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Abstract 
Activity of Daily Life (ADL) recognition plays an important role in tracking functional decline among 
elderly people who suffer from Alzheimer’s disease. Accurate recognition enables smart 
environments to support and assist the elderly to lead an independent life for as long as possible. 
Current work has generally focused on applying a range of traditional classification and semantic 
reasoning based techniques in order to recognise ADLs. However, the ability to represent the complex 
structure of an ADL in a flexible manner remains a challenge. In this paper, we present an ADL 
recognition approach, which uses a hierarchal structure for the representation and modelling of the 
activities, its associated tasks and their relationships. We describe an approach in constructing ADLs 
based on a task-specific and intention-oriented plan representation language called Asbru. The 
proposed method is particularly flexible and adaptable for caregivers to be able to model daily 
schedules for Alzheimer’s patients. A proof of concept prototype evaluation has been conducted for 
the validation of the proposed ADL recognition engine, which has comparable recognition results 
with existing ADL recognition approaches. 
	  
Keywords: Activity Recognition; Alzheimer’s disease; Assisted Living; Elderly Monitoring; 
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1   INTRODUCTION 
Alzheimer's disease (AD) is the most common form of dementia and contributes 62% in comparison 
to other forms of dementia in the UK. This progressive disease of the brain is a fatal 
neurodegenerative disorder that is visible via cognitive and memory deterioration of elderly people as 
they try to carry out activities of daily living (Jeffery and Cummings, 2004). 

Elderly people should be able to perform daily tasks such as cooking, dressing and other Activities 
of Daily Living (ADL), such as personal hygiene, eating, and functional movements. The ability to 
monitor ADLs in a ubiquitous environment (Aztiria et al., 2012), (Doctor et al., 2005) is seen as a key 
for tracking functional decline among elderly people (Fleury et al., 2010).  

In the USA, caregivers prescribe a set of ADLs to elderly patients with dementia, which they are 
expected to conduct during the day; information is then collected on each regular visit from the 
caregiver, via interaction with the elderly person to see if they have been successfully carrying out the 
ADLs. Collected information by the caregivers is considered vital as medicines prescribed depends on 
it. However, collecting information in this manner can often lead to inaccurate data (McDonald and 
Curtis, 2001). Another drawback of this approach is the window used for collecting information, in 
comparison to the period being evaluated. Therefore, manual data collection regarding ADLs can be 
long and tedious which imposes further workload on caregivers. 

In addition to information about the safety and wellbeing of an elderly person, recognition of 
activities can support providing assistance given a particular scenario. 

For recognising activities of Alzheimer’s patients, this research involves an ADL recognition 
approach. We introduce a novel concept of modelling hierarchal ADLs based on task-specific and 
intention-oriented plan representation language called Asbru (Fuchsberger et al., 2005). While prior 
work has focused on the lower tier of task recognition and the interaction with the higher tier of the 
framework (Naeem and Bigham, 2007a), (Naeem and Bigham, 2009), this paper focuses primarily on 
the higher tier ADL recognition that is based on understanding the constituent set of lower tier ADLs, 
and the novel approach for modelling these ADLs. We describe the ADL recognition engine with a 
worked example that is based on a hierarchal structure, which has the capability to generate a range of 
possible task sequences from a stream of sensor data in order to determine the ADL being conducted. 
The remainder of the paper is organised as follows. Section 2 provides an overview of the related 
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literature, while Section 3 describes the hierarchal framework for ADLs. Section 4 describes the novel 
approach of modelling ADLs using Asbru, followed by the implementation overview of the ADL 
recognition engine in Section 5. Finally, experimental results are presented in Section 6. 

 

2   RELATED WORK 
Feature detection plays an important role in carrying out robust activity recognition. These data can 

be captured using visual surveillance equipment, which can be intrusive and computationally 
expensive when analysing video footage. 

A popular alternative to vision systems is to capture object usage data which is made possible by 
‘Dense Sensing’ (Buettner et al., 2009), (Philipose et al., 2004). This feature detection approach is 
based around numerous individual objects such as toasters and kettles being tagged with wireless 
battery-free transponders that transmit information to a computer via a Radio Frequency Identification 
(RFID) reader (Kalimeri et al., 2010), (Philipose et al., 2005) when the object is used or touched. 
Wearable sensors such as accelerometers can be seen as more intrusive than RFID tags; however, they 
are practical for capturing human body movements (Wang et al., 2007). 

ADL recognition frameworks (Fleury et al., 2010), (Medjahed et al., 2009), (Ros et al., 2013) can 
be divided into two main categories, inductive and deductive. Inductive frameworks such as machine 
learning have the potential to learn and generalize by example (Delgado et al., 2009), (Ros et al., 
2011), while deductive methods can provide powerful means to encode semantic process knowledge 
(Suzuki et al., 1999). The proposed hierarchal approach leverages both, as the lower task recognition 
tier is based on an inductive framework, while the higher tier ADL recognition is based on a 
deductive framework. 

One of the favoured approaches in inductive frameworks is Hidden Markov Models (HMM) (Kim 
et al., 2010) used for probabilistic state transition models. Wilson et al. (Wilson et al., 2005) 
integrated HMMs and Viterbi algorithm for an activity recognition process. Unfortunately such 
approaches cannot recognise activities when they are carried out in a random order, typical in normal 
daily life activities. Sanchez et al. (2008) developed an approach for automatically estimating 
hospital-staff activities by training discrete HMMs for mapping contextual information to user 
activities. This approach suffers from 'cold start', as large datasets are required.  Also, if there are 
large numbers of users with different ADLs and with a diversity of ways an ADL can be performed, 
this approach will be very slow and it will be difficult to learn each and every activity model for all 
users. 

Novak et al. (2012) presented an approach for anomaly detection in users’ activities by utilising 
data from unobtrusive sensors. The data utilised was from activities that had a typical duration of 
around 15 minutes or more. This particular approach was not able to detect any anomalies when 
dealing with interweaving activities, as the anomaly detection was based on the presence of a user at 
certain places which can not specifically distinguish between normal or abnormal activities. 

Knowledge-driven techniques for ADL recognition have mainly focused on the use of ontologies to 
specify the semantics of activities, and semantic reasoning to recognise ADLs based on contextual 
information. Preliminary results suggest that existing ontological techniques underperform data-
driven ones, mainly because they lack support for reasoning with temporal information. However, 
Riboni et al. (2011) conclude that when ontological techniques are extended with even simple forms 
of temporal reasoning, their effectiveness becomes comparable to one of a state-of-the-art technique 
based on HMM. We believe that hybrid statistical/probabilistic and semantic reasoning approaches 
have great potential for ADL recognition applications. 

The most common ontology-based approaches to ADL recognition (Chen et al., 2012), (Riboni and 
Bettini, 2011) consists of specifying the semantics of ADLs based on the observation of a user’s 
current context such as current location, current time, and objects that individual users are using. Chen 
et al. (2012) proposed a knowledge-driven approach to real-time and continuous ADL recognition in 
smart home environments that is based on ontological modelling and semantic reasoning. Their 
approach uses domain knowledge in the life cycle of activity recognition and exploits semantic 



	  

reasoning and classification for inferring activities, enabling both coarser and finer-grained ADL 
recognition. Their work presents a generic system architecture based on their proposed knowledge-
driven approach and describes the associate semantic and assumption reasoning algorithms for 
activity recognition. Riboni et al. (2011) defined an architecture for a mobile context-aware activity 
recognition system (COSAR) that is capable of detecting information about simple activities, which 
are recognised by a hybrid ontological and statistical reasoning approach. The architecture includes an 
ontology of human activities and reasoners, which executes on users’ personal mobile devices. At run 
time, context information coming from distributed sources in an intelligent environment is retrieved 
and aggregated by the middleware. Context data are mapped to ontological classes and properties are 
added as individual instances belonging to theses classes. Ontological reasoning to recognise ADL 
activities is performed by the reasoning engine, either periodically or on the occurrence of specific 
events. 

Scalability issues are a major challenge faced by activity recognition approaches. One such top-
down, goal driven approach addressed this by hierarchally structuring activities, which is made up of 
execution conditions and abstract sensor mappings (Rafferty et al., 2013). The work proposed in this 
paper carries out a similar function, as it also structures ADLs as a hierarchal entity. 

This work proposes a novel approach for activity modelling and recognition based on exploiting a 
process representation language called Asbru (Fuchsberger et al., 2005). Asbru is a task-specific and 
intention-oriented plan representation language for defining clinical guidelines, and protocols in 
XML. It represents clinical protocols as skeletal plans, which can be instantiated for each patient’s 
specific treatment. These skeletal plans are useful guides for physicians when monitoring patients on 
a treatment protocol (Kosara et al., 1998). Asbru allows each skeletal plan to be flexible and to work 
with multiple skeletal strategies. Each ADL can be represented as a skeletal plan, which can then be 
instantiated with the specific ordering and temporal intervals based on the characteristics for each 
user. In comparison to other languages and methodologies, the ability to manage execution orderings 
of nested elements within skeletal plans and temporal phases are specific to Asbru for representing 
hierarchal ADLs. The flexibility and scalability of the proposed ADL modelling approach can also be 
used to compliment existing work (Okeyo et al., 2012), (Meditskos et al., 2013) and (Bouchard et al., 
2007), which are based on different hybrid frameworks for complex activity recognition. 

In addition, a recognition engine has been developed that exploits the plans that have been 
modelled as ADLs. 

 

3   HIERARCHALLY STRUCTURED ACTIVITIES OF DAILY LIFE 
ADLs have been modelled in a hierarchal structure, which enables scalable modeling of ADLs 

(Rafferty et al., 2013), (Lazaridis et al., 1994), (Kempen et al., 1995). The hierarchal structure has the 
capability to represent simple tasks such as “turn on tap”, to more complex activities such as “making 
lunch”. In order to accommodate the different degrees of complexity, ADLs have been modelled as 
plans, which can contain sub-plans. A plan that cannot be decomposed further is known as a task. 
This type of modelling requires two phases of recognition: task recognition phase and ADL 
recognition phase. When an ADL is performed, a task generates sensor events that are based on the 
objects (e.g. kettle) that are used to perform the ADL; hence, task recognition is solely based on 
recognising tasks from the captured sequence of sensor events. ADL recognition is responsible for 
recognising ADLs from the tasks identified in the task recognition phase. 

Figure 1 gives a schematic representation of the Hierarchal ADL ‘Make Breakfast’, which shows a 
breakdown of the recognition phases. Starting from the bottom, a (potentially variable) number of 
sensor readings correspond to a particular task, which could be currently active. A number of tasks 
determine an ADL or set of ADLs that could be active. ADL “Make Breakfast” contains a simple 
sequence of tasks, Make Tea, Make Toast. Figure 1 illustrates a very simple sequence of sensor events 
that could be triggered whilst Making Tea. However the task recognition phase is also responsible for 
ensuring that it is able to deal with more complex sequence of sensor events. For example, the sensor 
event ‘Kettle’ could be triggered twice or more because the user might be ‘filling the kettle’, ‘boiling 



	  

kettle’ or ‘pouring water from kettle’. Therefore the RFID reader could capture the following 
sequence, ‘kettle’ ‘tap’ ‘kettle’ ‘teabag’, ‘cup’, ‘kettle’. This sequence of events would then be used 
by the lower tier task recognition to determine the task being conducted by the user. 

For the lower tier task recognition phase, three different approaches have been developed. One is 
based on Multiple Behavioural Hidden Markov Models (MBHMMs), which accommodates different 
possible task orderings with different models (Naeem and Bigham, 2007a), while the second 
technique is based on an approach inspired by a text segmentation technique, namely Task Associated 
Sensor Events (TASE) segmentation (Naeem and Bigham, 2007b). This approach has the ability to 
segment tasks given a series of captured sensor event sequences. The third approach is an extension of 
the TASE approach, which generates a set of different task sequences from a stream of objects usage 
data that is based on the conjunction of the disjunction of tasks possibilities for each sensor event. 
This approach is called Generating Alternative Task Sequences (GATS) (Naeem and Bigham, 2009). 
The recognition engine presented in this paper employs this approach for the lower tier task 
recognition described next. 

 

 
Figure 1 - Hierarchal Activities of Daily Life Example 

 

3.1   ADL Recognition Phase 
The objective of the higher tier ADL recognition phase is to determine which ADL is being 

conducted based on identified tasks. In contrast to the approaches used in the lower tier task 
recognition phase, the ADL recognition phase required an approach that gave an overview of all 
possible ADLs that could occur within a given time. The approach had to consider any overlapping 
ADLs and also to distinguish which ADL is currently active by the tasks that are discovered at the 
lower level. 



	  

The elements of an ADL are made of behavioural patterns and the ADL itself can be classified as a 
type of behaviour. One way of representing and modelling high tier behaviour could have been by 
using workflows, such as using an augmented Petri Net (Zurawski and Zhou, 1994). 

Within a workflow system, a process is used to represent a set of tasks that are required to occur in 
an agreed sequence in order to achieve an outcome (Browne et al., 2004). The goals of a person 
typically require particular constituent activities (tasks or sub-activities) to be ordered sequentially or 
in parallel. A majority of ADLs that the elderly people carry out are process oriented and so workflow 
systems are potentially a good modelling tool. 

One approach for dynamic workflow processes to enable ad-hoc and evolutionary changes is in 
(Van der Aalst, 1999). Ad-hoc changes are usually caused by rare events occurring, while 
evolutionary changes often arise in order to make the workflow more efficient. An example of the 
latter could be removing unused nodes in the Petri net. 

However, workflows are too prescriptive in their ordering. If workflows are applied in dynamically 
changing environments, they require a large number of permutations to be explicitly enumerated. 
Workflows can scale badly to cases where there are many possibilities and this is often the case for 
goals performed by people (Van der Aalst, 1999). In addition to scalability issues, it can be very 
difficult to manage the representation of priorities and ordering. Thus, more flexibility is required 
when modelling hierarchal ADLs. 

 

4   MODELLING WITH ASBRU 
The Asbru language is a process representation language which has similarities to workflow 

modelling, but has been designed to provide more flexibility than workflows. Its roots are in the 
modelling of medical protocols and monitoring the application of such protocols (Kosara et al., 1998). 
Asbru allows flexibility in how it can represent temporal events, namely their duration and sequence. 
ADLs have a number of attributes and characteristics which make them difficult to represent in a 
logical framework. These characteristics include variable duration, variable ordering of the tasks, and 
overlap with other ADLs. Techniques which attempt to map these as a flat structure are problematic 
because they are unable to model flexible scenarios, such as interweaving ADLs. The ability to 
monitor interweaving ADLs is a key advantage of the proposed approach over existing ADL 
modeling approaches (Chen and Nugent, 2009) (Aztiria et al., 2012). This is because the proposed 
approach has the ability to model a variety of temporal phases and execution orderings of sub-
activities and tasks within ADLs, which provides the capability of representing and managing the 
execution of multiple ADLs. 

In relation to the high tier modelling, Asbru is being used as a representation language to model 
ADLs. The skeletal plans in Asbru represent ADLs and sub-activities within an ADL. Like 
workflows, in Asbru when a goal is reached, it is represented as a plan being executed. In the case of 
the high tier modelling of an ADL, when all of the phases and conditions of an ADL have been met, 
the ADL can be classified as being executed. An ADL will only be classified as executed once all its 
mandatory sub-activities have been executed. For example, if a Prepare Breakfast ADL has a 
mandatory sub-activity called Make Tea, this sub-activity needs to be executed in order for the 
Prepare Breakfast ADL to be classified as successfully completed. The inclusion of a learning 
mechanism and context awareness data from smart devices (e.g. weather in local region) can also 
make it possible to adjust the mandatory options for a sub-activity. For example, sub-activity “put the 
coat on” could be changed from mandatory to optional during the summer or when the weather above 
a certain temperature. 

In a real life scenario, the instantiation of the ADLs will be different depending on the individual 
who is being monitored; therefore in order to achieve reliable modelling the ADLs modelled in this 
paper are based on planned activity examples constructed by the Alzheimer’s Association for people 
with dementia (Table 1). The person with dementia has an organised day consisting of activities to 
meet each individual’s preference, enhance the individual’s self esteem and improve quality of life 
(The Alzheimer's Association, 2012). 



	  

 
Morning	   Afternoon Evening	  

- Wash, brush teeth, get dressed 
- Prepare and eat breakfast 
- Discuss the newspaper or reminisce 
about old photos 
-‐‑	  Take	  a	  break,	  have	  some	  quiet	  time	  

- Prepare and eat lunch, 
read mail, wash dishes 
- Listen to music or do a 
crossword puzzle 
- Take a walk 

- Prepare and eat dinner 
- Play cards, watch a movie or 
give a massage 
-‐‑	  Take	  a	  bath,	  get	  ready	  for	  bed	  

Table 1 - Daily Activity Plans constructed by Alzheimer’s Association 
 
The proposed method may seem very prescriptive, as it relies on a crisp set of modelled ADLs; 

however we feel the use of this method is justified as patients with Alzheimer’s require prescriptive 
assistance in the form of ADL schedules. While many common activities can be modelled within a 
library of ADLs, it is impossible for a library to contain plans for every possible ADL. 

 

4.1   Phases and Conditions in ADL Execution 
With Asbru, each ADL can have 7 possible phases in its execution. The plan phase model is called 

the ADL phase model and shows a possible sequence of ADL phases. As shown in Figure 2, the first 
three phases (considered, possible, and ready) constitute the preselection phase, while the latter four 
(activated, suspended, aborted, and completed) forms the execution phases. For an activated ADL, 
the suspended phase, completed phase or aborted phase are optional. 

 

 
Figure 2 - ADL phase model representation in Asbru 

 
4.1.1   Preselection Phases 
Considered: This first phase of an ADL considers any filters to be fulfilled. If the filter preconditions 
are fulfilled then the ADL moves onto the possible phase. If the filter conditions are not fulfilled then 
the ADL does not execute any further. For example: The ADL “Breakfast” would only be considered 
if the person has been awake for ‘10’ minutes or more. Figure 3 shows an XML representation of this 
filter precondition. 
 
Possible: This pre-selection phase of the ADL checks whether all the setup preconditions of the main 
ADL have been fulfilled. Setup preconditions are imposed when the filter precondition cannot be 
achieved. These setup preconditions need to be fulfilled in order for the ADL to be in the ready phase. 
The difference between filter preconditions and setup preconditions is that filter preconditions 
consider whether it is possible for an ADL to be carried out, while setup preconditions must hold 
before an ADL can be executed. Setup conditions can also have a dependency on time. For example, 
if a setup condition is not fulfilled during a particular time frame that has been defined by an optional 
waiting period then the ADL is not executed. However, if there is no time frame assigned for the 
ADL, then the ADL stays in the possible phase until all preconditions have been fulfilled. 



	  

 

 
Figure 3 - Filter precondition in XML 

 
Ready: Once the setup conditions have been fulfilled then the ADL is ready for the activation phase. 
Depending on the type of ADL or sub-activities within the ADL, an ADL may not move to the 
activation stage straight away. If an ADL or a sub activity has to be executed in a parallel order then 
the ADL that is in the ready phase must wait for the ADL that is in the activated phase to be 
completed, aborted or suspended. 

 
4.1.2   Execution Phases 
Activated: Before an ADL is activated it takes into consideration the activation condition. This 
condition is a token that determines if an ADL is manually or automatically. This is specified by using 
the attributes overridable and confirmation. These attributes are generally used for plans that have 
been modelled for clinical procedures and not used for ADLs. However, once an ADL is in the 
activated phase it will then either move on to any one of these three phases: suspended, aborted or 
completed. An example of an ADL being activated is when a task (i.e. Make Tea) has occurred that is 
a part of an ADL activity such as Make Breakfast. 

 
Suspended: An ADL in an activated phase will only move on to the suspended phase if the conditions 
for suspension have been fulfilled. The only way an ADL can move out of the suspension phase and 
back into the activated is if the reactivate conditions have been fulfilled. 
 
Aborted: An ADL in an activated phase will move to the aborted phase if the conditions for aborting 
the ADL have been fulfilled. 
 
Completed: When an ADL is in the completed phase, all sub-activities (consisting of tasks from the 
lower tier recognition phase) and actions (tasks in the low tier) have been completed, thus allowing 
for the next ADL in the ready phase to be activated. 



	  

 
Figure 4 - Using conditions to suspend tasks 

 
Some ADLs modelled with Asbru have preconditions that can only be started if a certain action 

(task) that satisfies the ADL’s precondition has been executed. For example, a precondition for an 
ADL “washing face” may be to apply soap. Another feature of the condition element is that it allows 
ADLs to suspend and restart if another ADL is going to become active. For example (Figure 4), if an 
elderly person is cooking (ADL A) and a phone call occurs (ADL B) then the elderly person picks the 
phone up; with the aid of the conditions Asbru can suspend ADL A and start ADL B. Once an elderly 
person is off the phone then ADL A will be reactivated and ADL B will be suspended. The 
recognition of whether a particular phone call was completed successfully would be captured by the 
object usage data generated by picking up and putting down the handset. The time interval between 
these two actions enables the possibility of determining the call duration and different instances of 
phone calls. 

When a suspension occurs it is important that certain conditions are satisfied (like the gas cooker is 
turned down) or certain monitors to check that certain conditions (such as the food on the hob is not 
boiling over) are setup. 

The example in Figure 4 demonstrates the suspension and activation of two ADLs, and shows how 
an ADL resumes after being interrupted. However, this does not mean that another ADL could not be 
activated before the initial ADL resumes. This is important, as there might be situations where the 
elderly person with Alzheimer’s disease conducts an initial activity and after an interruption forgets to 
resume that activity and starts executing another ADL. In this situation, the ADL that has been 
suspended may have a condition triggering abortion if the ADL has not been reactivated within a few 
hours. 

 

4.2   ADL Execution Synchronisation 
 

 
Figure 5 - Parent-Child synchronisation between ADLs 

 
Asbru has the capability of representing and managing the execution of more than one ADL at a 

given time. In Figure 5, the child is an ADL (sub-activity “Watch T.V.”) invoked by another parent 
ADL (ADL “Breakfast”). The child’s preselection phase starts only after the parent’s preselection 



	  

phase terminates. In other words, the sub-activity’s filter condition is not checked until the ADL is 
activated. Thus, an ADL is executed once the complete condition of the ADL has been fulfilled and 
all of its mandatory sub-activities have been completed. 

Another aspect of Asbru is that it allows different ADLs to have different execution orders. The 
execution orders of an ADL have been represented as Sequential, Parallel, Any-order and Unordered 
execution order. 
 
Sequential Execution Order 
For an ADL that has a sequential execution order, its children execute in the prescribed sequence. The 
second ADL’s pre-selection phase cannot begin until the first ADL completes or aborts (Figure 6). 
This is the same for any sub-activities that are sequential within an ADL that might not have a 
sequential execution order. 
 

 
Figure 6 - Sequentially ordered ADL 

 
Parallel Execution Order 
All sub-activities with a parallel execution order are executed so that they are synchronised together. 
If the conditions or filters in the pre-selection phase of ADL 1 are not fulfilled, then ADL 2 has to 
wait until ADL 1 has fulfilled its conditions. If ADL 1 is aborted, then ADL 2 cannot be executed, 
which leads to ADLs not being executed (Figure 7).  

For instance, an ADL “Make Breakfast” may have two parallel sub-activities, which are “Make 
Tea” and “Make Coffee”, as the person being monitored may make tea for himself and coffee for 
someone else. In Figure 7, the pre-selection phase could be that the kettle has not reached the boiling 
point; hence “Make Coffee” has not been activated. Until the kettle reaches the boiling point, none of 
these sub-activities can be executed. 

 

 
Figure 7 - Parallel ordered ADL 

 
 



	  

Any-Order Execution 
With this type of execution the pre-selection phase is done in parallel to the other ADLs; however the 
execution is one at a time. The other ADLs remain idle when the execution of an ADL is taking place 
(Figure 8). 
 

 
Figure 8 - Any order ADL execution 

 
Unordered Execution Order 
An ADL with an unordered execution order is able to execute all phases of an ADL together (in 
parallel) or in any order, which means that ADLs can stay idle throughout the pre-selection and 
execution phases (Figure 9). 
 

 
Figure 9 - Unordered ADL execution 

5   ADL RECOGNITION ENGINE 
The Java-based ADL recognition engine includes an ADL recogniser that reads the features 

captured, a sequence of sensor events (e.g. objects triggered during activity). These are then used to 
generate a sequence of tasks (e.g. Make Tea + Make Coffee) given the associated sensor event (e.g. 
Kettle). The ADL recogniser then reads the generated stream of tasks and calculates the possibility of 
each ADL being an active ADL using the discrepancies with each ADL and sub-activities that could 
currently be active. A discrepancy is the count of observed tasks that are inconsistent with a particular 
ADL. The system has also incorporated surprise indexes for each ADL, to reflect that some tasks are 
more likely than others. 

The system reads in the ADL descriptors and stores them as a Document Object Model (DOM) tree. 
The ADL descriptors are constructed in XML as each ADL descriptor has the relevant sub-activities 
and tasks nested within them. The XML files are created either by hand as a source XML document 
or by a graphical tool called AsbruView [26]. 

Once the ADL descriptors have been loaded into memory, the ADL recogniser acts as a server 



	  

which listens for incoming task notifications. These task notifications are the tasks that have been 
determined from the lower tier task recognition phase. After each task is read, the estimator outputs 
the names of the ADLs and sub-activities that may be currently active. Depending on how many 
ADLs the task belongs to, the ADL recogniser provides a list of the most probable ADLs that may be 
currently active. The output of the most probable ADL is determined by a dynamic weight tuning, 
which is based on the level of discrepancies and surprise indices that are calculated by the ADL 
recogniser. The following illustrates the behaviour of the ADL recognition engine with a sample 
sensor event stream. 

 

5.1   Lower Tier Task Inference 
The lower tier recognition component computes a list of all possible task sequences given a 

sequence of sensor events (object usage data), which is based on the conjunction of the disjunction of 
tasks possibilities for each sensor event. For example, the object ‘Kettle’ 𝑥  can be associated with 
the tasks ‘Making Tea’ 𝐴  or ‘Making Coffee’ 𝐵 . Hence the sensor event ‘Kettle Sensed’ is 
replaced by the disjunction Making Tea | Make Coffee, which is represented as 𝑥 = 𝐴 + 𝐵, where + 
is used to represent the disjunction. 

Each task sequence has a generated cost, where the highest task sequence is considered to be the 
most likely task sequence as the cost function reflects the compliance of the task sequence with the 
captured sensor event sequences and the relative frequencies of ADLs. The function of the lower tier 
task recognition component can be represented as: 

 
𝑒1, 𝑒2, … 𝑒𝑛	   → 	   < 𝑇𝑆1, 𝑐1 > +< 𝑇𝑆2, 𝐶2 > +< 𝑇𝑆𝑚, 𝑐𝑚 >   (1) 

 
In (1), 𝑇𝑆 represents a task sequence, where 𝑚 is an upper limit chosen when the task recogniser is 

asked for its set of task sequences that match the events. This also ensures that if there are fewer than 
𝑚  possibilities, then only the actual possibilities are generated. For example, the sensor events 
sequence will generate the following task sequences and associated costs, where A, B, C and D are 
tasks 

 
𝑒1, 𝑒2, 𝑒3	   → 	   < 𝐴𝐵𝐶, 𝑐1 > +< 𝐴𝐵𝐷, 𝑐2 >  

 
(2) 

 
In the following example the captured sensor event sequence (𝑒1, 𝑒2, 𝑒3, 𝑒4) contains the task ‘Make 

Tea’ being carried out. However there are also some partial tasks that could potentially be carried out 
given the sensor events such as ‘Make Coffee’ and ‘Make Toast’. The notation below maps the objects 
as sensor events, and tasks as letters: 

 
 

𝑒1 = 𝑘𝑒𝑡𝑡𝑙𝑒 
𝑒2 = 𝑠𝑢𝑔𝑎𝑟	  𝑏𝑜𝑤𝑙 
𝑒3 = 𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 
𝑒4 = 𝑡𝑒𝑎	  𝑏𝑎𝑔	  𝑏𝑜𝑤𝑙 
𝑒5 = 𝑐𝑜𝑓𝑓𝑒𝑒	  𝑏𝑜𝑤𝑙 
𝑒6 = 𝑡𝑜𝑎𝑠𝑡𝑒𝑟 

 
𝐴 = 𝑀𝑎𝑘𝑒	  𝑇𝑒𝑎 
𝐵 = 𝑀𝑎𝑘𝑒	  𝐶𝑜𝑓𝑓𝑒𝑒 
𝐶 = 𝑀𝑎𝑘𝑒	  𝑇𝑜𝑎𝑠𝑡 
 

These are then represented as task associated sensor events, with their associated prior conditional 
probability values. As there are no training data, these values are based on the number of associations 
each task has with the sensor event. 



	  

 
Sensor event sequence = 𝑒1, 𝑒2, 𝑒3, 𝑒4 
 
𝑒1 = 𝐴	   0.5 + 𝐵(𝟎. 𝟓) 
𝑒2 = 𝐴	   0.5 + 𝐵(0.5) 
𝑒3 = 𝐴	   0.33 + 𝐵 0.33 + 𝐶(𝟎. 𝟑𝟑) 
𝑒4 = 𝐴	  (𝟏) 
∴ 
Maximum Conditional Probability Values equal the following: 
A = 1 
B = 0.5 
C = 0.33 
 

Given the sensor event stream 𝑒1, 𝑒2, 𝑒3, 𝑒4 the disjunction will be as follows: 
𝐴 + 𝐵 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 	  𝐴 
= 	   𝐴𝐴 + 𝐴𝐵 + 𝐵𝐴 + 𝐵𝐵 𝐴 + 𝐵 + 𝐶 	  𝐴 

AA can be reduced and the task sequences are be generated by computing the function in the 
following way: 
= 	   𝐴 + 𝐴𝐵 + 𝐵𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 	  𝐴 
= 	   𝐴 + 𝐴𝐵𝐴 + 𝐵𝐴 + 𝐴𝐵 + 𝐵𝐴𝐵𝐴 + 𝐵 + 𝐴𝐶 + 𝐴𝐵𝐶 + 𝐵𝐴𝐶 + 𝐵𝐶 	  𝐴 
= 	  𝐴 + 𝐴𝐵𝐴 + 𝐴𝐶𝐴 + 𝐴𝐵𝐶𝐴 + 𝐵𝐴 + 𝐵𝐴𝐵𝐴 + 𝐶𝐴 

In order to generate the associated cost for each task sequence, the maximum of the conditional 
probability values assigned to each task above is used to find the cost for each task sequence; for 
example:	  𝐴𝐵𝐴 = (𝐴)1 ∗ (𝐵)0.5 ∗ (𝐴)1 = 0.5. The associated costs for each of the task sequence are 
as follows: 

𝑒1, 𝑒2, 𝑒3, 𝑒4	   → 	   < 𝐴, 1.0 > +< 𝐴𝐵𝐴, 0.5 > +< 𝐴𝐶𝐴, 0.33 > +< 𝐴𝐵𝐶𝐴, 0.165 > +< 𝐵𝐴, 0.5
> +< 𝐵𝐴𝐵𝐴, 0.25 > +< 𝐶𝐴, 0.33 > 	  

This	  approach	  mitigates	  the	  chances	  of	  not	  being	  able	  to	  infer	  tasks	  that	  have	  been	  performed	  
using	  different	  orderings	  of	  objects,	  as	  this	  approach	  considers	  all the possible types of task 
sequences given the task associated sensor events.	  Also	  this	  approach	  considers	  the	  conjunction	  of	  
the	   disjunction	   of	   tasks	   possibilities	   for	   each	   sensor	   event,	   including	   noise.	   For	   example,	   if	   a	  
sensor	  event	  sequence	  is	  made	  up	  of	  noise	  then	  this	  will	  be	  reflected	  in	  the	  generated	  cost,	  as	  
this	   task	   sequence	   will	   have	   a	   lower	   cost	   than	   other	   tasks	   sequences.	   This	   means	   that	   the	  
captured	  sensor	  events	  do	  not	  comply	  with	  the	  task	  sequence.	  

5.2   Dynamic Weight Tuning by Computing Discrepancies & Surprise Indices for ADL Inference 
Recognition of ADLs is dependent on the tasks that have been inferred in the lower tier; hence the 

recognised task is used as input in order to determine the ADL that it belongs to. 
When constructing an ADL descriptor it is possible to construct one ADL per XML file, or several 

ADLs can be constructed into one larger XML file. Both of these options are likely to lead to a 
situation where one XML file will contain the same tasks. 

 
When an ADL has been detected by the ADL recogniser this is represented by the absolute 

pathname of the nested elements within ADL XML file that has been detected, for example: 
•   ADL: Make Breakfast 

o   Sub-Activity: Prepare Food 
§   Task: Make Tea 

Make Breakfast à Prepare Food à Make Tea 
 



	  

In an XML file, a discrepancy is a task (i.e. single step plan) that has not been detected or that 
should have been detected if the ADL were executed. The overall discrepancy of an ADL is computed 
by summing the discrepancies of its sub-activities. 

To compute the overall discrepancy, two discrepancy counts for each ADL are calculated, namely 
the completed and incomplete discrepancy counts. If the sub-activity is known to be complete then the 
completed discrepancy of the sub-activity is used when computing the sum; otherwise the incomplete 
discrepancy is used. 

 

 
Figure 10 - Modelled ADL example of ‘Having Breakfast’ 

 
Whether an ADL has been logically completed or not it is represented by true or false of its 

completed labels. The completed labels have a default false value. All labels in the absolute path 
name of an XML file are set recursively to true once a new task is detected in the XML file. When the 
completed label is set to true, the ADL can be idle as tasks within this ADL might be detected later. 

 
The mechanism to mark labels as complete is based on: 

1.   The execution order - sequential, parallel, any-order, or unordered. 
2.   The continuation condition – whether a sub-activity is optional or mandatory for its parent 

ADL’s continued execution. 
3.   The filter pre-condition – the compulsory conditions for an ADL to be activated. 
 

Once a new task is detected or otherwise known as completed in the higher tier component, the 
following discrepancy counting processes occur: 

 
Process 1: If the parent ADL has filter preconditions, then all other ADLs that are compulsory to 
fulfill the pre-conditions should have been completed. Hence these ADLs are set as being completed. 
 
Process 2: If all tasks and mandatory sub-activities of an ADL have been set to completed, then this 
ADL is set as being completed. 
 
Process 3: An ADL is only set as completed, once it has been completed, according to the assigned 
order of execution. For example, if a parent ADL is sequential, then all its preceding mandatory child 
ADLs should have been completed in the sequential order. This is also true for ADLs that have parent 
plans that are either parallel, any-order, or unordered, as the child ADLs will only be set as completed 
once they have been executed in a particular order. 
 
Process 4: If an ADL has been set as completed then all mandatory children should have been 
completed; hence these mandatory children are set to complete. This process traverses down the ADL 
to the sub-activities that are nested within it. 



	  

 
Process 5: The process continues in a depth first search like manner - traversing from the current ADL 
to its siblings, then parents, repeating process 1-4 until no parent ADL is available. The completed 
discrepancy and incomplete discrepancy of each ADL are updated if any changes take place. 
 
 
5.2.1   Working Example 

A working example has been modelled to illustrate how discrepancies are computed for a simple 
“Having Breakfast” ADL (Figure 10): It is supposed that the following tasks are detected in the low 
level modelling – “Enter Kitchen”, “Prepare Toast”, “Drink Tea”, “Eat Egg”, “Clean Dishes”, and 
“Leave Kitchen” - in this order. At the detection of each task in the higher tier (e.g. output task from 
lower tier), the above recognition processes (1 to 5) will take place. By convention, in Asbru all single 
task plans are mandatory. If a single task needs to be optional it has to be embedded in another 
optional plan, which can contain the single activity. 
 
1. Enter Kitchen is detected 
Enter Kitchen is the only task in sub-activity Enter Kitchen; hence Process 2 will occur here and the 
single step plan (task) Enter Kitchen is set to completed. The update process continues and stops 
when reaching the sequential root plan Have Breakfast, since Enter Kitchen has no preceding plans. 
 
2. Prepare Toast is detected 
Similar to the case when Enter Kitchen was detected, Process 2 also occurs here and the single step 
plan (task) Prepare Toast is set to completed. The discrepancy counting algorithm goes to the 
sequential sub-activity Prepare Food, and Process 3 occurs because the single step plan (task) 
Prepare Tea, which as a preceding mandatory child, should have been completed.  However, it has 
not been detected and is calculated as a discrepancy. The update process continues until the root ADL 
is reached. 
 
3. Drink Tea is detected 
Process 2 occurs as sub-activity Eat Food has been set as completed since the only mandatory child 
single step plan (task) Drink Tea is completed. Also the sub-activity Prepare Food is set to complete, 
as it is a preceding sub-activity to Eat Food. Prepare Food is set to complete because there is a 
possibility that the task recognition component may have not discovered the task Prepare Tea. Even 
though the sub-activity Prepare Food has now been set to complete, the discrepancy count remains 
the same. An ADL plan that has a high discrepancy count is less likely to be the ADL that is being 
conducted. 
 
4. Eat Egg is detected 
Process 1 occurs as in order to fulfill the filter condition “egg is cooked”, the single step plan (task) 
Prepare Egg should have been completed. Like the previous Prepare Tea situation, Prepare Egg is 
also set to complete, where the discrepancy count for the sub-activity Prepare Food remains the same 
and does not decrement. 
 
5. Clean Dishes is detected 
Any-order sub-activity Cleaning is not set to completed because only the task clean dishes was 
detected and both of the tasks (clean dishes and clean table) were required in order for the sub-
activity to be set to complete, as the sub-activities were mandatory.  
 
6. Leave Kitchen is detected 
Process 2 occurs as the ADL Leave Kitchen is set to completed; also as this is the last task of the task 
sequence the overall discrepancy of the ADL can be calculated. 

The completed discrepancy and incomplete discrepancy counts of each ADL, sub-activity and single 
step plan (tasks) are updated if any changes take place. The overall discrepancy is calculated as the 
sum of the chosen completed or incomplete discrepancies of each ADL and sub-activity. 



	  

 
In this example, the modelled ADL’s final matching result is shown in Table 2. The overall 

discrepancy of “Having Breakfast” is 3; if other ADLs have a higher overall discrepancy than 3 then 
“Having Breakfast” is the ADL rated as being conducted. The recognition process does not 
necessarily just rely on the overall discrepancy, as at each step when a task is discovered the 
individual discrepancies and complete labels can be used to assist the recognition process, meaning 
there is no need to wait for a complete stream of task sequences before determining the activity. 

The surprise index is used to account for the absence of some sensor events being more unusual 
than others, and quantifies this by accruing a measure of how likely a sensor event is when a task is 
being executed. 
 
ADL/Sub 
Activities/Task 

Execution	  
Order	  

Mandatory	  
or	  Optional	  

Complete	  
Label	  

Complete	  
Discrepancy	  
Count	  

Incomplete	  
Discrepancy	  Count	  

Having 
Breakfast 

Sequential Root Plan False 0 0 

Enter Kitchen Unordered Optional True 0 0 
Leave Kitchen Unordered Optional True 0 0 
Prepare Food Any-order Mandatory True 1 0 
Prepare Toast Unordered Optional True 0 0 
Prepare Egg Unordered Optional True 1 0 
Eat Food Any-order Mandatory True 0 0 
Eat Egg Unordered Optional True 0 0 
Eat Toast Unordered Optional False 0 0 
Cleaning Any-order Optional False 0 1 

Overall discrepancy of plan Having Breakfast is 3 
Table 2 - ADL Discrepancies for Having Breakfast 

 
While the discrepancy is computed whenever there is any missing mandatory task, such as “Make 

Tea” for the ADL “Having Breakfast”, the surprise index of a missing sub-activity is the maximum of 
the conditional probabilities 𝑃 𝑎S|𝑏  of its missing sub-activities tasks occurring 𝑎S𝑠  given that the 
ADL 𝑏  is being conducted. A mandatory task will have probability of 1. The maximum is taken 
over the immediate sub-activities or tasks, i.e. children. This approach is cautious and ad hoc, but the 
information required to use a more sophisticated approach, would need significant knowledge 
collection. Equation (3) is used to compute the maximum likelihood (ML) probability estimates, 
𝑁 𝑜S, 𝑎  represents the number of times object 𝑜S  occurs in activity 𝑎 , while |𝑜|  represents the 
cardinality of the set of all objects (Tapia et al., 2006). 
 

𝑃 𝑜S|𝑎V =
𝑁 𝑜S, 𝑎V
𝑁|W|

XYZ 𝑜X, 𝑎V
 

 
(3) 

6   PROOF OF CONCEPT PROTOTYPE EVALUATION 
The objective of this evaluation was to investigate the performance of the ADL recognition engine, 

which utilises the hierarchal ADLs modelled with Asbru. The effectiveness of the ADL modeling and 
performance of the proposed recognition engine has been measured by calculating the precision and 
recall rates of each ADL given its constituent tasks that were performed. 

The precision (𝑃) and recall (𝑅) are calculated as follows: 
 

𝑃 =
𝑇𝑟𝑢𝑒	  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅 =
𝑇𝑟𝑢𝑒	  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 
 

(4) 



	  

 
The feature detection technique employed was based on the collection of object usage data, where 

an RFID reader was used to collect data from transponders that had been installed on household 
objects (such as cup, kettle and utensils) in the kitchen. The RFID reader was the size of a matchbox 
and was worn on the finger of the subject conducting the experiment. There were occasions where the 
RFID reader captured objects that were not part of the ADLs being conducted. Hence it was 
imperative that the proposed approach was able to address this problem. 
 
ADL	   Sub Activities Tasks	  	  

Breakfast 

Enter Kitchen (*) à Enter Kitchen 
Prepare Food à Make Tea, Make Coffee, Make Toast 

Eat Food à Drink Tea, Drink Coffee, Eat Toast 
Cleaning à Clean Table, Clean Dishes 

Exit Kitchen (*) à Exit Kitchen 

Prepare Lunch 

Enter Kitchen (*) à Enter Kitchen 
Prepare Food à Make Sandwich, Make Wrap 

Cleaning à Clean Table, Clean Dishes 
Exit Kitchen (*) à Exit Kitchen 

Put Shopping Away 

Enter Kitchen (*) à Enter Kitchen 

Groceries Away à Fridge Shopping Away 
Cupboard Shopping Away 

Exit Kitchen (*) à Exit Kitchen 

Prepare	  Snack	  

Enter Kitchen (*) à Enter Kitchen 
Prepare Food à Make Tea, Make Coffee, Get Biscuits 

Eat Food à Drink Tea, Drink Coffee, Eat Biscuits 
Exit Kitchen (*) à Exit Kitchen 

Clean	  Kitchen	  

Enter Kitchen (*) à Enter Kitchen 
Clean Floor à Sweep Floor 

Clean Worktop à Wipe Countertop with Wipes 
Exit Kitchen (*) à Exit Kitchen 

Laundry	  

Enter Kitchen (*) à Enter Kitchen 

Wash Clothes à Wash Clothes - Washing Machine 
Dry Clothes using Tumble Dryer 

Exit Kitchen (*) à Exit Kitchen 

Prepare	  Ready	  Meal	  
Enter Kitchen (*) à Enter Kitchen 

Warm up Meal à Heat up food in Microwave 
Exit Kitchen (*) à Exit Kitchen 

Clean	  Up	  (Post	  
Lunch)	  

Enter Kitchen (*) à Enter Kitchen 
Cleaning à Clean Table, Clean Dishes 

Clean Floor à Sweep Floor 
Exit Kitchen (*) à Exit Kitchen 

*Optional 
Table 3 - ADL, Sub Activities, Tasks Conducted for Experiments 

 
Ten volunteers were recruited from the community to carry out these experiments. The volunteers 

were asked to perform each ADL three times by changing the ordering of objects used, which also 
increased the degree of variation within the data collected. The subjects reported the ADLs they had 
conducted within a given time frame. This reported information was then used as ground truth.  

The experiments were based around 8 ADLs, which were made up of a series of sub-activities and 
tasks that belonged to more than one ADL (see Table 3). This was done intentionally to see how the 
ADL recogniser would deal with tasks that belong to more than one ADL. 

Figure 11 shows that the precision rates ranged from 93% to 86%, which is based on the instances 
of the ADLs recognised being relevant to the actual ADL being performed. The recall rates ranged 
from 96% to 90%, indicating that the hierarchal modelling enables the ability to consider all possible 
relevant tasks when performing ADL recognition. This is very important, as a task could belong to 
more than one ADL; hence it is important the recognition process does not rule out task sequences 



	  

during the recognition process. The recall and precision rates suggest that the proposed hierarchal 
modelling in Asbru with the ADL recognition engine was able to return more relevant recognition 
instances of an ADL as opposed to irrelevant instances.  

This experiment has also shown that the performance depends very much on the degree of overlap 
between tasks in different ADLs. Because of this, different scenarios with different degrees of overlap 
are currently being considered. 

 

 
Figure 11 - ADL Precision and Recall Rates 

 
However, even for such a scenario, the ADL recogniser still needs to be improved. This of course, 

depends on the nature of the ADL. The more optional sub-activities and the more sharing of sub-
activities the more difficult it is to be absolutely certain. However, even if ADLs are not identified 
uniquely, the set of possible ADLs may be enough to a) give feedback to the task identification 
system and b) support context sensitive help - as the ADLs may be related.  

These experiment results are comparable in terms of the recognition rates with existing ADL 
recognition approaches (Rashidi et al., 2011),(Baños et al., 2013). However, it is important to 
highlight that the other approaches have deployed feature detection techniques that capture richer data 
(e.g. acceleration data for movement, ambient temperature readings, analogue sensors for hot & cold 
water, phone usage data and pressure sensors). The approach presented in this paper is primarily 
based on object usage data collected by RFID transponders, hence if the proposed approach employed 
a similar feature detection technique then this would have further improved the recognition results.  

7   CONCLUSION 
This research focused on how ADLs could be structured in a hierarchal structure based on the 

fundamentals of the task-specific and intention-oriented plan representation language called Asbru. 
The experiment conducted indicates that the hierarchal structure of ADLs makes it possible to 
recognise an ADL even though all of the tasks within the ADL may not have been fully completed or 
correctly recognised by the lower tier recognition. This is made possible by the flexible nature of how 
the ADLs have been modelled in a hierarchal structure. 

This work is a very important step towards carrying out intention analysis. As the representation of 
prescribed ADLs for Alzheimer’s patients can enable recognition systems to be preemptive when 
trying to determine the future actions of a person. This can enable the possibility of safeguards being 
initiated before a certain activity takes place. However, the proposed approach does not currently run 
in real-time, which is a major limitation. In order to make this possible a series of bottlenecks will 
need to be addressed. Firstly, we will need to address issue of deploying a learning mechanism, which 
will support the knowledge base. Secondly, a challenge that needs to be addressed is determining the 
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length of the captured sensor events stream that will be useful for real-time inference. One option 
could be to carryout inference at regular timing intervals, however this could be very inefficient as 
only the most recent events could be of interest. These challenges will be carried out as part of future 
work. 

Additionally, the proposed ADL recognition modelling and inference approach could be applied to 
the lower tier task recognition level, as tasks could also be modelled as an activity that is composed of 
the tasks corresponding to sensor events that need to be executed within a certain order and within 
certain temporal constraints. 
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