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Abstract This paper uses an unusually large dataset to study scatter in site-effect
estimation, focusing on how the events that increase uncertainty can be removed from
the dataset. Four hundred seventy-three weak motion earthquake records from the
surface and bedrock of a 178-m-deep borehole in Aegion, Gulf of Corinth, Greece,
are used to evaluate spectral ratios. A simple statistical tool, variance reduction (VR),
is first used to identify two groups of events that lie closest and farthest from the
average, which is considered here as the initial best estimate of the site response.
The scatter in the original dataset is found to be due to the group of events with small-
est VR. These events can be removed from the dataset in order to compute a more
reliable site response. However, VR is not normally used to choose records for site-
effect studies, and it cannot be applied to the usual small datasets available. The
signal-to-noise ratio (SNR) is normally used to this end, for which reason we inves-
tigate whether SNR can be used to achieve similar results as VR. Signal-to-noise ratio
is estimated using different definitions. Data selection based on SNR is then compared
to that using VR in order to define an SNR-based criterion that discriminates against
events that, according to VR, increase scatter. We find that defining the SNR of a sur-
face record as the mean value over a frequency range around the resonant peak (here,
0.5–1.5 Hz) and using a cutoff value of 5 may be used in this case to exclude most
events for which VR is small. This process is also applied to the downhole station,
where we obtain similar results for a cutoff value of 3.

Introduction

Site effects are often estimated using spectral ratios of
earthquake data. The most usual are spectral ratios relative
to a reference site, which are often called standard spectral
ratios (SSR; e.g., Borcherdt, 1970; Chávez-García et al.,
1990) and horizontal-to-vertical spectral ratios (HVSR),
where horizontal component spectra are divided by the
vertical component spectra recorded at the same site (e.g.,
Lermo and Chávez-García, 1993). If many records are avail-
able, higher quality data are often chosen based on signal-to-
noise ratios. However, even when data quantity is satisfac-
tory and data quality is acceptable, the scatter in the estimates
of site amplification may be great. The reasons have been
discussed previously (e.g., Jarpe et al., 1988; Chávez-García
et al., 1990). If it were possible to detect the events that con-
tribute most to our scatter and remove them from the dataset,
then we would be able to decrease the uncertainty in site-
effect prediction.

The scatter of site-effect estimates is not often studied.
Indeed, standard site-effect studies often use spectral ratios to

produce estimates of local amplification based on a dozen or
less recorded events. Small datasets may make it problematic
to even define an average transfer function. In this paper we
use an exceptionally large dataset consisting of 473 small
earthquakes recorded by the vertical array CORSSA (Corinth
Soft Soil Array) installed near the city of Aegion, in the Gulf
of Corinth, Greece. This large dataset allows us to investigate
the scatter of spectral ratios. We examine whether certain
events in our dataset contribute more than their share to
the scatter about the average value and how these can be
found and removed using two methods, the signal-to-noise
ratio (SNR) and variance reduction. Variance reduction (VR)
is a simple statistical tool that evaluates goodness-of-fit
between observations and predictions of a model. It has often
been used in the determination of fault plane solutions. In
this paper, thanks to the large number of events, we can
use VR to estimate the agreement between an individual
spectral ratio and the average spectral ratio for the complete
dataset, considered as the initial best estimate. We can use
VR to classify individual events in terms of how near or
how far their ratios lie from the average. Those events lying
farthest from the average can then be rejected.
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Variance reduction, however, cannot be used to screen
small datasets. In these cases, data quality is usually assessed
using SNR. When we select events based on SNR, we choose
whether to include the spectral ratio of a particular event in
the computation of the average based on whether a criterion
regarding the ratio between signal and noise is met. Varying
SNR criteria are used here, and we search for the SNR criter-
ion that best reproduces the record selection obtained using
VR. Thus, we are able to propose an SNR selection criterion
that best matches the selection made through VR and that
may be used to choose events in the smaller datasets usually
available to estimate site effects.

Signal-to-Noise Ratio and Variance Reduction

Signal-to-noise ratio is often used in site response stu-
dies to choose higher quality data from the available dataset.
According to Borcherdt (1970), SSR in the frequency band
where SNR is high should isolate local site effects. Signal-to-
noise ratio is usually defined in this context as the ratio of the
Fourier spectrum of the signal time window by the spectrum
of the pre-event noise. The length of these windows can vary
greatly. Both acceleration and velocity data yield similar SNR
(Jarpe et al., 1988). Ratios for the two horizontal components
are usually computed independently, producing comparable
(Borcherdt and Gibbs, 1976; Kato et al., 1995; Lachet et al.,
1996) or dissimilar results (Wong et al., 1977). Signal-to-
noise ratio depends on frequency and decreases rapidly
beneath 0.4–1 Hz for small earthquakes (Malagnini et al.,
1996; Steidl et al., 1996).

When computing spectral ratios, SNR is usually evalu-
ated in the frequency domain, its spectral amplitude values
are compared with a chosen cutoff threshold, and data whose
SNR fall below this value are removed. The lowest SNR cut-
off value used is 2 (e.g., Borcherdt and Gibbs, 1976; Rogers
et al., 1984; Darragh and Shakal, 1991; Satoh et al., 2001;
Lozano et al., 2009). Most studies use the value of 3 (e.g.,
Field and Jacob, 1995; Theodulidis et al., 1996; Lachet et al.,
1996; Bonilla et al., 1997, 2002; Di Giacomo et al., 2005;
Sawazaki et al., 2009). Riepl et al. (1998) report that their
results are no different for thresholds of 3 or 5. Jarpe et al.
(1988), Cramer (1995), and Thompson et al. (2009) use a
cutoff value of 5, while Steidl et al. (1996) and Malagnini
et al. (1996) use a value of 10.

Contrary to SNR, variance reduction (VR) is not usually
applied in site-effect studies, but rather in source studies
(e.g., Chi et al., 2001; Skarlatoudis et al., 2003; Scherbaum
et al., 2004). Variance reduction may also be used to discri-
minate between higher and lower quality data. Variance re-
duction is defined in different ways according to different
authors. In this paper, we define VR as

VR � 1 �
X�

discrepancy
observation

�
2

; (1)

where the term discrepancy means the difference between
an observation and an expected value based on a model.

As defined in equation (1), VR assumes values within the
range ��∞; 1�. It equals 1 when there is a perfect match be-
tween expected and observed values, while as values become
smaller they indicate poorer fit. Equation (1) resembles the
chi-square fit test, but the normalization of the residuals is
made with respect to the data amplitude rather than to the
standard deviation. Evidently, if we do not know the local
amplification, it is not possible to evaluate VR. We do not
have a model that we can trust completely to predict site
amplification at Aegion. However, the sheer size of our
dataset makes for a very robust observed average amplifica-
tion. It is this average transfer function that will allow us to
compute VR.

Data and Spectral Ratios

Our dataset comes from the Corinth Soft Soil Array
(CORSSA; see the Data and Resources section), which is
installed near the city of Aegion, in the southern part of the
Gulf of Corinth, Greece, one of the most active seismic areas
in Europe (Fig. 1). Aegion is crossed by a fault with an es-
carpment of roughly 80 m that, as shown in the cross-section,
divides it in two levels. CORSSA vertical array is installed in
the northern, lower part of the city, very near the coast. The
soil profile at that point is known through various previous
surveys (Pitilakis et al., 2004) to consist of soft, loose
materials underlain by a stiff conglomerate (VS > 800 m=s)
at 155 m depth. The actual seismic bedrock is the limestone
formation (VS > 1500 m=s), which lies at some 700 m,
according to the cross-section of Figure 1 (Apostolidis et al.,
2006). The array consists of four broadband 3D acceler-
ometers at depths of 14, 31, 57, and 178 m, and one at the
surface. The deepest accelerometer is located in the con-
glomerate formation; although this material is not as stiff
as the limestone, it has been shown (Ktenidou, 2010) that
the station can be used as reference (the average HVSR value
at depth for events used in the present study is near unity in
the 0.1–10 Hz range).

The dataset used consists of 473 earthquakes recorded
over a period of 6 years since the array began to operate in
2002. Figure 2 shows the epicentral distribution. This dataset
has been used previously to evaluate site effects (Ktenidou,
2010), showing the large importance of the geometry of the
sediments relative to the Aigion fault. For this reason, the
horizontal components studied here are rotated to the radial
and transverse components with respect to the fault escarp-
ment. All data are weak motion, and only records from the
surface and deepest stations are analyzed here.

The data were processed as follows. Time-histories were
synchronized, baseline-corrected, and 10% cosine-tapered at
the edges. They were band-pass-filtered between 0.2 and
15 Hz using a zero-phase Butterworth filter with four poles.
Then they were rotated to the radial and transverse directions
relative to the Aigion fault. Fourier spectra were calculated
and smoothed four times with a Hanning window and spectral
ratios were computed. The spectral ratios were interpolated
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to a common frequency step for averaging purposes. The
average and standard deviation were calculated using the
decimal logarithms of the spectral ratio values, assuming that
the data follow a normal distribution at all frequencies (this
common assumption is investigated in the following section).
We also computed the 95% confidence limits of the average
value based on a two-tailed t-student distribution. Spectral
ratios were computed using complete records (with durations
between 41 and 180 s) rather than just an S window.
Theodulidis et al. (1996) argue that entire time-histories
recorded are better to compute spectral ratios because it is
not straightforward to separate wave types due to scattering
effects in the signal following P-wave arrival. In the case
of our dataset, Ktenidou (2010) found that the results using
the complete records and using smaller body-wave windows
are similar.

We computed HVSR for all surface records and SSR
between all surface and 178-m-depth record pairs. The result
is shown in Figure 3, where the 95% confidence intervals of
the average values are plotted for the three components and
standard deviation is shown separately. Both SSR and HVSR
show the fundamental frequency of the site to be 0.9 Hz. This
has also been estimated through noise measurements and 1D

Figure 1. Left diagram: location of the city of Aegion, Gulf of Corinth, Greece (adapted from Athanasopoulos et al., 1999). The Corinth
Soft Soil Array and the Aegion fault escarpment dividing the city in two levels are marked along with cross-section A–A’. Top right diagram:
cross-section A–A’, perpendicular to the slope and to the basin formed by the sediments beneath the Gulf (after Apostolidis et al., 2006). The
bottom right table gives the VS for each layer in the cross-section (after Apostolidis et al., 2006). The color version of this figure is available
only in the electronic edition.
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Figure 2. Epicenter distribution for the 473 events of the data-
set. The size of the circle scales with moment magnitude (dark cir-
cles). CORSSA site is marked by a square. The color version of this
figure is available only in the electronic edition.
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theoretical analysis by Apostolidis et al. (2006), as well as
through numerical analysis by Ktenidou (2010). In the fre-
quency band of resonance, from 0.5 to 1.5 Hz, the scatter for
SSR is larger than that for HVSR (a common observation,
e.g., Lermo and Chávez-García, 1993; Bard, 1998), with a
maximum value of 2.4 as opposed to 2.0, respectively. For
frequencies outside this range, the standard deviation is
similar for both ratios. Figure 3 shows that the vertical
component is amplified between the bedrock and the surface.
Though this amplification is most significant for frequencies
higher than 1.5–2 Hz, it is also visible near the fundamental
frequency. This amplification partly explains the differ-
ences between the amplitudes of SSR and HVSR, which have
been observed before (Field and Jacob, 1995; Theodulidis
et al., 1996).

We have used the station at depth as a reference for SSR
because no surface station on rock outcrop near our site is
available. Steidl et al. (1996) and Şafak (1997) caution that
care be taken when using buried instruments as a reference,
because the downgoing wave field may cause destructive
interference and hence produce pseudoresonances in the
spectral amplification estimates. For this reason, we have
checked the suitability of the downhole station as a reference
site. Figure 4 shows the 95% confidence intervals of the
average HVSR computed at depth and the corresponding stan-
dard deviation. The result was very similar for the two hori-

zontal components and its amplitude was about unity, with
fluctuations of the confidence interval from 0.7 to 1.5 between
0.1 and 10 Hz. We verified that these small fluctuations came
from interference of downward propagating waves through
comparison with numerical modeling (Ktenidou, 2010).
However, interference of downward propagating waves af-
fected mainly frequencies larger than 1.5 Hz, for which the
scatter also increased. Thus, the uncertainty introduced by this
effect did not affect our conclusions regarding the fundamen-
tal peak.We concluded that the station at 178mdepth could be
used as a reference site for the SSR technique.

Distribution Function

The large size of our dataset allows us to explore the
validity of the normal distribution of the spectral ratio loga-
rithm, which we have assumed to compute spectral ratio
averages and which is usually assumed. The validity of the
assumption is investigated for both horizontal components of
the SSR and HVSR calculated at the surface (i.e., four cases)
at frequency values: 0.5, 1, 1.5, 2, 3, 5, 7, and 9 Hz. For each
case and frequency, we use 24 bins of 0.12 width to sort the
logarithms of the spectral values. The number of events in
each bin is normalized by the total number of events and
by the bin width. The results are shown in Figure 5a for
the radial component of HVSR. The histograms shown in this
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Figure 3. Horizontal-to-vertical spectral ratios (HVSR) at the surface and standard spectral ratios at the surfacewith respect to the downhole
station at 178 m (SSR) for the complete dataset (473 events), for the radial (r), transverse (t) and vertical (v) components. Top: 95% confidence
limits of the logarithmic mean spectral ratio values. Bottom: standard deviation of the mean. Scatter is larger for the SSR technique around the
fundamental peak (0.9 Hz). The color version of this figure is available only in the electronic edition.
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figure resemble closely the normal probability density func-
tion plotted onto them, computed from the respective average
and standard deviation values (Wessa, 2009). Figure 5b
shows histograms of cumulative frequency normalized by
the total number of events, which closely resemble the the-
oretical cumulative frequency function calculated for the data
assuming normal distribution of the log.

We use three different goodness-of-fit tests to assess
whether the normal distribution is indeed a good fit for the
distribution of the log of the spectral ratios computed. We
use the Kolmogorov–Smirnov, Anderson–Darling, and chi-
square statistical tests. They are used by Restrepo-Vélez
and Bommer (2003) to explore the distribution of PGA resi-
duals of ground-motion prediction equations and are de-
scribed in NIST (2001). For each of the four spectral ratio
cases and each of the eight frequency values, we compare
the statistic calculated by the data array with the critical values
according to the three tests for given significance levels
(a � 1%, 2%, 5%, 10%, and 20%). If the value calculated is
higher than the critical value of a specific test, then the normal
distribution is rejected by the test for that level. The results are
shown in Table 1, in which the cases where the assumption
was rejected are marked by X. We conclude that the normal
probability density function is accepted by all tests for the log
of HVSR at all frequencies checked. For the log of SSR, it is
rejected by the chi-square test for all significance levels and by
the other two tests for a � 10% and 20% at 0.5 Hz and 1 Hz
and accepted at the other frequencies. At the resonant fre-
quency, the normal distribution is not the best one to describe
the log of SSR. Figure 6 shows, however, that the histograms
for all eight frequencies point to a unimodal distribution that
for most frequencies is very near the normal one, suggesting
that the initial assumption is valid.

Results Using Variance Reduction

We present now the results using variance reduction to
identify events that contribute to the scatter already observed.
We rewrite equation (1) as

VR � 1 �
X
i

�
SR�fi� � SR�fi�

SR�fi�

�
2

; (2)

where SR�fi� is the spectral ratio (SSR or HVSR) for a par-
ticular component at frequency i, and SR�fi� is the average
of all spectral ratios at that frequency. The sum can be carried
out over the entire frequency range or over a restricted range.

We consider the first spectral peak as the most important
feature in SSR and HVSR. Also, Figure 3 shows that the scat-
ter for SSR is significant around this peak. For these reasons,
we evaluate VR only in the frequency range between 0.5 and
1.5 Hz (a range that is roughly symmetrical around 0.9 Hz on
the log scale). We compute VR values for each horizontal
component and for SSR and HVSR (four VR values per event)
and sort events according to those values. We call good
agreement between an individual ratio and the average when
at least three of its four VR values are within the 20% largest
values. The corresponding events are called VR� events. We
call bad agreement ratios those with at least three out of four
VR values within the 20% smaller values. The corresponding
events are called VR� events. Our results show that our
dataset includes 55 VR� events (with values above 0.7)
and 47 VR� events (with values below zero). We note that
we do not define VR as a percentage because of these nega-
tive values.

Figure 7 shows the 95% confidence intervals of the
mean for SSR and HVSR for all events in our dataset and for
the two groups of events, VR� and VR�. The SSR for VR�
events fail to identify the resonant peak, while the VR�
events show it clearly. The results for HVSR show that
the fundamental peak appears clearly for the VR� events,
though its amplitude is smaller than for the VR� group. In
all the plots in Figure 7, the 95% confidence intervals cor-
responding to VR� and VR� events are well separated from
the corresponding intervals for the entire dataset.

Our results show that the average of all the events in the
dataset is not necessarily an unbiased estimate of the transfer
function. In the vicinity of the fundamental peak this average
is biased toward lower values by the VR� events. A better
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Figure 4. Horizontal-to-vertical spectral ratios (HVSR) at the downhole station at 178 m for the entire dataset (473 events), for radial (r)
and transverse (t) component. Left: 95% confidence limits of the logarithmic mean values. Right: standard deviation of the mean. The station
at depth is considered to be an adequate reference station. The color version of this figure is available only in the electronic edition.
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Figure 5. (a) Histograms of normalized counts for spectral values at 8 frequency values (0.5, 1, 1.5, 2, 3, 5, 7, and 9 Hz). Horizontal axis
shows bins for the log value of the radial component of HVSR. Vertical axis shows occurrences within each bin normalized by the total
number of events (473) and the bin width (0.12). The normal distributions fitted to the data are plotted as solid lines. (b) Histograms of
cumulative frequency for the same data. Horizontal axis shows bins for the log value of the radial component of HVSR. Vertical axis shows
cumulative frequency normalized by the total number of events (473). The normal distribution cumulative probability curves fitted to the data
are shown as solid lines. The color version of this figure is available only in the electronic edition.
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estimate is obtained when we use only events with small
scatter, that is, VR� events. Of course, deciding which
events show a small scatter must by force be based on the
average computed for the complete dataset, and only has
meaning when the dataset is as large as the one at hand. The
unimodal, normal distribution we found previously justifies
the treatment of VR� events as outliers that lower the aver-
age transfer function. Hence, the first estimate using the com-
plete dataset can be refined by removing them.

Our definition of VR normalizes the distance between
each observation and the average with the respective obser-
vation amplitude. This normalization introduces a bias
against very small amplitudes, allowing us to remove the
events that miss the fundamental peak. Variance reduction
is not used here as an objective goodness-of-fit index, since
the VR� group does not identify exactly the overall average

transfer function, but selects higher values to compensate for
the average transfer function being biased toward lower
values.

The standard deviation of the mean for the spectral ratios
of the complete dataset and the two groups of events is shown
in Figure 8. The uncertainty of the VR� events is smaller than
that of the VR� events for the horizontal components in the
frequency range of interest (0.5–1.5 Hz), as expected. It is
usually assumed that standard deviation values of spectral
ratios are within a factor of 2 (Tucker and King, 1984;
Jarpe et al., 1988; Chávez-García et al., 1990; Bard, 1998).
Our results show that, for SSR, the average standard deviation
of the entire dataset around the fundamental frequency is
2.4. This is almost equal to the standard deviation of the
VR� events. For the VR� events, average standard deviation
of SSR is between 1.5 and 1.8. Thus, the larger scatter of the

Table 1
Use of Three Statistical Tests to Evaluate the Assumption of Normal Distribution

for the Log of SSR and HVSR*

Kolmogorov–Smirnoff Anderson–Darling Chi-Square

a 20% 10% 5% 2% 1% 20% 10% 5% 2% 1% 20% 10% 5% 2% 1%

SSR–Transverse Component
0.5 Hz X X X
1 Hz X X X X X X X X X
1.5 Hz X
2 Hz
3 Hz
5 Hz
7 Hz
9 Hz

SSR–Radial Component
0.5 Hz X X X X X X X X X
1 Hz X X X X X X X X
1.5 Hz
2 Hz
3 Hz X X
5 Hz
7 Hz
9 Hz

HVSR–Transverse Component
0.5 Hz
1 Hz
1.5 Hz
2 Hz
3 Hz
5 Hz
7 Hz
9 Hz X

HVSR–Radial Component
0.5 Hz
1 Hz
1.5 Hz
2 Hz
3 Hz X X
5 Hz
7 Hz
9 Hz

*An X indicates that the assumption was rejected for the specific frequency and significance level.
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Figure 6. (a) Histograms of normalized counts for spectral values at 8 frequency values (0.5, 1, 1.5, 2, 3, 5, 7, and 9 Hz). Horizontal axis
shows bins for the log value of the transverse component of SSR. Vertical axis shows occurrences within each bin normalized by the total
number of events (473) and the bin width (0.12). The normal distributions fitted to the data are plotted as solid lines. (b) Histograms of
cumulative frequency for the same data. Horizontal axis shows bins for the log value of the r component of SSR. Vertical axis shows cu-
mulative frequency normalized by the total number of events (473). The normal distribution cumulative probability curves fitted to the data
are plotted as solid lines. The color version of this figure is available only in the electronic edition.
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complete dataset comes from events in the VR� group. For
HVSR, average standard deviation of the entire dataset lies
between those of the two groups, VR� and VR�.

We checked whether the events that contribute most to
the scatter (VR� events) can be identified based on their
parameters: epicentral distance to CORSSA, source depth,
magnitude, or azimuthal distribution relative to CORSSA.
The results are negative. Figure 9, for example, compares
the distribution of magnitude and focal depth with epicentral
distance for VR� events versus the entire dataset. Figure 10
compares the epicentral distribution for VR� events with
that for the entire dataset. These figures show that VR�
events have moment magnitudes, epicentral distances, and
focal depths that cannot be differentiated from those for the
complete dataset. Variance reduction is the only way to iden-
tify these events.

Signal-to-Noise Ratios

A selection of earthquake records for site-effect studies
based on VR is not usually possible because the number of

available records is typically small. Signal-to-noise ratio
(SNR) is more frequently used to select high quality records.
In this section, we estimate SNR for our dataset using
different definitions and compare the results with those of
the previous section.

Signal-to-noise ratio is defined as the ratio between the
Fourier amplitude spectrum of the S-wave window and that
of the pre-event noise. The spectrum of noise is computed
using the first 8 s of each record, which correspond to the
signal recorded before the trigger (the stations have a pre-
event memory of 10 s). For this reason, we cannot use the
entire accelerograms as signal windows when computing
SNR, although we use them to compute the spectral ratios.
The signal window chosen to compute SNR is taken as
the 8-s window starting immediately after the trigger. Each
window is 10% tapered at the edges before Fourier spectra
are computed. For our dataset, SNR is smallest below 1 Hz
and increases for frequencies larger than 2 Hz.

We computed SNR for all events for two different fre-
quency ranges: around the resonant peak (0.5–1.5 Hz) and
over a wide frequency range (0.1–10.0 Hz). For each
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Figure 7. Confidence limits of 95% of the mean values of SSR and HVSR for the radial (r), transverse (t), and vertical (v) components.
Results are shown for the entire dataset (dashed lines) and for the VR� and VR� events (thin and thick solid lines, respectively). The dotted
boxes mark the frequency range 0.5–1.5 Hz. The VR� group systematically fails to capture the SSR fundamental peak. The color version of
this figure is available only in the electronic edition.
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frequency rangewe choose two representative SNRvalues: the
mean and the minimum. The combination of these choices
yields four SNR definitions: (1) mean value in the 0.1–10 Hz
frequency range; (2) mean value in the 0.5–1.5 Hz frequency
range; (3) minimum value in the 0.5–1.5 Hz frequency range;
and (4) minimum value in the 0.1–10 Hz frequency range.
We evaluate the impact on spectral ratios of cutting
off data according to different values of SNR, using three
typical cutoff values, 3, 5, and 10, which are roughly equidi-
stant on the log scale. Figure 11 illustrates the four definitions
of SNR for a random record. For each definition, the thick solid
line indicates the value chosen as representative across the fre-
quency range considered, and the thin dashed lines indicate
the three cutoff thresholds.

Table 2 (top) shows the percentage of events with
respect to the original dataset that is rejected when using
the combination of the four SNR definitions and the three
cutoff values for each of the three components. It is observed
that definition 1 rejects too few events (roughly less than

10% of the dataset), while definition 4 rejects too many
events (roughly more than 90%). Definitions 2 and 3 are
more useful in filtering the dataset in terms of data volume.

A selection based on SNR for the vertical component is
stricter as compared to a selection based on the horizontals.
When using definitions 1 and 2, the vertical component
rejects up to two times more events than either of the horizon-
tals. When using definitions 3 and 4, the difference between
components is not significant. In practice, the vertical compo-
nent is less important in site-effects studies than the horizon-
tals if only SSR is used. However, when HVSR is used, it may
be necessary to consider also SNR in the vertical component.

Higher cutoff values exclude more events, obviously,
but it is for definition 2 that this difference is most pro-
nounced. When raising the threshold from 3 to 5 and then
to 10, the events rejected each time increase twofold (for
the horizontal components, this means an increase from
13% to 28% and then to 52%). We should mention here that
the original dataset passed a visual inspection that excluded
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Figure 8. Standard deviation of the mean values of SSR and HVSR for the radial (r), transverse (t), and vertical (v) components.
Results are shown for the complete dataset (dashed lines) and for the VR� and VR� events (thin and thick solid lines respectively).
The dotted boxes mark the frequency range 0.5–1.5 Hz. The standard deviation for SSR around the peak for the entire dataset is 2.4
and is almost equal to that of the VR� events, while that for the VR� events is between 1.5 and 1.8. The color version of this figure
is available only in the electronic edition.
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records of obvious poor quality. Thus, use of a very low
SNR cutoff value such as 2 is not effective to screen this da-
taset, from which events with very low SNR are eliminated
from the outset.

Comparison of VR with Signal-to-Noise Ratio

We can now compare the selection of events obtained
using SNR with that obtained using VR. We inspect the
events rejected using the SNR cutoff criteria and identify
those that belong to the VR� or the VR� groups. We want
to determine whether any of our definitions of SNR system-
atically rejects the VR� events. For this reason, we introduce
the VR � =VR� ratio, that is, the number of events rejected
by a given SNR definition belonging to the VR� group
divided by the number of events rejected using SNR and
belonging to the VR� group. Ideally, if the SNR criterion
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Figure 9. Top diagram: magnitude versus epicentral distance
distribution of the complete dataset (open circles) and of the events
in the VR� group (solid circles). Bottom diagram: focal depth ver-
sus epicentral distance of the complete dataset (open circles) and of
the events in the VR� group (solid circles).
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Figure 10. Epicentral distribution for the entire dataset (open
circles) and for the events in the VR� group (solid circles). The
location of CORSSA is marked as a square. The color version of
this figure is available only in the electronic edition.

Figure 11. Example of the definitions of SNR, 1 through 4,
from top to bottom. In each definition, the graph represents the
SNR (y axis) of a random record, which increases with frequency
(x axis), the solid horizontal line indicates the value chosen as
representative in the frequency range considered (0.5–1.5 Hz or
0.1–10.0 Hz) according to that definition, and the three dashed
horizontal lines indicate the cutoff SNR values used (3, 5, and 10).
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is successful, we expect large VR � =VR� ratios, indicating
that the selection based on SNR managed to disqualify
VR� events and keep the VR� events.

Table 2 (middle) shows the percentage of VR� events,
with respect to the VR� group, that is rejected when apply-
ing all combinations of the four SNR definitions and the three
cutoff values mentioned previously. Definition 1 rejects too
few VR� events, while definition 4 rejects most of them.
However, we concentrate on the proportion of VR� and
VR� events rejected by each criterion, shown in Table 2
(bottom). Definition 4 does not yield a large contrast between
the VR� and VR� events rejected, meaning it rejects the
majority of VR� events as well. It is definition 2 that max-
imizes the VR � =VR� ratio, thus successfully discriminat-
ing against the events included in the VR� group.

Consider now the sensitivity of the results to SNR cutoff
values. It is for the higher cutoff values (5 and 10) that the
majority of VR� events are rejected, but it is for smaller cut-

off values (3 and 5) that the VR � =VR� is higher. We
choose the cutoff value of 5, which yields a VR � =VR�
ratio around 4 for the vertical component and up to 7 or
10 for the horizontals. In this case there is some difference
between the radial and transverse component, so it is sug-
gested that both horizontal components are used in SNR
calculations. If HVSR is to be computed, then SNR for the
vertical should also be considered.

Our preferred definition for SNR restricts its computation
to the frequency range around the fundamental frequency
of the site. Thus, it is necessary to have an a priori idea of
this frequency. This may be obtained from geotechnical or
geophysical data, if available, or from spectral ratios
estimated from all available records, before selecting those
that will provide the more reliable estimate of site effects.
Another alternative is to perform ambient noisemeasurement,
since H/V ratios of noise have long been shown to provide
reliable estimates of a site’s fundamental frequency.

Table 2
Percentages of Events (Recorded at the Surface) Rejected by Each SNR Definition*

SNR Definition

0.1–10 Hz �Mean 0.5–1.5 Hz �Mean 0.5–1.5 Hz �Minimum 0.1–10 Hz �Minimum

Percentage of Entire Dataset Rejected for Cutoff Values 3, 5, 10
<3 r 1% 13% 60% 79%

t 1% 13% 62% 81%

v 4% 27% 76% 87%

<5 r 3% 28% 74% 89%
t 3% 28% 76% 87%

v 10% 45% 84% 92%

<10 r 10% 51% 87% 95%
t 9% 52% 85% 96%

v 23% 66% 91% 96%

Percentage of VR� Group Rejected for Cutoff Values 3, 5, 10
<3 r 0% 33% 67% 75%

t 0% 29% 67% 78%

v 2% 55% 71% 78%

<5 r 2% 53% 71% 78%
t 0% 56% 73% 80%

v 11% 69% 73% 84%

<10 r 9% 69% 75% 91%
t 7% 69% 76% 87%

v 29% 71% 78% 87%

Ratio of Rejected VR� to Rejected VR� Events (VR � =VR�)
<3 r 0.0 18.0 3.1 1.4

t 0.0 8.0 2.8 1.6

v 0.5 4.3 1.8 1.3

<5 r 0.3 7.3 2.1 1.2
t 0.0 10.3 1.8 1.4

v 1.0 4.2 1.3 1.2

<10 r 0.8 3.5 1.1 1.2
t 0.7 3.2 1.3 1.1

v 1.8 2.3 1.1 1.1

*The numbers in bold indicate the combinations of SNR definitions and cutoff thresholds that make the
preferred selection of events.
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Results at Depth

Signal-to-noise ratio is also calculated for the downhole
station at 178 m. The same procedure is followed. The results
of the comparison between VR and SNR for the downhole sta-
tion are given in Table 3, similarly to the results of the surface
station. The number of rejected events at depth is larger than
those rejected at the surface using the same SNR definitions.
As expected, thevertical component does not differ verymuch
from the horizontals at this depth. Other than that, the results
are very similar to those of Table 2, with definition 2 yielding
the highest VR � =VR� ratios. Close examination of all
events of the dataset shows that the events rejected based on
SNR at 178mdepth include all of those rejected at 0m. Thus, a
selection based on SNR at depth could be considered more
conservative. However, VR � =VR� ratios for the station
at the surface are roughly double those computed for the sta-
tion at depth, particularly for low cutoff values. The reason is
that most of the VR� events rejected based on SNR at depth

are also rejected at 0 m, whereas only less than half of the
VR� events rejected based on SNR at 178 m are rejected
at the surface. We find that using an SNR threshold value
of 3 at the deep station gives a similar rate of rejected events
to that obtained using an SNR threshold of 5 at the surface
station.

Signal-to-noise ratio has been reported to improve on
firm sites and downhole stations (e.g., Field et al., 1992;
Theodulidis et al., 1996). Young et al. (1994) introduced
the ratio between the SNR at the deep and shallow levels of
a borehole to study the improvement of SNR with depth at
a wide frequency range. Douze (1966) showed that SNR
improved with depth down to 2 or 3 km; he attributed that
to a smaller decrease of the signal amplitude with depth than
that of the noise amplitude. Our results show the opposite.
Signal-to-noise ratio values at the surface are higher than
those at the reference site for all components. Figure 12a
shows the ratio of the SNR values between the surface and the
deep levels of the borehole (called here SNR0/SNR178) to be

Table 3
Percentages of Events (Recorded at Depth) Rejected by Each SNR Definition*

SNR Definition

0.1–10 Hz �Mean 0.5–1.5 Hz �Mean 0.5–1.5 Hz �Minimum 0.1–10 Hz �Minimum

Percentage of Entire Dataset Rejected for Cutoff Values 3, 5, 10
<3 r 3% 40% 82% 94%

t 5% 47% 84% 95%

v 10% 55% 82% 94%

<5 r 12% 58% 90% 96%
t 14% 64% 92% 97%

v 20% 67% 89% 97%

<10 r 29% 77% 95% 98%
t 30% 79% 96% 99%

v 32% 81% 94% 99%

Percentage of VR� Group Rejected for Cutoff Values 3, 5, 10
<3 r 2% 65% 75% 84%

t 4% 67% 73% 85%

v 11% 71% 71% 84%

<5 r 25% 69% 78% 85%
t 27% 71% 80% 87%

v 33% 71% 75% 87%

<10 r 45% 71% 85% 91%
t 44% 73% 85% 95%

v 47% 71% 78% 95%

Ratio of Rejected VR� to Rejected VR� Events (VR � =VR�)
<3 r 0.5 9.0 1.5 1.1

t 0.4 6.2 1.2 1.1

v 1.0 3.5 1.3 1.1

<5 r 2.3 3.5 1.2 1.0
t 2.1 2.6 1.1 1.1

v 2.3 2.3 1.1 1.1

<10 r 2.5 1.7 1.1 1.1
t 2.7 1.5 1.1 1.1

v 2.4 1.4 1.0 1.1

*The numbers in bold indicate the combinations of SNR definitions and cutoff thresholds that make the
preferred selection of events.
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larger than 1 at all frequencies. This is in agreement with
Douze (1964) who showed that, for shallow depths (down
to the first few hundreds of meters) SNR may increase or
decrease depending on the site. In the case of CORSSA, signal
amplitude decreases faster with depth than noise down to
178 m. This could be due to amplification effects within
the soft surface layers; signal amplification at soft sites
may partly or fully outweigh that of noise (Bormann,
2002). Figure 12b shows the ratio of noise amplitude between
the surface and the deep station (called here N0/N178), which
is smaller than 2 for all frequencies. This could be related to
the sea being very close to the site and generating noise in the
borehole. Another explanation is that the reference station is
installed only 23 m into the conglomerate rather than in the
deep limestone formation, which is the true bedrock at the site.
Scattering from the heterogeneities of the subsoil structure
may increase the level of signal-generated noise at 178 m
depth. According to Bormann (2002), the attenuation of
noise with depth could require the station to be 100 m into
competent rock.

Conclusions

A dataset of 473 earthquakes recorded at the surface
and at 178 m depth is used to compute HVSR and SSR at
the surface. The resonant frequency of the site has been es-
timated through various techniques at 0.9 Hz. The standard
deviation for both ratios is smaller than 2.0 below the reso-
nance peak and increases up to 2.3 for larger frequencies.
Near the resonance peak it is larger for SSR (2.4) than for
HVSR (2.0).

We use variance reduction to identify events whose
spectral ratios lay closest or farthest from the average, which
we consider as the initial best estimate of the transfer func-
tion. Variance reduction is computed for a frequency range
around the fundamental peak. Two groups of events are
formed, including events with the highest (VR�) and lowest
(VR�) VR values. The VR� group includes 47 events spec-
tral ratios, and the VR� group includes 55. When computing

SSR, the events included in the VR� group systematically
miss the fundamental peak. Scatter of the spectral ratios is
much smaller for events within the VR� group than for those
within the VR� group. The standard deviation observed for
the entire dataset around the SSR peak (up to 2.4) is almost
equal to the scatter of the VR� group. The standard deviation
using only events in the VR� group can be lowered to 1.5.
Thus, if we remove the VR� events from the dataset, the
estimated transfer functions have a smaller uncertainty.

It is not possible to use variance reduction to choose
records when computing spectral ratios because usual
datasets are small. For this reason, we also analyze SNR.
Signal-to-noise ratio is estimated using four definitions.
Two different frequency ranges are chosen: around the
resonant peak (0.5–1.5 Hz) and over a wide frequency range
(0.1–10.0 Hz). For each range, two representative SNR
values are chosen: the mean and the minimum. We test dif-
ferent values for the SNR threshold to eliminate data. These
cutoff values are those commonly used in the literature: 3, 5,
and 10. Computing SNR over the wide frequency range is
found to be inefficient. It is better to use the frequency range
around the resonant peak.

Signal-to-noise ratio results are compared with the VR
results. When we use SNR computed as the mean over the
frequency range 0.5–1.5 Hz to select events, we effectively
reject the events included in the VR� group. When we
impose a high SNR threshold (5 or 10), we are able to reject
most of the VR� events. However, it is for smaller threshold
values (3 and 5) that the rejected events based on SNR have
the largest VR � =VR� ratio, rejecting most VR� events
and keeping most VR� events. A compromise is necessary.
We suggest using an SNR threshold value of 5, with SNR
computed over the frequency range around the resonant
peak. Signal-to-noise ratio can be computed on the horizon-
tal components if HVSR is not of interest, but the vertical
component should also be taken into account if HVSR is eval-
uated. In this case, the vertical component should control the
SNR selection criterion. The downside is that we need to have
a prior idea of the fundamental frequency of the site.
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Figure 12. (a) The ratio of SNR between the surface station (0) and the deep station (178) for the three components �r; t; v� as a function
of frequency. The values are larger than 1 for all frequencies. (b) Ratio of the noise amplitude between the surface station (0) and the deep
station (178) for the three components as a function of frequency. This ratio is smaller than 2 for all frequencies. The color version of this
figure is available only in the electronic edition.
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Signal-to-noise ratio is also computed for the downhole
station at 178 m depth. At depth, the correlation between VR
and SNR in the vertical component does not differ much from
that for horizontal components. However, the conclusions
regarding SNR at the surface apply also at depth, this time
for a threshold cutoff value of 3.

The procedure we propose could be useful for choosing
higher quality earthquake records from available datasets or
for roughly assessing the credibility of very small datasets. It
involves application of the usual SNR technique, but it is
targeted to achieve results comparable to those of a selection
of events based on VR. We have shown that the scatter in the
estimate of site amplification using a given dataset can be
due to particular events and that it is possible to significantly
reduce it by removing them. Unfortunately, those events
cannot be identified based on magnitude, epicentral distance,
source depth, or azimuth between source and recording site.
Our results indicate that there may be reason to question SSR
derived from very small datasets or at least challenge the
certainty with which such results are presented.

Data and Resources

The accelerograms used in this study were produced by
the CORSSA array (available at http://geo.civil.auth.gr/Staff/
dep/pitilakis/CORSSA/; last accessed July 2009), which op-
erates in the framework of an agreement between Aristotle
University of Thessaloniki, Greece; National Kapodistrian
University of Athens, Greece; and Institut de Radio-
protection et de Sûreté Nucléaire, France. Signal processing
benefitted significantly from SAC2008 (http://www.iris
.edu/software/sac, last accessed August 2010; Goldstein
et al., 2003; Goldstein and Snoke, 2005). Some plots were
made using Generic Mapping Tools v. 3.4 (www.soest
.hawaii.edu/gmt, last accessed August 2010; Wessel and
Smith, 1998).
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