastic constants of continuous fibre reinforced composites.217

Table 2: Comparison of predicted effective elastic constants of T300/BSL914C (Vf = 60%) using different
implementations of PBC and experimental data [13].

Homologous mesh Non-homologous mesh

Elastic
constant

Experiment

PBC
enforcement by

kinematic
tying

PBC
enforcement by
polynomial
interpolation

PBC
enforcement by
polynomial
interpolation

E11 (GPa) 138 133 133 133
E22 (GPa) 11 10 10 10
E33 (GPa) 11∗ 10 10 10
ν12 0.28 0.23 0.23 0.23
ν13 0.28∗ 0.23 0.23 0.23
ν23 0.4 0.37 0.37 0.37
G12 (GPa) 5.5 4.2 4.2 4.2
G13 (GPa) 5.5∗ 4.2 4.2 4.2
G23 (GPa) 3.9∗∗ 3.3 3.3 3.3

∗ Transverse isotropy in the 2-3 plane is assumed.
∗∗ Computed based on transverse isotropy in the 2-3 plane by G23=

E22

2(1+ν23)
.

218

16



  

2

3 1

+2.315e+11

+2.127e+11

+1.940+11

+1.752e+11

+1.565e+11

+1.377e+11

+1.190+11

+1.002e+11

+8.146e+10

+6.272e+10

+4.397e+10

+2.522e+10

+6.469e+09

σ11

(a)

2

3 1

+2.315e+11

+2.127e+11

+1.940+11

+1.752e+11

+1.565e+11

+1.377e+11

+1.190+11

+1.002e+11

+8.146e+10

+6.272e+10

+4.397e+10

+2.522e+10

+6.469e+09

σ11

(b)

2

3 1

+2.315e+11

+2.127e+11

+1.938e+11

+1.750e+11

+1.561e+11

+1.373e+11

+1.184e+11

+9.959e+10

+8.074e+10

+6.189e+10

+4.304e+10

+2.419e+10

+5.345e+09

σ11

(c)

Figure 10: Comparison of FE contour plots illustrating longitudinal tensile deformation (i.e. ε11) of T300/BSL914C
(a) homologous mesh with PBC enforcement by kinematic tying, (b) homologous mesh with PBC enforcement
by polynomial interpolation, and (c) non-homologous mesh with PBC enforcement by polynomial interpolation.
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Figure 11: Comparison of FE von Mises contour plots illustrating transverse tensile deformation (i.e. ε22) of
T300/BSL914C (a) homologous mesh with PBC enforcement by kinematic tying, (b) homologous mesh with PBC
enforcement by polynomial interpolation, and (c) non-homologous mesh with PBC enforcement by polynomial
interpolation.
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Figure 12: Comparison of FE contour plots illustrating in-plane shear deformation (i.e. ε12) of T300/BSL914C
(a) homologous mesh with PBC enforcement by kinematic tying, (b) homologous mesh with PBC enforcement
by polynomial interpolation, and (c) non-homologous mesh with PBC enforcement by polynomial interpolation.
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6. Predicting the effective properties of textile composites with an arbitrary FE219

Mesh220

6.1. Test material221

Having validated the proposed PBC enforcement technique for arbitrary FE meshes, using a UD222

composite as a test case, the next step is to use this validated technique to predict the effective223

elastic properties of textile composites. The selected test material for the prediction analysis224

is a through-the-thickness angle-interlock composite (TTT-AIC) with low crimp and an epoxy225

matrix [14]. The mechanical properties of this material are reported in Tab 3. This composite was226

chosen because experimental data on four, out of the nine independent effective elastic properties,227

were available. The idealised geometry and geometric parameters of this TTT-AIC are reported228

in Fig 13 and Tab 4, respectively.229

Table 3: Mechanical properties of the constituents of the through-the-thickness angle-interlock textile composite [14].

Elastic constant Tenax HTA Tenax HTS RTM-6 Epoxy

Longitudinal modulus (GPa), E11 240 240 2.84
Transverse modulus (GPa), E22 14 14 2.84
In-plane shear modulus (GPa), G12 20 20 1.029
Transverse shear modulus (GPa), G23 10 10 1.029
Major Poisson’s ratio, ν12 0.3 0.3 0.38
Minor Poisson’s ratio, ν23 0.39 0.39 0.38

6.2. Textile geometric model generation230

An in-house textile composite generating algorithm, TextCompGen, was developed and imple-231

mented in MATLAB to generate textile RVEs. TextCompGen requires the following input data232

to generate a textile: (a) Textile fabric type (i.e. TTT-AIC), (b) Number of warp yarn layers,233

(c) Ratio of warp yarns per layer to the total number of binder yarns within the RVE, (d) Number234

of weft yarns that a binder yarn passes in the weft layer before reversing its direction, (e) Yarn235

width, height and spacing of the warp, weft and binder yarns, and (f) Yarn cross-sectional shape236

(e.g. Ellipse, Lenticular, Racetrack) of the warp, weft and binder yarns. FE-ready replicas of the237

geometric outputs from TextCompGen are created in ABAQUS/CAE using its native Python238

scripting commands (Fig 13 was generated using this algorithm).239

TextCompGen was designed to capture the principal features of the textile being studied without240

recourse to modelling all the intricate features commonly observed in textile composites. The241

principal features which ensure correspondence between the actual textile and geometric model are242

overall fibre volume fraction, o-Vf , and fabric thickness, H [15]. The overall fibre volume fraction243

is important because it determines the fabric’s areal density, matrix content and specific weight.244

Whilst the fabric thickness,H, is important because it directly relates to the o-Vf and it governs the245

through-thickness crimp of fabrics. However, it is difficult to match the experimentally observed246
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Figure 13: Idealised geometric model of the TTT-AIC fabric: (a) XY plane view, (b) Isometric view, and (c)
YZ plane view, and (d) XZ plane view.

and geometrically determined iy-Vf to yield the appropriate o-Vf . Thus, for the geometric models,247

an interplay between iy-Vf and y-Vf is necessary. Also, within the geometric model, maximum248

crimp of the surface weft yarns was enforced at the crossover regions between the binder and249

weft yarns to maintain the experimentally observed fabric thickness. Tab 4 reports a comparison250

between the geometric parameters/features of the actual and computational TTT-AIC fabric.251

Two well-known problems of performing virtual FE tests on consolidated textile composites are252

(a) discretisation and (b) representative virtual domain size. These problems stem from the charac-253

teristic complexities of textile topologies in conjunction with the appreciable size of textile repeating254

unit cells. Therefore, simplifications were invoked in the textile FEmodels to facilitate discretisation255

and improve solution times. To obviate discretisation problems whilst using a desirable hexahedral-256

dominated conformal mesh, rectangular cross-sections were adopted for the yarns within the257

TTT-AIC fabric. Furthermore, multiple geometric partitions were introduced within the geometric258

domain to generate simple cuboidal regions readily amenable to conformal meshing. Finally, only259

one binder yarn was incorporated within the discretised FE geometric model of the TTT-AIC fabric.260

6.3. Textile FE model set-up and homogenisation technique261

In analysing the textile composite this study adopted a so-called dual-scale homogenisation method.262

This method requires analyses at two length-scales: one at the micro-scale and the other at a263

meso-scale. First the yarns were decomposed into their primary constituents: matrix and fibre.264
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Table 4: Comparison between the geometric features of the actual and computationally-generated TTT-AIC fabric.

Geometric feature Actual Textile Computational Textile

Thickness, H (mm) 3 3.01
Warp intra-yarn volume fraction, iy-V warp

f (%) 64.4 66.4

Warp fibre volume fraction, V warp
f (%) - 48.5

Weft intra-yarn volume fraction, iy-V weft
f (%) 63.6 65.6

Weft fibre volume fraction, V weft
f (%) - 47.2

Binder intra-yarn volume fraction, iy-V binder
f (%) 66.3 68.3

Binder fibre volume fraction, V binder
f (%) 6 4.3

Overall fibre volume fraction, o-Vf (%) 51 51
Areal density, ρareal (g/m2) - 4389
Warp cross-sectional shape [ ] [ ]
Weft cross-sectional shape ( ) [ ]
Binder cross-sectional shape ( ) [ ]
Surface weft yarn crimp moderate extreme

Thereafter, yarns were modelled at the micro-scale as, densely packed, orthotropic UD composites265

(i.e. an identical analysis technique was used in Section 5). Subsequently, the homogenised effective266

elastic constants extracted from the micro-scale analysis were used as inputs for the meso-scale267

continuum model for each yarn as reported in Tab 5. The arbitrary undulation of each yarn was268

considered by assigning discrete material orientations to each yarn within the fabric. Furthermore,269

the discrete matrix pockets at the meso-scale are modelled using an identical Hookean elastic model270

used in the micro-scale analysis. Finally, the homogenised effective elastic material properties271

extracted from the meso-scale analysis represents the required global material properties.272

Table 5: Predicted effective elastic constants of the warp, weft and binder yarns comprising the TTT-AIC.

Elastic constant Warp yarn Weft yarn Binder yarn

E11 (GPa) 155 153 160
E22 (GPa) 10.1 10.1 10.4
E33 (GPa) 10 9.97 10.3
ν12 0.33 0.33 0.33
ν13 0.33 0.33 0.33
ν23 0.32 0.32 0.32
G12 (GPa) 4.03 3.98 4.26
G13 (GPa) 3.89 3.84 4.13
G23 (GPa) 3.6 3.58 3.74
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6.4. Results and Discussion273

The experimental data alongside predictions from the proposed PBC enforcement technique by274

polynomial interpolation are reported in Tab 6. Additionally, contour plots of the full-field stress275

from FE tests are reported in Figs 14–16.276

The predicted Youngs modulus along the in-plane material directions (i.e. Exx and Eyy) from the277

virtual test corroborates experimental results. However, the virtual test marginally over-predicts the278

stiffness in both cases with a predictive discrepancy of about 2%. This over-predictionmay be borne279

from the regularity of the virtual model in comparison to the geometric variations inherent in the280

real material. Nevertheless, the current predictive fidelity is superior to those reported in previous281

work on textile reinforced composites where discrepancies between 10% to 40% were reported [16,282

17, 18, 19]. A plausible reason for the current high fidelity of the predicted effective material283

properties, especially in the in-plane material direction, stems from the properly enforced periodic284

BC on the textile domain as well as the dual-scale homogenisation strategy adopted in this work.285

In comparison to experiments, the current virtual test over-predicts the through-the-thickness286

Young’s modulus (i.e. Ezz), by about 36%. This discrepancy is in line with predictions from287

previous work on similar through-the-thickness reinforced fabric [20]. It is noted, however, that288

the experimental value for Ezz was inferred from a through-thickness compression test which289

introduces inherent experimental uncertainties of 15% [20, 21]. Furthermore, the overestimation290

of Ezz by the virtual test most likely stems from the combined assumption that the binder yarn291

follows a zig-zag path, and the surface weft yarns have maximum crimp. In practice, the binder292

yarn follows more curved trajectory and therefore possesses a higher undulation in the thickness293

direction of the fabric. As a result, the reinforcing effect of the binder yarn is not as pronounced294

as the current geometric model suggests. With respect to the surface weft yarns of the fabric, the295

maximum crimp enforced within the geometric model allows regions of the textile to experience296

the full longitudinal load-baring capacity of the weft yarns. Thus, this manifests as an exaggerated297

stiffness in the through-the-thickness direction of the virtual model In reality, the surface weft yarn298

experience moderate crimp; therefore, only a fraction of the longitudinal load-bearing capacity299

of the weft yarns is experienced in the thickness direction of the textile.300

There is a 73% discrepancy between the predicted in-plane shear modulus (i.e. Gxy) and the301

reported experimental data. The principal source of this discrepancy is most likely from the exper-302

imental data reported by the originating authors [14]. The authors performed a 45◦ off-axis tensile303

test on the TTT-AIC specimen; however, the mandatory data reduction steps necessary for this304

test method was not reported in their work, casting doubt on its veracity. Previous work on experi-305

mental determination of in-plane shear modulus [17] of a similar TTT-AIC fabric reported average306

values of about 4GPa. Furthermore, previous work on experimental and virtual characterisation307

of woven textile composites [21] reported that the shear moduli of these composites are similar to308

those of its constituent yarns. Hence, results from the current work is qualitatively, and to a large309

degree, quantitatively consistent with these previous findings on the in-plane shear modulus, (i.e.310

Gxy), of the composite. The predicted magnitudes of the through-thickness shear moduli (i.e. Gxz311

and Gyz) are equally similar to that of the in-plane shear modulus (i.e. Gxy) of the composite.312
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More important, the originating authors [14] did not report experimental data for the Poisson’s313

ratio of the composite. However, the current virtual test predicted the entire Poisson’s ratios314

and the reported magnitudes are qualitatively similar to those reported for a comparable woven315

textile composites [21].316

Table 6: Comparison of predicted effective elastic constants of the TTT-AIC textile using the proposed PBC
enforcement technique and experimental data [14].

Elastic constants Experiment Virtual test

Exx (GPa) 64 65.4
Eyy (GPa) 62 62.6
Ezz (GPa) 7 9.5
νxy - 0.045
νxz - 0.370
νyz - 0.380
Gxy (GPa) 11 2.98
Gxz (GPa) - 3.01
Gyz (GPa) - 3.17
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Figure 14: FE contour plots illustrating tensile deformation of the TTT-AIC along the weft direction (i.e. εyy)
(a) YZ view, and (b) Isometric View.

7. Conclusions317

A virtual testing framework for characterising the mechanical response of typical heterogeneous318

materials with a robust technique for enforcing periodic boundary condition has been presented.319

Periodic boundary condition is enforced by interpolating the displacement field on the RVE’s320

boundary utilising two piecewise interpolation techniques: (1) cubic Hermite interpolation and,321

(2) linear triangulation interpolation. A typical RVE in R
3 is properly decomposed into specific322

regional sets: (1) vertex regional sets, (2) edge regional sets, and (3) internal surface regional sets.323

Through the judicious use of geometric symmetry, each regional set is decomposed further into324

independent and dependent regional sets to preclude over-constraints of some node on the RVE’s325
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Figure 15: FE contour plots illustrating tensile deformation of the TTT-AIC along the through-thickness direction
(i.e. εzz) (a) YZ view, and (b) Isometric View.
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Figure 16: FE contour plots illustrating through-thickness shear deformation of the TTT-AIC (i.e. εyz) (a) YZ
view, and (b) Isometric view.

boundary. Subsequently, supplementary nodes are introduced into the FE problem which provide326

leverage to introduce constants for the interpolation functions and macroscopic strain tensor, using327

multi-point constraint equations. The cubic Hermite and linear triangulation interpolants are used328

to interpolate the displacement field of the RVE’s edges internal surface regions, respectively. A329

principal advantage of this periodic boundary condition enforcement technique is its applicability330

to an arbitrary FE mesh design: homologous or non-homologous. Therefore, it allows a flexible331

FE mesh design, especially for heterogeneous materials with complex geometric architectures such332

as textile composite, where homologous mesh designs are infeasible.333

To validate the veracity of the proposed periodic boundary condition enforcement technique, a334

unidirectional composite with readily controllable mesh design was analysed. Homologous and non-335

homologous mesh designs of the UD composite were analysed. For the homologous mesh design, a336

conventional technique using kinematic tying and the proposed interpolation technique were used to337

enforce periodic boundary conditions. Virtual tests showed that both techniques produced identical338

stress-strain fields and homogenised responses within the RVE. Whereas for the non-homologous339

mesh design, only the periodic boundary condition enforcement by interpolation was applicable. In340

this case, results showed that this technique produced similar stress-strain fields and homogenised341
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responses within the RVE in comparison to the homologous mesh case, barring negligible FE342

discretisation errors. Thus, in the case of a homologous mesh design the classic kinematic tying tech-343

nique of enforcing periodic boundary condition is a degenerate case of the interpolation technique344

discussed in this study; consequently, the interpolation technique is a superior technique for enforc-345

ing periodic boundary conditions because of its additional applicability to non-homologous meshes.346

Subsequent tests on a through-the-thickness angle interlock textile composite with a complex347

architecture, and consequently non-homologous mesh, produced results which were corroborated348

experimental data. Given the limitations of computational power and virtual geometric sizes,349

the current method is more accurate than the enforcement of Dirichlet boundary conditions350

which is usually considered for complex architectures with non-homologous meshes. Moreover,351

the current technique does not appreciably increase computational expenses because only a352

limited number of additional degrees of freedom are introduced in the FE problem. Thus, the353

analysis presented herein can be extended to more sophisticated aspects of heterogeneous material354

behaviour particularly for non-linear finite deformation.355
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