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ABSTRACT 

Synthetic cathinones are similar in chemical structure to amphetamines, and their 

behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of 

research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-

methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at 

the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block 

the DAT with high-affinity. In this study, we demonstrate for the first time, a new mode of action 

of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric 

assays, we determined that low concentrations of MDPV (1 nM) can cause reverse transport of 

DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila 

melanogaster. These data describe further how MDPV acts at the DAT possibly paving the way 

for novel treatment strategies for individuals who abuse bath salts.  

 

INTRODUCTION 

The neurotransmitter dopamine (DA) mediates behaviors relating to reward, motivation, 

attention, and cognition1, 2. Important to dopamine neurotransmission is the dopamine transporter 

(DAT). DAT is a presynaptic membrane protein responsible for the reuptake and recycling of DA 

following vesicular release3. Dysfunctions in DAT can lead to dopamine-associated 

neuropsychiatric disorders including ADHD, autism spectrum disorders, schizophrenia, and 

bipolar disorder4. DAT is also the target of commonly abused psychostimulants and controlled 

substances, namely cocaine and amphetamine (AMPH). Cocaine acts as a high-affinity 

antagonist of the transporter and blocks DA uptake, whereas AMPH acts as a substrate of the 

transporter and, through a series of intracellular mechanisms, causes DAT to reverse transport 

or “efflux” DA into the extracellular space5. The actions of cocaine and AMPH on the DAT are 



well-known to play a role in their rewarding properties and abuse potential. Thus, determining the 

effects of psychostimulants on DAT function is important for understanding the neural and 

molecular mechanisms underlying psychostimulant drug action.  

In recent years, the abuse of synthetic cathinones or “bath salts” has grown to become a 

major world-wide health concern6. These substances are synthetic derivatives of the naturally-

occurring stimulant, cathinone, found in the flowering plant Catha edulis7. The psychoactive 

effects of synthetic cathinones vary from the cocaine-like stimulant effects seen with 3,4-

methylenedioxypyrovalerone (MDPV)8 to the MDMA-like empathogenic effects of methylone (3,4-

methylenedioxymethcathinone)9. Among a number of identified biological sites, cathinones are 

known to target proteins that modulate dopamine neurotransmission, increasing dopaminergic 

signaling and associated behaviors10-15, including drug-seeking16, 17. When consumed in small 

doses, cathinones can lead to euphoria, alertness, increased libido, and elevated blood pressure. 

When consumed at higher doses, tremors, seizures, paranoia, violent behavior, psychoses, 

tachycardia18, delusions/hallucinations19, and death20 can occur. A recent report released by the 

Substance Abuse and Mental Health Services Administration (SAMHSA) showed that nearly 

23,000 emergency room visits in 2011 were a result of cathinone abuse (SAMHSA 2013 Bath 

Salts Report). Due to the high risk associated with the use and the abuse potential of these 

compounds, the Drug Enforcement Administration (DEA) designated mephedrone (4-

methylmethcathinone), methylone and MDPV as Schedule 1 substances under the Controlled 

Substances Act (DEA Drug Fact Sheet on Synthetic Cathinones).  Nonetheless, illegal 

manufacturers continue to circumvent this ban by synthesizing "designer" substances with novel 

chemical structures but which produce similar psychostimulant effects21.  These compounds are 

readily available and sold with fraudulent labels such as “plant food”, “research chemicals”, or 

“bath salts” at gas stations, tobacco stores, and over the Internet with a warning that the contents 

are not intended for human consumption. Their continued production and availability make it 



nearly impossible to control the exponentially rising sales and consumption of synthetic 

cathinones.  

Despite increased data regarding the use and abuse of cathinones22, little is known about 

their mechanism of action. To address this issue, several research groups have begun to study 

the chemistry, pharmacology, and behavioral effects of various synthetic cathinones. Of these, 

MDPV is most commonly implicated in high-risk use18, 20, 21, 23-27. First synthesized in 1969, MDPV 

gained popularity much later in 2010 (2014 World Health Organization Critical Review Report on 

MDPV). As a highly lipophilic analogue of the synthetic cathinone pyrovalerone28, MDPV readily 

crosses the blood-brain barrier. Importantly, MDPV, when administered to animals exhibits striatal 

distribution, a brain region enriched in DA projections13. MDPV also shows high abuse potential 

in animal behavioral tasks12-14, 29.  

Early research on MDPV demonstrated that this drug acts similarly to cocaine (a known 

DAT blocker), but with a 10- to 50-fold higher potency8, 30. However, increasing data suggests that 

there may be more to MDPV action. Work from Bauman et al. showed that after intravenous 

administration of MDPV, DA levels remain elevated for far longer than after cocaine 

administration8. In addition, MDPV administration results in long lasting cross-sensitization in 

mice, similar to the effects of methamphetamine16.  These results suggest that MDPV, in addition 

to acting as a DAT blocker, may also display other modes of action. To examine further the 

molecular mechanisms of MDPV on the DAT, we performed amperometric studies. Specifically, 

to obtain greater temporal resolution, we studied MDPV action on human DAT (hDAT) by 

employing single cell amperometry. This assay has been previously used to discriminate AMPH 

versus cocaine actions in a single cell and these results have been reproduced in different model 

systems31. Further, we assessed MDPV-induced behaviors in Drosophila melanogaster, 

specifically focusing on known DAT-associated behaviors. Drosophila is a powerful genetic model 

for studying behaviors that are associated with DA as well as promoted by psychostimulants31-33, 



as several genes that regulate DA transport, synthesis, and signaling are conserved between flies 

and humans34. 

 

METHODS 

Drugs 

(±)-3,4-Methylenedioxypyrovalerone HCl (MDPV), was synthesized in racemic form in our 

laboratories.  Chemical and structural analysis included proton nuclear magnetic resonance, gas 

chromatography/mass spectrometry, thin layer chromatography, and melting point determination.  

All data were consistent with the expected structures. All other drugs used in this study including 

their salt and enantiomeric forms were as follows and purchased from Sigma-Aldrich (St. Louis, 

MO): Dopamine (i.e., 3-hydroxytyramine hydrochloride), D-amphetamine hemisulphate salt and 

Cocaine hydrochloride.   

Amperometry  

Chinese hamster ovary (CHO) cells stably expressing hDAT (here defined as hDAT cells) were 

plated at a density of ~20,000 per 35-mm culture dish. To preload cells with DA, dishes were 

washed with KRH assay buffer (130 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 25 mM HEPES, 

1.1mM MgSO4 2.2 mM CaCl2, pH 7.4) supplemented with 10 mM dextrose, 100 μM pargyline, 1 

mM tropolone, and 100 μM ascorbic acid, and incubated with 1 μM DA in KRH assay buffer for 

20 minutes at 37°C. To record DA efflux, a carbon fiber electrode (ProCFE; fiber diameter of 5 

μm; obtained from Dagan Corporation) juxtaposed to the plasma membrane and held at +700 mV 

(a potential greater than the oxidation potential of DA) was used to measure DA flux through 

oxidation reactions. Amperometric currents in response to the addition of 1 nM MDPV were 

recorded using an Axopatch 200B amplifier (Molecular Devices, Union City, CA) with a low-pass 

Bessel filter set at 1 kHz; traces were digitally filtered offline at 1 Hz using Clampex9 software 



(Molecular Devices, Union City, CA). DA efflux was quantified as the peak value of the 

amperometric current.   

Drosophila melanogaster Behavior  

To measure the locomotor response to MDPV we used the TriKinetics Drosophila Activity 

Monitoring (DAM) system as described in earlier studies 35, 36. Wild-type Oregon-R male flies were 

entrained for seven days in 12:12 h light:dark (LD) cycles at 25°C on standard cornmeal-molasses 

medium.  On day two, flies were transferred individually to activity tubes and acclimated for a 

period of five days. On day seven, flies were transferred into identical activity tubes containing 20 

µM MDPV or vehicle (water) in standard medium. Flies were continuously monitored for 

movement using activity monitors (DAM5, Trikinetics). Activity was measured as the number of 

times a fly crossed the infrared beam (beam crosses) per 30 minutes. Activity data was recorded 

for six hours after drug administration. Change in activity in response to drug treatment was 

reported as beam crosses normalized to average beam crosses 30 minutes prior to drug 

administration.  

 

RESULTS 

1 nM MDPV alone does not produce an amperometric signal: As a first control experiment, 

we demonstrated that hDAT cells pre-loaded with DA (see methods section) did not release DA 

upon application of vehicle (Figure 1, Vehicle). Next, we tested whether MDPV alone does not 

react at the carbon fiber electrode. At concentrations as low as 1 nM, MDPV did not elicit any 

amperometric current when applied to a bath chamber in the absence of hDAT cells (Figure 1, 

MDPV). Finally, to demonstrate that we can record DA efflux with our amperometric electrode, 

we show that bath application of 10 µM AMPH causes a robust DA efflux in the presence of hDAT 

cells (Figure 1, AMPH). We have previously shown that this AMPH-induced DA efflux is mediated 



by the hDAT and is cocaine-sensitive37.  These control experiments were conducted to ensure 

that amperometry is a fitting technique to elucidate the actions of MDPV in terms of DA efflux and 

that MDPV at a concentration of 1 nM does not produce a non-specific amperometric signal.  

New mode of action of MDPV: 24 hours after plating, hDAT cells were preloaded with DA (see 

methods). Amperometric measurements were taken from individual hDAT cells after application 

of a low concentration of MDPV (1 nM) or cocaine (10 µM). As expected, 10 µM cocaine did not 

cause DA efflux as reflected by a lack of an upward deflection of the amperometric trace (Figure 

2, Cocaine). These data are in agreement with previously published studies33, 37 and also 

establishes that there is no anomalous dopamine efflux or “leak” associated with the transporter 

in this in vitro system as previously shown37. Surprisingly, and in contrast to the effects of cocaine, 

amperometric traces recorded in response to 1 nM MDPV show a clear upward deflection of the 

amperometric current. This upward deflection reflects DAT-mediated DA efflux (Figure 2, MDPV). 

To note, hDAT cells the peak amperometric responses for MDPV were smaller than those 

recorded for AMPH (positive controls; compare Figure 1 (AMPH) to Figure 2 (MDPV)). 

MDPV causes hyperlocomotion in flies: Building on our in vitro findings, we examined MDPV’s 

role in modifying DA-associated behaviors in Drosophila melanogaster. Wildtype flies were placed 

in locomotion chambers and acclimated for a period of five days. 20 μM MDPV or vehicle was 

administered orally via voluntary consumption. Locomotion was quantified as average beam 

crosses per 30 minutes normalized to pre-treatment conditions. Flies administered MDPV (n=16) 

show an elevated rate of locomotion compared to those administered vehicle (n=15) (Figure 3A). 

Cumulative beam breaks over a period of 6 hours show a greater than two-fold increase in 

locomotion in flies administered MDPV compared to vehicle (Figure 3B).  

 

 



DISCUSSION 

DA homeostasis in the central nervous system is essential to regulating important brain 

functions, including reward. Synthetic cathinones disrupt normal dopaminergic neurotransmission 

and thus affect DA-associated behaviors. These drugs elicit behaviors indicative of enhanced 

dopaminergic signaling. The past ten years of research on MDPV and other synthetic cathinones 

demonstrate that the rewarding properties of synthetic cathinones are derived, in part, from their 

actions on monoamine transporters38, 39. Understanding how MDPV disrupts normal DA 

neurotransmission via its actions on the DAT is essential to the development of novel treatment 

options that can restore normal DA homeostasis in individuals that abuse MDPV and other 

synthetic cathinones. In this study, we aimed to reveal new modes by which low concentrations 

of MDPV cause an elevation in extracellular DA levels, and the behavioral consequences of its 

actions on DAT.  

Using single cell amperometry we reveal that low concentrations of MDPV (1 nM) cause 

reverse transport of DA via DAT. Amperometry is a well-established paradigm that has been used 

by our group and others in several studies to determine different aspects of monoamine release 

mediated by catecholamine transporters31-33, 40. We first established that this assay is suitable for 

studying reverse transport of DA mediated by MDPV. We conducted an initial characterization of 

MDPV to demonstrate that at low concentrations, MDPV does not interact with the carbon fiber 

electrode to produce an artificial signal. Next, we demonstrate that in hDAT cells MDPV (1 nM) 

causes reverse transport of DA mediated by hDAT. To note is that high concentrations of MDPV, 

such as 100 nM, cause a non-specific amperometric signal (i.e. an amperometric current is 

recorded with MDPV in the absence of hDAT cells). These data describe for the first time a novel 

mode of action of MDPV at the DAT. Interestingly and importantly, previous work with hDAT has 

shown that higher concentrations of MDPV can block DAT function (20-30 nM)8. Taken together, 

these data suggest that MDPV might have multiple modes of action that are concentration-



dependent, where at low concentrations MDPV works to cause DAT reverse transport, and at 

high concentrations MDPV primarily causes DAT blockade.  

Drosophila melanogaster has been used in the past as a model organism to study the 

behavioral consequences of newly discovered molecular mechanisms of AMPH and cocaine41,42. 

In Drosophila, locomotion requires functional DA neurotransmission. Therefore to understand the 

significance of the actions of MDPV in vivo, in terms of changes in extracellular DA levels, we use 

flies as a behavioral model. Here, we show that MDPV administration leads to hyperlocomotion 

in Drosophila melanogaster. These data point to Drosophila melanogaster as a good animal 

model to further characterize in vivo the multiple actions of MDPV at the hDAT.  This increase in 

locomotor activity has been previously documented to be associated with an increased in 

extracellular DA promoted by DAT blockers (e.g. cocaine) as well as DA effluxers (e.g. AMPH).  

In this study, we did not determine whether the increase in Drosophila locomotion is driven 

by either the MDPV ability to block the hDAT, to cause DA efflux, or both. In the near future, we 

aim to explore these different possibilities by generating flies that are insensitive to the ability of 

MDPV to cause DA efflux as we have already done for AMPH31,32.  

Further studying the different mode of actions of MDPV and other synthetic cathinone 

drugs as well as their specific behavioral consequences will not only pave the way toward better 

treatment strategies for those who abuse them, but also lead to better recognition/prediction of 

the dangers posed by novel designer cathinones that are emerging in the market today.  

 

FIGURE LEGENDS 

Figure 1. MDPV (1 nM) does not elicit an amperometric current in the absence of hDAT 

cells. Top: Representative amperometric traces recorded from hDAT cells in response to 

application of vehicle to (Vehicle), application of 1 nM MDPV to bath in the absence of hDAT cells 



(MDPV), or application of 10 μM AMPH to hDAT cells (AMPH). Bottom: Quantitation of the peak  

amperometric current amplitude measured after vehicle or drug treatment (**** = p<0.0001 by 

One-way ANOVA with Dunnett’s multiple comparisons post-hoc analysis; n = 5-6). 

Figure 2. MDPV, but not cocaine, induces reverse transport of DA via hDAT.  Top: 

Representative amperometric traces recorded in response to 10 μM cocaine or 1 nM MDPV in 

hDAT cells. Bottom: Quantitation of DA efflux measured as peak amplitude of the amperometric 

current after drug or vehicle treatment (** = p<0.01 by Student’s t-test; n = 5-8). 

Figure 3. MDPV induces hyperlocomotion in flies. (Left) Locomotion was measured by 

average beam crosses following 20 µM MDPV (n = 16) or vehicle (n = 15) administration. Beam 

crosses were normalized to pre-treatment conditions for each fly. (Right) Cumulative beam 

breaks were quantified for up to six hours post drug or vehicle administration. Flies exposed to 

MDPV displayed an increase in cumulative bream breaks compared to vehicle-controls (* = 

p<0.05 by Student’s t-test; n = 15-16). 
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