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Abstract Dengue fever has rapidly become the world’s most common vector-
borne viral disease. Use of endosymbiotic Wolbachia is an innovative technol-
ogy to prevent vector mosquitoes from reproducing and so break the cycle of 
dengue transmission. Note that the success of different strategies, such as pop-
ulation eradication and replacement, needs to choose different augmentations 
of Wolbachia infected mosquitoes, and not all field trials of mosquito releases 
can succeed. So a four dimensional pulse differential system, incorporating the 
effects of cytoplasmic incompatibility (CI) and the augmentation of Wolbachia 
infected mosquitoes with different sex, is proposed to describe the spread of 
Wolbachia in mosquito populations. We evaluated a series of relevant issues 
regarding the system, including tackling questions such as (a) how each pa-
rameter value contributes to the success of population replacement? (b) how 
different release quantities of infected mosquitoes with different sex affect the 
success of the two strategies? And (c) how the success of population suppres-
sion or replacement can be fulfilled to block the transmission of dengue fever?
The analysis of stability, bifurcation and sensitivity reveals the existence of for-
ward and backward bifurcations, multiple attractors and the contribution of 
each parameter on the success of the strategies. The results indicate that initial
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density of mosquitoes and the quantity of mosquito augmentation on different
sex have impacts on whether or not the strategies of population suppression
or replacement can be achieved. Therefore, successful strategies rely on select-
ing suitable strains of Wolbachia and carefully designing the programme of
mosquito augmentation.

Keywords Dengue fever · Wolbachia · Backward bifurcation · Mosquito
augmentation

1 Introduction

Dengue fever is one of the major public health problems in tropical and sub-
tropical regions, where almost 400 million infections are estimated to occur
each year (Bhatt et al. , 2013; Lambrechts et al. , 2015). People may be in-
fected with dengue more than once because it is caused by any one of four
related viruses (DENV1-4) which is transmitted by mosquitoes, especially
Aedes aegypti and Aedes albopictus (Rigau-Pérez , 2006). Dengue fever itself
is rarely fatal, but more severe forms, dengue haemorrhagic fever (DHF) and
dengue shock syndrome (DSS), cause 22, 000 deaths annually (WHO , 2012),
and mostly among children. In the absence of licensed vaccines or therapeu-
tic drugs, valid prevention of dengue diseases is restricted to the control of
the main mosquito vectors. However, traditional control measures have some
drawbacks more or less. For example, the extensive use of insecticides may
lead to insecticide resistance and major toxicological effects on human health
and environment (Ritter et al. , 1995; Zhang et al. , 2015c). Another com-
mon approach is source reduction of mosquito populations which involves the
destruction of mosquito oviposition sites. But it is hard to sustain such inter-
ventions successfully over large areas (Lambrechts et al. , 2015; Burattini et
al. , 2008).

The augmentation (release) of mosquito populations carrying particular
strains of endosymbiotic Wolbachia bacteria is proposed to be a promising
novel approach for dengue control that has been advanced in field trials (James
et al. , 2011; McGraw et al. , 2013; Hoffmann et al. , 2011). It has been esti-
mated that Wolbachia can infect up to 65% of insect species and approximately
28% of the surveyed mosquito species (Werren et al. , 2008; Kittayapong et al.
, 2000). They mainly live in the reproductive organs of their hosts, and they
can interfere with the insects’ reproductive mechanisms, through the processes
such as maternal transmission, cytoplasmic incompatibility (CI), male killing,
feminization and parthenogenesis, to facilitate their own survival. CI occurs
when Wolbachia infected male insects mate with Wolbachia uninfected females
which will produce non-viable offsprings, while other mates cannot be affected.
These female biased reproductive manipulations can drive a high frequency of
Wolbachia infections in wild populations (Hoffmann et al. , 2011).

In practice, two strategies have been proposed: population suppression
(eradication) and population replacement (Wolbachia infected insects estab-
lished and replacing Wolbachia uninfected ones). The success of the two strate-



Modeling the effects of augmentation strategies on the control of dengue fever 3

gies depends on the selection of Wolbachia strains and the design of the aug-
mentation of Wolbachia infected mosquitoes (Bull and Turelli , 2013). Based
on CI, the strategy of population suppression can be realized if only Wolbachia
infected males are inundatively released, as the successful suppression of Culex
pipiens populations in field tests (Laven , 1967). Some Wolbachia cannot only
successfully spread within mosquito populations but also may act as a ’vaccine’
to stop mosquitoes from replicating and transmitting dengue virus (Walker et
al. , 2011; Hoffmann et al. , 2011). So based on the mechanisms of CI and ma-
trilineal inheritance, the strategy of population replacement can be achieved
by inoculative releases of Wolbachia infected mosquitoes (Hoffmann et al. ,
2011; Walker et al. , 2011; Turelli , 2010; Yeap et al. , 2011).

The potential of Wolbachia strains as agents for the biological control of
pathogen transmission has drawn attention from both biological and mathe-
matical researchers. Recently, researchers in some countries have released or
intend to release mosquitoes infected with different strains of Wolbachia bac-
teria to block the spread of dengue virus. The first open releases of wMel Wol-
bachia infected mosquitoes were carried out in Yorkeys Knob and Gordonvale
in north-eastern Australia in 2011 (Hoffmann et al. , 2011). Hoffmann et al.
(2011) described how the wMel Wolbachia infection successfully invaded into
two natural A. aegypti populations, reaching near-fixation in a few months.
They also demonstrated that the frequency of Wolbachia infected mosquitoes
needs to exceed 30% for invasion. Based on the success of these field trials in
Australia, mosquitoes infected with wMelPop and wMel Wolbachia were also
released in Tri Nguyen Island, Vietnam, in April 2013 (failure) and May 2014
(success)(VED , 2014). Moreover, there have been other open releases of wMel
mosquitoes in Yogyakarta in Indonesia, Rio de Janeiro in Brazil and elsewhere.

Note that mosquito augmentation does not always occur as 1:1 sex ratio
of male to female. In 2014, the worst ever dengue outbreak is occurred in
Guangdong province, China, with more than 47, 000 cases (The Guardian ,
2015). Compared with the open field trials in other countries, there are two
procedures for the releases of Wolbachia infected mosquitoes in Shazai Island,
in Guangzhou. At first, since Mar. 12, 2015, only Wolbachia male (sterile)
mosquitoes were openly released with three times a week, and every time about
70, 000−100, 000 sterile mosquitoes released, to significantly reduce the density
of Wolbachia uninfected female mosquitoes (population suppression). In order
to fulfill a better suppression, the ratio of sterile male mosquitoes to wild
males was kept as 5 : 1 so that the mating rate among uninfected females and
sterile males was over 80%, and then their offsprings would not been hatched.
Next, Wolbachia infected female mosquitoes will be released for the success
of population replacement. Moreover, not all open field trials of mosquito
augmentation can been successful in the end. In this study, it is necessary
to develop a four dimensional impulsive model to investigate the
effect of the augmentation of Wolbachia infected mosquitoes with
different sex on the success of population eradication or replacement
for the control of dengue transmission. Based on the model, we
evaluate a series of relevant issues, including (a) how each parameter
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value contributes to the success of population replacement? (b) how
different release quantities of infected mosquitoes with different sex
affect the success of the two strategies? And (c) how the success of
population suppression or replacement can be fulfilled to block the
transmission of dengue fever?

The paper is organized as follows. In Section 2, based on pre-
vious works, we introduce the augmentation of Wolbachia infected
mosquitoes with different sex at regular pulse moments as a four di-
mensional impulsive system. The stability and permanence of peri-
odic solutions of the system with perfect transmission rate is proved
in Section 3. In Section 4, the existence of forward and backward
bifurcations is investigated by employing the bifurcation theory of
Lakmeche and Aarino (2000). In Section 5, we employ sensitivity
analysis to evaluate the contribution of each parameter on the two
output variables, then we study the effects of initial density, pulse
period and the quantity of mosquito augmentation with different
sex on the success of the two strategies by numerical simulations.
Some discussion is given in the last section.

2 Model formulation

In recent years, different mathematical models have been proposed to analyze
the spread of Wolbachia in populations, including discrete time models (Turelli
, 1994; Vautrin et al. , 2007; Haygood and Turelli , 2009), continuous time
models (Farkas and Hinow , 2010; Keeling et al. , 2003; Schofield , 2002;
Hughes and Britton , 2013; Zheng et al. , 2014), stochastic models (Jansen et
al. , 2008) and impulsive models (Zhang et al. , 2015b,c). From Keeling et al.
(2003), the total density of mosquito populations P is subdivided into four

classes, uninfected females FU , infected females FI , uninfected males MU and
infected males MI . We first assume that uninfected and infected individuals
have different natural birth rates, denoted as b1 and b2, respectively, and the
same natural death rate d. But infected individuals have an additional fitness
cost D(d+D > 0), either disadvantageous (D > 0) or advantageous (D < 0)
depending on mosquito species and Wolbachia strains (Zhang et al. , 2015b).
The bacterium is mostly passed from infected females to their offsprings with
a probability τ ∈ (0, 1]. The effect of the CI mechanism results in zygotic
death of potential offsprings with a probability q ∈ [0, 1] when an infected
male mates with a uninfected female. Then we have the following model.

dFU (t)
dt = (1− τ)b2FI + b1FU (1− qMI

MU+MI
)− dPFU ,

dMU (t)
dt = (1− τ)b2FI + b1FU (1− qMI

MU+MI
)− dPMU ,

dFI(t)
dt = τb2FI − (d+D)PFI ,

dMI(t)
dt = τb2FI − (d+D)PMI .

(1)

In order to study the effect of mosquito augmentation on the control of
dengue transmission, the dynamics of mosquito populations with continuous
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augmentation of Wolbachia infected mosquitoes was developed by Zheng et
al. (2014) using delay differential equations. They denoted FR and MR as
the densities of Wolbachia infected female and male mosquitoes released, re-
spectively. Then the dynamics of the released populations was modeled by the
following equations. {

dFR(t)
dt = −(d+D)PFR,

dMR(t)
dt = −(d+D)PMR,

(2)

with P = FU + MU + FI + MI + FR + MR. The dynamics of the other four
cases of mosquito populations was the same as in model (1). Similarly, Zheng
et al. (2014) proved that there existed a threshold for the success of Wolbachia
invasion. They also investigated the relationships of the minimal releasing of
infected mosquitoes and the waiting time with the time delay, and the waiting
time in relation to the sex ratio of released populations. Recently, impulsive
differential equation has been widely introduced in modelling the control of
epidemic diseases, integrated pest management and biological resource man-
agement (Hu et al. , 2009; Gourley et al. , 2007; Simons and Gourley , 2006;
Tang et al. , 2015; Xu et al. , 2014). Note that the releases of Wolbachia
infected mosquitoes are carried out at regular pulse moments, instead of con-
tinuous time interval, in the field trials (Hoffmann et al. , 2011). So a more
realistically impulsive differential equation was proposed in our previous work
(Zhang et al. , 2015b). Because nearly an identical sex ratio of Wolbachia in-
fected mosquitoes were augmented in some field trails (Hoffmann et al. , 2011),
we assumed MI/FI = MU/FU , and let I = FI + MI , U = FU + MU . Denote
that Wolbachia infected mosquitoes were augmented as the quantity series
ϕn > 0 at the corresponding impulsive point series (λn > 0, n = 1, 2, ...).
Then the dynamics of augmented mosquitoes was described as follows.

I(λ+
n ) = I(λn) + ϕn

U(λ+
n ) = U(λn),

}
t = λi, (3)

where the items I(λ+
n ) and U(λ+

n ) denoted the densities of infected and unin-
fected mosquitoes after pulse releases at the time λn, respectively. We revealed
that it was impossible for the success of population suppression. The effects of
the initial densities of mosquitoes, augmentation timings, augmentation quan-
tities and numbers of augmentations on the success of population replacement
were also investigated.

However, as mentioned in the introduction, the augmentation of Wolbachia
infected mosquito is often carried out with a fix pulse period, and it does
not always occur as identical sex ratio of male to female in some open field
trials, for example the open field releases in Shazai Island, in Guangzhou (The
Guardian , 2015). So in order to investigate how mosquito augmentation with
different sex affects the success of population suppression or replacement for
the control of dengue transmission, based on model (1), we assume that the
quantities of Wolbachia infected female and male mosquitoes are augmented
as θ1 > 0 and θ2 > 0, respectively at pulse moments λn(n = 1, 2, ...). Denote
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the augmentation period as a constant T and λn+1−λn = T for all n (n ∈ N ).
Then the release actions can be described as follows.

FU (nT+) = FU (nT ),
MU (nT+) = MU (nT ),
FI(nT

+) = I(nT ) + θ1,
MI(nT

+) = M(nT ) + θ2,

 t = nT, n ∈ N . (4)

Based on the above, in order to investigate how the mosquito augmentation
with different sex affect the success of population suppression or replacement
for the control of dengue fever, in this paper we propose a four dimensional
impulsive equations model to describe the dynamics of mosquito populations
as follows.

dFU (t)
dt = (1− τ)b2FI + b1FU (1− qMI

MU+MI
)− dPFU ,

dMU (t)
dt = (1− τ)b2FI + b1FU (1− qMI

MU+MI
)− dPMU ,

dFI(t)
dt = τb2FI − (d+D)PFI ,

dMI(t)
dt = τb2FI − (d+D)PMI ,

 t 6= nT, n ∈ N ,

FU (t+) = FU (t),
MU (t+) = MU (t),
FI(t

+) = FI(t) + θ1,
MI(t

+) = MI(t) + θ2,

 t = nT, n ∈ N ,

(5)
where parameter meanings are the same as in models (1) and (4), and more
details about parameter definitions are shown in Tables 1 and 2.

3 The stability and permanence of periodic solutions

In order to realize the success of population suppression or replace-
ment for the control of dengue transmission, it is necessary to ana-
lyze the existence and stability of periodic solutions of system (5).
Note that system (5) with perfect transmission rate may lead to
the success of complete population replacement. So in this section,
based on system (5) with perfect transmission rate, we first study
the threshold conditions for the existence and stability of Wolbachia
mosquito established periodic solution (WEPS), then we obtain the
condition for the permanence of Wolbachia uninfected mosquitoes.
Before obtaining these key results, we first need to give the proof
of Lemma 1 as follows.

Let τ = 1 for system (5), then its subsystem in the Wolbachia mosquito es-
tablished subspace XI = {(FI ,MI , FU ,MU ) : FI ≥ 0,MI ≥ 0, FU = 0,MU =
0} is as follows:

dFI(t)
dt = b2FI − (d+D)(FI +MI)FI ,

dMI(t)
dt = b2FI − (d+D)(FI +MI)MI ,

}
t 6= nT, n ∈ N ,

FI(t
+) = FI(t) + θ1,

MI(t
+) = MI(t) + θ2,

}
t = nT, n ∈ N .

(6)
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For t ∈ (nT, (n+ 1)T ], the solution of the above subsystem is solved as followsFI(t) = b2eb2(t−nT )FI(nT+)

2(d+D)(eb2(t−nT )−1)FI(nT+)−b2(d+D)(FI(nT+)−MI(nT+))(t−nT )+b2
+ θ1,

MI(t) = b2((eb2(t−nT )−1)FI(nT+)+MI(nT+))

2(d+D)(eb2(t−nT )−1)FI(nT+)−b2(d+D)(FI(nT+)−MI(nT+))(t−nT )+b2
+ θ2.

(7)
Denote Xn = FI(nT

+), Yn = MI(nT
+), then we have{

Xn+1 = b2eb2TXn
2(d+D)(eb2T−1)Xn−b2(d+D)T (Xn−Yn)+b2

+ θ1,

Yn+1 = b2((eb2T−1)Xn+Yn)
2(d+D)(eb2T−1)Xn−b2(d+D)T (Xn−Yn)+b2

+ θ2.
(8)

It follows from (8), denote (X,Y ) as one of its equilibria, then X and Y
satisfy the following quadratic equations{

L1 : A1X
2 + 2B1XY + C1Y

2 + 2D1X + 2E1Y + F1 = 0,
L2 : A2X

2 + 2B2XY + C2Y
2 + 2D2X + 2E2Y + F2 = 0,

(9)

where

A0 = eb2T , A1 = (d+D)(b2T − 2(A0 − 1)) < 0, B1 = −b2(d+D)
2 < 0, C1 = 0,

D1 = (2θ1(d+D)+b2)(A0−1)−b2θ1(d+D)T
2 , E1 = b2θ1(d+D)T

2 > 0, F1 = b2θ1 > 0,

A2 = (A0 − 1) > 0, B2 = −(A0−1)
2 < 0, C2 = 0,

D2 = A0(θ2−θ1)+θ1
2 , E2 = − θ12 < 0, F2 = 0.

Denote the invariants of the two conic curves as

I
(i)
1 = Ai + Ci, I

(i)
2 =

∣∣∣∣Ai BiBi Ci

∣∣∣∣ , I(i)
3 =

∣∣∣∣∣∣
Ai Bi Di

Bi Ci Ei
Di Ei Fi

∣∣∣∣∣∣ , i = 1, 2.

For the curve L1, by simple calculation, we obtain I
(1)
1 < 0, I

(1)
2 < 0

and I
(1)
3 = 2B1D1E1 − A1E

2
1 − B2

1F1. So it is a hyperbola provided I
(1)
2 <

0, I
(1)
3 6= 0, and it degenerates as two intersectant straight lines provided

I
(1)
2 < 0, I

(1)
3 = 0. Based on the first equation of (9), the curve L1 passes

through three fixed points P1(x1, 0), P2(x2, 0) and P3(0, y1), and one of its
asymptote is X = x3 with

x1 =
−D1+

√
D2

1−A1F1

A1
< 0, x2 =

−D1−
√
D2

1−A1F1

A1
> 0,

y1 = − 1
(d+D)T < 0, x3 = θ1 > 0.

Similarly for the curve L2, we have I
(2)
1 > 0, I

(2)
2 < 0 and I

(2)
3 = 2B2D2E2 −

A2E
2
2 . It is also a hyperbola provided I

(1)
2 < 0, I

(2)
3 6= 0, and it degenerates

as two intersectant straight lines provided I
(2)
2 < 0, I

(2)
3 = 0. Based on the

second equation of (9), the curve L2 passes through two fixed points P0(0, 0)
and P4(x4, 0), and one of its asymptote is X = x5 with

x4 = −A0(θ2 − θ1) + θ1

A0 − 1
, x5 = − θ1

A0 − 1
< 0.
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Note that if θ1 > θ2, then I
(2)
3 < 0, x4 > x5; if θ1 = θ2, then I

(2)
3 = 0, x4 = x5;

if θ1 < θ2, then I
(2)
3 > 0, x4 < x5.

According to above analysis, there exists one intersection for the two curves
in the first quadrant as show in Fig 1 if and only if x2 > x4 holds true, i.e.,

(A0 − 1)(−D1 +
√
D2

1 −A1F1) +A1(A0(θ2 − θ1) + θ1) < 0. (10)

So when (10) holds true, there exists only one positive equilibrium E∗1 =
(X∗1 , Y

∗
1 ) for system (8), which indicates its global stability. Based on the

relationship between systems (6) and (8), there exists a unique interior periodic
solution for system (6), denoted as (F̃I(t), M̃I(t)) with

F̃I(t) =
b2eb2(t−nT )X∗1

2(d+D)(eb2(t−nT )−1)X∗1−b2(d+D)(X∗1−Y ∗1 )(t−nT )+b2
,

M̃I(t) =
b2((eb2(t−nT )−1)X∗1 +Y ∗1 )

2(d+D)(eb2(t−nT )−1)X∗1−b2(d+D)(X∗1−Y ∗1 )(t−nT )+b2
.

(11)

When (10) is not formed, then there is no positive equilibrium for system (8),
which indicates that the solutions of subsystem (6) may tend to infinity and
it is not an expected result for mosquito releases in field trials. So in the work,
we focus on analyzing system (5) when (10) holds true. Then we have the
following Lemma.
Lemma 1. When (10) holds true, for subsystem (6), there exists a unique
positive T-periodic solution (F̃I(t), M̃I(t)), and for any solution (FI(t),MI(t)),
we have FI(t)→ F̃I(t) and MI(t)→ M̃I(t) as t→∞.

Based on Lemma 1, in the following, we mainly study the stability
of the WEPS (F̃I(t), M̃I(t), 0, 0) and the permanence of Wolbachia
uninfected mosquitoes for system (5) with perfect transmission rate.
For convenience, we first admit (F̃I(t), M̃I(t), 0, 0) on every impulsive interval
(nT, (n + 1)T ]. Then some notations are given, for example, A(t) be n × n
matrix and ΦA(·)(t) be the fundamental solution matrix of linear ordinary

differential system x
′
(t) = A(t)x(t), then denote r(ΦA(·)(t̄)) as the spectral

radius of ΦA(·)(t̄).
Now we utilize the theory of Floquet multiplier to prove the stability of

the WEPS. Let FI(t) = fi(t) + F̃I(t), MI(t) = mi(t) + M̃I(t), FU (t) = fu(t),
MU (t) = mu(t), y(t) = (fi(t),mi(t), fu(t),mu(t)), then we have the linear
system of (5) at the WEPS as follows.{

y
′
(t) = Q(t)y(t), t 6= nT, n ∈ N ,

y(t) = Py(t), t = nT, n ∈ N , (12)

where Q(t) =

(
V1 V2

O V3

)
and P =

(
P O
O P

)
with

V1 =

(
b2 − (d+D)(2F̃I + M̃I) −(d+D)F̃I

b2 − (d+D)M̃I −(d+D)(F̃I + 2M̃I)

)
,

V2 =

(
−(d+D)F̃I −(d+D)F̃I
−(d+D)M̃I −(d+D)M̃I

)
, V3 =

(
b1(1− q)− d(F̃I + M̃I) 0

b1(1− q) −d(F̃I + M̃I)

)
,
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O =

(
0 0
0 0

)
and P =

(
1 0
0 1

)
.

Let ΦQ(t) = (Φij)16i,j62 be the fundamental solution matrix of y
′
(t) =

Q(t)y(t), so Φ
′

Q(t) = Q(t)ΦQ(t) with ΦQ(0) = E4. Solving the equation yields

ΦQ(t) =

(
e
∫ t
0
V1(ν)dν Φ12(t)

0 e
∫ t
0
V3(ν)dν

)
, (13)

then we have

PΦQ(t) =

(
P e

∫ t
0
V1(ν)dν Φ12(t)

0 P e
∫ t
0
V3(ν)dν

)
. (14)

From the stability of (F̃I(t), M̃I(t)) for system (6), we have r(P e
∫ T
0
V1(ν)dν) <

1. Denote
R0 , r(P e

∫ T
0
V3(ν)dν),

so based on Floquet theory, the WEPS of system (5) is locally stable provided
that R0 < 1.

Next we aim to prove that if R0 > 1, then the permanence of Wolbachia
uninfected mosquitoes. It means there exists η > 0 such that lim

t→∞
inf RU (t) >

η > 0, R = F,M.
First we prove the following claim: there exists a positive constant η such

that lim
t→∞

supRU (t) > η > 0, R = F,M. Otherwise, there exists a t1 > 0 such

that 0 6 RU (t) < η for all t > t1.
By the last two equations of system (5), we have

dFI(t)
dt 6 b2FI − (d+D)(FI +MI)FI ,

dMI(t)
dt 6 b2FI − (d+D)(FI +MI)MI ,

}
t 6= nT, n ∈ N ,

FI(t
+) = FI(t) + θ1,

MI(t
+) = MI(t) + θ2,

}
t = nT, n ∈ N .

(15)

Consider the following comparison system
dx1

dt = b2x1 − (d+D)(x1 + x2)x1,
dx2

dt = b2x1 − (d+D)(x1 + x2)x2,

}
t 6= nT, n ∈ N ,

x1(t+) = x1(t) + θ1,
x2(t+) = x2(t) + θ2,

}
t = nT, n ∈ N .

(16)

It is the same with system (6), system (16) exists a globally asymptotically
stable positive periodic solution x̃ = (x̃1, x̃2) = (F̃I(t), M̃I(t)). By the com-
parison theorem, there exists t2 > t1 and ε1 > 0, such that FI(t) 6 x1(t) 6
x̃1(t) + ε1 = F̃I(t) + ε1 and MI(t) 6 x2(t) 6 x̃2(t) + ε1 = M̃I(t) + ε1 for t > t2.
By the first two equations of system (5), we have

dFU (t)
dt > b1FU

(
1− q(M̃I+ε1)

MU+M̃I+ε1

)
− d(F̃I + M̃I + 2ε1 + 2η)FU ,

dMU (t)
dt > b1FU

(
1− q(M̃I+ε1)

MU+M̃I+ε1

)
− d(F̃I + M̃I + 2ε1 + 2η)MU .

(17)
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If ε1 and η are sufficiently small, consider the following comparison system

du(t)

dt
= V3u(t), (18)

where u = (u1, u2), then u(t) = u(0)ΦV3(t) = u(0)e
∫ t
0
V3(ν)dν . When R0 > 1,

there exists t3 > t2 such that u1 → ∞ and u2 → ∞ for all t > t3. Thus
lim
t→∞

RU = ∞ (R = F,M), which contradicts to the boundedness of RU . So

the claim is proved, i.e., lim
t→∞

supRU (t) > η > 0, R = F,M.

From the claim, there are two options for discussion.
(a) RU (t) > η (R = F,M) for all large enough t;
(b) RU (t)(R = F,M) oscillates about η for all large t.

If case (a) occurs, then we complete the proof. In the following, we con-
sider option (b). Since lim

t→∞
supRU (t) > η > 0, R = F,M, there exists τ1 ∈

(n1T, (n1 + 1)T ] such that RU (τ1) > η. Similarly, there exists another τ2 ∈
(n2T, (n2 + 1)T ] such that RU (τ2) > η, where n2 − n1 > 0 is finite. Based on
system (5) in the time interval [τ1, τ2], we have{

dFU (t)
dt > −d(FU +MU + FI +MI)FU ,

dMU (t)
dt > −d(FU +MU + FI +MI)MU .

(19)

For system (5), when R0 > 1 holds true, then its solution RI(t) (R = F,M) is
either finite or infinite. It means that there exist positive constants ρi, i = 1, 2
such that ρ1 6 RI(t) 6 ρ2 for any t > t1 or RI(t)→∞(R = F,M) as t→∞.

If ρ1 6 RI(t) 6 ρ2(R = F,M), then system (19) becomes as{
dFU (t)
dt > −d(2ρ2 + FU +MU )FU ,

dMU (t)
dt > −d(2ρ2 + FU +MU )MU .

(20)

So we have

FU (t) > 2ρ2FU (τ1)

(2ρ2+FU (τ1)+MU (τ1))e2ρ2d(t−τ1)−FU (τ1)−MU (τ1)

> 2ρ2FU (τ1)e−2ρ2d(τ2−τ1)

2ρ2+FI(τ1)+MI(τ1)

> ρ2ηe−2ρ2d(n2−n1+1)T

ρ2+η+MU (τ∗1 )

, F
(1)
U ,

(21)

where τ∗1 ∈ [τ1, τ2] such that MU (t) being largest. Similarly,

MU (t) >
ρ2ηe−2ρ2d(n2−n1+1)T

ρ2 + η + FU (τ∗2 )
,M

(1)
U , (22)

where τ∗2 ∈ [τ1, τ2] such that FU (t) being largest. Denote η1 = min{F (1)
U ,M

(1)
U },

then η1 > 0 cannot be infinitely small provided that n2 − n1 > 0 is finite. So
RU (t) > η1 > 0(R = F,M). By the same method, for t > t2, we can get a
finite positive η2. In sequence, we can obtain the series ηi, i = 1, 2...k..., with

ηk = min{F (k)
U ,M

(k)
U }. For any ηk, it is not be infinitely small provided that
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nk+1 − nk > 0 is finite. The solution of system (5) RU (t) > ηk > 0, R =
F,M holds true in the time interval [tk, tk+1], tk ∈ (nkT, (nk + 1)T ], tk+1 ∈
(nk+1T, (nk+1 + 1)T ]. Denote η∗ , min{ηi} > 0, i = 1, 2..., hence RU (t) >
η∗ > 0, R = F,M for all t > t1.

Based on system (5), if one of the solutions RI(t)→∞ (R = F,M), then
there exists a large enough constant G > 0 such that

dRU (t)

dt
> −G > −∞.

Similarly, we can obtain the series η
′

k, k = 1, 2, ..., k, ..., where

η
′

k = min{η −G(n
′

k+1 − n
′

k)T, η −G(n
′

k+1 − n
′

k)T} < 0

and RU (t) > η
′

k, R = F,M holds true in the time interval [t
′

k, t
′

k+1], t
′

k ∈
(n
′

kT, (n
′

k + 1)T ], t
′

k+1 ∈ (n
′

k+1T, (n
′

k+1 + 1)T ]. Denote η∗ , min{η′i} < 0, i =
1, 2..., hence for biological meaning RU (t) > 0 > η∗, R = F,M for all t > t1. If
RU (t) = 0, which contradicts with case (b). If RU (t) > 0, there exists a small
enough constant ε2 > 0 such that RU (t) > ε2 for t > t1. Therefore, there exists
η = min{η∗, ε2} > 0 such that lim

t→∞
inf RU (t) > η,R = F,M.

Therefore, based on above analysis, we have the following main results.

Theorem 1 When (10) holds true, for system (5) with perfect transmission
rate (i.e., τ = 1), if R0 < 1, then the WEPS (F̃I(t), M̃I(t), 0, 0) is locally
asymptotically stable; if R0 > 1, then Wolbachia uninfected mosquitoes are
permanent, namely, there exists a constant η > 0 such that lim

t→∞
inf RU (t) >

η,R = F,M.

Remark For system (5) with perfect transmission rate, when R0 < 1, then the
local stability of the WEPS indicates that it is possible to realize a complete
(here also called high level) population replacement from some initial values.
While when R0 > 1, then the permanence of Wolbachia uninfected mosquitoes
implies the failure of population replacement (here also called a low level of
replacement) from any initial values.

4 Forward and backward bifurcations of system (5)

In epidemiological model, when forward bifurcation occurs, the thresh-
old for the stability of disease free equilibrium can describe the elim-
ination or permanence of epidemic diseases. However, when back-
ward bifurcation occurs, the system exhibits a unstable and a stable
endemic equilibria along with a stable disease free equilibrium, so
the threshold of the stability for disease free equilibrium cannot
describe the necessary elimination of epidemic diseases, so a more
accurate threshold for the elimination is determined by the coin-
cidence of the two endemic equilibria (Wang , 2006). Similarly, in
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this section, in order to realize a complete population replacement
for the control of dengue transmission, it is necessary to investigate
the existence of forward and backward bifurcations for system (5)
following the scheme of Lakmeche and Aarino (2000).

The release quantity of infected female mosquitoes θ1 is chosen as bifur-
cation parameter instead of pulse period T in Lakmeche and Aarino (2000).
For convenience, we first introduce the following notations. Let

X(t) := (FI(t),MI(t), FU (t), FU (t))

be a solution vector of system (5). The right side of the first four equations of
system (5) is denoted as

H(X(t)) := (H1(X(t)), H2(X(t)), H3(X(t)), H4(X(t))),

and the impulsive effect is the mapping

I(θ1, X(t)) = (I1(θ1, X(t)), I2(θ1, X(t)), I3(θ1, X(t)), I4(θ1, X(t)))
= (X1(t) + θ1, X2(t) + θ2, X3(t), X4(t)).

(23)

Denote Φ(t,X0) = (Φ1(t,X0), Φ2(t,X0), Φ3(t,X0), Φ4(t,X0)) as the flow of
the system associated to the first four equations of system (5), then X(t) =
Φ(t,X0), 0 < t 6 T, X(T ) = Φ(T,X0) := Φ(X0) and X(T+) = I(θ1, X(t))
with X(0) = X0. Define the operate Ψ as

Ψ(θ1, X) := (Ψ1(θ1, X), Ψ2(θ1, X), Ψ3(θ1, X), Ψ4(θ1, X)) = I(θ1, Φ(X))

and denote DXΨ as the derivation of Ψ with respect to X.
We fix all the parameters except for θ1 and denote θ0 as a critical release

quantity of Wolbachia infected females, which corresponds to R0 = 1. In the
following, we focus on the bifurcation of nontrivial periodic solutions near to
the WEPS X∗ = (F̃I , M̃I , 0, 0), which starts from X0 with release quantity θ0,
then Φ3(X0) = Φ4(X0) = 0.

Based on the above notations, X is a T-periodic solution of system (5) if
and only if its initial value is a fixed point for Ψ(θ1, X), i.e., Ψ(θ1, X) = X.
For easy computation, we denote θ1 = θ0 + θ̄1 and X = X0 +X̄, then the fixed
point problem is transformed as

N(θ̄1, X̄) = 0, (24)

where

N(θ̄1, X̄) = (N1(θ̄1, X̄), N2(θ̄1, X̄), N3(θ̄1, X̄), N4(θ̄1, X̄))
= X0 + X̄ − Ψ(θ0 + θ̄1, X0 + X̄).

(25)

Consider the variational equation associated with the first four equations of
system (5), which is obtained by a formal derivation with respect to initial
value X0 as

d
dt (DXΦ(t,X0)) = DXF (Φ(t,X0))(DXΦ(t,X0))
= Q(t)(DXΦ(t,X0))

(26)
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where the initial condition

DXΦ(0, X0) = E4 and Φ(0, X0) = (Φ1(0, X0), Φ2(0, X0), 0, 0),

with E4 and later E2 denoting identity matrixes with fourth and second orders,
respectively. Let the derivation of N be given by the following matrix

DXN(0, O) =

(
E2 − P e

∫ T
0
V1(ν)dν −PΦ12(T )

O E2 − P e
∫ T
0
V3(ν)dν

)
(27)

with O = (0, 0, 0, 0). A necessary condition for the bifurcation of a non-
trivial periodic solution near to X∗ = (F̃I , M̃I , 0, 0) is det[DXN(0, O)] = 0.
Based on the stability of period solution (F̃I , M̃I) of subsystem (6), we have

det[E2 − P e
∫ T
0
V1(ν)dν ] 6= 0. So det[DXN(0, O)] = 0 is reduced to det[E2 −

P e
∫ T
0
V3(ν)dν ] = 0. Note that we have det[E2 − P e

∫ T
0
V3(ν)dν ] = 0 provided

R0 = 1. In the following, when R0 = 1 holds true, we investigate the suffi-
cient conditions for the existence of nontrivial T-period solutions arising from
bifurcation.

Denote

DXN(θ̄1, X̄) =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (28)

with

DXN(0, O) =


a
′

11 a
′

12 a
′

13 a
′

14

a
′

21 a
′

22 a
′

23 a
′

24

0 0 a
′

33 0

0 0 a
′

43 a
′

44

 and H =

a
′

11 a
′

12 a
′

13

a
′

21 a
′

22 a
′

23

0 0 a
′

33

 , (29)

with aij = a
′

ij , i, j = 1, 2, 3, 4 for (θ̄1, X̄) = (0, 0). The expression of each
element in the above matrices is shown in Appendix 1. Since det[DXN(0, O)] =
0, it implies that there exists a constant such that a

′

43 = ka
′

33 and a
′

44 = 0, so
we fail to use implicit function theory to obtain variable X as a function of θ1.
Lyapunov-Schmidt reduction is considered as the following three steps so that
we can utilize the implicit function theory (Golubisky and Schaeffer , 1985).
For convenience, denote DXN(0, O) = G as the matrix of a linear map.

Step 1: Decompose the R4 space and utilize it into (24).
From (29), we have dim kerG = 1 and codim(Im(G)) = 3. Denote G1 and

G2 as the projects onto kerG and Im(G) respectively such that G1 + G2 =
IdR4 , G1(R4) = span{Y1} = kerG, G2(R4) = span{Y2, Y3, Y4} = Im(G),
where

Y1 =

(
a
′

12(a
′

11a
′

24 − a
′

14a
′

21)− a′14(a
′

11a
′

22 − a
′

12a
′

21)

a
′
11(a

′
11a

′
22 − a

′
12a

′
21)

,
a
′

14a
′

21 − a
′

11a
′

24

a
′
11a

′
22 − a

′
12a

′
21

, 0, 1

)
,

(30)



14 Xianghong Zhang et al.

Y2 = (1, 0, 0, 0), Y3 = (0, 1, 0, 0), Y4 = (0, 0, 1, 0) and Y1 , (Y11, Y12, Y13, Y14).
From the decomposition R4 = kerG

⊕
Im(G), there exist unique αi ∈ R (i =

1, 2, 3, 4) such that X̄ = α1Y1 + α2Y2 + α3Y3 + α4Y4. So (24) is equivalent to

Ni(θ̄1, α1, α2, α3, α4) = Ni(θ̄1, α1Y1 + α2Y2 + α3Y3 + α4Y4) = 0, i = 1, 2, 3, 4.
(31)

Step 2: Employ the implicit function theorem on (31).

From (31), we have

D(N1,N2,N3)(0,O)
D(α2,α3,α4) = D(N1,N2,N3)(0,O)

D(X̄1,X̄2,X̄3)
D(X̄1,X̄2,X̄3)
D(α2,α3,α4)

= |HE3| = |H| 6= 0.
(32)

Based on the implicit function theory, there exists δ > 0 sufficiently small and
unique continuous functions α̃i (i = 2, 3, 4) with respect to variables θ̄1 and
α1, i.e., α̃i = α̃i(θ̄1, α1) such that α̃i(0, 0) = 0 and

Nj(θ̄1, α1) = Nj(θ̄1, α1Y1 + α̃2Y2 + α̃3Y3 + α̃4Y4) = 0, j = 1, 2, 3, (33)

for every (θ̄1, α1) with |θ̄1| < δ and |α1| < δ. Moreover we have

∂α̃i(θ̄1,α1)
∂α1

= 0, i = 2, 3, 4, (34)

as shown in Appendix 3.

Step 3: Determine the Taylor expansion of N4(θ̄1, α1) around (0, 0).
Based on Step 2, N(θ̄1, X̄) = 0 if and only if

N4(θ̄1, α1) = N4(θ̄1, X̄(θ̄1, α1)) = 0 (35)

with X̄(θ̄1, α1) = (Y11α1 + α̃2, Y12α1 + α̃3, Y13α1 + α̃4, Y14α1). So the number
of periodic solutions of system (5) is equal to that of solutions of (35). It is
obvious that N4(θ̄1, α1) vanishes at (0, 0), so we need to determine the Taylor
expansion of N4(θ̄1, α1) around (0, 0). It is necessary to compute higher order
derivatives of N4(θ̄1, α1) up to the order k for which DkN4(0, 0) 6= 0, then it
gives

N4(θ̄1, α1) =
1

k!

(
θ̄1

∂

∂θ1
+ α1

∂

α1

)k
N4(0, 0) + ◦(θ̄1, α1)((|θ̄1|+ |α1|)k) (36)

with k > 1.
First, we compute the first order partial derivations of N4(θ̄1, α1), and we

obtain
∂N4(0, 0)

∂α1
=
∂N4(0, 0)

∂θ̄1
= 0

as shown in Appendix 4. So next, it is necessary to compute the second
order partial derivations of N4(θ̄1, α1), and define

A =
∂2N4(0, 0)

∂θ̄2
1

, B =
∂2N4(0, 0)

∂θ̄1∂α1
, C =

∂2N4(0, 0)

∂α2
1

.
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From Appendix 5, we obtain A = 0,

B = −
[

a
′
22

a
′
11a
′
22−a

′
12a
′
21

(
∂2Φ4(X0)
∂X1∂X4

− a
′
43

a
′
33

∂2Φ3(X0)
∂X1∂X4

)
− a

′
21

a
′
11a
′
22−a

′
12a
′
21

(
∂2Φ4(X0)
∂X2∂X4

− a
′
43

a
′
33

∂2Φ3(X0)
∂X2∂X4

)]
,

C =
4∑
i=1

4∑
j=1

(
a
′
43

a
′
33

∂2Φ3(θ0,X0)
∂Xi∂Xj

− ∂2Φ4(θ0,X0)
∂Xi∂Xj

)
Y1iY1j .

(37)
Therefore, we have

N4(θ̄1, α1) = Bα1θ̄1 + C
2 α

2
1 + ◦(θ̄1, α1)((|θ̄1|+ |α1|)2) = α1

2 Ñ4(θ̄1, α1) (38)

with

Ñ4(θ̄1, α1) = 2Bθ̄1 + Cα1 + ◦(θ̄1, α1)((|θ̄1|+ |α1|)2).

Note that

∂Ñ4(0, 0)

∂θ̄1
= 2B and

∂Ñ4(0, 0)

∂α1
= C,

so the study of the equation N4(θ̄1, α1) = 0 near (0, 0) depends on whether
B 6= 0 or C 6= 0 holds true. If B 6= 0 (or C 6= 0), we can use the implicit
function theorem and solve the equation Ñ4(θ̄1, α1) = 0 near (0, 0) with respect
to θ̄1 (or α1) as a function of α1 (or θ̄1), which gives θ̄1 = σ(α1) (or α1 = γ(θ̄1)).
We deduce it as follows: for any α1 (or θ̄1) near 0, there exists σ(α1) (or γ(θ̄1)),
such that Ñ4(σ(α1), α1) = 0 (or Ñ4(θ̄1, γ(θ̄1) = 0) and σ(0) = 0 (or γ(0) = 0).
If BC 6= 0, then the solutions of N4(θ̄1, α1) = 0 imply α1/θ̄1 ' −2B/C, which
allows us to determine the sign of θ̄1α1. While if BC = 0, then we cannot
determine the solutions of N4(θ̄1, α1) = 0 with respect to θ̄1 and α1. So in this
case, it is necessary to expand the third order partial derivation of N4(0, 0).
Finally, we have the following conclusions.

Theorem 2 When (10) holds true, for system (5) with perfect transmission
rate (τ = 1), if R0 = 1 are satisfied, then as parameter θ1 passes through the
critical value θ0, a nontrivial periodic solution appears near the fixed point X0.
The bifurcation is supercritical provided that BC < 0, while it is subcritical
provided that BC > 0.

Note that the threshold R0 decreases as θ1 increases, so a supercritical
bifurcation means a backward bifurcation in system (5), while a subcritical
bifurcation corresponds to a forward bifurcation in the θ1 − α1 plane. Hence
we have the following results.

Theorem 3 When (10) holds true, for system (5) with perfect transmission
rate (τ = 1), if R0 = 1 are satisfied, then as parameter θ1 passes through the
critical value θ0, a backward bifurcation occurs provided that BC < 0, while a
forward bifurcation occurs provided that BC > 0.
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5 Simulations

In this section, we first explore the uncertainty and sensitivity anal-
ysis of each parameter value on the two critical output variables
(here R0 and FIm defined in (39)), using a Latin hypercube sam-
pling (LHS) method (Blower and Dowlatabadi , 1994; Marino et
al. , 2008), to understand the effects of different parameters on the
success of population replacement (see Figs 2 and 3). Senond we
compare the regions and threshold values of backward bifurcations
of system (5) with and without mosquito augmentation (see Fig 4).
Further, we carry out some numerical simulations to illustrate the
effects of augmentation period and different tactics of mosquito aug-
mentation on the success of population suppression or replacement
(see Figs 5-12). Numerical results are obtained by using parameter
values given in Tables 1 and 2.

5.1 Uncertainty and sensitivity analysis

Sensitivity analysis is performed by evaluating partial rank correlation coeffi-
cients (PRCCs) between each input parameter and output variable, which can
determine the importance of parameters contributed to the value of outcome
variable. Absolute values of PRCCs which belong to (0.4, 1), (0.2, 0.4), and
(0, 0.2) indicate very important, moderate correlations and not significantly
different from zero between input parameters and output variables, respec-
tively. We perform the uncertainty and sensitivity analysis of each parameter
in system (5) using LHS with 3000 samples. In the absence of available data
on the distribution functions of input parameters, we choose uniform distri-
butions for parameters with pulse control (i.e., θ1, θ2) due to the lack of fur-
ther information; while we choose normal distributions for parameters without
pulse control (i.e., except for θ1, θ2). The mean values and possible ranges of
parameters are given in Tables 1 and 2.

Note that the threshold value R0 determines the stability of the WEPS
and the existence of forward or backward bifurcation, which greatly impacts
the success of population replacement. Define average net reproductive rate of
infected females within one pulse period FIm as follows

FIm :=
1

T

∫ (n+1)T

nT

b2FI(t)− (d+D)N(t)FI(t), for system (5), (39)

where n is large enough to make sure the stability of the WEPS and FIm
keeping as a constant. FIm affects the success and speed of population re-
placement. Therefore, we mainly study the contribution of each parameter of
system (5) on the two outcome variables R0 and FIm. Note that the explicit
values of R0 and FIm cannot be calculated in theory, we can numerically
obtain them.
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Fig 2(A) and Table 3 show the influence of each parameter of system (5) on
the outcome variables R0. The first four parameters with most impact on R0

are fitness cost D, the natural birth rate of Wolbachia uninfected mosquitoes
b1, pulse period T and the strength of CI q. The ratio of natural birth rate of
Wolbachia infected mosquitoes to uninfected ones α has a moderate impact
on R0, while other parameters have slightly impact. Especially, decreasing
D or increasing b1, α, d, q, T, θ1, θ2 can lead to the decrease of R0, which is
benefit to fulfill complete population replacement. Similarly, the contribution
of each input parameter on the outcome variable FIm is shown in Fig 2(B) and
Table 3. FIm is most sensitive to parameters D and θ1, while others slightly
contribute to it.

In order to analysis the sample results of the two outcome variables R0 and
FIm, we show the frequency and cumulative distributions of them with 3000
samples of LHS (see Fig 3). From Fig 3(A) and (B), the means for the two out-
come variables areMR0 = 0.1361, MFIm = −0.0104 with standard deviations
SR0 = 2.7462×10−5 and SFIm = 1.9049×10−4, respectively. The coefficient
of variation (CV) is calculated from the ratio of the standard deviation of a
variable to its mean, which is applied to estimate the degree of concentration
of the variable. We consider the frequency distribution for a variable to be
dispersed if CV is greater than 10%, or to be concentrated otherwise. So Fig
3(A) and (C) indicate that the derived frequency of R0 is quite concentrated
(CV R0 = 0.02% < 10%), with the minimum and maximum estimates being
0.0158 and 0.3175, respectively. Similarly, the frequency distribution for FIm
ranges from −6.6834 to 0.0132 and is concentrated (|CV FIm| = 1.83% < 10%)
as shown in Fig 3(B) and (D). The probability of FIm less than zero is larger
than 90%, which indicates that for system (5) without pulse control (i.e., sys-
tem (1)) in the given parameter regions, it is hard to realize the strategy
of population replacement. Based on the uncertainty technique, the
degree of prediction imprecision can be quantified by comparing the expected
results of the two output variables with the observed results.

5.2 Backward bifurcation

Based on Theorem 3, when R0 = 1 holds true for system (5) with perfect
transmission rate, there exists a backward (or forward) bifurcation if θ1 passes
through the critical value θ0 such that BC < 0 (or BC > 0). When R0 > 1
holds true for system (5), there exists a forward bifurcation, and the solutions
of system (5) may tend to an interior period solution (low level of popula-
tion replacement) from any initial values. In order to study the region and the
threshold value of backward bifurcation of system (5), it follows from Fig 4, we
compare the change of the upper and lower bounds of the period solutions of
system (5) to the change of the equilibria of system (1), with respect to R0(α)
and R∗0(α), respectively, (here R∗0(α) , (αdτ − D)/d denotes the threshold
condition of the local stability of the boundary equilibrium of system (1), we
omit the calculation). From Fig 4, when backward bifurcation of system (1)
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occurs (i.e., R∗c0 < R∗0(α) < 1), the solutions of the system from different
initial values have different stable states, which means that some solutions
can stabilize at the Wolbachia mosquito eradicated equilibrium (i.e, the fail-
ure of population replacement), while others will stabilize at the Wolbachia
mosquito established equilibrium (i.e., the success of population replacement).
When backward bifurcation of system (5) occurs (i.e., Rc0 < R0(α) < 1), its
solutions may tend to the WEPS (high level of population replacement) or
interior period solution (low level of population replacement) depending on
different initial values as shown in Fig 5. Compared with system (1), mosquito
augmentation in system (5) not only reduces the quantity of Wolbachia unin-
fected mosquitoes, which is necessary for the control of dengue transmission;
but also increases the threshold values of backward bifurcations from −0.05 to
0.75 and shrinks the region of backward bifurcation, which indicates the pos-
sibility of backward bifurcation is reduced by pulse mosquito augmentation to
some extent. Note that the existence of backward bifurcation is not desired
for the success of population replacement. Therefore, mosquito augmentation
contributes to the effective control of dengue transmission.

When backward bifurcation occurs for system (5), we first can increase
parameter α large enough such that R0 less than a threshold value (Rc0 ≈ 0.75
as shown in Fig 4 ), then the WEPS of system (5) is globally stable. Next we
investigate the effects of initial densities of infected females and males with
the same initial density of females, males or the same sex ratio on the success
of population replacement, respectively, as shown in Fig 6(A)-(C). If initial
densities FI(0), MI(0) or MI(0)/FI(0) are too low, the high level of population
replacement cannot be achieved at all (see green and black curves). However, if
initial densities increase enough, the solutions of system (5) will stabilize at the
WEPS, which indicates that population replacement is achieved completely.
Moreover, the more initial densities of the three indexes increase, the easier
it is to realize complete population replacement (i.e. it is faster to stabilize at
the WEPS), as shown the magenta, blue to red solution curves in sequence in
Fig 6.

Further note that nearly all the estimates of R0 are less than one as shown
in Fig 3, which indicates that when the samples of parameter values lie in
the given parameter regions (see Tables 1 and 2), there is a great chance for
the success of high level of population replacement when there are enough
mosquitoes augmented in a long enough time. However, in reality, it is im-
practical to implement pulse augmentation at infinite time intervals. So based
on Fig 4, if the initial densities of Wolbachia uninfected mosquitoes are fixed,
then we can obtain the basin of attraction of the two stable states with re-
spect to the initial densities of infected females and males as shown in Fig 7.
Therefore, mosquito augmentation is considered to alter their dynamic behav-
ior such that the densities of Wolbachia infected female and male mosquitoes
lie in the desired zone (i.e., the white areas in Fig 7) after finite pulse control.
If so, the control of dengue diseases can be realized.
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5.3 Effectiveness of mosquito augmentation with different strategies

To assess the effectiveness of mosquito augmentation on the success of pop-
ulation replacement for the control of dengue transmission, assuming that
initial infected mosquitoes are zero because of dengue mosquitoes not natu-
rally carrying Wolbachia in practice, and the number of pulse times are 14 or
20 with four pulses in one week (i.e., 3.5 or 5 months) based on some field
trials (Hoffmann et al. , 2011), we numerically display the effects of different
pulse periods and the quantities of mosquito augmentation with different sex
on the prevalence of mosquito populations in Figs 8-12. In generally, the curves
with circles represent the corresponding solutions with the number of pulses
increasing from 14 to 20. For comparison, the black dotted lines denote the
solutions of system (5) without pulse control.

From Fig 8, although the pulse period is too large to realize the strategy
of high level of population replacement after 14 pulses (see black and purple
curves), with decreasing pulse period, increasing release amount or the number
of pulses, high level of population replacement can be realized (see magenta
curves or purple curves with circles). By continuing to decrease the pulse
period, it is easier and faster to realize the high level of population replacement
(see magenta, blue and red curves).

It follows from Fig 9 that uninfected female mosquitoes can die out when
only Wolbachia infected males are released. Because only female mosquitoes
contribute to the spread of dengue virus, it can be regarded as a special type
of mosquito eradication compared with all classes of mosquitoes dying out. If
the quantity of Wolbachia infected males released is too low, then the strategy
of eradication will fail after 14 pulses. However, it can be realized by increasing
either the number of pulses (20 pulses) or the quantity of infected males such
that the densities of infected female mosquitoes tend to zero. When only in-
fected female mosquitoes are released, Fig 10 shows the solutions of system (5)
with different quantities of Wolbachia infected females released. If the quantity
of infected females released is too low, then the strategy of high level of pop-
ulation replacement will fail after 14 pulses (see black and magenta curves).
With increasing the number of pulses (20 pulses), it can be realized (magenta
curves with circles). By continuing to increase the quantity of infected females
released, it is easier and faster to realize the high level of population replace-
ment (see blue and red curves). For Fig 11, when both infected females and
males are released, with increasing the quantities of infected mosquitoes re-
leased θ1 (or θ2), there are similar results as in Fig 10. Especially, comparing
Fig 9 with Fig 11, although there are low quantity of Wolbachia infected fe-
males released, it can lead to the strategies of dengue control changing from
population eradication to population replacement. Assuming total mosquito
augmentation fixed as a constant 2.2, Fig 12 shows the effect of different sex
ratios of mosquito releases on the strategies of dengue control. Note that the
ratio of Wolbachia infected females released is too small to realize the strategy
of high level of population replacement after 14 pulses (see black and purple
curves). However, with increasing the number of pulses to 20, it can be re-
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alized (purple curve with circles). If we continue to increase the ratio of the
females released, it is easier and faster to realize the high level of population
replacement (see magenta, blue and red curves).

6 Discussion

This paper develops a four dimensional impulsive system and explores how
mosquito augmentation with different sex affects the success of population
suppression or replacement for the control of dengue transmission. At first, we
study the stability and permanence of periodic solutions of the system with
perfect transmission rate. Considering the effects of forward and backward
bifurcations on the success of population replacement, we obtain the condi-
tions for the existence of the two bifurcations for system (5) by employing the
bifurcation theory of Lakmeche and Arino. Moreover we compare the bifurca-
tion diagrams of system (5) with and without pulse mosquito augmentation,
as shown in Fig 4. Further uncertainty and sensitivity analysis is performed
using a LHS method to show the influence of each parameter of system (5)
on the outcome variables R0 and FIm. In addition, we study the effects of
initial density, pulse period and the quantity of mosquito augmentation with
different sex on the success of the two strategies by numerical simulations.

Note that Aedes mosquitoes can not naturally carry Wolbachia,
so before the tactics of mosquito augmentation, the initial density
of Wolbachia infected mosquitoes are assumed to be zero. Based on
Theorem 3, when BC > 0 holds true for the regions of parameter
values, there exists a forward bifurcation for system (5). So the
high level of population replacement can be achieved for any initial
values if R0 < 1. When BC < 0 holds true for the regions of parameter
values, there exists a backward bifurcation for system (5). If the threshold R0

is less than the critical value Rc0, then the high level of population replacement
can be realized for any initial values. If the threshold R0 lies in the region of
backward bifurcation (i.e., Rc0 < R0 < 1), then high or low level of population
replacement (the WEPS or interior period solution) for system (5) can be
realized depending on initial values. On the one hand, we can decrease the
fitness cost D or increase other parameters such that R0 is less than the
critical value Rc0, then the backward bifurcation may vanish and the high
level of population replacement can be realized for any initial values (Fig
4). On the other hand, nearly all the estimates of R0 are less than
one in the given parameter regions, as shown in Fig 3, so the high
level of population replacement can always be achieved when enough
quantity of Wolbachia infected mosquitoes are augmented in a long
enough time. However, in practice, it is impossible to implement
pulse mosquito augmentation in the open field trials at infinite time
intervals. For example, the strategy of mosquito augmentation is
usually carried out in finite time intervals with finite number of pule
times, such as 14 or 20 pulses during 3.5 or 5 months in some open
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field trials (Hoffmann et al. , 2011; The Guardian , 2015). Therefore,
when the initial densities of Wolbachia uninfected mosquitoes are fixed, it is
necessary to increase enough the quantities of Wolbachia infected females or
males, the proportions of Wolbachia infected females or the number of pulse
releases in finite time intervals such that the densities of infected females and
males can lie in the basin of attraction of Wolbachia mosquito established
equilibrium (i.e., the white areas in Fig 7) after a finite number of mosquito
augmentations (Figs 10-12)). If so, we can realize a complete or high level of
population replacement depending on whether or not the transmission rate is
perfect. If R0 > 1, we just realize a low level of population replacement and
fail to realize a high level for any initial values. So if the release of infected
females θ1 or the ratio parameter α is increased such that R0 < 1 (Fig 4),
then the high level of population replacement may be realized for some initial
values.

Moreover, when only Wolbachia infected males are released with
a large enough quantity, then the density of uninfected females tends
to zero (see Fig 9), which indicates the success of a special type of
population suppression. However, although there are a little quan-
tity of infected females released, it can dramatically change the
strategy from population eradication to a high level of population
replacement (see Figs 9 and 11), which indicates infected females act
as seeds for the spread of Wolbachia strains, while infected males
can reduce the density of uninfected females so that it is easier to
realize a high level of population replacement.

Our model investigate the effects of different sex of mosquito augmen-
tation on control strategies of dengue fever. In practice, the life cycle
of mosquitoes undergos four different stages, such as egg, larva,
pupa and adult. Different age stages possess different fertility and
mortality rates, in particular the density-dependent competition
in the larva stage. Moreover dengue virus is spread between hu-
man and mosquito populations by mosquito bites. Therefore, in
the future work, it is reasonable to develop an epidemic model
with pulse control, including human, mosquito populations with
stage structure and Wolbachia bacteria. In addition, considering
that mosquitoes have a proliferate in huge numbers under suitable
temperature and humidity conditions in tropical and subtropical
regions, alone pulsing mosquito augmentation cannot fight against
the spread of dengue diseases. So it is necessary to study how to
carry out an integrated pest management approach, i.e., mosquito
augmentation together with pulsing insecticide treatments to block
the transmission of dengue virus.
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Appendix 1. The expression of each element of DXN(θ̄1, X̄)
First from (25) and derivative of a multivariate compound function, we have the expres-

sion of each element of DXN(θ̄1, X̄) as follows
aij = −

4∑
k=1

∂Ii(θ0+θ̄1,X0+X̄)
∂Xk

Φk(X0+X̄)
∂Xj

, i 6= j,

aii = 1−
4∑
k=1

∂Ii(θ0+θ̄1,X0+X̄)
∂Xk

Φk(X0+X̄)
∂Xi

, i = j.

According to (26), we have the differential equations of derivations of Φ = (Φ1, Φ2, Φ3, Φ4)
for (θ̄1, X̄) = (0, 0) with respect to X = (X1, X2, X3, X4). Note that

d
dt
∂Φ3(t,X0)

∂X1
= (b1(1− q)− d(F̃I + M̃I))

∂Φ3(t,X0)
∂X1

, ∂Φ3
∂X1

(0, X0) = 0,
d
dt
∂Φ4(t,X0)

∂X1
= b1(1− q) ∂Φ3(t,X0)

∂X1
− d(F̃I + M̃I))

∂Φ4(t,X0)
∂X1

, ∂Φ4
∂X1

(0, X0) = 0,
d
dt
∂Φ3(t,X0)

∂X2
= (b1(1− q)− d(F̃I + M̃I))

∂Φ3(t,X0)
∂X2

, ∂Φ3
∂X2

(0, X0) = 0,
d
dt
∂Φ4(t,X0)

∂X2
= b1(1− q) ∂Φ3(t,X0)

∂X2
− d(F̃I + M̃I))

∂Φ4(t,X0)
∂X2

, ∂Φ4
∂X2

(0, X0) = 0.

So we obtain
∂Φi

∂Xj
(t,X0) ≡ 0, i = 3, 4, j = 1, 2, (40)

for 0 6 t < T. Then we have
d
dt
∂Φ1(t,X0)

∂X1
= (b2 − (d+D)(2F̃I + M̃I))

∂Φ1(t,X0)
∂X1

− (d+D)F̃I
∂Φ2(t,X0)

∂X1
, ∂Φ1
∂X1

(0, X0) = 1,
d
dt
∂Φ1(t,X0)

∂X2
= (b2 − (d+D)(2F̃I + M̃I))

∂Φ1(t,X0)
∂X2

− (d+D)F̃I
∂Φ2(t,X0)

∂X2
, ∂Φ1
∂X2

(0, X0) = 0,
d
dt
∂Φ2(t,X0)

∂X1
= (b2 − (d+D)M̃I)

∂Φ1(t,X0)
∂X1

− (d+D)(F̃I + 2M̃I)
∂Φ2(t,X0)

∂X1
, ∂Φ2
∂X1

(0, X0) = 0,
d
dt
∂Φ2(t,X0)

∂X2
= (b2 − (d+D)M̃I)

∂Φ1(t,X0)
∂X2

− (d+D)(F̃I + 2M̃I)
∂Φ2(t,X0)

∂X2
, ∂Φ2
∂X2

(0, X0) = 1.

So the solution ∂Φi
∂Xj

(t,X0)(i, j = 1, 2) of the above system for 0 6 t < T can be solved

which is not identically equal to zero. Further, we have

d
dt
∂Φ1(t,X0)

∂X3
= (b2 − (d+D)(2F̃I + M̃I))

∂Φ1(t,X0)
∂X3

− (d+D)F̃I
∂Φ2(t,X0)

∂X3

− (d+D)F̃I
∂Φ3(t,X0)

∂X3
− (d+D)F̃I

∂Φ4(t,X0)
∂X3

, ∂Φ1
∂X3

(0, X0) = 0,
d
dt
∂Φ1(t,X0)

∂X4
= (b2 − (d+D)(2F̃I + M̃I))

∂Φ1(t,X0)
∂X4

− (d+D)F̃I
∂Φ2(t,X0)

∂X4

− (d+D)F̃I
∂Φ3(t,X0)

∂X4
− (d+D)F̃I

∂Φ4(t,X0)
∂X4

, ∂Φ1
∂X4

(0, X0) = 0,
d
dt
∂Φ2(t,X0)

∂X3
= (b2 − (d+D)M̃I)

∂Φ1(t,X0)
∂X3

− (d+D)(F̃U + 2M̃U )
∂Φ2(t,X0)

∂X3

− (d+D)M̃I
∂Φ3(t,X0)

∂X3
− (d+D)M̃I

∂Φ4(t,X0)
∂X3

, ∂Φ2
∂X3

(0, X0) = 0,
d
dt
∂Φ2(t,X0)

∂X4
= (b2 − (d+D)M̃I)

∂Φ1(t,X0)
∂X4

− (d+D)(F̃U + 2M̃U )
∂Φ2(t,X0)

∂X4

− (d+D)M̃I
∂Φ3(t,X0)

∂X4
− (d+D)M̃I

∂Φ4(t,X0)
∂X4

, ∂Φ2
∂X4

(0, X0) = 0,
d
dt
∂Φ3(t,X0)

∂X3
= (b1(1− q)− d(F̃I + M̃I))

∂Φ3(t,X0)
∂X3

, ∂Φ3
∂X3

(0, X0) = 1,
d
dt
∂Φ3(t,X0)

∂X4
= (b1(1− q)− d(F̃I + M̃I))

∂Φ3(t,X0)
∂X4

, ∂Φ3
∂X4

(0, X0) = 0,
d
dt
∂Φ4(t,X0)

∂X3
= b1(1− q) ∂Φ3(t,X0)

∂X3
− d(F̃I + M̃I))

∂Φ4(t,X0)
∂X3

, ∂Φ4
∂X3

(0, X0) = 0,
d
dt
∂Φ4(t,X0)

∂X4
= b1(1− q) ∂Φ3(t,X0)

∂X4
− d(F̃I + M̃I))

∂Φ4(t,X0)
∂X4

, ∂Φ4
∂X4

(0, X0) = 1.

We can solve the above equations and give the expression of solutions for the last four
equations as follows

∂Φ3
∂X3

(t,X0) = e
∫ t
0 (b1(1− q)− d(F̃I + M̃I))dη , β(t), ∂Φ3

∂X4
(t,X0) ≡ 0,

∂Φ4
∂X3

(t,X0) =
∫ t
0 (β(s)e(b1(1−p)sds, ∂Φ4

∂X4
(t,X0) = e

∫ t
0 (−d(F̃I+M̃I ))dη .

(41)
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Thus the expression of each element of DXN(0, O) is as follows

a
′
11 = 1− ∂Φ1

∂X1
(T,X0), a

′
21 = − ∂Φ2

∂X1
(T,X0),

a
′
12 = − ∂Φ1

∂X2
(T,X0), a

′
22 = 1− ∂Φ2

∂X2
(T,X0),

a
′
13 = − ∂Φ1

∂X3
(T,X0), a

′
23 = − ∂Φ2

∂X3
(T,X0),

a
′
14 = − ∂Φ1

∂X4
(T,X0), a

′
24 = − ∂Φ2

∂X4
(T,X0),

a
′
31 = − ∂Φ3

∂X1
(T,X0) = 0, a

′
41 = − ∂Φ4

∂X1
(T,X0) = 0,

a
′
32 = − ∂Φ3

∂X2
(T,X0) = 0, a

′
42 = − ∂Φ4

∂X2
(T,X0) = 0,

a
′
33 = 1− ∂Φ3

∂X3
(T,X0), a

′
43 = − ∂Φ4

∂X3
(T,X0),

a
′
34 = − ∂Φ3

∂X4
(T,X0) = 0, a

′
44 = 1− ∂Φ4

∂X4
(T,X0).

(42)

Appendix 2. The second order partial derivations of Φi, i = 3, 4
From (26), we have

d
dt
∂Φi(t,X0)
∂Xj

=
∂Fi(X̃(t))
∂X1

∂Φ1(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X2

∂Φ2(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X3

∂Φ3(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X4

∂Φ4(t,X0)
∂Xj

,

with i, j = 1, 2, 3, 4. Then

d
dt
∂2Φi(t,X0)
∂Xj∂Xk

=
∂2Fi(X̃(t))
∂X1∂Xk

∂Φ1(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X1

∂2Φ1(t,X0)
∂Xj∂Xk

+
∂2Fi(X̃(t))
∂X2∂Xk

∂Φ2(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X2

∂2Φ2(t,X0)
∂Xj∂Xk

+
∂2Fi(X̃(t))
∂X3∂Xk

∂Φ3(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X3

∂2Φ3(t,X0)
∂Xj∂Xk

+
∂2Fi(X̃(t))
∂X4∂Xk

∂Φ4(t,X0)
∂Xj

+
∂Fi(X̃(t))
∂X4

∂2Φ4(t,X0)
∂Xj∂Xk

,

with i, j, k = 1, 2, 3, 4. By simple calculation, it follows that

∂Fi(X̃(t))
∂Xj

=
∂Φi(t,X0)
∂Xj

= 0, i = 3, 4, j = 1, 2,

∂F2
i (X̃(t))

∂X2
1

=
∂F2
i (X̃(t))

∂X1∂X2
=

∂F2
i (X̃(t))

∂Xj∂Xk
= 0, i = 3, 4, j, k = 1, 2,

∂F3(X̃(t))
∂X4

= 0.

Thus
d
dt
∂2Φ3(t,X0)

∂X2
1

=
∂F3(X̃(t))
∂X3

∂2Φ3(t,X0)

∂X2
1

,

d
dt
∂2Φ4(t,X0)

∂X2
1

=
∂F4(X̃(t))
∂X3

∂2Φ3(t,X0)

∂X2
1

+
∂F4(X̃(t))
∂X4

∂2Φ4(t,X0)

∂X2
1

,

d
dt
∂2Φ3(t,X0)

∂X2
2

=
∂F3(X̃(t))
∂X3

∂2Φ3(t,X0)

∂X2
2

,

d
dt
∂2Φ4(t,X0)

∂X2
2

=
∂F4(X̃(t))
∂X3

∂2Φ3(t,X0)

∂X2
2

+
∂F4(X̃(t))
∂X4

∂2Φ4(t,X0)

∂X2
2

,

(43)

with the initial conditions

∂2Φ3(0, X0)

∂X2
1

=
∂2Φ4(0, X0)

∂X2
1

=
∂2Φ3(0, X0)

∂X2
2

=
∂2Φ4(0, X0)

∂X2
2

= 0.

Solving (43) deduces that

∂2Φ3(t,X0)

∂X2
1

=
∂2Φ4(t,X0)

∂X2
1

=
∂2Φ3(t,X0)

∂X2
2

=
∂2Φ4(t,X0)

∂X2
2

= 0. (44)

Similarly, we can obtain that

∂2Φ3(t,X0)

∂X1∂X2
=
∂2Φ3(t,X0)

∂X2∂X1
=
∂2Φ4(t,X0)

∂X1∂X2
=
∂2Φ4(t,X0)

∂X2∂X1
= 0. (45)
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Appendix 3. The partial derivation of α̃i, i = 2, 3, 4 at (0, 0)
First, we calculate the values of ∂α̃i(0, 0)/∂α1 and ∂α̃i(0, 0)/∂θ̄1, i = 2, 3, 4. From (33),

it follows

0 =
∂Nj
∂α1

∣∣∣
(0,0)

=
∂Nj
∂X1

∂X1
∂α1

+
∂Nj
∂X2

∂X2
∂α1

+
∂Nj
∂X3

∂X3
∂α1

+
∂Nj
∂X4

∂X4
∂α1

∣∣∣
(0,0)

=
∂Nj
∂X1

(Y11 + ∂α̃2
∂α1

) +
∂Nj
∂X2

(Y12 + ∂α̃3
∂α1

) +
∂Nj
∂X3

(Y13 + ∂α̃4
∂α1

) +
∂Nj
∂X4

Y14

∣∣∣
(0,0)

.
(46)

Since Y1 is a basis of ker(DXN(0, O)), then

∂Ni

∂X1
Y11 +

∂Ni

∂X1
Y12 +

∂Ni

∂X1
Y13 +

∂Ni

∂X1
Y14

∣∣∣∣
(0,O)

= 0, i = 1, 2, 3, 4. (47)

Hence from (46) and (47), we deduce that

a
′
11
∂α̃2
∂α1

+ a
′
12
∂α̃3
∂α1

+ a
′
13
∂α̃4
∂α1

∣∣∣
(0,0)

= 0,

a
′
21
∂α̃2
∂α1

+ a
′
22
∂α̃3
∂α1

+ a
′
23
∂α̃4
∂α1

∣∣∣
(0,0)

= 0,

a
′
31
∂α̃2
∂α1

+ a
′
32
∂α̃3
∂α1

+ a
′
33
∂α̃4
∂α1

∣∣∣
(0,0)

= 0.

(48)

Solving (48) with respect to ∂α̃i/∂α1, i = 2, 3, 4 obtains

∂α̃2(0, 0)

∂α1
=
∂α̃3(0, 0)

∂α1
=
∂α̃4(0, 0)

∂α1
= 0. (49)

Again considering (33), we haveNi(θ̄1, α1) = X0i + Y1iα1 + α̃i+1(θ̄1, α1)− (Φi(θ0 + θ̄1, X0 + X̄(θ̄1, α1)) + θ0 + θ̄1),
Nj(θ̄1, α1) = X0j + Y1jα1 + α̃j+1(θ̄1, α1)− (Φj(θ0 + θ̄1, X0 + X̄(θ̄1, α1)) + θ2),
N1(θ̄1, α1) = N2(θ̄1, α1) = N3(θ̄1, α1) = 0,

(50)
with i = 1, 3, j = 2, 4, α̃5 = 0, X0 = (X01, X02, X03, X04) and X̄ = (X̄1, X̄2, X̄3, X̄4). Hence
based on (42) and (50), we can deduce that

0 =
∂N1(0,0)

∂θ̄1
=

∂α̃2(0,0)

∂θ̄1
− (1 +

3∑
i=1

(
∂Φ1(θ0,X0)

∂Xi

∂Xi(0,0)

∂θ̄1
))

=
∂α̃2(0,0)

∂θ̄1
+ (a

′
11 − 1)

∂α̃2(0,0)

∂θ̄1
+ a
′
12
∂α̃3(0,0)

∂θ̄1
+ a
′
13
∂α̃4(0,0)

∂θ̄1
− 1

= a
′
11
∂α̃2(0,0)

∂θ̄1
+ a
′
12
∂α̃3(0,0)

∂θ̄1
+ a
′
13
∂α̃4(0,0)

∂θ̄1
− 1.

(51)

Similarly, from (42) and (50), we can obtain that

∂N2(0,0)

∂θ̄1
= a

′
21
∂α̃2(0,0)

∂θ̄1
+ a
′
22
∂α̃3(0,0)

∂θ̄1
+ a
′
23
∂α̃4(0,0)

∂θ̄1
= 0,

∂N3(0,0)

∂θ̄1
= a

′
31
∂α̃2(0,0)

∂θ̄1
+ a
′
32
∂α̃3(0,0)

∂θ̄1
+ a
′
33
∂α̃4(0,0)

∂θ̄1

= a
′
33
∂α̃4(0,0)

∂θ̄1
= 0.

(52)

Solving (51) and (52) with respect to ∂α̃i(0, 0)/∂θ̄1, i = 2, 3, 4 yields that

∂α̃2(0,0)

∂θ̄1
=

a
′
22

a
′
11a
′
22−a

′
12a
′
21

,

∂α̃3(0,0)

∂θ̄1
= − a

′
21

a
′
11a
′
22−a

′
12a
′
21

,

∂α̃4(0,0)

∂θ̄1
= 0.

(53)



26 Xianghong Zhang et al.

Based on the first equation of (50), we have that

0 =
∂2N3(0,0)

∂θ̄21
= ∂

∂θ̄1

∂N3(0,0)

∂θ̄1

=
∂2α̃4(0,0)

∂θ̄21
− ∂
∂θ̄1

3∑
i=1

(
∂Φ3(θ0,X0)

∂Xi

∂Xi(0,0)

∂θ̄1
)

=
∂2α̃4(0,0)

∂θ̄21
− [

∂Φ3(θ0,X0)
∂X1

∂2α̃2(0,0)

∂θ̄21

+
∂Φ3(θ0,X0)

∂X2

∂2α̃3(0,0)

∂θ̄21
+
∂Φ3(θ0,X0)

∂X3

∂2α̃4(0,0)

∂θ̄21

+
∂α̃2(0,0)

∂θ̄1
(
∂2Φ3(θ0,X0)

∂X2
1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)
∂X1∂X2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)
∂X1∂X3

∂α̃4(0,0)

∂θ̄1
)

+
∂α̃3(0,0)

∂θ̄1
(
∂2Φ3(θ0,X0)
∂X2∂X1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)

∂X2
2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)
∂X2∂X3

∂α̃4(0,0)

∂θ̄1
)

+
∂α̃4(0,0)

∂θ̄1
(
∂2Φ3(θ0,X0)
∂X3∂X1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)
∂X3∂X2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ3(θ0,X0)

∂X2
3

∂α̃4(0,0)

∂θ̄1
)].

(54)

Substituting (40), (41), (44), (45) and (53) into (54) yields that

∂2α̃4(0, 0)

∂θ̄2
1

= 0. (55)

Then, we calculate the value of ∂2α̃4(0, 0)/∂θ̄1∂α1. From the first equation of (50) and
combination with (30), (40), (41), (44), (45), (49) and (53), we have

0 =
∂2N3(0,0)

∂θ̄1∂α1
= ∂

∂α1

∂N3(0,0)

∂θ̄1

=
∂2α̃4(0,0)

∂θ̄1∂α1
− ∂
∂α1

3∑
i=1

(
∂Φ3(θ0,X0)

∂Xi

∂Xi(0,0)

∂θ̄1
)

=
∂2α̃4(0,0)

∂θ̄1∂α1
− [

∂Φ3(θ0,X0)
∂X1

∂2α̃2(0,0)

∂θ̄1∂α1
+
∂Φ3(θ0,X0)

∂X2

∂2α̃3(0,0)

∂θ̄1∂α1
+
∂Φ3(θ0,X0)

∂X3

∂2α̃4(0,0)

∂θ̄1∂α1

+
∂α̃2(0,0)

∂θ̄1

∂
∂α1

(
∂Φ3(θ0,X0)

∂X1
) +

∂α̃3(0,0)

∂θ̄1

∂
∂α1

(
∂Φ3(θ0,X0)

∂X2
) +

∂α̃4(0,0)

∂θ̄1

∂
∂α1

(
∂Φ3(θ0,X0)

∂X3
)]

=
∂2α̃4(0,0)

∂θ̄1∂α1
− [

∂Φ3(θ0,X0)
∂X3

∂2α̃4(0,0)

∂θ̄1∂α1
+
∂α̃2(0,0)

∂θ̄1

∂
∂α1

(
∂Φ3(θ0,X0)

∂X1
) +

∂α̃3(0,0)

∂θ̄1

∂
∂α1

(
∂Φ3(θ0,X0)

∂X2
)]

=
∂2α̃4(0,0)

∂θ̄1∂α1
− [

∂Φ3(θ0,X0)
∂X3

∂2α̃4(0,0)

∂θ̄1∂α1

+
∂α̃2(0,0)

∂θ̄1
(
∂2Φ3(θ0,X0)

∂X2
1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2Φ3(θ0,X0)
∂X1∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2Φ3(θ0,X0)
∂X1∂X3

(Y13 +
∂α̃2(0,0)
∂α1

) +
∂2Φ3(θ0,X0)
∂X1∂X4

Y14)

+
∂α̃3(0,0)

∂θ̄1
(
∂2Φ3(θ0,X0)
∂X2∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2Φ3(θ0,X0)

∂X2
2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2Φ3(θ0,X0)
∂X2∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2Φ3(θ0,X0)
∂X2∂X4

Y14)]

=
∂2α̃4(0,0)

∂θ̄1∂α1
− [

∂Φ3(θ0,X0)
∂X3

∂2α̃4(0,0)

∂θ̄1∂α1
+
∂α̃2(0,0)

∂θ̄1

∂2Φ3(θ0,X0)
∂X1∂X4

+
∂α̃3(0,0)

∂θ̄1

∂2Φ3(θ0,X0)
∂X2∂X4

].

Thus we have

∂2α̃4(0, 0)

∂θ̄1∂α1
=

1

a
′
33

(
a
′
22

a
′
11a
′
22 − a

′
12a
′
21

∂2Φ3(X0)

∂X1∂X4
−

a
′
21

a
′
11a
′
22 − a

′
12a
′
21

∂2Φ3(X0)

∂X2∂X4

)
. (56)
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Next, we calculate the value of ∂2α̃i(0, 0)/∂α2
1, i = 2, 3, 4. From (50) as i = 1, we have

0 =
∂2N1(0,0)

∂α2
1

= ∂
∂α1

∂N1(0,0)
∂α1

= ∂
∂α1

(
∂N1(θ0,X0)

∂X1
(Y11 +

∂α̃2(0,0)
∂α1

) +
∂N1(θ0,X0)

∂X2
(Y12 +

∂α̃3(0,0)
∂α1

)

+
∂N1(θ0,X0)

∂X3
(Y13 +

∂α̃4(0,0)
∂α1

) +
∂N1(θ0,X0)

∂X4
Y14)

=
∂N1(θ0,X0)

∂X1

∂2α̃2(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X2

∂2α̃3(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X3

∂2α̃4(0,0)

∂α2
1

+ (Y11 +
∂α̃2(0,0)
∂α1

) ∂
∂α1

(
∂N1(θ0,X0)

∂X1
) + (Y12 +

∂α̃3(0,0)
∂α1

) ∂
∂α1

(
∂N1(θ0,X0)

∂X2
)

+ (Y13 +
∂α̃4(0,0)
∂α1

) ∂
∂α1

(
∂N1(θ0,X0)

∂X3
) + Y14

∂
∂α1

(
∂N1(θ0,X0)

∂X2
)

=
∂N1(θ0,X0)

∂X1

∂2α̃2(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X2

∂2α̃3(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X3

∂2α̃4(0,0)

∂α2
1

+ ∂
∂α1

(
Y11

∂N1(θ0,X0)
∂X1

+ Y12
∂N1(θ0,X0)

∂X2
+ Y13

∂N1(θ0,X0)
∂X3

+ Y14
∂N1(θ0,X0)

∂X4

)
=

∂N1(θ0,X0)
∂X1

∂2α̃2(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X2

∂2α̃3(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X3

∂2α̃4(0,0)

∂α2
1

+ Y11[
∂2N1(θ0,X0)

∂X2
1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X1∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2N1(θ0,X0)
∂X1∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X1∂X4

Y14]

+ Y12[
∂2N1(θ0,X0)
∂X2∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2N1(θ0,X0)

∂X2
2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2N1(θ0,X0)
∂X2∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X2∂X4

Y14]

+ Y13[
∂2N1(θ0,X0)
∂X3∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X3∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2N1(θ0,X0)

∂X2
3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X3∂X4

Y14]

+ Y14[
∂2N1(θ0,X0)
∂X4∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2N1(θ0,X0)
∂X4∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2N1(θ0,X0)
∂X4∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2N1(θ0,X0)

∂X2
4

Y14]

=
∂N1(θ0,X0)

∂X1

∂2α̃2(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X2

∂2α̃3(0,0)

∂α2
1

+
∂N1(θ0,X0)

∂X3

∂2α̃4(0,0)

∂α2
1

+
4∑
i=1

4∑
j=1

∂2N1(θ0,X0)
∂Xi∂Xj

Y1iY1j .

(57)

Submitting (29) into (57) gives that

a
′
11
∂2α̃2(0,0)

∂α2
1

+ a
′
12
∂2α̃3(0,0)

∂α2
1

+ a
′
13
∂2α̃4(0,0)

∂α2
1

= −
4∑
i=1

4∑
j=1

∂2N1(θ0,X0)
∂Xi∂Xj

Y1iY1j

=
4∑
i=1

4∑
j=1

∂2Φ1(θ0,X0)
∂Xi∂Xj

Y1iY1j .

(58)

Similarly, we can obtain from (50) as i = 2, 3 that

a
′
21
∂2α̃2(0,0)

∂α2
1

+ a
′
22
∂2α̃3(0,0)

∂α2
1

+ a
′
23
∂2α̃4(0,0)

∂α2
1

=
4∑
i=1

4∑
j=1

∂2Φ2(θ0,X0)
∂Xi∂Xj

Y1iY1j ,

a
′
33
∂2α̃4(0,0)

∂α2
1

=
4∑
i=1

4∑
j=1

∂2Φ3(θ0,X0)
∂Xi∂Xj

Y1iY1j .

(59)

Hence we can solve the roots of equations (58) and (59) with respect to ∂2α̃i(0, 0)/∂α2
1, i =

2, 3, 4, and submit them with i = 4 into (67) in Appendix 6.

Appendix 4. The first order partial derivations of N4(θ̄1, β1)
Similar to (46), (51) and (52), we can calculate from (25) that

∂N4
∂α1

∣∣∣
(0,0)

= ∂N1
∂X1

(Y11 + ∂α̃2
∂α1

) + ∂N4
∂X2

(Y12 + ∂α̃3
∂α1

) + ∂N4
∂X3

(Y13 + ∂α̃4
∂α1

) + ∂N4
∂X4

Y14

∣∣∣
(0,0)

,

∂N4
∂θ̄1

∣∣∣
(0,0)

= − ∂Φ4(X0)
∂X1

∂α̃2(0,0)

∂θ̄1
− ∂Φ4(X0)

∂X2

∂α̃3(0,0)

∂θ̄1
− ∂Φ4(X0)

∂X3

∂α̃4(0,0)

∂θ̄1

∣∣∣
(0,0)

.

(60)
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Substituting (47), (49) and (53) into (60) obtains

∂N4(0, 0)

∂α1
=
∂N4(0, 0)

∂θ̄1
= 0. (61)

Appendix 5. The second order partial derivation of N4(θ̄1, α1)
(i) Calculation the value of A.

According to the second equation of (50) as j = 4, we can easily get that

∂2N4(0,0)

∂θ̄21
= ∂

∂θ̄1

∂N4(0,0)

∂θ̄1
= − ∂

∂θ̄1

3∑
i=1

(
∂Φ4(θ0,X0)
∂Xi(0,0)

∂Xi(0,0)

∂θ̄1
)

= −[
∂Φ4(θ0,X0)

∂X1

∂2α̃2(0,0)

∂θ̄21
+
∂Φ4(θ0,X0)

∂X2

∂2α̃3(0,0)

∂θ̄21
+
∂Φ4(θ0,X0)

∂X3

∂2α̃4(0,0)

∂θ̄21

+
∂α̃2(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)

∂X2
1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)
∂X1∂X2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)
∂X1∂X3

∂α̃4(0,0)

∂θ̄1
)

+
∂α̃3(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)
∂X2∂X1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)

∂X2
2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)
∂X2∂X3

∂α̃4(0,0)

∂θ̄1
)

+
∂α̃4(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)
∂X3∂X1

∂α̃2(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)
∂X3∂X2

∂α̃3(0,0)

∂θ̄1
+
∂2Φ4(θ0,X0)

∂X2
3

∂α̃4(0,0)

∂θ̄1
)].

(62)
Substituting (40), (41), (44), (45) (49), (53) and (55) into (62) obtains

A =
∂2N4(0, 0)

∂θ̄2
1

= 0. (63)

(ii) Calculation the value of B.
Similarly, based on the second equation of (50), it follows that

∂2N4(0,0)

∂θ̄1∂α1
= ∂

∂α1

∂N4(0,0)

∂θ̄1
= − ∂

∂α1

3∑
i=1

(
∂Φ4(θ0,X0)
∂Xi(0,0)

∂Xi(0,0)

∂θ̄1
)

= −[
∂Φ4(θ0,X0)

∂X1

∂2α̃2(0,0)

∂θ̄1∂α1
+
∂Φ4(θ0,X0)

∂X2

∂2α̃3(0,0)

∂θ̄1∂α1
+
∂Φ4(θ0,X0)

∂X3

∂2α̃4(0,0)

∂θ̄1∂α1

+
∂α̃2(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)

∂X2
1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2Φ4(θ0,X0)
∂X1∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2Φ4(θ0,X0)
∂X1∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2Φ4(θ0,X0)
∂X1∂X4

Y14)

+
∂α̃3(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)
∂X2∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2Φ4(θ0,X0)

∂X2
2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2Φ4(θ0,X0)
∂X2∂X3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2Φ4(θ0,X0)
∂X2∂X4

Y14)

+
∂α̃4(0,0)

∂θ̄1
(
∂2Φ4(θ0,X0)
∂X3∂X1

(Y11 +
∂α̃2(0,0)
∂α1

) +
∂2Φ4(θ0,X0)
∂X3∂X2

(Y12 +
∂α̃3(0,0)
∂α1

)

+
∂2Φ4(θ0,X0)

∂X3
3

(Y13 +
∂α̃4(0,0)
∂α1

) +
∂2Φ4(θ0,X0)
∂X3∂X4

Y14)]

= −
(
∂α̃2(0,0)

∂θ̄1

∂2Φ4(θ0,X0)
∂X1∂X4

+
∂α̃3(0,0)

∂θ̄1

∂2Φ4(θ0,X0)
∂X2∂X4

+
∂Φ4(θ0,X0)

∂X3

∂2α̃4(0,0)

∂θ̄1∂α1

)
.

(64)
Then substituting (53) and (56) into the above equation yields that

B =
∂2N4(0,0)

∂θ̄1∂α1

= −
[

a
′
22

a
′
11a
′
22−a

′
12a
′
21

(
∂2Φ4(X0)
∂X1∂X4

− a
′
43

a
′
33

∂2Φ3(X0)
∂X1∂X4

)
− a

′
21

a
′
11a
′
22−a

′
12a
′
21

(
∂2Φ4(X0)
∂X2∂X4

− a
′
43

a
′
33

∂2Φ3(X0)
∂X2∂X4

)]
.

(65)
(ii) Calculation of the value of C.

Similarly to (57), we have that

∂2N4(0,0)

∂α2
1

=
∂N4(p0,X0)

∂X3

∂2α̃4(0,0)

∂α2
1

+
4∑
i=1

4∑
j=1

∂2N4(p0,X0)
∂Xi∂Xj

Y1iY1j

= a
′
43
∂2α̃4(0,0)

∂α2
1
−

4∑
i=1

4∑
j=1

∂2Φ4(p0,X0)
∂Xi∂Xj

Y1iY1j .

(66)
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Submitting the roots of equations (58) and (59) with i = 4 into (67), we can obtain that

C =
∂2N4(0,0)

∂α2
1

=
4∑
i=1

4∑
j=1

(
a
′
43

a
′
33

∂2Φ3(p0,X0)
∂Xi∂Xj

− ∂2Φ4(p0,X0)
∂Xi∂Xj

)
Y1iY1j . (67)
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Rigau-Pérez JG (2006) Severe dengue: the need for new case definitions. Lancet Infect Dis
6:297-302

Ritter L, Solomon KR, Forget J et al (1995) A review of selected persistent organic pollu-
tants. World Health Organization, Geneva

Schofield PG (2002) Spatially explicit models of Turelli-Hoffmann Wolbachia invasive wave
fronts. J Theor Biol 215:121-131

Simons RRL, Gourley SA (2006) Extinction criteria in stage-structured population models
with impulsive culling. SIAM J Appl Math 66:1853-1870

Tang SY, Tang B, Wang AL et al (2015) Holling II predator-prey impulsive semi-dynamic
model with complex Poincar-map. Nonlinear Dyn 81:1575-1596

The Guardian (2015) Sterile mosquitoes released in China to fight dengue
fever. http://www.theguardian.com/world/2015/may/24/sterile-mosquitoes-
released-in-china-to-fight-dengue-fever

Turelli M (1994) Evolution of incompatibility inducing microbes and their hosts. Evolution
48:1500-1513

Turelli M (2010) Cytoplasmic incompatibility in population with overlapping generations.
Evolution 64:232-241

Vautrin E, Charles S, Genieys S et al (2007) Evolution and invasion dynamics of multiple
infections with Wolbachia investigated using matrix based models. J Theor Biol 245:197-
209

VED (2014) Vietnam-Eliminate Dengue. http://www.eliminatedengue.com/vietnam/faqs
Walker T, Johnson PH, Moreira LA et al (2011) The wMel Wolbachia strain blocks dengue

and invades caged Aedes aegypti populations. Nature 476:450-453
Wang WD (2006) Backward bifurcation of an epidemic model with treatment.

Math Bioci 201: 58-71
Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate

biology. Nat Rev Microbiol 6:741-751
World Health Organisation (2012) Impact of Dengue.

http://www.who.int/csr/disease/dengue/impact/en/
Xi ZY, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes

aegypti laboratory population. Science 14:326-328
Xu XX, Xiao YN, Cheke RA (2014) Models of impulsive culling of mosquitoes to interrupt

transmission of West Nile virus to birds. Appl Math Model 39:3549-3568
Yang HM, Macoris MLG, Galvani KC et al (2009) Assessin he effects of tem-

perature on the population of Aedes aegypti, the vector of dengue. Epidemiol
Infect 137: 1188-1202

Yeap HL, Mee P, Walker T et al (2011) Dynamics of the ’popcorn’ Wolbachia infection in
Aedes aegypti in an outbred background. Genetics 187:583-595

Zhang XH, Tang SY, Cheke RA (2015) Birth-pulse models of Wolbachia-induced cytoplas-
mic incompatibility in mosquitoes for dengue virus control. Nonlinear Anal-Real 35:236-
258

Zhang XH, Tang SY, Cheke RA (2015) Models to assess how best to replace dengue virus
vectors with Wolbachia-infected mosquito populations. Math Bioci 269:164-177

Zhang DJ, Zheng XY, Xi ZY et al (2015) Combining the Sterile Insect Technique with the
Incompatible Insect Technique: I-Impact of Wolbachia Infection on the Fitness of Triple-
and Double-Infected Strains of Aedes albopictus. PLoS ONE 10(4):e0121126

Zheng B, Tang MX, Yu JS (2014) Modeling Wolbachia spread in mosquitoes through delay
differential equations. SIAM J Appl Math 74:743-770



32 Xianghong Zhang et al.

X

Y

1L

3X x=

2P1P

3P

5X x=

(5)

4P
(4)

4P
(3)

4P
(1)

4P

(2)

2L

(1)

2L

(3)

2L

(4)

2L

(5)

2L

(2)

0 4( )P P

Fig. 1 Curves L1, L2 illustrating the existence of positive equilibrium of system (11). With
the increase of θ2, all the possibilities of L2 provided x2 > x4 are shown as green, yellow,
magenta, blue and red curves, respectively.



Modeling the effects of augmentation strategies on the control of dengue fever 33

T
a
b

le
1

P
a
ra

m
et

er
d

es
cr

ip
ti

o
n

s,
v
a
lu

es
a
n

d
so

u
rc

es
fo

r
th

e
sy

st
em

s

P
a
ra

.
D

es
cr

ip
ti

o
n

V
a
lu

e(
R

a
n

g
e)

U
n

it
S

o
u

rc
e

f
T

h
e

p
ro

p
o
rt

io
n

o
f

m
o
sq

u
it

o
es

b
o
rn

fe
m

a
le

0
.5

(0
.4

,0
.6

)
/

(K
ee

li
n

g
et

a
l.

,
2
0
0
3
;

Z
h

en
g

et
a
l.

,
2
0
1
4
)

T
h

e
n

a
tu

ra
l

b
ir

th
ra

te
o
f
W

u
n

in
fe

ct
ed

0
.3

9
7
6

b 1
m

o
sq

u
it

o
es

(0
.2

5
1
8
,0

.7
5
5
4
)

(C
D

)−
1

(Z
h

en
g

et
a
l.

,
2
0
1
4
;

W
a
lk

er
et

a
l.

,
2
0
1
1
)

T
h

e
n

a
tu

ra
l

b
ir

th
ra

te
o
f
W

in
fe

ct
ed

b 2
m

o
sq

u
it

o
es

,
b 2

=
α
b 1
,
α
∈

[0
.5
.1

]
S

ee
T

a
b

le
2

(C
D

)−
1

(Z
h

en
g

et
a
l.

,
2
0
1
4
;

H
u

g
h

es
a
n

d
B

ri
tt

o
n

,
2
0
1
3
)

P
ro

b
a
b

il
it

y
o
f

th
e

o
ff

sp
ri

n
g
s

in
fe

ct
ed

w
it

h
S

ee
T

a
b

le
2

τ
W

o
lb
a
ch

ia
fr

o
m

W
in

fe
ct

ed
fe

m
a
le

s
(0

.8
5
,1

)
/

(N
d

ii
et

a
l.

,
2
0
1
5
;

W
a
lk

er
et

a
l.

,
2
0
1
1
)

P
ro

b
a
b

il
it

y
o
f

a
W

in
fe

ct
ed

m
a
le

a
n

d
a

S
ee

T
a
b

le
2

q
W

u
n

in
fe

ct
ed

fe
m

a
le

p
ro

d
u

ci
n

g
in

v
ia

b
le

o
ff

sp
ri

n
g
s

(0
.5

,1
)

/
(K

ee
li
n

g
et

a
l.

,
2
0
0
3
)

d
T

h
e

n
a
tu

ra
l

d
ea

th
ra

te
o
f

m
o
sq

u
it

o
es

0
.0

7
1
4
(0

.0
3
3
,0

.1
)

(C
D

)−
1

(N
d

ii
et

a
l.

,
2
0
1
5
;

Y
a
n

g
et

a
l.

,
2
0
0
9
)

F
it

n
es

s
co

st
o
f
W

in
fe

ct
ed

m
o
sq

u
it

o
es

S
ee

T
a
b

le
2

D
D

=
(β
−

1
)d

(−
0
.0

3
3
,0
.1

5
1
8
)

(C
D

)−
1

A
ss

u
m

ed

T
P

u
ls

e
p

er
io

d
7
(5

,1
5
)

D
(H

o
ff

m
a
n

n
et

a
l.

,
2
0
1
1
;

B
u

ra
tt

in
i

et
a
l.

,
2
0
0
8
)

T
h

e
q
u

a
n
ti

ty
o
f
W

in
fe

ct
ed

fe
m

a
le

s
θ 1

re
le

a
se

d
a
s

a
co

n
st

a
n
t

(0
.1
,3

0
)

C
A

ss
u

m
ed

T
h

e
q
u

a
n
ti

ty
o
f
W

in
fe

ct
ed

m
a
le

s
θ 2

re
le

a
se

d
a
s

a
co

n
st

a
n
t

(0
.1
,3

0
)

C
A

ss
u

m
ed

W
in

fe
ct

ed
:
W

o
lb
a
ch

ia
in

fe
ct

ed
;

W
u

n
in

fe
ct

ed
:
W

o
lb
a
ch

ia
u

n
in

fe
ct

ed
;

/
:

N
/
A

;
C

:
ca

p
it

a
;

D
:

d
a
y.



34 Xianghong Zhang et al.

Table 2 Phenotypes and parameters for different Wolbachia stains

Wolbachia strain Phenotype α β τ q

wAlbB CI, DenV interf.[1] 0.85[2,3] 1[2,4] 0.967[5] 1[3,5]

CI,Life-shortening,EmbryowMelPop
mortality, DenV interf.[1] 0.55[6,7] 1.7[2,7] 0.9945[5] 1[8]

wMel CI,DenV interf.[1] 0.9[2,9] 1.1[2,9] 1[7] 1[7]

CI: cytoplasmic incompatibility; DenV interf.: dengue virus interference;
1: (Iturbe−Ormaetxe et al. , 2011); 2: (Hughes and Britton , 2013);
3: (Xi et al. , 2005); 4: (Bian et al. , 2010);
5: (Kittayapong et al. , 2002); 6:(Zheng et al. , 2014);
7: (Walker et al. , 2011); 8: (McMeniman et al. , 2009);
9: (Hoffmann et al. , 2011).

Table 3 Partial rank correlation coefficients illustrating the dependence of the two variables
(i.e., R0, F Im) with respect to each parameter. Parameter values of wMel (see Tables 1 and
2) are used in the simulations of PRCCs and p-values of R0 and FIm. Here denote p-value
as zero if it is smaller than 0.0001, and it is significant when p < 0.01.

Para.
R0 FIm

PRCCs p-values PRCCs p-values
b1 −0.6829 0 0.0575 0
α −0.3982 0 0.0071 0.5278
d −0.0669 0.0003 −0.0181 0.0418
D 0.9835 0 0.3080 0
q −0.4491 0 0.0910 0
T −0.4613 0 0.0384 0.0895
θ1 −0.0897 0 −0.3111 0
θ2 −0.0102 0.5782 −0.0085 0.1127
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parameter values are the same as in Fig 5.
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Fig. 10 The effect of releasing only Wolbachia infected female mosquitoes on the solutions
of female ones for system (5). The baseline parameter values are the same as in Fig 9.
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Fig. 11 The effect of releasing Wolbachia infected mosquitoes on the solutions of female
ones for system (5). The baseline parameter values are the same as in Fig 9.
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Fig. 12 The effect of releasing different sex ratios of Wolbachia infected mosquitoes on the
solutions of female ones and their ratios for system (5). The total quantity of Wolbachia
infected mosquitoes are fixed as a constant θ = 2.2, and the baseline parameter values are
the same as in Fig 9.
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