

Algal biofuels

Dr John J Milledge Algal Biotechnology Research Group, University of Greenwich

The Oil, Finance & Shipping Symposium 31st August 2016, University Of Greenwich at Medway

Carbon Dioxide levels are Increasing and global temperatures are rising

Climate Change: "The overwhelming majority of scientists agree that the rising concentrations of heat-trapping greenhouse gases in the atmosphere caused by human activities" THE MET OFFICE UK Policy on increasing the use of low-carbon technologies

- 80% reduction in greenhouse gas emissions by 2050.
- 15% of the UK's energy demand from renewable sources by 2020

https://www.gov.uk/government/policies/increasing-the-use-of-low-carbon-technologies

Regulations are driving search for cleaner fuels

 UN's International Maritime Organisation -Sulphur oxides (SOx) – Regulation 14 Wind, solar and hydro together generated 15% of Britain's electrical demand in 2015.

Based on DECC data

UK Renewable energy fuel use 2015

There is a continuing demand for fluid fuels

The EU Renewable Energy Directive (RED)

Targets for biofuel energy content in transport fuels

2005 - 2%2020 - 10% ????????????

Only Sweden and Germany met the 2005 target

UK Petrol, Diesel & Jet fuel usage

DECC 2016

Sources of biomass and biofuels

Feedstocks for UK Liquid biofuels

UK biodiesel mainly from Waste Cooking Oil and Tullow

DECC and UKPIA

How "Green" is Biodiesel?

Gallagher Report (2008) - EU target of 10% of transport fuel used by 2020s unlikely to be met sustainably.

The Gallagher Review of the indirect effects of biofuels production, Renewable Fuels Agency , 2008 . http://webarchive.nationalarchives.gov.uk/20110407094507/renewablefuelsagency.gov.uk/reportsandpublications/reviewoftheindirecteffects ofbiofuels

Directive (EU) 2015/1513 Max 7% contribution by biofuels from 'food' crops

Emphasis on biofuel from: Waste feedstocks Advanced biofuels

Sources of biomass and biofuels

What are Algae?

- Diverse range of aquatic 'plants', ranging from unicellular to multi-cellular forms,
- Generally possess chlorophyll, but are without true stems and roots.
- Two groups:

macro-algae commonly known as 'seaweed' micro-algae, microscopic single cell organisms

Seaweed growing on the Medway

Culturing microalgae in flasks

Why Algae?

- Algae can be cultivated on nonagricultural land or at sea.
- Many species grow in brackish or salt water.
- Potential productivity greater than terrestrial crops

Microalgae can contain high quantities of lipids (oil)

Nitzschia palea Botryococcus braunii Monallantus salina Chlorella protothecoides Scenedesmus dimorphus Prymnesium parvum 80% 75% 72% 55% 40% 38%

Microalgal Biodiesel Process

Glycerol the byproduct of Biodiesel

- The glycerol 9 -13% of fats and oils
- ~100 kg of Glycerol from 1 ton of oil

• Biodiesel accounted for only 9% of the supply of Glycerol in 1999 but 64% in 2009

Biodiesel is the Main Driver of Glycerol Supply

Quispe CAG, Coronado CJR, Carvalho Jr JA (2013) Glycerol: Production, consumption, prices, characterization and new trends in combustion Renew and Sustain Energy Rev 27:475-493 d

Glycerol

- Water-soluble
- Non-flammable
- Non-volatile
- High boiling point
- Bio-production
- Bio-degradable

Glycerol emissions on combustion

University of Greenwich has installed a glycerol-fired Combined Heat and Power plant at the Medway Campus This is the first building retro-fit in the world.

Combined Heat and Power

410 kW of Electricity 450 kW of Heating

2600 tonnes per annum

Reduction in Carbon Footprint

Problems

Quality

Costly to refine crude glycerol

Future Sustainable supply

Limited waste cooking oil

Dunaliella salina

Courtesy of Cognis Australia Pty Ltd

Microalga

>80% glycerol

Commercially grown

 β Carotene >14 %

Salt tolerant

Grows in salt-pans

Dunaliella Glycerol CHP

Estimate of annual glycerol production

annual production 44.8 tonnes ha y⁻¹ annual energy production 850 gJ ha⁻¹

- 8,000 hrs operation
- 1,800 t glycerol yr⁻¹
- ~40 Hectares

The D-Factory for glycerol KBBE.2013.3.2 (No: 613870)

- 1. 10 million Euro FP7-funded project
- 2. 13 partners from 8 countries 2 universities
- 3. Flexibly and sustainably produce suites of compounds and fuel from *Dunaliella* to meet market requirements.
- 4. Showcase a sustainable biorefinery: demo 2017/8

Macroalgal (Seaweed) Biofuels Research at Greenwich University

Algal Biofuels

Method	Utilises entire algal biomass	Utilises wet biomass	Primary energy product
Direct combustion		X	Heat
Pyrolysis		X	Primarily liquid by fast pyrolysis
Gasification		b (conventional)	Primarily Gas
Biodiesel production	- X	Xc	Liquid
Hydrothermal treatments	\checkmark	\checkmark	Primarily Liquid
Bioethanol production	X a	\checkmark	Liquid
Biobutanol production	X a		Liquid
Anaerobic digestion	\checkmark	\checkmark	Gas

^a Polysaccharides require hydrolysis to fermentable sugars. Some of the sugars produced from the breakdown of seaweed polysaccharides are not readily fermented; ^b Superchical water gasification (SCvvG) an alternative gasification technology can convert high moisture biomass; ^c No current commercial process for the wet trans-ecterification of wet macroalgal biomass

Sargassum muticum feedstock

Season	Ash	С	Н	0	Ν	S	HHV
% total wt.			% dry we	eight			KJ g⁻¹ dw
Spring	29.5	30.7	4.0	29.6	4.9	1.5	16.3
Summer	33.3	30.1	4.2	28.1	3.6	0.8	12.0

- High moisture ~85%
- High ash
- High Sulphur
- HHV lower than terrestrial energy crops

Maintaining Year Round Supply

- Harvesting is seasonal
- Need to preserve and store for a continuous supply

Ensilage

- Used to store forage for animal feed
- Naturally-present bacteria
- Lactic acid fermentation under anaerobic conditions
- pH decreases to preserve cop

Ensiled seaweed composition

	Moisture	С	Н	0	Ν	S	Ash	Salt	HHV
	% total wt.			% dry v	weight			% of ash	KJ g⁻¹ dw
Unensiled	85.4	30.1	4.2	28.1	3.6	0.8	33.3	46.1	12.05
Ensiled									
whole	85.5	30.0	4.2	29.3	3.3	<0.1	33.1	43.6	12.13
Ensiled							\		
chopped	85.2	29.4	3.9	29.8	3.5	<0.1	33.3	45.9	12.36

- No sig difference in CHON, ash and HHV
- Ensiling results in a significant reduction in salt
- Ensiling results in virtual total loss of organic sulphur

Energy Losses due to Ensiling

<8 % original Higher</p> Heating Value

Effect of Ensilage on CH₄ Yield

	Methane pr	Methane production				
	L CH ₄ g ⁻¹ VS					
	Average	StdV				
Untreated	0.10	0.05				
Ensiled whole	0.11	0.08				
Chopped prior to ensiling	0.06	0.01				

No statistically significant effect on methane yields

D-Factory

Acknowledgements

- The Engineering and Physical Sciences Research Council EPSRC EP/K014900/1 – MacroBioCrude
- EU FP7 KBBE.2013.3.2 (No: 613870)
 D-factory
- High Value Chemicals from Plants

Thank you