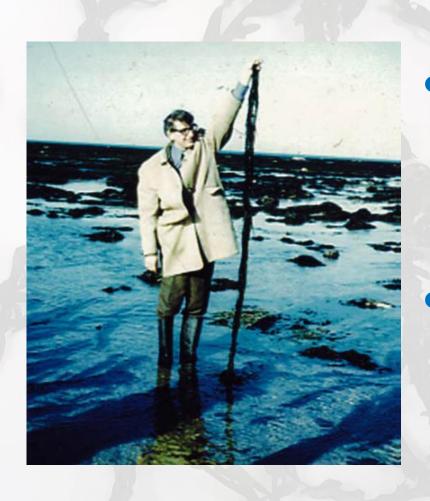


Sargassum Golden-Menace or

Golden Opportunity

Society and the Sea 15-16th September 2016

GREENWICH MARITIME CENTRE

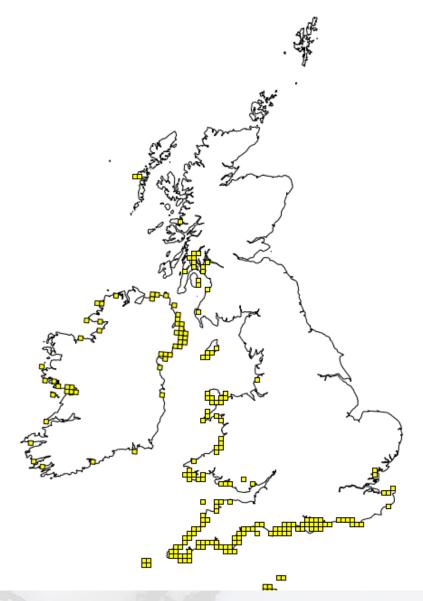

Dr John J Milledge
Algae Biotechnology Research Group
University of Greenwich

Cost of Invasive Species

- Globally <u>US\$ 1.4 trillion per year</u> ≡ 5 % of the world economy⁽¹⁾
- Great Britain £ 1.7 billion per year⁽²⁾

UK shipping and aquaculture
 <u>£ 40 million per year⁽²⁾</u>

Sargassum muticum (Japanese Wireweed)



Found in Europe early 1970s.

Now found from Norway to Portugal

S. muticum has spread along the south-coast and around the British Isles

- Very invasive
- Most 'successful' invasive, rate of spread in UK
- Higher growth rate
 >10 * Ascophyllum nodosum
- High priority EU's Water Framework Directive

S Muticum growth site reported to National Biodiversity Network

Courtesy of National Biodiversity Network

Seaweed is like love; even if you push it away, you will not prevent it from coming back."

Adapted from Nigerian Proverb

Seaweed difficult to control

Attempts to eradicate Sargassum muticum failed

- Mostly harvested by hand
- Costly ~ £60 tonne^{-1*}
- Large quantities for disposal
- No major commercial exploitation

^{*} Updated from: Critchley AT, Farnham WF, Morrell SL (1986) An account of the attempted control of an introduced marine alga, Sargassum-muticum, in southern England Biological Conservation 35:313-332

Caribbean Tourism 2014

US\$ 29.2 billion on-shore spending

Photographs courtesy of Kelly (Robinson) de Schaun

theguardian

Caribbean-bound tourists cancel holidays due to foul-smelling seaweed Monday 10 August 2015

Massive inundations of pelagic Sargassum known as Golden-tides on the beaches of the Caribbean, Gulf of Mexico and West Africa

The Economist

Caribbean resorts
Plaguing paradise
Smelly piles of seaweed are ruining holidays
Aug 29th 2015 |

Golden-tides

- Sargassum natans and fluitans
- Holopelagic
- Sargasso Sea
- Ecological importance Floating golden jungles
- Northern Equatorial Recirculation Region

Golden-tides

Reason for the *Sargassum* inundations of recent years are not fully known

- Climate change
- Coastal sea eutrophication
- Continue every year?

"The greatest single threat" to the Caribbean

Sir Hilary Beckles the Vice Chancellor of the University of the West Indies

Removal and Prevention costly

- US\$ 120 million to clean Caribbean beaches
- US\$ 3.5 million annually Galveston Island
- US\$ 80,000 300 m floating boom

Valorisation of Sargassum to encourage harvesting and control

Sargassum muticum feedstock

Season	Ash	С	Н	0	N	S	HHV
% total wt.			% dry we	eight			KJ g ⁻¹ dw
Spring	29.5	30.7	4.0	29.6	4.9	1.5	16.3
Summer	33.3	30.1	4.2	28.1	3.6	0.8	12.0

- High moisture ~85%
- High ash
- High Sulphur
- HHV lower than terrestrial energy crops

Food, Feed & Fertiliser

Abalone-farming courtesy Namibian Sun

"Gathering Seaweed" by Harold Harvey, courtesy of David Messum Fine Art

Potential high levels of heavy metals

Alginates

- Major component of the cell-wall of brown algae
- Worldwide annual production 30,000 tonnes
- Yield is relatively low, 5-11% from
 S. Muticum compared to 16-30% for commercially exploited brown algae

Sulphated Carbohydrates

- Chemically very different from land plants
- S. muticum 8% dw
- Anticoagulant
- Antiviral
- Inhibiting parasite, *Toxoplasma* gondi

Phenolics

- Phenolic compounds play a primary role in the structure of seaweed cell walls, and are a chemical defence against grazers
- S. muticum > 5% polyphenols
- Antibacterial
- Antioxidant

Carotenoids

- Fucoxanthin
- antioxidant,
- anti-inflammatory
- anti-obesity,
- antitumor

Biorefinery

Fucoxanthin € 9000 g⁻¹

Residues and Alternative uses?

Biofuels

Method	Utilises entire organic biomass	Utilises wet biomass	Primary energy product
Direct combustion	✓	X	Heat
Pyrolysis		X	Primarily liquid by fast pyrolysis
Gasification		(conventional)	Primarily Gas
Biodiesel production	X	Χc	Liquid
Hydrothermal treatments			Primarily Liquid
Bioethanol production	Xa		Liquid
Biobutanol production	Xa		Liquid
Anaerobic digestion	✓		Gas

^a Polysaccharides require hydrolysis to fermentable sugars. Some of the sugars produced from the breakdown of seaweed polysaccharides are not readily fermented; ^b Supercritical water gasification (SCWG) an alternative gasification technology can convert high moisture high moisture high supercritical process for the wet trans-esterification of wet macroalgal biomass

Pyrolysis

- Pyrolysis is the thermal decomposition of the organic component of <u>dry</u> biomass by heating in the absence of air.
- The distribution between solid, liquid and syngas depends on the biomass and the pyrolysis temperature and time

Slow Pyrolysis of Sargassum Muticum

	% of original DW	HHV	
		kJ g ⁻¹	
Biochar	67.6%	15.7	
Syngas	16.5%	2.9	
Biocrude	11.7%	15.6	
Tar 'hold-up'	4.4%	30.1	

Slow pyrolysis (<400 °C) produces more solid char

Energy yield 98 %

Energy Balance Pyrolysis of Sargassum Muticum

	MJ
Energy to raise temp 1kg of dry seaweed by 400 °C	0.5
Energy in Biocrude & Syngas	2.9
Energy in all Pyrolysis Products	14.9
Heat energy to produce 1kg dry seaweed	10.4

Sufficient energy in the biocrude and syngas to power pyrolysis

70% of energy produced

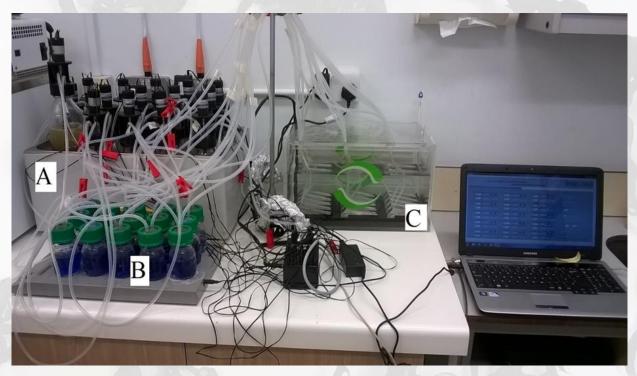
Insufficient energy within the seaweed for drying

Anaerobic Digestion

- Uses wet biomass no drying required
- A relatively simple process with proven technologies
- Used commercially in Scotland in 19th century

Theoretical Methane Potential

VS Empirical Formula	Methar	ne yield	
	L CH ₄ g ⁻¹ VS	L CH ₄ g ⁻¹ TS	
$C_1H_{1.66}O_{0.7}N_{0.1}S_{0.01}$	0.42	0.28	


Buswell equation stoichiometric calculation

 $C_cH_hO_oN_nS_s + \frac{1}{4}(4c - h - 2o + 3n + 2s)H_2O = \frac{1}{8}(4c + h - 2o - 3n - 2s)CH_4 + \frac{1}{8}(4c - h + 2o + 3n + 2s)CO_2 + nNH_3 + sH_2S$ molecular formula subscripts, c, h, o, n and s = molar proportion of elements CHONS

Symons, G. E. and A. M. Buswell (1933) The methane fermentation of carbohydrates. Journal of the American Chemical Society 55(5): 2028-2036.

Buswell, A. M. and H. F. Mueller (1952) Mechanism of methane fermentation. Industrial and Engineering Chemistry 44(3): 550-552.

Methane Potential

Automatic Methane Potential Test System (AMPTS)

- A) water-bath withcontrolled temperature and15 digestion bottles
- B) 15 CO2 fixing bottles,
- C) A tipping cup volumetric gas measuring device

Average Methane Yield

% of Theoretical Yield

L CH₄ g⁻¹ VS

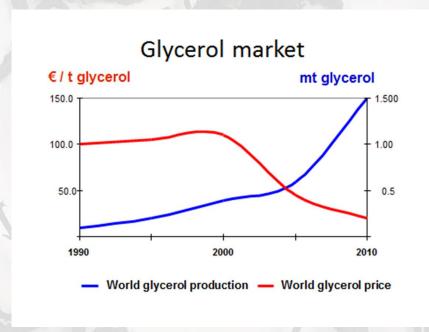
0.10

25%

Considerable conjecture about low practical methane yields

- Inoculum
- Cell structure
- Resistant organic compounds
- Inhibition by anti-bacterial polyphenols and other compounds
 - Salt and other inorganics
- Ammonia inhibition

Ammonia inhibition


 Due to degradation of proteincontaining materials

Recommended C:N ~ 20:1.

• S. muticum has a C:N 8:1

Co-digestion with low C:N substrate?

Co-digestion with Crude Glycerol

Co-digestion with Crude Glycerol

	Ave Methane	% of Theoretical
	Yield	Yield
	L CH ₄ g ⁻¹ VS	
Crude Glycerol	0.26	46%
Sargassum muticum	0.07	17%
50% Crude Glycerol & S. muticum	0.21	43%

Co-digestion increased biogas yield by 27%

Maintaining Year Round Supply

- Harvesting is seasonal
- Need to preserve and store for a continuous supply

Little research on how to preserve seaweed biomass year round in order to satisfy continuous process demand

"An understanding of ensiling of seaweed is absolutely crucial for a substantial seaweed biofuel industry"

Herrmann C, FitzGerald J, O'Shea R, Xia A, O'Kiely P, Murphy JD (2015) Ensiling of seaweed for a seaweed biofuel industry Bioresour Technol 196:301-313

Ensilage

- Routinely used for the storage of forage for animal feed
- Lactic acid fermentation under anaerobic conditions converts water-soluble carbohydrates into organic acids, mainly lactic acid.
- Initiated by naturally-present bacteria
- pH decreases and the moist crop is preserved

Ensiled seaweed composition

	Moisture	С	н	0	N	S	Ash	Salt	HHV
	% total wt.			% dry v	weight			% of ash	KJ g ⁻¹ dw
Unensiled	85.4	30.1	4.2	28.1	3.6	0.8	33.3	46.1	12.05
Ensiled									
whole	85.5	30.0	4.2	29.3	3.3	<0.1	33.1	43.6	12.13
Ensiled							/ \		
chopped	85.2	29.4	3.9	29.8	3.5	<0.1	33.3	45.9	12.36

- No sig difference in CHON, ash and HHV
- Ensiling results in a significant reduction in salt
- Chopping reduces salt loss
- Ensiling results in virtual total loss of organic sulphur

Leachate composition

					w/w % of
	Moisture	VS	Ash	Salt	feedstock
				% of	
	% total wt.	% d	W	ash	
Ensiled whole					
leachate	92.3	38.8	61.2	43.6	7.8
Ensiled chopped					
leachate	92.2	49.2	50.8	45.9	3.2

- Leachate losses low 3.2-7.8% wet weight
- Leachate is mainly water, ash and salt
- VS losses low 2.8-8.4% of original VS
- Chopping reduces overall leachate losses

Energy Losses due to Ensiling

<8 % original Higher
Heating Value

Effect of Ensilage on CH₄ Yield

	Methane production			
	L CH ₄ g ⁻¹ VS			
	Average Std			
Untreated	0.10	0.05		
Ensiled whole	0.11	0.08		
Chopped prior to ensiling	0.06	0.01		

No statistically significant effect on methane yields

The seaweed made the world.

John B. Keane (Irish Writer)

Sargassum has potential

But challenges remain

Publications

- Milledge JJ, Harvey PJ (2016) Golden-tides: problem or golden opportunity? The valorisation of Sargassum from beach inundations J Marine Sci and Eng
- Milledge JJ, Harvey PJ (2016) Ensilage and anaerobic digestion of Sargassum muticum J Appl Phycol
- Milledge JJ, Harvey PJ (2016) Potential process 'hurdles' in the use of macroalgae as feedstock for biofuel production in the British Isles Journal of Chemical Technology & Biotechnology
- Milledge JJ, Nielsen BV, Bailey D (2015) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum Rev Environ Sci Biotechnol 15:67-88
- Milledge JJ, Staple A, Harvey P (2015) Slow Pyrolysis as a Method for the Destruction of Japanese Wireweed, Sargassum muticum Environment and Natural Resources Research 5:28-36
- Milledge JJ, Smith B, Dyer P, Harvey P (2014) Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass Energies 7:7194-7222

Acknowledgements

- High Value Chemicals from Plants
- The Engineering and Physical Sciences Research Council EPSRC – MacroBioCrude
- University of Greenwich colleagues

Photographic Credits

- Chris Wood, Marine Conservation Society
- H. Powell
- Steve Schoenherr
- Namibian Sun
- Kelly (Robinson) de Schaun

Thank you