
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

An online packing heuristic for the three-dimensional

container loading problem in dynamic environments and

the Physical Internet

Abstract. In this paper, we consider the online three-dimensional container load-

ing problem. We develop a novel online packing algorithm to solve the three-

dimensional bin packing problem in the online case where items are not know

well in advance and they have to be packed in real-time when they arrive. This is

relevant in many real-world scenarios such as automated cargo loading in ware-

houses. This is also relevant in the new logistics model of Physical Internet. The

effectiveness of the online packing heuristic is evaluated on a set of generated

data. The experimental results show that the algorithm could solve the 3D con-

tainer loading problems in online fashion and is competitive against other algo-

rithms both in the terms of running time, space utilization and number of bins.

Keywords: Dynamic optimization, online optimization, dynamic environments,

3D Bin packing problem, 3D container loading problem; online packing heuris-

tic, Physical Internet, Benchmark problems.

1 Introduction

The classic three-dimensional bin packing problem (3D-BPP) is a strong NP-hard

combinatorial optimization problem [1, 2], where the primary aim is to load a finite

number of items of different sizes using the smallest possible number of bins. In logis-

tics and supply chains, the 3D-BPP is also called the three-dimensional container load-

ing problem (3D-CLP). It has many industrial and commercial applications, such as

loading goods to containers and pallets, cargo and ship stowage loading, etc. 3D-CLP

has been studied extensively by a lot of researchers with different objective functions

and constraints by using diverse methods as surveyed and discussed in [3, 4].

Although many studies have addressed the 3D-CLP, most have focused exclusively

on volume utilization and ignored other practical requirements. In real world problems,

a number of practical constraints and requirements need to be satisfied, such as loading

feasibility, stability, weight balance, operational safety product handling, and the pre-

vention of cargo damage during container shipping. But only a few works have ad-

dressed those mentioned requirements [5-7].

Furthermore, most existing works focused on the static (offline) multidimensional

CLP. Only few works have addressed the online or dynamic 3D-CLP where knowledge

about items’ arrival is not known in advance and items have to be packed right after

they arrive. The online 3D-CLP has many applications in automatic or robotic cargo

loading in warehouse storages. It will also become very common in a new logistics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/74237878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model, the Physical Internet1, which is considered the future of smarter logistics2. This

logistics model proposes to move, pack and unpack goods in the same way as infor-

mation are being transported, pack and unpack in the digital internet. In the Physical

Internet logistics model, items will arrive in real-time with not much notification, and

they will need to be packed immediately to avoid any delay.

To solve the online/dynamic 3D-CLP, one needs to follow a dynamic optimization

approach, in which the problem is solved online when time goes by [8], i.e. packing

solutions need to be provided immediately in real-time whenever one or a set of items

arrive.

The classical online one-dimensional CLP problem was introduced in [9-11], where

items are coming one by one and each must be packed immediately and irrevocably

into a bin without any knowledge of future items and the goal is to minimize the max-

imal number of bins ever used over all times.

The issue we are addressing in this work is to develop an online packing heuristic

for 3D-CLP with online arrival of items, and test its performance against other online

and static algorithms. The algorithm must make decisions immediately and irrevocably

based only on a part of the input without any knowledge of the future part. This is

different to the static (offline) case where an algorithm knows the whole information

about items and containers before making any decision. The algorithm should guaran-

tee that all items are loaded more realistically in the containers, with one door from the

one side, and avoid the problem of blocked items (see

Y

X

Z

Item 1

Item 3

Item 2 Item 4

Fig. 3).

The remainder of this paper is organized as follows. In section 2 basic concepts of

online 3D-BPP are introduced. In section 3 we discuss about building a packing heu-

ristic for the online case. Section 4 discusses generating problem data and testing the

performance of algorithms. Finally, conclusions are given in section 5.

1 B. Montreuil. Toward a Physical Internet: meeting the global logistics sustainability grand chal-

lenge. Logistics Research, 3(2):71-87, 2011.
2 ALICE, “Global Supply Network Coordination and Collaboration research & innovation

roadmap,” ALICE - Alliance for Logistics Innovation through Collaboration in Europe, 2014.

2 Problem definition

Since the online 3D-CLP in this work is formed from the classical 3D-CLP, it is

defined as follows: suppose that 𝐼𝑃𝑆 is an item packing sequence where item are com-

ing in an online fashion, 𝐶𝐿𝑆 is a container loading sequence and there are enough con-

tainers for the whole 𝐼𝑃𝑆.

Let N be the total number of items, and let M be the total number of user containers

over all the time of loading process. We assume that all items and containers have the

shape of a cube, where the length, width, and height of a container are oriented with the

x-axis, y-axis and z-axis respectively in the Cartesian coordinate system. So the point

(0,0,0) is the deepest-bottom-left corner of a container. Let 𝐿𝑗 , 𝑊𝑗 , 𝐻𝑗 and 𝑐𝑖 be the con-

tainer length, width, height and the cost of the j-th container, respectively. Let the low-

ercase letters 𝑙𝑖 , 𝑤𝑖 , ℎ𝑖 be the length, width, and height of i-th item.

2.1 Objective and constraints

The objective is to minimize the total cost of all used containers:

∑ 𝑐𝑖

𝑀

𝑖=1

→ 𝑚𝑖𝑛 (1)

If the containers are homogeneous, then the cost of all containers are the same. In

this case the objective is to minimize M, the number of containers (bins) to be used.

This objective function is similar to maximizing the utilization or minimizing the

wasted space:

∑(𝐿𝑗 ∗ 𝑊𝑗 ∗ 𝐻𝑗)

𝑀

𝑖=1

− ∑(𝑙𝑗 ∗ 𝑤𝑗 ∗ ℎ𝑗)

𝑀

𝑖=1

→ 𝑚𝑖𝑛 (2)

For the constraints of the online problem, this work takes into account the basic ge-

ometric constraints, according to [3]: (1) the items are assumed to be placed orthogo-

nally, that is, the edges of the boxes have to be either parallel or perpendicular to those

of the containers and within the container’s dimension; (2) all items are packed and (3)

items do not overlap with each other. More detailed explanation of the similar model

can be found in [6, 12, 13]. We also consider a specific constraint that the items can be

rotated because it is an important operational factor in both research and the real world.

There are, at most, six different rotation types (0 to 5) for each packed item in a con-

tainer. They are: l-w-h, w-l-h, l-h-w, w-h-l, h-l-w, and h-w-l (see Fig. 1).

Y

X

Z

l-w-h w-l-h w-h-l h-w-l h-l-w l-h-w

Fig. 1. Six types of item orientation

2.2 Empty maximal spaces

To indicate the exact position where an item can be loaded into a particular container,

many concept of coordinates of objects have been used, for example the concept of

corner points [14-16] and the concept of extreme points [17, 18]. In this work, we use

the concept of empty maximal spaces (EMSs) to represent the free spaces in bins. In

this concept, for each container to be used, we list the largest empty orthogonal spaces

(that are not inscribed by any other space) available for packing. This concept is used

in many recent studies [19-21]. Each empty maximal space is represented by a pair of

their vertices with minimum and maximum coordinates: deepest bottom left vertex and

highest top right vertex. Fig. 2 shows four empty maximal spaces in a container where

item1 is placed in the middle front of the container. The difference process introduced

by [22] is also used in this work to calculate and update the list of EMSs.

EMS4

Item 1
Y

X

Z

EMS1

Item 1

EMS2 EMS3

Item 1

Fig. 2. Empty maximal spaces

3 Online packing heuristic

For the static 3D-CLP, usually, a packing algorithm follows a certain type of heuris-

tic packing strategy. The input of a packing algorithm includes a sequence of packing

items (IPS), which can be static or online, and a sequence of loading containers (CLS).

The packing algorithm will then convert these sequences into a solution, where each

item is assigned an exact position and an exact orientation inside a container. Depend-

ing on the type of 3D-CLP and the priority of selection of items and positions, one of

many available packing heuristics can be used, such as First Fit Decreasing Algorithm

(FFDA), Best-Fit Decreasing Algorithm (BFDA) [23], Bottom-Left-Fill, Bottom-Left-

Back-Fill [24], etc.

 [25] introduced a packing strategy called Deepest-Bottom-Left with Fill heuristic

(DBLF). This heuristic has gained its popularity in various works e.g. [6, 25, 26]. This

heuristic always searches for a space with the minimal x (deepest) coordinate to place

the current item. And it uses z (bottom) and y (left) coordinates as tie breakers. This

heuristic is also used and modified in [27]. [13] showed two drawbacks of DBLF: First,

only one coordinate (x) plays the dominant role in choosing the candidate space; sec-

ond, only one of the two factors: the item or the space, is determined. The other factor

is then selected based on certain priority rules. This results in a potential loss of good

combinations that may lead to better solutions (i.e. a solution with a smaller wasted

space); In [13], authors proposed a new packing heuristic called Best Match First Pack-

ing Heuristic (BMF). In this heuristic, EMSs are sorted in order of smallest coordinate

values of the vertices to the deepest-bottom-left point of the container (with coordinates

(𝑥, 𝑦, 𝑧) = (0,0,0)). Then BMF searches for the best combination (space-box-orienta-

tion), in which the space as close as possible to the deepest-bottom-left corner of the

container is chosen to place the current item. The authors showed that BMF outper-

forms DBLF in terms of utilization when they are combined with a metaheuristic such

as GA or DE.

We find that the main difference between the two heuristics is the priority of EMSs,

but in both BMF and DBLF, the problem of items being blocked, i.e. an item cannot be

loaded through the container’s entrance door to its designated locations due to other

existing items blocking its way, is not considered. In subsection 3.1 we will propose an

online packing heuristic (OnlineBPH) for the online 3D-BPP. The OnlineBPH is in-

spired from the Deepest-Bottom-Left order in DBLF and the idea of choosing the best

combination (space-item-orientation) in BMF. In this new algorithm also we imple-

mented an improvement in space selection to avoid the problem of item being blocked,

so that the loading solution provide by packing heuristics can be more realistic and

implementable in the real-world.

3.1 Empty maximal space selection

 For two EMSs in the same container, we first compare their deepest (the x-value)

coordinate values of the two vertices, while the EMS with the smaller value is given

higher priority. If they are at the same deep level, we compare the bottom (the z-value)

coordinate values and assign the higher priority to the EMS with the smaller one. If the

two values are still the same, we compare the y-values. Furthermore, the heuristic al-

ways check if the item can be loaded from the door of the container or not by checking

the x-value of the selected EMS. The reason behind this is to avoid the blocking prob-

lem, where an item can be fit in the space, but the loading process is unfeasible. When

the deepest-bottom-left space is selected for an item, but the length dimension of this

EMS does not extend to the entrance of the container, then other loaded items can block

its loading ways. For example, in Fig. 3 if the items are loaded in order item1, item2,

item3 then item4, then after item2 is loaded, item 3 cannot be placed in the assigned

space, because item 2 has blocked its way.

Y

X

Z

Item 1

Item 3

Item 2 Item 4

Fig. 3. The blocking problem during loading

3.2 Placement selection

OnlineBPH also inherits two parameters Kb and Ke from [13] but in a different man-

ner: to determine the placement assignment, for Kb items (if items are arriving one by

one then Kb=1) and the first Ke EMSs in the each opened container, the heuristic finds

all the feasible placement assignments with allowed rotations of the items. When one

item has several feasible placements in a free EMS, the one that has the smallest margin

(from the faces of item to the faces of EMS) is selected. The triad (item, rotation, ems)

pair with the largest fill ratio is chosen.

The three main differences between our online packing heuristic (OnlineBPH) and

BMF are (1) BMF has information about all items while OnlineBPH only has infor-

mation about the limited number of items that have arrived. (2) BMF will place an item

in the first opened container (bin) that it has found a suitable space; while OnlineBPH

considers all combinations of (bin, item, ems, and rotation) in all opened containers

first before deciding which one is the best. (3) the OnlineBPH always check either the

item can be loaded from the door of the container or not by checking the x-value of the

selected EMS.

3.3 Pseudo-code of OnlineBPH

Pseudo-code of OnlineBPH is described in Fig. 4. At each step OnlineBPH decides

packing information of one item in sequence (item will be packed in which container,

at which position and in which orientation). For this, there are two phases to determine

a placement of one item. First, the algorithm considers all opened containers and the

information about the first 𝐾𝑒 empty maximal spaces in 𝐸𝑀𝑆𝑠 list of each opened con-

tainer, and look ahead 𝐾𝑏 item in online 𝐼𝑃𝑆 Then it selects the best tetrad of (con-

tainer, item, orientation, ems) to pack an item. If there are no feasible tetrad, the second

phase is triggered to open a new suitable container for the item.

𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 returns the container that can fit the item with the larg-

est fill ratio. In the case of identical containers, the next empty container in CLS is

chosen. Note that the initial EMS of a container cover its whole space, so containers

with different dimensions will have initial EMSs with different sizes.

Input: An online item packing sequence 𝐼𝑃𝑆 and a container loading sequence 𝐶𝐿𝑆;

Output: 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑆 𝑓𝑜𝑟 𝐼𝑃𝑆 or null if not found;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Let 𝑂𝐶 be the 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠;

𝑂𝐶 ← Ø; 𝑃𝑆 ← Ø;
while 𝑖𝑡𝑒𝑚𝑠 𝑎𝑟𝑒 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 or 𝐼𝑃𝑆 ≠ 𝑛𝑢𝑙𝑙 do

Let 𝑃 be a queue of candidate placements;

𝐾𝑏 ← 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠;

Update IPS;

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ← 0;

// Phase 1: try to put an item to an opened container at the DBL ems;

for each 𝑐 ∈ 𝑂𝐶 do

Let 𝐸𝑀𝑆𝑐 be 𝑡ℎ𝑒 𝑠𝑜𝑟𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑚𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑐 in the

deepest-bottom-left-first order

𝑗 ← 0;

while 𝑗 < 𝐾𝑒 and 𝑗 < 𝐸𝑀𝑆𝑐. 𝑠𝑖𝑧𝑒 do

for 𝑖 ← 0 to 𝐾𝑏 do

for each 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑜 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖 do

if 𝐼𝑃𝑆[𝑖] 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 in 𝐸𝑀𝑆𝑐[𝑗] with 𝑖𝑜 and

𝑖𝑠 𝑛𝑜𝑡 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑏𝑦 𝑜𝑡ℎ𝑒𝑟𝑠 then

add this placement combination to 𝑃;

𝑗 = 𝑗 + 1;

if 𝑃 ≠ Ø then

add the placement indicted by 𝑃[0] to PS;

update IPS and 𝐸𝑀𝑆 lists;

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ← 1;

// Phase 2: Open a new container to load current item to its DBL corner;

if 𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 = 0 then

𝑐 = 𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟(𝐶𝐿𝑆, 𝑖);

if 𝑐 ≠ 𝑛𝑢𝑙𝑙 then

𝐸𝑀𝑆𝑐 be the initial 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑝𝑎𝑐𝑒𝑠 in 𝑐;

for each 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑜 do

if 𝐼𝑃𝑆[𝑖] 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝐸𝑀𝑆𝑐 with orientation 𝑖𝑜 then

add this placement combination to 𝑃;

if 𝑃 ≠ Ø then

move 𝑐 from CLS to 𝑂𝐶;

add the placement indicted by 𝑃[0] to PS;

update IPS and 𝐸𝑀𝑆 lists;

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ← 1;

if 𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 = 0 then

return 𝑛𝑢𝑙𝑙;
return 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑆;

Fig. 4. Pseudo-code of packing heuristic for Online 3D-CLP

4 Experiments

4.1 Benchmark problems

Due to the lack of proper data for online 3D-CLP, we follow the approach described

in [28] to generate test problems for the case of identical container packing problems.

We generated 4 classes (I, II, III and IV) of instances. For classes I, II and III, specific

distributions are chosen (Table 2), where 𝑙𝑗, 𝑤𝑗 and ℎ𝑗 are length, with and height of j-

th generated item, whereas L, W, H are respectively length, with and height of the iden-

tical containers.

For class IV, the following four types (types 1, 2, 3, and type 4) of uniformly distri-

bution are defined in the terms of the length L, width W and height H of the containers

(Table 1). To generate class IV, instances of type 1 are selected with probability 70%,

instances of types 2, 3, 4 are selected with probability 10% each.

Table 1. Type of random items in instances

Type of uniformly distribution in di-

mensions of items
𝑙𝑗 𝑤𝑗 ℎ𝑗

Type 1 [1,
1

3
𝐿]; [

2

3
𝑊, 𝑊]; [1,

1

2
𝐻];

Type 2 [
1

2
𝐿, 𝐿]; [1,

1

2
𝑊]; [

2

3
𝐻, 𝐻];

Type 3 [1,
1

2
𝐿]; [

1

2
𝑊, 𝑊]; [

1

2
𝐻, 𝐻];

Type 4 [
2

3
𝐿, 𝐿]; [1,

1

2
𝑊]; [1,

1

2
𝐻];

To evaluate the performance of algorithms, we classified instances into groups in

terms of the problems sizes (number of items): small (less than 50 items), medium (from

50 up to 200 items), or large (more than 200 items). For classes I, II, and III, we gen-

erated for each class 5 datasets of instances in sizes of 20, 40 (small), 60, 80 (medium)

and 1000 items (large). For class IV, we generated 2 datasets of small size (40 items)

and large size (1000 items). In each dataset, there are 100 instances have generated.

Table 2 show the classes of test problems.

Table 2. Classes of test problems

Data set

No.
Category

Sizes of con-
tainers

(L*W*H)

No. of

items

No. of
in-

stances

Item sizes (l*w*h)

I_20 Small 30*30*30 20 100 uniformly random in [1,10]

I_40 Small 30*30*30 40 100 uniformly random in [1,10]

I_60 Medium 30*30*30 60 100 uniformly random in [1,10]

I_80 Medium 30*30*30 80 100 uniformly random in [1,10]

I_1000 Large 30*30*30 1000 100 uniformly random in [1,10]

II_20 Small 100*100*100 20 100 uniformly random in [1,35]

II_40 Small 100*100*100 40 100 uniformly random in [1,35]

II_60 Medium 100*100*100 60 100 uniformly random in [1,35]

II_80 Medium 100*100*100 80 100 uniformly random in [1,35]

II_1000 Large 100*100*100 1000 100 uniformly random in [1,35]

III_20 Small 100*100*100 20 100 uniformly random in [1,100]

III_40 Small 100*100*100 40 100 uniformly random in [1,100]

III_60 Medium 100*100*100 60 100 uniformly random in [1,100]

III_80 Medium 100*100*100 80 100 uniformly random in [1,100]

III_1000 Large 100*100*100 1000 100 uniformly random in [1,100]

IV_40 Small 100*100*100 40 100
probability 70% of type 1, proba-

bility 10% of each types 2, 3, 4

IV_1000 Large 100*100*100 1000 100
probability 70% of type 1, proba-
bility 10% of each types 2, 3, 4

4.2 Computational results

All the proposed approach and algorithms have been coded in C and executed on a

system with the following configuration: Intel® Core™ i5-4590 CPU @(3.30Ghz,

3.30Ghz) with 8.00 GB RAM, Windows 7 Enterprise 64-bit.

Table 3 and Table 4 show the average results of OnlineBPH on 100 generated in-

stances for each dataset. We tested the proposed algorithm for both cases of fixed ori-

entation and free (6-ways) orientation of items. To evaluate efficiency of the approach,

we selected different combination of parameters 𝐾𝑏 and 𝐾𝑒.

Let S be the number of tetrads (container, item, orientation, ems), obviously, S is

proportional to 𝐾𝑏 ∗ 𝐾𝑒 ∗ 𝑂𝐶 𝑠𝑖𝑧𝑒 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚 .

For 𝐾𝑏 = 3, 𝐾𝑒 = 3 or 𝐾𝑒 = 5, the value of S is larger than in the case where 𝐾𝑏 = 1

or 𝐾𝑒 = 1. As shown in Table 3 and Table 4, in the case of fixed orientation when

𝐾𝑏 = 3 and 𝐾𝑒 = 3 the algorithm gives better results, but in the case of six way orien-

tations, with 𝐾𝑏 = 1 and 𝐾𝑒 = 1, the algorithm is more efficient both in utilization and

computational time.

To compare the performance of OnlineBPH, we implemented three other algorithms

from the literature:

 The online packing algorithm in [28] (Algorithm 1). This online heuristic is based

on a layer-building approach;

 Algorithm864, proposed in [16] - a static approximation packing heuristic - where

items are sorted by non-increasing volume. In this work the concept of corner points

and a branch & bound procedure are employed to verify whether a set of boxes can

be placed into a container. The algorithm also assumes that unlimited identical bins

are given.

 A static metaheuristic approach (DE+BMF), introduced in [13] - a differential evo-

lution algorithm (DE) with the Best-Match-First Packing heuristic (BMF). As shown

by the authors, this is one of the best combinations of a metaheuristic and a packing

heuristic for static 3D container loading problem so far.

Table 3. OnlineBPH performance in case of fixed orientation of items

 (
𝐾

𝑏
=

3
;

𝐾
𝑒

=
5

)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
1
4

0
.0

0
9
5

0
.0

2
0
2

0
.0

3
1

0
.2

9
8
8

0
.0

0
2
6

0
.0

2
3
3

0
.0

5
8

0
.0

8
6
2

1
.1

0
5
3

0
.0

0
0
3

0
.0

0
1
1

0
.0

0
2

0
.0

0
2
8

0
.1

4
8
1

0
.0

0
8
8

0
.4

1
4

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.2

4
%

7
6
.1

7
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.3

4
%

4
3
.9

4
%

6
4
.3

0
%

4
7
.9

2
%

5
3
.2

7
%

5
7
.0

0
%

5
8
.9

7
%

7
3
.8

1
%

5
7
.0

3
%

7
6
.6

9
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1
.0

1

8
.1

3

1

1

1
.0

1

1
.1

9
.1

4

5
.2

7

9
.5

3

1
3
.5

9

1
7
.2

9

1
7
5

2
.4

9

4
4
.4

4

 (
𝐾

𝑏
=

 3
;

𝐾
𝑒

=
3

)

R
u
n

-

n
in

g

ti
m

es

(s
)

0
.0

0
1
5

0
.0

0
9
7

0
.0

2
0
9

0
.0

3
0
8

0
.3

0
5
9

0
.0

0
3

0
.0

2
4

0
.0

5
7
1

0
.0

8
4
8

1
.1

0
7

0
.0

0
0
3

0
.0

0
1
1

0
.0

0
2
1

0
.0

0
2
9

0
.1

4
0
4

0
.0

0
8
7

0
.4

2
8
7

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
8
.9

6
%

7
6
.8

9
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
5
.5

5
%

6
6
.2

2
%

4
7
.8

3
%

5
3
.4

4
%

5
7
.3

0
%

5
9
.0

7
%

7
4
.1

6
%

5
7
.7

3
%

7
6
.5

0
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1
.0

2

8
.0

5

1

1

1

1
.0

4

8
.8

8

5
.2

8

9
.5

1

1
3
.5

2

1
7
.2

5

1
7
4

.1
4

2
.4

6

4
4
.5

5

 (
𝐾

𝑏
=

1
;𝐾

𝑒
=

3
)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
1
7

0
.0

1
0
3

0
.0

1
9
1

0
.0

2
9
5

0
.2

7
8
5

0
.0

0
3
3

0
.0

2
3
1

0
.0

5
0
8

0
.1

0
4
9

1
.0

2
7
7

0
.0

0
0
2

0
.0

0
1

0
.0

0
2

0
.0

0
2
3

0
.0

7
1
7

0
.0

0
9
1

0
.3

2
1
4

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
8
.6

1
%

7
6
.2

6
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
6
.6

5
%

6
1
.1

2
%

4
5
.9

5
%

5
2
.8

7
%

5
6
.6

5
%

5
8
.5

7
%

7
4
.3

2
%

5
4
.5

1
%

7
6
.3

9
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1
.0

3

8
.1

2

1

1

1

1

9
.6

5

5
.4

8

9
.5

9

1
3
.6

8

1
7
.3

9

1
7
3

.8

2
.6

4
4
.6

1

 (
𝐾

𝑏
=

1
;

𝐾
𝑒

=
1

)

R
u
n

-

n
in

g

ti
m

es

(s
)

0
.0

0
2

0
.0

1
1

0
.0

2

0
.0

3

0
.2

8

0
.0

0
3

0
.0

2
2

0
.0

5

0
.0

7
9

1
.0

5
1

0
.0

0
1

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

7
2

0
.0

0
9

0
.3

4
5

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
8
.6

1
%

7
6
.5

3
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.3

4
%

4
5
.7

3
%

6
1
.9

1
%

4
7
.3

6
%

5
3
.2

6
%

5
7
.1

7
%

5
9
.1

5
%

7
4
.4

0
%

5
4
.3

4
%

7
6
.1

7
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1
.0

3

8
.0

9

1

1

1
.0

1

1
.0

3

9
.5

1

5
.3

2

9
.5

4

1
3
.5

6

1
7
.2

3

1
7
3

.6

2
.6

1

4
4
.7

4

S
iz

es
 o

f
co

n
-

ta
in

er
s

(L
*

W
*

H
)

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

T
o

ta
l

N
o

.
o

f

it
em

s

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

4
0

1
0
0
0

D
at

a
se

t

N
o

.

I_
2
0

I_
4
0

I_
6
0

I_
8
0

I_
1
0

0
0

II
_

2
0

II
_

4
0

II
_

6
0

II
_

8
0

II
_

1
0

0
0

II
I_

2
0

II
I_

4
0

II
I_

6
0

II
I_

8
0

II
I_

1
0
0
0

IV
_

4
0

IV
_

1
0

0
0

Firstly, we tested OnlineBPH and Algorithm1 for all instances in an online manner.

Then when all information about instances is gathered, the Algorithm864 and

DE+BMF is applied to the test cases in an offline (static) manner. The parameters of

DE are set as follows: G = 200; Np = 80; F = 0.85; Cr = 0.5; the parameters of BMF

Kb = 3; Ke = 3 (as recommended by the authors). The results for 17 classes of instances

are showed in Table 5. For each dataset (each has 100 instances), if an algorithm cannot

solve more than 20 out of 100 instances then the algorithm is given N/A, i.e. no score.

If an algorithm takes more than averagely 3600 seconds (1 hour) per instance, it is also

given N/A. If an algorithm can solve more than 20 instances but not all 100 instances,

the average value of utilization, number of used bins and average time is calculated for

the solved cases only, and the scores are given in italic font.

Table 4. OnlineBPH performance in case of free (six ways) orientations of items

 (
𝐾

𝑏
=

3
;

𝐾
𝑒

=
5

)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
1

0
.0

0
8

0
.0

2

0
.0

3
4

0
.3

7
8

0
.0

0
3

0
.0

2
3

0
.0

6
3

0
.1

1
3

1
.6

3
6

6
E

-0
4

0
.0

0
2

0
.0

0
4

0
.0

0
7

0
.6

4

0
.0

0
6

0
.6

4
5

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

8
3
.7

5
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
5
.9

1
%

5
9
.8

8
%

5
4
.9

6
%

6
1
.3

9
%

6
4
.4

6
%

6
6
.4

0
%

7
9
.4

0
%

4
7
.0

6
%

6
5
.5

7
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1

7
.4

1

1

1

1

1
.0

3

9
.8

7

4
.6

1

8
.3

1
2
.0

5

1
5
.3

7

1
6
2

.6

2
.9

9

5
2

 (
𝐾

𝑏
=

 3
;

𝐾
𝑒

=
3

)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
1

0
.0

0
9

0
.0

2

0
.0

3
6

0
.3

8
2

0
.0

0
3

0
.0

2
3

0
.0

6
6

0
.1

1
5

1
.6

9
3

0
.0

0
1

0
.0

0
2

0
.0

0
5

0
.0

0
7

0
.6

0
4

0
.0

0
7

0
.6

7
9

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

8
5
.5

3
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
5
.6

4
%

5
9
.0

8
%

5
5
.5

0
%

6
1
.6

8
%

6
5
.1

4
%

6
6
.5

4
%

7
9
.8

9
%

5
2
.4

3
%

7
3
.7

3
%

A
v

g
.

N
o

o
f

b
in

s

1

1

1

1

7
.2

5

1

1

1

1
.0

4

1
0
.0

1

4
.5

6

8
.2

6

1
1
.9

1

1
5
.3

5

1
6
1

.6
6

2
.7

1

4
6
.2

3

 (
𝐾

𝑏
=

1
;𝐾

𝑒
=

3
)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
2

0
.0

0
9

0
.0

2

0
.0

3
2

0
.3

3
5

0
.0

0
3

0
.0

2
6

0
.0

6
3

0
.1

0
5

1
.3

7
2

4
E

-0
4

0
.0

0
2

0
.0

0
3

0
.0

0
5

0
.2

4
1

0
.0

0
8

0
.3

3
3

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

8
4
.6

3
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
6
.6

5
%

5
8
.9

9
%

5
4
.6

4
%

6
1
.6

8
%

6
5
.3

1
%

6
7
.2

1
%

8
0
.3

9
%

5
2
.6

8
%

7
7
.0

6
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1

7
.3

3

1

1

1

1

1
0

4
.6

4

8
.2

6

1
1
.9

1
5
.2

1
6
1

2
.7

4
4
.2

 (
𝐾

𝑏
=

1
;

𝐾
𝑒

=
1

)

R
u
n
n

in
g

ti
m

es
 (

s)

0
.0

0
1

0
.0

0
9

0
.0

2
1

0
.0

3
3

0
.3

2
8

0
.0

0
3

0
.0

2
3

0
.0

6
1

0
.1

0
3

1
.3

3
4

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
5

0
.2

2
7

0
.0

0
9

0
.3

4
1

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

8
5
.4

2
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
6
.3

8
%

5
7
.9

1
%

5
6
.5

9
%

6
3
.0

2
%

6
5
.7

7
%

6
7
.7

9
%

8
0
.7

5
%

5
5
.8

9
%

8
0
.1

0
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1

7
.2

6

1

1

1

1
.0

1

1
0
.2

3

4
.5

8
.0

9

1
1
.8

1
5
.0

6

1
5
9

.9

2
.5

4

4
2
.5

5

S
iz

es
 o

f
co

n
ta

in
-

er
s

(L
*

W
*

H
)

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

T
o

ta
l

N
o

.
o

f

it
em

s

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

4
0

1
0
0
0

D
at

a
se

t

N
o

.

I_
2
0

I_
4
0

I_
6
0

I_
8
0

I_
1
0

0
0

II
_

2
0

II
_

4
0

II
_

6
0

II
_

8
0

II
_

1
0

0
0

II
I_

2
0

II
I_

4
0

II
I_

6
0

II
I_

8
0

II
I_

1
0
0
0

IV
_

4
0

IV
_

1
0

0
0

Table 5. A comparison of dynamic Algorithm1, dynamic OnlineBPH, static Algorithm864 and

static DE+BMF (N/A means no score due to less than 20 over 100 instances solved, or due to

solving time greater than 3600 seconds)

S
ta

ti
c

D
E

+
B

M
F

[1
3

]

ti
m

es

(s
)

8
.3

4
5
.7

3

1
0
6

.7

2
3
8

.7

N
/A

1
3
.6

6

1
0
0

.6

3
0
3

.7

4
7
8

.7

N
/A

5
.6

9

1
6
.4

5

3
0
.0

5

4
4
.2

6

N
/A

7
0
.0

6

N
/A

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

N
/A

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
6
.6

5
%

N
/A

6
4
.8

1
%

7
1
.0

9
%

7
3
.9

4
%

7
5
.3

9
%

N
/A

6
5
.5

5
%

N
/A

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1

N
/A

1

1

1

1

N
/A

3
.9

4

7
.2

1
0
.4

5

1
3
.5

3

N
/A

2
.1

4

N
/A

S
ta

ti
c

A
lg

o
ri

th
m

8
6
4

[1
6

]

ti
m

es

(s
)

0
.0

0
1

0
.0

0
1

0
.0

0
1

N
/A

N
/A

0
.0

0
1

0
.0

0
1

0
.0

0
2

N
/A

N
/A

0
.0

0
5

0
.0

0
5

0
.0

0
5

0
.0

0
6

1
.0

7
6

0
.0

0
6

0
.4

8
5

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

N
/A

N
/A

N
/A

1
1
.7

2
%

N
/A

N
/A

N
/A

N
/A

4
7
.0

0
%

5
4
.7

1
%

5
8
.9

4
%

6
1
.5

0
%

7
9
.4

8
%

4
7
.5

3
%

7
6
.8

9
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

N
/A

N
/A

1

1

1

N
/A

N
/A

5
.3

5
4

9
.5

2
2

1
3
.2

8

1
6
.5

7

1
6
2

.5

3
.1

0
3

4
4
.3

2

O
n

li
n
eB

P
H

(f
re

e
ro

ta
ti

o
n

) ti
m

es

(s
)

0
.0

0
1
4

0
.0

0
9
1

0
.0

2
1

0
.0

3
3

0
.3

2
8

0
.0

0
3

0
.0

2
3

0
.0

6
1

0
.1

0
5

1
.6

3
6

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
5

0
.2

2
7

0
.0

0
9

0
.3

4
1

A
v

g
.

U
tl

.

1
2
.6

9
%

2
4
.4

9
%

3
7
.1

4
%

4
9
.5

5
%

8
5
.4

2
%

1
1
.7

2
%

2
3
.5

1
%

3
4
.5

5
%

4
6
.6

5
%

5
9
.8

8
%

5
6
.5

9
%

6
3
.0

2
%

6
5
.7

7
%

6
7
.7

9
%

8
0
.7

5
%

5
5
.8

9
%

8
0
.1

0
%

A
v

g
.

N
o

 o
f

b
in

s

1

1

1

1

7
.2

6

1

1

1

1

9
.8

7

4
.5

8
.0

9

1
1
.8

1
5
.0

6

1
5
9

.9

2
.5

4

4
2
.5

5

O
n

li
n
e

A
lg

o
ri

th
m

1

[2
8

] ti
m

es

(s
)

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

A
v

g
.

U
tl

.

1
2
.6

9
%

2
3
.9

3
%

1
8
.7

2
%

2
4
.7

7
%

2
8
.4

3
%

1
1
.7

2
%

1
8
.9

0
%

1
7
.1

3
%

2
0
.2

1
%

2
3
.1

8
%

3
1
.4

0
%

3
1
.9

0
%

3
2
.4

5
%

3
2
.5

3
%

3
2
.6

7
%

3
7
.2

8
%

4
1
.7

2
%

A
v

g
.

N
o

o
f

b
in

s

1

1
.0

4

1
.9

9

2

2
1
.7

7

1

1
.3

7

2
.0

2

2
.3

8

2
5
.2

3

8

1
5
.8

7

2
3
.8

3

3
1
.2

4

3
9
5

.0
8

3
.7

6

8
1
.6

8

S
iz

es
 o

f

co
n

ta
in

er
s

(L
*

W
*

H
)

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

3
0
*
3

0
*
3

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

1
0
0
*

1
0
0

*
1
0

0

T
o

ta
l

N
o

.
o

f

it
em

s

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

2
0

4
0

6
0

8
0

1
0
0
0

4
0

1
0
0
0

D
at

a
se

t

N
o

.

I_
2
0

I_
4
0

I_
6
0

I_
8
0

I_
1
0

0
0

II
_

2
0

II
_

4
0

II
_

6
0

II
_

8
0

II
_

1
0

0
0

II
I_

2
0

II
I_

4
0

II
I_

6
0

II
I_

8
0

II
I_

1
0
0
0

IV
_

4
0

IV
_

1
0

0
0

From Table 5 we observe that in terms of computational time the Algorithm1 is the

fastest, closely followed by OnlineBPH and the static Algorithm864. The static

DE+BMF is significantly slower than the other three in magnitudes of thousands to

hundreds of thousands. The static DE+BMF also takes more than 3600 seconds to solve

the large instances with 1000 items (hence the N/A).

In the terms of solution quality (utilization or number of used bins), OnlineBPH and

static DE+BMF achieved the best scores for problems of classes I and II (although

DE+BMF failed to solve the largest cases with 1000 items). In problems of classes III

and IV, DE+BMF is slightly better than OnlineBPH but again it failed in the largest

cases while OnlineBPH still succeeded. Online Algorithm 1 performed the worst in

terms of solution quality. Static Algorithm864 is bettern than online Algorithm 1, but

it struggled to solve all the 100 instances in most datasets, failed to find solutions in

some datasets, and its scores are generally worse than that of OnlineBPH and static

DE+BMF.

Overall OnlineBPH seems to be the most well-rounded taking into account bother

computational time and solution quality. It is generally the second-best in both catego-

ries and its scores are not far off the best scores and in many cases match the best scores.

It is interesting to see that although it is expected that an optimal online solution cannot

be as good as an optimal static/offline solution, OnlineBPH is actually just slightly

worse than the best available static solutions (provided by DE+BMF). OnlineBPH’s

solutions are even better than the static solutions found by Algorithm864.

Here we will try to analyse the reason for the good/bad performance of the algo-

rithms. OnlineBPH is fast because it is an online algorithm, being able to consider just

one item at a time. OnlineBPH can produce solutions with good quality because (1) it

considers all available containers and choose the most suitable for the current item; and

(2) it utilize the EMS concept effectively by taking into account all feasible placements

with all possible rotations.

Algorithm1 is fast because like OnlineBPH it is an online algorithm. Algorithm1

provides solutions with the worst quality because it is over simplified. Its layer-building

approach is efficient only in the case of weakly heterogeneous items [4]. This is much

less effective than the mechanisms in OnlineBPH, Algorithm864 and DE+BMF. These

three compute and consider a much larger number of placement combinations.

In most data sets, Algorithm864 cannot find the solutions for all instances because

it does not allow the rotation of items. Due to that, if one of the items’ original dimen-

sion exceeds the corresponding dimension of the container then algorithm will stop.

Algorithm864 also trades the computational quality for computational time to make it

fast. That is why a static algorithm like Algorithm864 can still be nearly as fast as online

algorithms like Algorithm 1 and OnlineBPH. As a trade-off, the quality of Algo-

rithm864 is worse than OnlineBPH, even that Algorithm864 is a static algorithm.

DE+BMF can provide the best results for the static case because it relies on one of

the best packing heuristics, BMF, to pack items into a container, and it relies on an

efficient meta-heuristics, DE, to find the optimal sequence of containers. The downside

of DE+BMF is that it is very slow. Being a static algorithm it needs to consider all items

before making a decision. In addition, the use of a population-based algorithm like DE

also slow down the decision making process. The large amount of time needed for

DE+BMF to find a solution in the large-scale cases (like the data sets with 1000 items)

is simply not realistic in a real-world scenarios.

There is also another issue with Algorithm864 and DE+BMF: these algorithm do

not check the problem of item being blocked, so their output may not be used directly

for real loading process. Our experiments show that the solutions provided by these

algorithms can have a large number of blocked items, meaning that not all items can be

loaded into the containers in the sequence provided by the algorithms. This situation is

mitigated by OnlineBPH because it always check either the item can be loaded from

the door of the container first before selecting an EMS. Due to a lack of space we are

not able to provide detailed experimental results on this issue, but this will be further

investigated and published in a future publication.

In summary, OnlineBPH seems to be able to provide a good balance of time and

utilization. Being an online algorithm it is obviously the only choice if items need to be

handled/loaded in real-time or if there is no storage areas and/or buffers for incoming

items. However, even in situations where items can be handled offline and there are

ample storage areas for incoming items, OnlineBPH can still provide a good alternative

to current state-of-the-arts static algorithms like DE+BMF. OnlineBPH is significantly

faster; its solutions are just slightly less good in the tested cases; and it eliminates the

need of having storage areas.

5 Conclusion

This work presented an online packing heuristic to solve the three-dimensional bin

packing problem in dynamic environments. The effectiveness of the online packing

heuristic is evaluated on a set of generated data. The experimental results show that the

algorithm could solve the 3D container loading problems in online fashion and is com-

petitive against the one of best static algorithms both in the terms of running time, space

utilization and number of bins. The algorithm also avoids the problem of blocked item

and allows the loading process in the containers become more realistic.

Acknowledgement

This work is supported by a Newton Institutional Links grant funded by the British

Council and a Newton Research Collaborations Programme (3) grant funded by the

Royal Academy of Engineering.

The authors thank anonymous reviews for their suggestions and contributions and

corresponding editor for his/her valuable efforts.

References

1. Anily, S., J. Bramel, and D. Simchi-Levi, Worst-case analysis of heuristics for the

bin packing problem with general cost structures. Operations research, 1994.

42(2): p. 287-298.

2. Scheithauer, G., Algorithms for the container loading problem, in Operations

Research Proceedings 1991. 1992, Springer. p. 445-452.

3. Bortfeldt, A. and G. Wäscher, Constraints in container loading–A state-of-the-art

review. European Journal of Operational Research, 2013. 229(1): p. 1-20.

4. Zhao, X., et al., A comparative review of 3D container loading algorithms.

International Transactions in Operational Research, 2016. 23(1-2): p. 287-320.

5. Junqueira, L., R. Morabito, and D.S. Yamashita, Three-dimensional container

loading models with cargo stability and load bearing constraints. Computers &

Operations Research, 2012. 39(1): p. 74-85.

6. Moon, I. and T.V.L. Nguyen, Container packing problem with balance

constraints. OR Spectrum, 2014. 36(4): p. 837-878.

7. Liu, D.S., et al., On solving multiobjective bin packing problems using

evolutionary particle swarm optimization. European Journal of Operational

Research, 2008. 190(2): p. 357-382.

8. Nguyen, T.T., S. Yang, and J. Branke, Evolutionary dynamic optimization: A

survey of the state of the art. Swarm and Evolutionary Computation, 2012. 6: p.

1-24.

9. Berndt, S., K. Jansen, and K.-M. Klein, Fully dynamic bin packing revisited. arXiv

preprint arXiv:1411.0960, 2014.

10. Coffman, J., Edward G, M.R. Garey, and D.S. Johnson, Dynamic bin packing.

SIAM Journal on Computing, 1983. 12(2): p. 227-258.

11. Epstein, L. and M. Levy, Dynamic multi-dimensional bin packing. Journal of

Discrete Algorithms, 2010. 8(4): p. 356-372.

12. Feng, X., I. Moon, and J. Shin, Hybrid genetic algorithms for the three-

dimensional multiple container packing problem. Flexible Services and

Manufacturing Journal, 2015. 27(2-3): p. 451-477.

13. Li, X. and K. Zhang, A hybrid differential evolution algorithm for multiple

container loading problem with heterogeneous containers. Computers &

Industrial Engineering, 2015. 90: p. 305-313.

14. Martello, S., D. Pisinger, and D. Vigo, The three-dimensional bin packing

problem. Operations Research, 2000. 48(2): p. 256-267.

15. Lodi, A., S. Martello, and D. Vigo, Heuristic algorithms for the three-dimensional

bin packing problem. European Journal of Operational Research, 2002. 141(2): p.

410-420.

16. Martello, S., et al., Algorithm 864: General and robot-packable variants of the

three-dimensional bin packing problem. ACM Transactions on Mathematical

Software (TOMS), 2007. 33(1): p. 7.

17. Baldi, M.M., et al., The generalized bin packing problem. Transportation

Research Part E: Logistics and Transportation Review, 2012. 48(6): p. 1205-1220.

18. Crainic, T.G., G. Perboli, and R. Tadei, Extreme point-based heuristics for three-

dimensional bin packing. Informs Journal on computing, 2008. 20(3): p. 368-384.

19. Parreño, F., et al., A hybrid GRASP/VND algorithm for two-and three-dimensional

bin packing. Annals of Operations Research, 2010. 179(1): p. 203-220.

20. Gonçalves, J.F. and M.G. Resende, A biased random key genetic algorithm for

2D and 3D bin packing problems. International Journal of Production Economics,

2013. 145(2): p. 500-510.

21. Gonçalves, J.F. and M.G.C. Resende, A parallel multi-population biased random-

key genetic algorithm for a container loading problem. Computers & Operations

Research, 2012. 39(2): p. 179-190.

22. Lai, K. and J.W. Chan, Developing a simulated annealing algorithm for the

cutting stock problem. Computers & industrial engineering, 1997. 32(1): p. 115-

127.

23. Christensen, S.G. and D.M. Rousøe, Container loading with multi‐drop

constraints. International Transactions in Operational Research, 2009. 16(6): p.

727-743.

24. Tiwari, S., G. Fadel, and P. Fenyes. A fast and efficient compact packing

algorithm for free-form objects. in ASME 2008 International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference. 2008. American Society of Mechanical Engineers.

25. Karabulut, K. and M.M. İnceoğlu. A hybrid genetic algorithm for packing in 3d

with deepest bottom left with fill method. in International Conference on Advances

in Information Systems. 2004. Springer.

26. Kang, K., I. Moon, and H. Wang, A hybrid genetic algorithm with a new packing

strategy for the three-dimensional bin packing problem. Applied Mathematics and

Computation, 2012. 219(3): p. 1287-1299.

27. Wang, H. and Y. Chen. A hybrid genetic algorithm for 3d bin packing problems.

in Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE

Fifth International Conference on. 2010. IEEE.

28. Wang, R., T. T. Nguyen, S. Kavakeb. Z. Yang and C. Li. Benchmarking Dynamic

Three-Dimensional Bin Packing Problems Using Discrete-Event Simulation. in

European Conference on the Applications of Evolutionary Computation. 2016.

Springer.

