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An online packing heuristic for the three-dimensional 

container loading problem in dynamic environments and 

the Physical Internet 

Abstract. In this paper, we consider the online three-dimensional container load-

ing problem. We develop a novel online packing algorithm to solve the three-

dimensional bin packing problem in the online case where items are not know 

well in advance and they have to be packed in real-time when they arrive. This is 

relevant in many real-world scenarios such as automated cargo loading in ware-

houses. This is also relevant in the new logistics model of Physical Internet. The 

effectiveness of the online packing heuristic is evaluated on a set of generated 

data. The experimental results show that the algorithm could solve the 3D con-

tainer loading problems in online fashion and is competitive against other algo-

rithms both in the terms of running time, space utilization and number of bins.  

Keywords: Dynamic optimization, online optimization, dynamic environments, 

3D Bin packing problem, 3D container loading problem; online packing heuris-

tic, Physical Internet, Benchmark problems. 

1 Introduction 

The classic three-dimensional bin packing problem (3D-BPP) is a strong NP-hard 

combinatorial optimization problem [1, 2], where the primary aim is to load a finite 

number of items of different sizes using the smallest possible number of bins. In logis-

tics and supply chains, the 3D-BPP is also called the three-dimensional container load-

ing problem (3D-CLP). It has many industrial and commercial applications, such as 

loading goods to containers and pallets, cargo and  ship stowage loading, etc. 3D-CLP 

has been studied extensively by a lot of researchers with different objective functions 

and constraints by using diverse methods as surveyed and discussed in [3, 4].  

Although many studies have addressed the 3D-CLP, most have focused exclusively 

on volume utilization and ignored other practical requirements. In real world problems, 

a number of practical constraints and requirements need to be satisfied, such as loading 

feasibility, stability, weight balance, operational safety product handling, and the pre-

vention of cargo damage during container shipping. But only a few works have ad-

dressed those mentioned requirements [5-7].  

Furthermore, most existing works focused on the static (offline) multidimensional 

CLP. Only few works have addressed the online or dynamic 3D-CLP where knowledge 

about items’ arrival is not known in advance and items have to be packed right after 

they arrive. The online 3D-CLP has many applications in automatic or robotic cargo 

loading in warehouse storages. It will also become very common in a new logistics 
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model, the Physical Internet1, which is considered the future of smarter logistics2. This 

logistics model proposes to move, pack and unpack goods in the same way as infor-

mation are being transported, pack and unpack in the digital internet. In the Physical 

Internet logistics model, items will arrive in real-time with not much notification, and 

they will need to be packed immediately to avoid any delay.  

To solve the online/dynamic 3D-CLP, one needs to follow a dynamic optimization 

approach, in which the problem is solved online when time goes by [8], i.e. packing 

solutions need to be provided immediately in real-time whenever one or a set of items 

arrive. 

The classical online one-dimensional CLP problem was introduced in [9-11], where 

items are coming one by one and each must be packed immediately and irrevocably 

into a bin without any knowledge of future items and the goal is to minimize the max-

imal number of bins ever used over all times.  

The issue we are addressing in this work is to develop an online packing heuristic 

for 3D-CLP with online arrival of items, and test its performance against other online 

and static algorithms. The algorithm must make decisions immediately and irrevocably 

based only on a part of the input without any knowledge of the future part. This is 

different to the static (offline) case where an algorithm knows the whole information 

about items and containers before making any decision. The algorithm should guaran-

tee that all items are loaded more realistically in the containers, with one door from the 

one side, and avoid the problem of blocked items (see 
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Fig. 3). 

The remainder of this paper is organized as follows. In section 2 basic concepts of 

online 3D-BPP are introduced. In section 3 we discuss about building a packing heu-

ristic for the online case. Section 4 discusses generating problem data and testing the 

performance of algorithms. Finally, conclusions are given in section 5. 

                                                           
1 B. Montreuil. Toward a Physical Internet: meeting the global logistics sustainability grand chal-

lenge. Logistics Research, 3(2):71-87, 2011. 
2  ALICE, “Global Supply Network Coordination and Collaboration research & innovation 

roadmap,” ALICE - Alliance for Logistics Innovation through Collaboration in Europe, 2014. 



2 Problem definition 

Since the online 3D-CLP in this work is formed from the classical 3D-CLP, it is 

defined as follows: suppose that 𝐼𝑃𝑆 is an item packing sequence where item are com-

ing in an online fashion, 𝐶𝐿𝑆 is a container loading sequence and there are enough con-

tainers for the whole 𝐼𝑃𝑆. 

Let N be the total number of items, and let M be the total number of user containers 

over all the time of loading process. We assume that all items and containers have the 

shape of a cube, where the length, width, and height of a container are oriented with the 

x-axis, y-axis and z-axis respectively in the Cartesian coordinate system. So the point 

(0,0,0) is the deepest-bottom-left corner of a container. Let 𝐿𝑗 , 𝑊𝑗 , 𝐻𝑗 and 𝑐𝑖 be the con-

tainer length, width, height and the cost of the j-th container, respectively. Let the low-

ercase letters 𝑙𝑖 , 𝑤𝑖 , ℎ𝑖 be the length, width, and height of i-th item. 

2.1 Objective and constraints 

The objective is to minimize the total cost of all used containers: 

∑ 𝑐𝑖

𝑀

𝑖=1

→ 𝑚𝑖𝑛 (1) 

If the containers are homogeneous, then the cost of all containers are the same. In 

this case the objective is to minimize M, the number of containers (bins) to be used. 

This objective function is similar to maximizing the utilization or minimizing the 

wasted space: 

∑(𝐿𝑗 ∗ 𝑊𝑗 ∗ 𝐻𝑗)

𝑀

𝑖=1

− ∑(𝑙𝑗 ∗ 𝑤𝑗 ∗ ℎ𝑗)

𝑀

𝑖=1

→ 𝑚𝑖𝑛 (2) 

For the constraints of the online problem, this work takes into account the basic ge-

ometric constraints, according to [3]: (1) the items are assumed to be placed orthogo-

nally, that is, the edges of the boxes have to be either parallel or perpendicular to those 

of the containers and within the container’s dimension; (2) all items are packed and (3) 

items do not overlap with each other. More detailed explanation of the similar model 

can be found in [6, 12, 13]. We also consider a specific constraint that the items can be 

rotated because it is an important operational factor in both research and the real world. 

There are, at most, six different rotation types (0 to 5) for each packed item in a con-

tainer. They are: l-w-h, w-l-h, l-h-w, w-h-l, h-l-w, and h-w-l (see Fig. 1). 
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Fig. 1. Six types of item orientation 



2.2 Empty maximal spaces 

To indicate the exact position where an item can be loaded into a particular container, 

many concept of coordinates of objects have been used, for example the concept of 

corner points [14-16] and the concept of extreme points [17, 18]. In this work, we use 

the concept of empty maximal spaces (EMSs) to represent the free spaces in bins. In 

this concept, for each container to be used, we list the largest empty orthogonal spaces 

(that are not inscribed by any other space) available for packing. This concept is used 

in many recent studies [19-21]. Each empty maximal space is represented by a pair of 

their vertices with minimum and maximum coordinates: deepest bottom left vertex and 

highest top right vertex. Fig. 2 shows four empty maximal spaces in a container where 

item1 is placed in the middle front of the container. The difference process introduced 

by [22] is also used in this work to calculate and update the list of EMSs. 
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Fig. 2. Empty maximal spaces 

3 Online packing heuristic 

For the static 3D-CLP, usually, a packing algorithm follows a certain type of heuris-

tic packing strategy. The input of a packing algorithm includes a sequence of packing 

items (IPS), which can be static or online, and a sequence of loading containers (CLS). 

The packing algorithm will then convert these sequences into a solution, where each 

item is assigned an exact position and an exact orientation inside a container. Depend-

ing on the type of 3D-CLP and the priority of selection of items and positions, one of 

many available packing heuristics can be used,  such as First Fit Decreasing Algorithm 

(FFDA), Best-Fit Decreasing Algorithm (BFDA) [23], Bottom-Left-Fill, Bottom-Left-

Back-Fill [24], etc.  

 [25] introduced a packing strategy called Deepest-Bottom-Left with Fill heuristic 

(DBLF). This heuristic has gained its popularity in various works e.g. [6, 25, 26]. This 

heuristic always searches for a space with the minimal x (deepest) coordinate to place 

the current item. And it uses z (bottom) and y (left) coordinates as tie breakers. This 

heuristic is also used and modified in [27]. [13] showed two drawbacks of DBLF: First, 

only one coordinate (x) plays the dominant role in choosing the candidate space; sec-

ond, only one of the two factors: the item or the space, is determined. The other factor 

is then selected based on certain priority rules. This results in a potential loss of good 



combinations that may lead to better solutions (i.e. a solution with a smaller wasted 

space); In [13], authors proposed a new packing heuristic called Best Match First Pack-

ing Heuristic (BMF). In this heuristic, EMSs are sorted in order of smallest coordinate 

values of the vertices to the deepest-bottom-left point of the container (with coordinates 

(𝑥, 𝑦, 𝑧) = (0,0,0)). Then BMF searches for the best combination (space-box-orienta-

tion), in which the space as close as possible to the deepest-bottom-left corner of the 

container is chosen to place the current item. The authors showed that BMF outper-

forms DBLF in terms of utilization when they are combined with a metaheuristic such 

as GA or DE. 

We find that the main difference between the two heuristics is the priority of EMSs, 

but in both BMF and DBLF, the problem of items being blocked, i.e. an item cannot be 

loaded through the container’s entrance door to its designated locations due to other 

existing items blocking its way, is not considered. In subsection 3.1 we will propose an 

online packing heuristic (OnlineBPH) for the online 3D-BPP. The OnlineBPH is in-

spired from the Deepest-Bottom-Left order in DBLF and the idea of choosing the best 

combination (space-item-orientation) in BMF. In this new algorithm also we imple-

mented an improvement in space selection to avoid the problem of item being blocked, 

so that the loading solution provide by packing heuristics can be more realistic and 

implementable in the real-world. 

3.1 Empty maximal space selection 

 For two EMSs in the same container, we first compare their deepest (the x-value) 

coordinate values of the two vertices, while the EMS with the smaller value is given 

higher priority. If they are at the same deep level, we compare the bottom (the z-value) 

coordinate values and assign the higher priority to the EMS with the smaller one. If the 

two values are still the same, we compare the y-values. Furthermore, the heuristic al-

ways check if the item can be loaded from the door of the container or not by checking 

the x-value of the selected EMS. The reason behind this is to avoid the blocking prob-

lem, where an item can be fit in the space, but the loading process is unfeasible.  When 

the deepest-bottom-left space is selected for an item, but the length dimension of this 

EMS does not extend to the entrance of the container, then other loaded items can block 

its loading ways. For example, in Fig. 3 if the items are loaded in order item1, item2, 

item3 then item4, then after item2 is loaded, item 3 cannot be placed in the assigned 

space, because item 2 has blocked its way. 
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Fig. 3. The blocking problem during loading 

3.2 Placement selection  

OnlineBPH also inherits two parameters Kb and Ke from [13] but in a different man-

ner: to determine the placement assignment, for Kb items (if items are arriving one by 

one then Kb=1) and the first Ke EMSs in the each opened container, the heuristic finds 

all the feasible placement assignments with allowed rotations of the items. When one 

item has several feasible placements in a free EMS, the one that has the smallest margin 

(from the faces of item to the faces of EMS) is selected. The triad (item, rotation, ems) 

pair with the largest fill ratio is chosen. 

The three main differences between our online packing heuristic (OnlineBPH) and 

BMF are (1) BMF has information about all items while OnlineBPH only has infor-

mation about the limited number of items that have arrived. (2) BMF will place an item 

in the first opened container (bin) that it has found a suitable space; while  OnlineBPH 

considers all combinations of (bin, item, ems, and rotation) in all opened containers 

first before deciding which one is the best. (3) the OnlineBPH always check either the 

item can be loaded from the door of the container or not by checking the x-value of the 

selected EMS. 

3.3 Pseudo-code of OnlineBPH 

Pseudo-code of OnlineBPH is described in Fig. 4. At each step OnlineBPH decides 

packing information of one item in sequence (item will be packed in which container, 

at which position and in which orientation). For this, there are two phases to determine 

a placement of one item. First, the algorithm considers all opened containers and the 

information about the first 𝐾𝑒 empty maximal spaces in 𝐸𝑀𝑆𝑠 list of each opened con-

tainer, and look ahead 𝐾𝑏 item in online 𝐼𝑃𝑆 Then it selects the best tetrad of (con-

tainer, item, orientation, ems) to pack an item. If there are no feasible tetrad, the second 

phase is triggered to open a new suitable container for the item. 

𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 returns the container that can fit the item with the larg-

est fill ratio. In the case of identical containers, the next empty container in CLS is 



chosen. Note that the initial EMS of a container cover its whole space, so containers 

with different dimensions will have initial EMSs with different sizes. 

Input: An online item packing sequence 𝐼𝑃𝑆 and a container loading sequence 𝐶𝐿𝑆; 

Output: 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑆 𝑓𝑜𝑟 𝐼𝑃𝑆 or null if not found; 
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Let 𝑂𝐶 be the 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠; 

𝑂𝐶 ← Ø; 𝑃𝑆 ← Ø; 
while 𝑖𝑡𝑒𝑚𝑠 𝑎𝑟𝑒 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 or 𝐼𝑃𝑆 ≠ 𝑛𝑢𝑙𝑙 do 

Let 𝑃 be a queue of candidate placements;  

𝐾𝑏 ←  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠; 

Update IPS; 

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ← 0; 

// Phase 1: try to put an item to an opened container at the DBL ems; 

for each 𝑐 ∈ 𝑂𝐶 do 

Let 𝐸𝑀𝑆𝑐  be 𝑡ℎ𝑒 𝑠𝑜𝑟𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑚𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑐 in the 

deepest-bottom-left-first order 

𝑗 ←  0; 

while  𝑗 < 𝐾𝑒 and 𝑗 < 𝐸𝑀𝑆𝑐. 𝑠𝑖𝑧𝑒 do 

for 𝑖 ←  0 to 𝐾𝑏 do 

for each 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑜 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖 do 

if 𝐼𝑃𝑆[𝑖] 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑  in 𝐸𝑀𝑆𝑐[𝑗]  with 𝑖𝑜  and 

𝑖𝑠 𝑛𝑜𝑡 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑏𝑦 𝑜𝑡ℎ𝑒𝑟𝑠 then 

add this placement combination to 𝑃; 

𝑗 =  𝑗 + 1; 

if  𝑃 ≠ Ø then 

add the placement indicted by 𝑃[0] to PS; 

update IPS and 𝐸𝑀𝑆 lists; 

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ← 1; 

// Phase 2: Open a new container to load current item to its DBL corner; 

if 𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 = 0 then 

𝑐 =  𝐹𝑖𝑛𝑑𝑁𝑒𝑤𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟(𝐶𝐿𝑆, 𝑖); 

if 𝑐 ≠ 𝑛𝑢𝑙𝑙 then 

𝐸𝑀𝑆𝑐 be the initial 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑝𝑎𝑐𝑒𝑠 in 𝑐; 

for each 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑜 do 

if 𝐼𝑃𝑆[𝑖] 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝐸𝑀𝑆𝑐 with orientation 𝑖𝑜 then 

add this placement combination to 𝑃; 

if 𝑃 ≠ Ø then 

move 𝑐 from CLS to 𝑂𝐶;  

add the placement indicted by 𝑃[0] to PS; 

update IPS and 𝐸𝑀𝑆 lists; 

𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 ←  1; 

if 𝑖𝑡𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 = 0 then 

return 𝑛𝑢𝑙𝑙; 
return 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑆; 

Fig. 4. Pseudo-code of packing heuristic for Online 3D-CLP 



4 Experiments 

4.1 Benchmark problems 

Due to the lack of proper data for online 3D-CLP, we follow the approach described 

in [28] to generate test problems for the case of identical container packing problems. 

We generated 4 classes (I, II, III and IV) of instances. For classes I, II and III, specific 

distributions are chosen (Table 2), where 𝑙𝑗, 𝑤𝑗  and ℎ𝑗 are length, with and height of j-

th generated item, whereas L, W, H are respectively length, with and height of the iden-

tical containers. 

For class IV, the following four types (types 1, 2, 3, and type 4) of uniformly distri-

bution are defined in the terms of the length L, width W and height H of the containers 

(Table 1). To generate class IV, instances of type 1 are selected with probability 70%, 

instances of types 2, 3, 4 are selected with probability 10% each. 

 

 

 

Table 1. Type of random items in instances 

Type of uniformly distribution in di-

mensions of items  
𝑙𝑗 𝑤𝑗  ℎ𝑗 

Type 1  [1,
1

3
𝐿];  [

2

3
𝑊, 𝑊];  [1,

1

2
𝐻]; 

Type 2  [
1

2
𝐿, 𝐿];  [1,

1

2
𝑊];  [

2

3
𝐻, 𝐻]; 

Type 3  [1,
1

2
𝐿];  [

1

2
𝑊, 𝑊];  [

1

2
𝐻, 𝐻]; 

Type 4  [
2

3
𝐿, 𝐿];  [1,

1

2
𝑊];  [1,

1

2
𝐻]; 

To evaluate the performance of algorithms, we classified instances into groups in 

terms of the problems sizes (number of items): small (less than 50 items), medium (from 

50 up to 200 items), or large (more than 200 items).  For classes I, II, and III, we gen-

erated for each class 5 datasets of instances in sizes of 20, 40 (small), 60, 80 (medium) 

and 1000 items (large). For class IV, we generated 2 datasets of small size (40 items) 

and large size (1000 items). In each dataset, there are 100 instances have generated. 

Table 2 show the classes of test problems. 

Table 2. Classes of test problems 

Data set 

No. 
Category 

Sizes of con-
tainers 

(L*W*H) 

No. of 

items 

No. of 
in-

stances 

Item sizes (l*w*h) 

I_20 Small 30*30*30 20 100 uniformly random in [1,10] 

I_40 Small 30*30*30 40 100 uniformly random in [1,10] 

I_60 Medium 30*30*30 60 100 uniformly random in [1,10] 



I_80 Medium 30*30*30 80 100 uniformly random in [1,10] 

I_1000 Large 30*30*30 1000 100 uniformly random in [1,10] 

II_20 Small 100*100*100 20 100 uniformly random in [1,35] 

II_40 Small 100*100*100 40 100 uniformly random in [1,35] 

II_60 Medium 100*100*100 60 100 uniformly random in [1,35] 

II_80 Medium 100*100*100 80 100 uniformly random in [1,35] 

II_1000 Large 100*100*100 1000 100 uniformly random in [1,35] 

III_20 Small 100*100*100 20 100 uniformly random in [1,100] 

III_40 Small 100*100*100 40 100 uniformly random in [1,100] 

III_60 Medium 100*100*100 60 100 uniformly random in [1,100] 

III_80 Medium 100*100*100 80 100 uniformly random in [1,100] 

III_1000 Large 100*100*100 1000 100 uniformly random in [1,100] 

IV_40 Small 100*100*100 40 100 
probability 70% of type 1, proba-

bility 10% of each types 2, 3, 4 

IV_1000 Large 100*100*100 1000 100 
probability 70% of type 1, proba-
bility 10% of each types 2, 3, 4 

4.2 Computational results 

All the proposed approach and algorithms have been coded in C and executed on a 

system with the following configuration: Intel® Core™ i5-4590 CPU @(3.30Ghz, 

3.30Ghz) with 8.00 GB RAM, Windows 7 Enterprise 64-bit. 

Table 3 and Table 4 show the average results of OnlineBPH on 100 generated in-

stances for each dataset. We tested the proposed algorithm for both cases of fixed ori-

entation and free (6-ways) orientation of items. To evaluate efficiency of the approach, 

we selected different combination of parameters 𝐾𝑏 and 𝐾𝑒.  

Let S be the number of tetrads (container, item, orientation, ems), obviously, S is 

proportional to 𝐾𝑏 ∗ 𝐾𝑒 ∗ 𝑂𝐶 𝑠𝑖𝑧𝑒 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚 . 

For 𝐾𝑏 = 3, 𝐾𝑒 = 3 or 𝐾𝑒 = 5, the value of S is larger than in the case where 𝐾𝑏 = 1 

or 𝐾𝑒 = 1. As shown in Table 3 and Table 4, in the case of fixed orientation when 

𝐾𝑏 = 3 and 𝐾𝑒 = 3 the algorithm gives better results, but in the case of six way orien-

tations, with 𝐾𝑏 = 1 and 𝐾𝑒 = 1, the algorithm is more efficient both in utilization and 

computational time. 

To compare the performance of OnlineBPH, we implemented three other algorithms 

from the literature: 

 The online packing algorithm in [28] (Algorithm 1). This online heuristic is based 

on a layer-building approach; 

 Algorithm864, proposed in [16] - a static approximation packing heuristic  - where 

items are sorted by non-increasing volume. In this work the concept of corner points 



and a branch & bound procedure are employed to verify whether a set of boxes can 

be placed into a container. The algorithm also assumes that unlimited identical bins 

are given. 

 A static metaheuristic approach (DE+BMF), introduced in [13] - a differential evo-

lution algorithm (DE) with the Best-Match-First Packing heuristic (BMF). As shown 

by the authors, this is one of the best combinations of a metaheuristic and a packing 

heuristic for static 3D container loading problem so far. 

 

 

 

 

 

 

 

Table 3. OnlineBPH performance in case of fixed orientation of items 
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Firstly, we tested OnlineBPH and Algorithm1 for all instances in an online manner. 

Then when all information about instances is gathered, the Algorithm864 and 

DE+BMF is applied to the test cases in an offline (static) manner. The parameters of 

DE are set as follows: G = 200; Np = 80; F = 0.85; Cr = 0.5; the parameters of BMF 

Kb = 3; Ke = 3 (as recommended by the authors).  The results for 17 classes of instances 

are showed in Table 5. For each dataset (each has 100 instances), if an algorithm cannot 

solve more than 20 out of 100 instances then the algorithm is given N/A, i.e. no score. 

If an algorithm takes more than averagely 3600 seconds (1 hour) per instance, it is also 

given N/A. If an algorithm can solve more than 20 instances but not all 100 instances, 

the average value of utilization, number of used bins and average time is calculated for 

the solved cases only, and the scores are given in italic font. 

Table 4. OnlineBPH performance in case of free (six ways) orientations of items 
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Table 5. A comparison of dynamic Algorithm1, dynamic OnlineBPH, static Algorithm864 and 

static DE+BMF (N/A means no score due to less than 20 over 100 instances solved, or due to 

solving time greater than 3600 seconds) 
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From Table 5 we observe that in terms of computational time the Algorithm1 is the 

fastest, closely followed by OnlineBPH and the static Algorithm864. The static 

DE+BMF is significantly slower than the other three in magnitudes of thousands to 

hundreds of thousands. The static DE+BMF also takes more than 3600 seconds to solve 

the large instances with 1000 items (hence the N/A).  

In the terms of solution quality (utilization or number of used bins), OnlineBPH and 

static DE+BMF achieved the best scores for problems of classes I and II (although 

DE+BMF failed to solve the largest cases with 1000 items). In problems of classes III 

and IV, DE+BMF is slightly better than OnlineBPH but again it failed in the largest 

cases while OnlineBPH still succeeded. Online Algorithm 1 performed the worst in 

terms of solution quality. Static Algorithm864 is bettern than online Algorithm 1, but 

it struggled to solve all the 100 instances in most datasets, failed to find solutions in 

some datasets, and its scores are generally worse than that of OnlineBPH and static 

DE+BMF. 

Overall OnlineBPH seems to be the most well-rounded taking into account bother 

computational time and solution quality. It is generally the second-best in both catego-

ries and its scores are not far off the best scores and in many cases match the best scores. 

It is interesting to see that although it is expected that an optimal online solution cannot 

be as good as an optimal static/offline solution, OnlineBPH is actually just slightly 

worse than the best available static solutions (provided by DE+BMF). OnlineBPH’s 

solutions are even better than the static solutions found by Algorithm864.   

Here we will try to analyse the reason for the good/bad performance of the algo-

rithms. OnlineBPH is fast because it is an online algorithm, being able to consider just 

one item at a time. OnlineBPH can produce solutions with good quality because (1) it 

considers all available containers and choose the most suitable for the current item; and 

(2) it utilize the EMS concept effectively by taking into account all feasible placements 

with all possible rotations.  

Algorithm1 is fast because like OnlineBPH it is an online algorithm. Algorithm1 

provides solutions with the worst quality because it is over simplified. Its layer-building 

approach is efficient only in the case of weakly heterogeneous items [4]. This is much 



less effective than the mechanisms in OnlineBPH, Algorithm864 and DE+BMF. These 

three compute and consider a much larger number of placement combinations. 

In most data sets, Algorithm864 cannot find the solutions for all instances because 

it does not allow the rotation of items. Due to that, if one of the items’ original dimen-

sion exceeds the corresponding dimension of the container then algorithm will stop. 

Algorithm864 also trades the computational quality for computational time to make it 

fast. That is why a static algorithm like Algorithm864 can still be nearly as fast as online 

algorithms like Algorithm 1 and OnlineBPH. As a trade-off, the quality of Algo-

rithm864 is worse than OnlineBPH, even that Algorithm864 is a static algorithm. 

DE+BMF can provide the best results for the static case because it relies on one of 

the best packing heuristics, BMF, to pack items into a container, and it relies on an 

efficient meta-heuristics, DE, to find the optimal sequence of containers. The downside 

of DE+BMF is that it is very slow. Being a static algorithm it needs to consider all items 

before making a decision. In addition, the use of a population-based algorithm like DE 

also slow down the decision making process. The large amount of time needed for 

DE+BMF to find a solution in the large-scale cases (like the data sets with 1000 items) 

is simply not realistic in a real-world scenarios. 

There is also another issue with Algorithm864 and DE+BMF: these algorithm do 

not check the problem of item being blocked, so their output may not be used directly 

for real loading process. Our experiments show that the solutions provided by these 

algorithms can have a large number of blocked items, meaning that not all items can be 

loaded into the containers in the sequence provided by the algorithms. This situation is 

mitigated by OnlineBPH because it always check either the item can be loaded from 

the door of the container first before selecting an EMS. Due to a lack of space we are 

not able to provide detailed experimental results on this issue, but this will be further 

investigated and published in a future publication. 

In summary, OnlineBPH seems to be able to provide a good balance of time and 

utilization. Being an online algorithm it is obviously the only choice if items need to be 

handled/loaded in real-time or if there is no storage areas and/or buffers for incoming 

items. However, even in situations where items can be handled offline and there are 

ample storage areas for incoming items, OnlineBPH can still provide a good alternative 

to current state-of-the-arts static algorithms like DE+BMF. OnlineBPH is significantly 

faster; its solutions are just slightly less good in the tested cases; and it eliminates the 

need of having storage areas. 

5 Conclusion 

This work presented an online packing heuristic to solve the three-dimensional bin 

packing problem in dynamic environments. The effectiveness of the online packing 

heuristic is evaluated on a set of generated data. The experimental results show that the 

algorithm could solve the 3D container loading problems in online fashion and is com-

petitive against the one of best static algorithms both in the terms of running time, space 



utilization and number of bins. The algorithm also avoids the problem of blocked item 

and allows the loading process in the containers become more realistic. 
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