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Summary 12 

Nanotechnology is one of the most important technological developments of the twenty-first century. In silico 13 

methods such as quantitative structure-activity relationships (QSARs) to predict toxicity promote the safe-by-14 

design approach for the development of new materials, including nanomaterials. In this study, a set of cytotoxicity 15 

experimental data corresponding to 19 data points for silica nanomaterials was investigated to compare the widely 16 

employed CORAL and Random Forest approaches in terms of their usefulness for developing so-called “nano-17 

QSAR” models. “External” leave-one-out cross-validation (LOO) analysis was performed to validate the two 18 

different approaches. An analysis of variable importance measures and signed feature contributions for both 19 

algorithms was undertaken in order to interpret the models developed. CORAL showed a more pronounced 20 

difference between the average coefficient of determination (R2) between training and LOO (0.83 and 0.65 for 21 

training and LOO respectively) compared to Random Forest (0.87 and 0.78 without bootstrap sampling, 0.90 and 22 

0.78 with bootstrap sampling), which may be due to overfitting. The aspect ratio and zeta potential from amongst 23 

the nanomaterials’ physico-chemical properties were found to be the two most important variables for the Random 24 

Forest and the average feature contributions calculated for the corresponding descriptors were consistent with the 25 

clear trends observed in the dataset: less negative zeta potential values and lower aspect ratio values were 26 

associated with higher cytotoxicity. In contrast, CORAL failed to capture these trends. 27 
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1. Introduction 33 

Nanotechnology, which may be defined as the technological application of engineered nanomaterials [1], 34 

is considered to be one of the most important technological developments of the 21 st century [2, 3] so 35 

much so that the term “nano-revolution” has been used to describe the growth of this industry [4]. 36 

Nanotechnology is able to produce engineered nanomaterials having new or enhanced physico-chemical 37 

properties compared to the bulk material. However, some of these properties, e.g. high surface area to 38 

volume ratio, are potentially dangerous to humans [5-9]. In silico methods (e.g. (Q)SAR, grouping and 39 

read-across) promote the safe-by-design approach for the development of new nanomaterials by studying 40 

the relationship between the nanomaterials’ “structures” and their biological effects  [10, 11]. Since 41 

nanomaterials are complex [12], typically polydisperse, particulate materials, the concept of a “structure” 42 

in this context should not be confused with a single molecular structure but rather a description of the 43 

nanomaterial in terms of its measurable physico-chemical characteristics [9, 13] such as the composition 44 

of different components, aspect ratio etc. In this regard, the development of nanomaterial quantitative 45 

structure-activity relationships (“nano-QSAR”) may offer an effective alternative to experimental testing, 46 

since they may enable the prediction of (eco)toxicological effects of nanomaterials based on a knowledge 47 

of their chemical composition and, where necessary, other physico-chemical properties [14-16]. QSAR 48 

models can be classified as linear or non-linear depending on whether they were developed using a linear 49 

method, such as a multiple linear regression [17, 18], or a non-linear methods, such as support vector 50 

machines in combination with a non-linear kernel function [19, 23] or Random Forest [24, 25]. The aim 51 

of this study was to evaluate different approaches to build nano-QSAR models for a dataset comprising 52 

19 cytotoxicity experimental data points for silica nanomaterials. We focused on si lica nanomaterials 53 

mainly because of the availability of a novel experimental dataset for nanomaterials with a silica core and 54 

due to the widespread use of silica based nanomaterials in consumer products 55 

(http://www.nanotechproject.org/cpi/browse/nanomaterials/silicon-dioxide/).  In this work, a comparison 56 

was made between two commonly used approaches to develop QSAR and nano-QSAR models: the linear 57 

approach implemented in the CORelation And Logic (CORAL) program, which optimises a (linear) 58 

regression model using a Monte Carlo search procedure [26], and Breiman’s non-linear Random Forest 59 

algorithm [24, 25], implemented in the R randomForest package [27]. Our motivation to focus on these 60 

two modelling approaches reflects the fact that these have been used to build QSAR/QSPRs (and nano-61 

QSAR/QSPRs) for a variety of different datasets, as illustrated in the number of publications summarised 62 

in the Supplementary Information (SI); for instance, 28 and 21 articles describing QSAR/QSPRs and 63 
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nano-QSAR/QSPRs studies using the COARL and Random Forest approaches respectively, were 64 

published in 2015. (Quantitative structure-property relationships, or QSPRs, are analogous to QSARs, 65 

but aim to predict non-biological properties.) However, to the best of our knowledge, these algorithms 66 

have never previously been compared. Indeed, Random Forest has only twice before been used to model 67 

nanomaterial effects [28, 29]. Hence, this investigation serves as a timely comparison of two widely 68 

employed QSAR modelling approaches on a suitable dataset. In addition to comparing their predictive 69 

performance, we performed a comparison in terms of model interpretability between a linear (CORAL) 70 

and a non-linear (Random Forest) approach. In other words, the ability of the two selected approaches to 71 

describe the toxicological trends of this dataset was evaluated.  72 

2. Materials and Methods 73 

2.1. Experimental data 74 

The experimental data used to develop the models correspond to a subset extracted from the dataset 75 

generated during the MODENA COST Initiative (MODENA TD1204 COST ACTION dataset, 76 

http://www.modena-cost.eu/Home.aspx). This dataset is provided in Table 1 and it is available 77 

electronically in the SI. The dataset consists of 19 in vitro WST-1 cytotoxicity experimental data points 78 

for uncoated silica nanomaterials. Briefly, WST-1 is a colorimetric assay for assessing cell metabolic 79 

activity which is similar to the MTT assay, but which offers certain experimental advantages  [30, 31]. 80 

The changes in metabolic activity measured using the WST-1 assay are considered a proxy for changes 81 

in cell viability [32]. The data used in this work consist of 19 values for the negative logarithm of the 82 

EC25 i.e. the concentration level which induces 25% of maximum response above the baseline after a 83 

given treatment time. For modelling, nanomaterial concentrations, hence the corresponding EC 25 values, 84 

were expressed as surface area of nanomaterial per millilitre (i.e. mm2/ml), in keeping with guidance from 85 

the Organisation for Economic Co-operation and Development [33]. Cytotoxicity data range from -1.299 86 

to 0.483, with no values between -0.822 and -0.394 i.e. the data cluster at low and high activities as shown 87 

in Figure 1. Furthermore, from the original dataset we selected five variables based on our expert 88 

judgement expected to explain variability in these activities: treatment time and cell type are related to 89 

the experimental conditions adopted in the assay protocol, whereas average size, aspect ratio and zeta 90 

potential are measured physico-chemical properties of silica nanomaterials. Specifically, since CORAL 91 

is only able to handle a maximum of five variables, less significant descriptors were discarded. The full 92 

list of descriptors can be found in the SI. 93 
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2.2. Evaluation approach 94 

We adopted an “external” leave-one-out (LOO) cross-validation technique as a method to validate the 95 

considered modelling approaches. In brief, LOO is a special case of cross-validation [34-36], where the 96 

number of folds equals the number of instances in the data set. In other words, the learning algorithm is 97 

applied once for each instance, using all other instances as a training set and using the selected instance 98 

as a single-item test set. To this respect, for the dataset used in this work which comprises 19 instances, 99 

both CORAL and Random Forest algorithms were applied 19 times over all the instances in the dataset, 100 

each time considering 18 instances as training set and the remaining one as a test set in order to generate 101 

a given set of LOO results. (For both methods, five sets of LOO results were obtained as explained below.)  102 

By “external” LOO, we mean that all model development – including selection of descriptors and 103 

algorithm parameters or “hyperparameters” – was carried out exclusively using each LOO training set in 104 

turn i.e. the biological activity of the correspond test instance was not considered, to remove this potential 105 

source of optimistic bias from the results [37-39]. The coefficient of determination (R2) and the root mean 106 

square error (RMSE) were here used as statistics for comparing the two approaches, according to the 107 

equations (1) and (2) [36], based on two n value vectors y1...yn and f1...fn which are associated with the 108 

experimental and predicted values respectively. N.B. (a) As the dataset comprised 19 instances, n = 18 109 

for training sets whereas n = 19 for LOO. (b) In equations (1) and (2), and all subsequent equations in this 110 

manuscript, the “¯” character indicates the arithmetic mean (or “average”) value over all the elements of 111 

a vector. 112 

 113 

𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐝𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐢𝐨𝐧 = 𝐑𝟐 = 𝟏 − 
∑ (𝐲𝐢−𝐟𝐢)𝟐𝐧

𝐢=𝟏

∑ (𝐲𝐢− 𝐲̅)𝟐𝐧
𝐢=𝟏

   (1) 114 

 115 

𝐑𝐨𝐨𝐭 𝐦𝐞𝐚𝐧 𝐬𝐪𝐮𝐚𝐫𝐞 𝐞𝐫𝐫𝐨𝐫 = 𝐑𝐌𝐒𝐄 =  √
∑ (𝐲𝐢−𝐟𝐢)𝟐𝐧

𝐢=𝟏

𝐧
   (2) 116 

 117 

We performed the LOO validation technique five times, since the CORAL and Random Forest algorithms 118 

employ random selections during the model building phase, in order to obtain a more robust estimate of 119 

the performance of these methods. We selected five different seeds for each repetition with the Random 120 

Forest algorithm. We further selected five different dataset partitions for each repetition with CORAL. 121 

(Each time the CORAL software is run, it automatically generates a random seed that cannot be set by 122 
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the end user.) Each dataset partition corresponds to partitioning of a given LOO training set, following 123 

removal of a single test set instance for “external” LOO validation, to yield an internal “test set” for 124 

hyperparameter selection. Repeating modelling with CORAL five times in this fashion is broadly in 125 

keeping with the recommended procedure for CORAL model optimisation and robustness evaluation [40-126 

42]. Further discussion of the CORAL hyperparameters which were optimised is presented under 127 

“CORAL modelling”. The average (𝐚), standard deviation (s) and standard error of the mean (SE) for the 128 

LOO R2 and RMSE statistics across the five different repetitions were calculated as shown in equations 129 

(3), (4) and (5), considering the three general formulas based on a vector of m values i.e. a1, a2, …, am. 130 

N.B. Here, m = 19 for training set results averaged for a single seed (or CORAL training set split), or 95 131 

(19 × 5) for “global” training set results, whereas m = 5 for LOO results.  132 

 133 

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 =  𝐚  =  
𝟏

𝐦
∑ 𝐚𝐢

𝐦
𝐢 =𝟏             (3) 134 

 135 

𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧 = 𝐬 = √
∑(𝐚−𝐚)𝟐

(𝐦−𝟏)
     (4) 136 

 137 

𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐞𝐫𝐫𝐨𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐦𝐞𝐚𝐧 =  𝐒𝐄 =  
𝒔

√𝒎
     (5) 138 

 139 

2.3. Descriptor calculations 140 

As is further explained under “CORAL modelling”, continuous numeric properties, such as zeta potential, 141 

were converted into binary descriptors corresponding to labels applied to specific ranges: each descriptor 142 

took a value of 1 (or 0) if the corresponding property value for a given instance was inside (or outside) of 143 

this range. In the case of the discrete qualitative variable “Cell Type”, each value was converted into a 144 

binary descriptor: the descriptor took the value 1 (or 0) if the “Cell Type” for a given instance matched 145 

(or did not match) the value associated with that descriptor. This was necessary since, as is explained 146 

under “CORAL modelling”, the CORAL algorithm can only work with binary descriptors. These binary 147 

descriptors were used for both CORAL and Random Forest modelling. For the CORAL software, these 148 

descriptors were represented implicitly i.e. the presence of a corresponding label in a pseudo-SMILES 149 

(see “CORAL modelling”) denotes a descriptor value of 1. For the implementation of Random Forest 150 
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used in the current work (see “Random Forest modelling”), these binary descriptors were represented as 151 

an explicit bit-string. 152 

2.4. Correlated descriptors 153 

We tested the influence of correlated descriptors on model results for both CORAL and Random Forest 154 

approaches by generating two versions of the original dataset, as shown in Table 2.  In one case, after the 155 

binary splitting was applied to each continuous numeric variable, a label was assigned to each of the 156 

generated value ranges, which translates into two perfectly correlated descriptors for a given continuous 157 

numeric variable. For instance, by splitting the “Treatment Time” variable into 24 and 48 hours, we 158 

generated two labels, namely “A” and “B”, which refer to the 24 and 48 hours’ exposure respectively, in 159 

the in vitro model. This results in the generation of two perfectly correlated descriptors, since they are 160 

mutually exclusive. Specifically, when the “A” label is applicable (i.e. the “A” descriptor value is 1), the 161 

“B” label must not be applicable (i.e. the “B” descriptor value is 0), and vice-versa, according to the fact 162 

that, a single experimental result can only be associated with a single “Treatment Time” value. In the 163 

second case, after the splitting of the continuous numeric variables, only one of the ranges was assigned 164 

a label and, hence, a corresponding binary descriptor. As a result, perfectly correlated descriptors were 165 

removed. For the sake of brevity, even though the second approach does use correlated descriptors for the 166 

cell line variable, throughout this paper results obtained “with correlated descriptors” refer to the first 167 

approach i.e. two labels for each continuous numeric variable, whereas results obtained “without 168 

correlated descriptors” refer to the second approach. In the main text of this paper, only results obtained 169 

without correlated descriptors were presented, with results obtained with correlated descriptors presented 170 

in the SI for comparison. 171 

 172 

2.5. CORAL modelling 173 

In this work, the Monte Carlo algorithm implemented in the CORAL software (version: December 17, 174 

2014 for Microsoft Windows, available at http://www.insilico.eu/coral/) was used as a tool for developing 175 

linear nano-QSAR models, taking into account both the information derived from the nanomaterials’ 176 

physico-chemical properties (e.g. zeta potential) and the experimental conditions (e.g. cell type). 177 

Specifically, after we downloaded the zipped file from the aforementioned website containing the binary 178 

executable files, we executed the CORAL.exe binary file included in the folder 179 

“CORALSEA\MyCORALSEA\REGRESSION” to perform the modelling. In keeping with earlier work, 180 

we generated a “pseudo-SMILES” string for each instance which represented both information related to 181 
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particular experimental conditions and nanomaterial properties [40]. In more detail, with this particular 182 

approach, all the eclectic information is used for modelling, with the endpoint of interest being a function 183 

of both the nanomaterials’ physico-chemical properties and experimental conditions. Pseudo-SMILES 184 

character strings were derived as shown in Table 2. When used to build linear models, as in the current 185 

work, the CORAL algorithm effectively treats each character (or label) in the pseudo-SMILES strings as 186 

a binary descriptor which takes a value of 1 (or 0) if the character is present (or absent) for a given instance  187 

[40, 43]. The manner in which predictions are obtained, based on the values of these descriptors for a  188 

given instance, is further explained when discussing “Variable importance” below (see equations 6 and 189 

7). Table 2 shows the selected labelling approaches with and without correlated descriptors, but we 190 

reported in the main text only results obtained without correlated descriptors (leave-one-out results 191 

obtained with correlated descriptors can be found in the SI). For the current dataset, after removing 192 

correlated descriptors, pseudo-SMILES labels were generated as follows. The information on the cell 193 

type was coded with the ‘C’, ’D’, ’E’, ’F’ and ‘G’ characters for the 16HBE, A549, HaCaT, NRK-52E 194 

and THP-1 cell types, respectively. For all numeric descriptors in the dataset, a “binary split” was 195 

performed i.e. numeric values beyond some threshold were assigned a label and values before that 196 

threshold were not, thus avoiding incorporating perfectly correlated descriptors. Specifically, for the 197 

treatment time descriptor, a label ‘A’ was assigned if the exposure time was 24 hours, whereas no label 198 

was assigned if the exposure time was 48 hours. For each of the three properties related to the 199 

nanomaterial physico-chemical properties, namely average size, aspect ratio and zeta potential, a binary 200 

split of the values was applied based on the median value for the dataset, with the rationale of having a 201 

similar number of instances in a given range for each property. (N.B. The odd number of instances – i.e. 202 

19 – in the dataset meant that the number of instances in each range, for each binary split, could not be 203 

perfectly equal and the ranges are expressed in terms of the values just beyond the median for aspect ratio 204 

and zeta potential.) The thresholds used for the splits were 27.5 (no label for values below or equal to the 205 

threshold, ‘I’ for values above it), 1.0 (no label for values equal to the threshold, ‘K’ for values above it) 206 

and -32.0 (no label for values below the threshold, ‘L’ for values equal to or greater than it) for the average 207 

size, aspect ratio and zeta potential, respectively. In earlier work with CORAL [40-42], the authors 208 

developed five different splits of the same dataset in order to check whether the developed models were 209 

obtained by chance. According to the recommended CORAL optimisation strategy, we selected the best 210 

hyperparameter values (i.e. N = number of epochs, T = threshold) using the model performance on a 211 
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subset of the dataset, which is called a “test set” in the CORAL software documentation, and then we 212 

predicted the single item “external” test set in a separate step after the model was bui lt. For each LOO 213 

training set, modelling was repeated five times, via splitting the training set to yield an internal “test set” 214 

for hyperparameter selection, five times. More details on the application of the CORAL software to this 215 

dataset are reported in the SI, including full details of the five different LOO training set partitions used 216 

for hyperparameter selections. (See “Details on the CORAL software settings and optimisation” in the 217 

SI.) 218 

 219 

2.6. Random Forest modelling 220 

Random Forest is an ensemble learning method for both classification and regression which operates by 221 

building a multitude of decision trees, providing as output the class which represents the majority 222 

prediction, for classification problems, or the average prediction, for regression problems,  of the 223 

individual trees [24, 25]. Each decision tree is grown using an independent random sample of the instances 224 

in the training set, with the descriptors considered for splitting each node being independently sampled 225 

from the total. In the current work, both bootstrap sampling of the training set, i.e. sampling of N from N 226 

with replacement, and sampling without replacement were considered. The results presented in the main 227 

text were obtained without bootstrap sampling, with results obtained with bootstrap sampling being 228 

reported in SI. Whilst bootstrap sampling is typically used [25, 27] it is not currently possible to calculate 229 

feature contributions (see the “Feature contribution analysis” section) with the available software  [44] if 230 

bootstrap sampling is used. The results in the SI show that, for this dataset, the model performance and 231 

standard variable importance measures (see the “Variable importance” section) are very similar with both 232 

types of sampling. In this work, we used the Random Forest algorithm implemented in the randomForest 233 

R package (version 4.6-12) [27], with the default values for the algorithm “hyperparameters” i.e. number 234 

of trees to grow (ntree) equal to 500 and the number of descriptors randomly sampled at each split (mtry) 235 

equal to the total number of descriptors in the dataset divided by three (for regression problems) as 236 

explained in the randomForest package documentation. The experimental data used for Random Forest 237 

modelling were the same as for the CORAL software. The binary descriptors implicitly encoded in the 238 

pseudo-SMILES strings created for the CORAL software were explicitly represented for modelling using 239 

the randomForest package i.e. a “1” value was assigned each time a specific label was present whereas a 240 

“0” value was assigned each time the label was absent in the considered pseudo-SMILES. Using this 241 

procedure, an explicit bit string was built for each pseudo-SMILES, as shown in Table 3. As per modelling 242 
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with CORAL, with the Random Forest algorithm 95 models were developed with a given sampling 243 

protocol i.e. 19 models for each LOO training set and all modelling on a given training set was repeated 244 

five times to take account of the random sampling inherent to building models with Random Forest or 245 

CORAL. This process was repeated twice with two different sampling protocols: with simple sampling, 246 

without replacement, or bootstrap sampling i.e. the replace argument of the randomForest() function was 247 

set to FALSE and TRUE respectively. Hence, 190 Random Forest models were built in total with or 248 

without correlated descriptors. (It should be reiterated that only results “without correlated descriptors”, 249 

meaning without perfectly correlated descriptors, without bootstrap sampling are presented in the main 250 

text.) 251 

 252 

2.7. Variable importance  253 

2.7.1. CORAL 254 

In the current work, we selected the additive scheme of the CORAL software which computes a so-called 255 

“optimal descriptor” (DCW) as the sum of correlation weights associated with the labels present in the 256 

pseudo-SMILES strings [40, 43], according to equation (6). 257 

𝐃𝐂𝐖(𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝,  𝐍𝐞𝐩𝐨𝐜𝐡)𝒊 = ∑ 𝐂𝐰𝒌 × 𝐒𝐀𝐤,𝐢
𝟓
𝒌=𝟏    (6) 258 

N.B. In equation (6), SAk,i takes the value 1 (or 0) if the corresponding pseudo-SMILES label is present 259 

(or absent) in an instance (i) i.e. the correlation weights (Cwk) are summed over all labels present in a 260 

given instance. In order to understand the relationship between the correlation weights and the final 261 

predicted value, it is important to note that the so-called “optimal descriptor” is used to calculate the 262 

predicted value for the endpoint using a one variable linear equation, as shown in equation (7).  263 

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝒊 = 𝐂𝟎 + 𝐂𝟏 ∗ 𝐃𝐂𝐖(𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝, 𝐍𝐞𝐩𝐨𝐜𝐡)𝒊   (7) 264 

Hence, it can be seen that the correlation weights are essentially scaled values of (i.e. are directly 265 

proportional to) the coefficients of the binary descriptors in the final linear model developed using 266 

CORAL. In order to make a comparison between CORAL and the standard Random Forest methods for 267 

variable importance, we calculated the absolute values of the correlation weights for each descriptor. This 268 

is because the Random Forest standard variable importance measures do not take account of the sign of 269 

the contribution a given descriptor value makes towards the prediction. 270 

 271 

 272 
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2.7.2. Random Forest 273 

The Random Forest algorithm implemented in the randomForest R package which was used in this work 274 

provided information on variable importance using two approaches, by setting the “importance” option 275 

of the randomForest function to TRUE. The first method [25] calculates the percentage increase of the 276 

mean squared error (“%IncMSE”) on the out-of-bag (OOB) subset – i.e. the subset of training set 277 

instances not used to build a given tree - after the permutation of descriptors’ values. In greater detail, for 278 

each tree in the forest, the prediction error on the OOB portion of the data, expressed by the mean square 279 

error (MSE) is recorded (for regression problems). The MSE value is then calculated again after 280 

permuting each predictor variable one at a time. The differences between the two calculated MSEs for 281 

the original and shuffled datasets are averaged over all trees and then normalised by the standard deviation 282 

of the differences. The second method (“IncNodePurity”) calculates the total decrease in node 283 

“impurities” from splitting on a given descriptor, averaged over all the generated trees. For regression, 284 

“impurity” is measured by the residual sum of squares (RSS) metric for a given node [27]. 285 

 286 

2.8. Summarising Variable Importance Values 287 

The different variable importance approaches employed with Random Forest and CORAL are applicable 288 

for a single model, hence – in order to derive general conclusions – it was necessary to summarise these, 289 

for a given combination of modelling approach and variable importance approach, over all 95 (19 LOO 290 

training sets × 5 repetitions) models. Furthermore, it was necessary to take account of the fact that the 291 

different approaches could vary in scale – which would confound comparisons. Hence, the raw values (v) 292 

– for a given combination of modelling approach and variable importance approach – were scaled (vscaled) 293 

between 0 and 1 as per equation (8), where the minimum (vmin) and maximum (vmax) values were obtained 294 

across all 95 models and all 5 descriptors. Subsequently, the values were summarised in terms of the 295 

arithmetic mean and the corresponding standard error of the mean. 296 

 297 

 𝐯𝐬𝐜𝐚𝐥𝐞𝐝 =  
(𝐯−𝐯𝐦𝐢𝐧)

(𝐯𝐦𝐚𝐱−𝐯𝐦𝐢𝐧)
        (8) 298 

 299 

2.9. Feature contribution analysis 300 

By “feature contribution analysis”, we refer to estimates of both the sign and magnitude of the influence 301 

a given descriptor has on the prediction made by a given model, in contrast to “variable importance” 302 
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measures which only estimate the magnitude of the influence. As far as the CORAL software is 303 

concerned, we calculated feature contributions based on the signed values of the correlation weights. 304 

Indeed, as equations (6) and (7) show (see the “Variable importance” section), for each single model 305 

which is obtained by selecting the additive method, the signed values of the correlation weights allow 306 

understanding of whether a certain descriptor is contributing “positively”, i.e. it contributes to increased 307 

toxicity, or “negatively”, i.e. it contributes to decreased toxicity. For Random Forest, a feature 308 

contribution analysis was carried out using the technique developed by Kuz’min and colleagues [45] and 309 

implemented in the rfFC R package [44] which is designed to work with the randomForest 310 

implementation of Random Forest. (Specifically, version 1.0 of rfFC, as obtained via the 311 

“install.packages("rfFC",repos="http://R-Forge.R-project.org")” command, was used in the current 312 

work). This feature contribution method is a measure of the influence, in terms of the magnitude and sign, 313 

of each variable on the model prediction for a single instance. In principle, the feature contribution 314 

associated with the value of a given descriptor could vary between instances with the same value for that 315 

given descriptor, due to the fact that Random Forest models are non-linear. In contrast, the feature 316 

contribution associated with a single descriptor as calculated for CORAL is either equal to the value of 317 

the corresponding correlation weight (if the descriptor value is 1) or 0 (if the descriptor value is 0). Hence, 318 

to enable a comparison between the average influence of a given descriptor value being 1 for both CORAL 319 

and Random Forest, pseudo-coefficients were derived from the Random Forest feature contributions. 320 

These pseudo-coefficients were calculated by computing, for each descriptor, the difference between the 321 

arithmetic mean average values calculated over the feature contribution values for the pseudo-SMILES 322 

strings having a value of 1 for that specific descriptor (here called FC(1)) and pseudo-SMILES strings 323 

having a value of 0 for the same descriptor (here called FC(0)), according to the equation (9).  324 

 325 

𝐏𝐬𝐞𝐮𝐝𝐨 − 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 =  𝐅𝐂(𝟏)̅̅ ̅̅ ̅̅ ̅̅ ̅   − 𝐅𝐂(𝟎)̅̅ ̅̅ ̅̅ ̅̅ ̅     (9) 326 

3. Results 327 

3.1. LOO results 328 

LOO results, in terms of R2 and RMSE for both CORAL and Random Forest algorithms are reported in 329 

Table 4. As far as the global results on the corresponding training sets are concerned, the average and 330 

standard error of the mean, over the 95 developed models, of the R2 and RMSE statistics were calculated 331 

for both CORAL and Random Forest models. N.B. In contrast to the results shown in Table 4, results 332 
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with perfectly correlated descriptors (for both CORAL and Random Forest) and bootstrap sampling (for 333 

Random Forest) are presented in the SI. Considering the LOO results reported in Table 4, it is clear that 334 

CORAL’s LOO test set performance was substantially worse than its performance on the corresponding 335 

training sets. With respect to CORAL, the global average value of the R2 on training sets was 0.8285 336 

whereas the average RMSE was 0.2347. Results from LOO (i.e. testing) for CORAL showed a decrease 337 

for the average R2 to 0.6486, whereas the average value of the RMSE increased to 0.3456. However, the 338 

corresponding results for Random Forest showed a smaller reduction in estimated model performance 339 

upon going between training and LOO test global results. The average values of R2 were 0.8723 and 340 

0.7807 for training and test set respectively and the average values for RMSE were 0.2011 and 0.2604 341 

for training and test set respectively. If one considers only results from the LOO test sets in Table 4, it 342 

can be stated that Random Forest performed better that CORAL and the smaller reduction in average 343 

model performance upon going from the training to the test sets indicates Random Forest did not overfit 344 

as much. As far as single run results are concerned, as shown in Table 4 for CORAL software, the average 345 

R2 values on LOO training sets, for different splits of the same LOO training sets to yield internal “test 346 

sets” for hyperparameter selection, ranged between 0.7876 and 0.8570. (Here, it should be remembered 347 

that – for a given split of the data to yield internal “tests sets” for each LOO training set – the results were 348 

averaged across all 19 LOO training sets.)  Corresponding LOO R2 test set values ranged between 0.6143 349 

and 0.7082. Average RMSE values for different splits of the CORAL input dataset ranged from 0.2119 350 

and 0.2675 on training sets whereas RMSE values on test sets ranged between 0.3010 and 0.3712. The 351 

Random Forest approach showed less variability, in terms of both R2 and RMSE, among the five runs of 352 

the software with different seeds. Indeed, average training set R2 values ranged between 0.8711 and 353 

0.8736, whereas LOO test set R2 values ranged between 0.7707 and 0.7899. Moreover, according to Table 354 

4, Random Forest average RMSE values ranged between 0.1995 and 0.2022 on training sets whereas on 355 

LOO test sets RMSE values ranged between 0.2544 and 0.2665. It is important to note that, among the 356 

five runs of  LOO for the CORAL software, the largest difference in the R2 values between training and 357 

test sets is 0.2427 (split 3) whereas, for Random Forest, the largest difference is 0.1004. Taking into 358 

account the reference value for the difference of R2 between training and test sets reported in the article 359 

of Eriksson and colleagues [46], the average results obtained with CORAL are closer than Random Forest 360 

to the 0.3 threshold for which a model could be considered to overfit. Additional results obtained with 361 

CORAL and Random Forest under different scenarios are presented in Table S1 in the SI. Firstly, it can 362 
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be observed that no significant training/test set performance gap exists for Random Forest if the training 363 

set is predicted using only out-of-bag samples. Furthermore, the comparison of the results obtained with 364 

and without correlated descriptors for the dataset used in this work showed that Random Forest is, as 365 

expected [25], less affected than CORAL by the presence of correlated descriptors (see Table S1 in SI). 366 

Specifically, the split number 2 of the CORAL input dataset generated an outlier only when perfectly 367 

correlated descriptors were used. For Random Forest, a very small difference in terms of R2 and RMSE 368 

global average values was observed for results with and without bootstrap sampling. 369 

 370 

3.2. Variable importance results 371 

Figure 2 shows the average and standard error of the mean (as error bars) of the scaled variable importance 372 

values for each descriptor and each variable importance measure for CORAL and Random Forest. N.B. 373 

In contrast to the results shown in Figure 2, results with perfectly correlated descriptors (for both CORAL 374 

and Random Forest) and bootstrap sampling (for Random Forest) are presented in the SI (Figures S1 and 375 

S2). As far as CORAL is concerned, the average values ranged between 0.0525 and 0.8941 for the K and 376 

L descriptors, respectively, which are related to the nanoparticle aspect ratio (i.e. aspect ratio > 1) and 377 

zeta potential (zeta potential ≥ -32.0 mV) nanomaterial physico-chemical properties respectively. Hence, 378 

according to the CORAL variable importance measure, the nanoparticle aspect ratio and zeta potential 379 

were respectively the least and most important variables related to cytotoxicity. With respect to the 380 

Random Forest %IncMSE method, the average values ranged between 0.0424 and 0.8393 for the G and 381 

L descriptors which are related to the THP-1 cell line and zeta potential respectively. On the other hand, 382 

Random Forest IncNodePurity method average values ranged between 0.0124 and 0.8181 for the E and 383 

L descriptors which refer to the HaCaT cell line and zeta potential respectively. In spite of small 384 

differences depending upon the specific method used, the descriptors (K and L) corresponding to aspect 385 

ratio and zeta potential are (on average) by far the most important according to both the Random Forest 386 

variable importance measures. Conversely, even if CORAL also identified the descriptor corresponding 387 

to zeta potential as the most important, descriptors D and G corresponding to cell lines A549 and THP-1, 388 

respectively are the second and third most important variables. Furthermore, Random Forest variable 389 

importance results with perfectly correlated descriptors also support the conclusion that aspect ratio and 390 

zeta potential are the most toxicologically relevant variables, confirming that the Random Forest approach 391 

is not significantly affected by correlated descriptors (see Figure S2 in SI). Similarly, Random Forest 392 
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variable importance results obtained without bootstrap sampling were largely consistent with those 393 

obtained with bootstrap sampling, for both %IncMSE and IncNodePurity methods (see Figure S1 and 394 

Figure S2 in SI). CORAL variable importance results with correlated descriptors showed that the two 395 

most important variables were the J and L descriptors, corresponding to the aspect ratio and zeta potential. 396 

However, it is important to note that, unlike for Random Forest, the other descriptors corresponding to 397 

aspect ratio and zeta potential are not similarly important. It is also important to note that, for CORAL, 398 

the variable importance values calculated with or without perfectly correlated descriptors were not as 399 

consistent as compared to Random Forest. 400 

3.3. Feature contribution results 401 

Figure 3 shows the average values, for both CORAL correlation weights and Random Forest feature 402 

contribution pseudo-coefficients, calculated across all the 95 models generated on the LOO training sets, 403 

without perfectly correlated descriptors and without bootstrap sampling for Random Forest.  (Results with 404 

perfectly correlated descriptors are presented in SI Figure S3.) Broadly in keeping with what was observed 405 

for the variable importance analysis (Figure 2), for Random Forest aspect ratio and zeta potential 406 

nanoparticles’ physico-chemical properties were the two most important variables whereas, for the 407 

CORAL approach, zeta potential and the variable related to the A549 cell line appear most important. 408 

Hence, as expected, feature contribution results are consistent with those obtained for variable importance 409 

for both approaches. It is important to note that, for CORAL approach, feature contribution average values 410 

were all positive. Conversely, Random Forest feature contribution results presented both positive and 411 

negative values. Specifically, for the CORAL approach, the correlation weight associated with the zeta 412 

potential feature had a magnitude that is more than double of the A549 cell line magnitude; whereas for 413 

Random Forest the two highest feature contribution values have a similar magnitude.  In addition, in 414 

contrast to CORAL, for Random Forest there is a considerable difference between the average influence 415 

of the two most important descriptors (relating to aspect ratio and zeta potential) and the others. These 416 

observations regarding the importance of different variables according to the feature contributions 417 

calculations (Figure 3) are broadly in keeping with those observed when perfectly correlated descriptors 418 

are not excluded (Figure S3). Results with correlated descriptors in the SI (Figure S3) showed that once 419 

again for Random Forest approach zeta potential and aspect ratio were the two most important properties. 420 

Specifically, considering the two correlated descriptors for aspect ratio and zeta potential, namely the J 421 

and K labels for aspect ratio and the L and M labels for zeta potential, it is worth noting that, for Random 422 
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Forest, the magnitudes of their average feature contribution values were not only very similar (roughly 423 

0.23) but also much greater than the magnitudes for the other descriptors. Conversely, for CORAL, we 424 

obtained average feature contributions of significantly different magnitude for the two correlated 425 

descriptors related to the same variable, both for aspect ratio and zeta potential properties. When the 426 

signed values are considered (Figure 3 or Figure S3), it is worth noting that for Random Forest high values 427 

of zeta potential are associated with an increase in cytotoxicity, whereas high aspect ratio values are 428 

associated with a decrease of toxicity since the average pseudo-coefficient value is negative for the 429 

corresponding descriptors. It is important to note that these findings are consistent with the preliminary 430 

analysis of the dataset reported in Figure 1. Conversely, the CORAL approach seems to only be able to 431 

partially recognise the trend in the data for the zeta potential. The descriptor associated with higher zeta 432 

potential values has a positive average feature contribution value, regardless of whether perfectly 433 

correlated descriptors were removed (Figure 3) or not (Figure S3). However, when perfectly correlated 434 

descriptors are not removed, the average feature contribution value for the descriptor corresponding to 435 

lower zeta potential values is still positive, even if less so (Figure S3). Whether perfectly correlated 436 

descriptors were removed (Figure 3) or not (Figure S3), the average feature contribution value for both 437 

descriptors corresponding to aspect ratio was positive. 438 

4. Discussion 439 

Taking into account the results obtained in this comparison work, both in terms of  their predictive 440 

performance estimated via “external” LOO validation and their ability to be interpreted to reveal trends 441 

in the data, the non-linear Random Forest approach performed better than the linear CORAL approach 442 

for the specific dataset used in this paper. With respect to Random Forest, the difference for both R2 and 443 

RMSE average values between training and test sets was smaller and it had better results on the test set 444 

compared to CORAL (Table 4). In addition, for Random Forest both average R2 and RMSE values for 445 

the OOB and LOO predictions methods were very similar, regardless of whether modelling was 446 

performed with or without bootstrap sampling and with or without correlated descriptors (Table S1). This 447 

is interesting since it suggests that, even for these small datasets, as is typical for nano-QSAR studies [47], 448 

there may be no need to cross-validate Random Forest models as opposed to simply reporting their OOB 449 

performance. (Of course, for comparing to other methods, cross-validation would still be required for a 450 

fair, like-for-like comparison). However, it must be noted that this finding may not hold in general, e.g. 451 

Ballester and Mitchell found the OOB predictions only converged to the test set performance as the 452 
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training set got larger [48]. Currently, there is an on-going discussion on the importance of so-called 453 

intrinsic and extrinsic properties as well as composition of nanoparticles for toxicological studies [10, 13, 454 

49]. In our work, we incorporated various intrinsic (e.g. average primary particle size) and extrinsic (e.g. 455 

zeta potential) properties as descriptors for the modelled toxicity endpoint. We further sought to take 456 

account of variability in the endpoint values due to the different experimental conditions, by treating the 457 

varied experimental conditions as additional descriptors, as per the so-called “eclectic” approach 458 

previously proposed in the literature [41, 42, 50]. The variable importance analysis performed in this work 459 

showed that the aspect ratio and zeta potential nanoparticles’ physico-chemical properties were the most 460 

important variables for the Random Forest approach under all modelling scenarios with or without 461 

perfectly correlated descriptors and with or without bootstrap sampling (Figure 2, Figure S1 and Figure 462 

S2). This was not observed for CORAL. For example, when modelling was carried out without perfectly 463 

correlate descriptors (Figure 2), the two most important descriptors related to zeta potential and the A549 464 

cell line. In contrast to the results obtained with Random Forest, for which the most important descriptors 465 

- associated with zeta potential and aspect ratio - were comparably important, zeta potential was more 466 

important for CORAL than the A549 cell line, which had a comparable importance to the THP-1 cell line 467 

(Figure 2). However, it must be noted that descriptors related to cell line appear relatively less important 468 

when perfectly correlate descriptors are not removed from CORAL modelling (Figure S2). Regarding the 469 

observations concerning the importance of descriptors related to cell lines, Kim and colleagues [51] 470 

recently reported that cell type more than other factors like nanoparticles’ size and dose level can influence 471 

cytotoxicity and, in addition, in the same work they stated that identical nanoparticles’ preparations yield 472 

different outcomes depending on the selected cell lines even if they belong to the same cell type. Whilst 473 

our findings are not directly comparable, they still suggest that cell line is at least as important an 474 

experimental variable as average size, with the exact significance varying depending upon the specific 475 

cell line, the specific variable importance approach and modelling scenario (Figure 2, Figure S1 and 476 

Figure S2). As far as nanoparticles’ size is concerned, the work of Rong and colleagues [52] showed a 477 

potential important role of silica particles’ sizes in increasing toxicity towards endothelial cells. In another 478 

more relevant study, Tokgun and colleagues [53] reported results which showed that cytotoxicity towards 479 

A549 cell line depends on silica nanoparticles’ size. We found that the average size of silica nanoparticles 480 

was not typically (Figure 2, Figure S1 and Figure S2) amongst the most important variables but it did 481 

appear more significant when CORAL modelling was carried out including perfectly correlated 482 
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descriptors (Figure S2). Consider the clear trend observed in the dataset concerning the relationship 483 

between cytotoxicity and both zeta potential and aspect ratio (Figure 1) which was also reflected in the 484 

Random Forest variable importance (Figure 2, Figure S1 and Figure S2) and feature contributions (Figure 485 

3 and Figure S3) calculations. The clear correspondence between both the average Random Forest 486 

variable importance and feature contributions and the clear trends observed in the dataset makes it clear 487 

that our findings are not a result of an artefact of modelling but rather a consequence of the experimental 488 

dataset used in this work. However, these clear trends observed in the dataset appear to be at odds with 489 

the literature. Various publications have previously considered the relationship between aspect ratio and 490 

zeta potential nanoparticles’ physico-chemical properties and cytotoxicity. Regarding the toxicological 491 

significance of particle shape (as quantified via the aspect ratio), studies for both carbon nanotubes and 492 

silica nanoparticles (as per the current work) either reported that aspect ratio had no relationship to toxicity 493 

or that high aspect ratio particles are more toxic [54, 55]. In contrast, if we look at the specific dataset 494 

used in this work, as shown in Figure 1, high aspect ratio silica nanoparticles are clustered at the low 495 

toxicity side of the graph. This finding is also reflected in the average Random Forest pseudo-coefficients 496 

presented in Figure 3. This discrepancy may be due to several reasons, such as differences in other 497 

characteristics of nanomaterials or in the cytotoxicity protocol used or in the cell line adopted as well as 498 

the concentrations selected for the test. To this respect, the review of Fruijtier-Pölloth and colleagues [56] 499 

has shown that it is difficult to compare studies that are based on different experimental conditions and 500 

nanomaterials since they could yield contradictory results, which might be due to diverse toxicological 501 

mechanisms involved. As far as the relationship between zeta potential and toxicity is concerned, Cho et 502 

al. [57] found that, for a set of metal/metal oxide/silica nanoparticles high positive zeta potential resulted 503 

in more cytotoxicity and Karunakaran et al. [58] also suggested that cytotoxicity of alumina and silica 504 

particles, both micro-sized and nanoparticles, increases as a result of positive zeta potential. In the current 505 

work, both the feature contribution analysis results, as shown in Figure 3, and the preliminary analysis of 506 

the data shown in Figure 1, revealed that less negative zeta potential values were associated with higher 507 

cytotoxicity and that this trend was clearly captured by Random Forest  and, to a lesser extent, CORAL 508 

(see Figure 3 and Figure S3). Whilst this might be considered consistent with earlier indications that 509 

increasing zeta potential leads to higher cytotoxicity [57, 58], it must be stressed that these earlier studies 510 

indicated that it was specifically positive zeta potential values that led to higher cytotoxicity and all zeta 511 

potential values reported in the dataset used for the current work were negative. One possible confounding 512 
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factor here could be that zeta potential is highly dependent upon the composition of the medium in which 513 

it was measured [57] and the experimentalists who provided the data modelled in the current work 514 

indicated that zeta potential values were measured in water rather than the exposure medium used for 515 

cytotoxicity testing. Hence, the actual zeta potential values of the nanoparticles when they were exposed 516 

to the cells could differ from those reported in our dataset. Arguably, better mechanistic insight would be 517 

obtained if zeta potential values had been measured under biologically relevant conditions [49, 57]. It is 518 

also the case that future studies might build upon our work via incorporating additional descriptors into 519 

the models. Firstly, as shown in the electronic version of the dataset used in this work in the SI the original 520 

dataset from which this was derived included other nanomaterial characteristics and experimental 521 

variables that were not considered as descriptors in our current work e.g. serum concentration or 522 

dispersion protocol. Indeed, prior to modelling analyses, we selected only five variables to model, 523 

according to our expert judgement  since serum concentration and, supposing stirring and vortexing 524 

protocols were comparable, dispersion protocol experimental values, for this specific dataset, were the 525 

same for 17 out of 19 instances of the original dataset. (The assumption that the stirring and vortexing 526 

protocols were comparable was based on guidance from the MODENA COST team responsible for this 527 

dataset.) Secondly, none of the parameters provided in the original dataset may be considered to capture 528 

the surface reactivity or dissolution of the studied silica nanoparticles. One way of partially addressing 529 

this in future work, other than making additional experimental measurements [13], would be to perform 530 

additional quantum-mechanical calculations to obtain new different descriptors, i.e. independent variables 531 

reflecting structural and chemical properties of the nanoparticles [14, 59]. Such variables could further 532 

enhance our understanding of the possible mechanism of toxicity of the studied nanoparticles.  533 

5. Conclusions 534 

In this work a comparison between the CORAL and Random Forest methods in predicting silica 535 

nanoparticles’ cytotoxicity, based upon physico-chemical characteristics and experimental conditions 536 

encoded into pseudo-SMILES strings, was performed. It was demonstrated that the pseudo-SMILES 537 

encoding proposed for CORAL could be translated into descriptors which can be used with other 538 

modelling approaches, such as Random Forest. LOO was used to externally validate the results obtained 539 

from the modelling task. The predictive performance estimated from LOO was significantly higher with 540 

Random Forest and substantially less overfitting was observed. Different approaches were employed to 541 
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analyse the significance of different descriptors within both kinds of models, including the derivation of 542 

pseudo-coefficients for Random Forest models that, in contrast to standard variable importance measures, 543 

reflect the signed contribution of descriptors towards the modelled endpoint. Whilst differences were 544 

observed with the different approaches to interpreting the models, the Random Forest approach, more 545 

than CORAL, reflected the toxicological significance of zeta potential and aspect ratio observed from 546 

preliminary analysis of the dataset. Interestingly, whilst these properties have previously been reported as 547 

significant for nanomaterial toxic effects, the relationships observed here were not in complete agreement 548 

with some previous studies – which could reflect different mechanisms. In summary, the results obtained 549 

suggest the Random Forest modelling approach is readily applicable to modelling the cytotoxicity of 550 

nanoparticles and can be used to develop models which offer reasonable predictive power and which can 551 

be interpreted in terms of physico-chemical-toxicity relationships. 552 
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Tables 750 

Table 1: In vitro WST-1 cytotoxicity experimental data of silica nanomaterials used for modelling. 751 

“Treatment time” and “Cell type” columns are related to the in vitro experimental conditions adopted 752 

during the experimental test for the exposure duration and cell line model, respectively. “Average size”, 753 

“Aspect ratio” and “Zeta potential” columns are related to measured physico-chemical properties for size, 754 

aspect ratio and zeta potential of each nanomaterial, respectively. The average size was calculated from 755 

two primary size dimensions estimated by TEM or other measurements (see the ESI for more details). 756 

The “pEC25” column is the modelled variable, namely the negative logarithm, to base 10, of the EC25 757 

value expressed as surface area of nanomaterial per millilitre (i.e. mm2/ml). Units are reported in squared 758 

brackets for numerical properties. 759 

ID 
Treatment 

 time [h] 
Cell type 

Average 

size 

[nm] 

Aspect ratio 

[adimensional] 

Zeta  

potential 

[mV] 

pEC25 

[mm2/ml] 

119 24 THP-1 20.0 1.4 -46.1 -1.299 

104 24 16HBE 46.0 1.2 -40.0 -1.272 

186 48 THP-1 18.0 1.6 -43.7 -1.165 

105 48 16HBE 46.0 1.2 -40.0 -1.135 

101 48 16HBE 27.5 1.2 -40.0 -1.105 

100 24 16HBE 27.5 1.2 -40.0 -1.026 

102 24 A549 27.5 1.2 -40.0 -0.920 

103 48 A549 27.5 1.2 -40.0 -0.872 

107 48 A549 46.0 1.2 -40.0 -0.844 

106 24 A549 46.0 1.2 -40.0 -0.822 

121 24 HaCaT 17.0 1.0 -28.1 -0.394 

127 24 THP-1 100.0 1.0 -32.0 -0.281 

120 24 A549 17.0 1.0 -28.1 -0.223 

129 24 HaCaT 60.0 1.0 -30.6 -0.197 

128 24 A549 60.0 1.0 -30.6 -0.147 

122 24 NRK-52E 17.0 1.0 -28.1 -0.070 

130 24 NRK-52E 60.0 1.0 -30.6 0.059 

123 24 THP-1 17.0 1.0 -28.1 0.365 

131 24 THP-1 60.0 1.0 -30.6 0.483 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 
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Table 2: Labelling approach adopted for building the pseudo-SMILES for CORAL modelling. Each label 769 

is a character which maps a specific value or a range of values. N.B. For brevity, “Correlated descriptors” 770 

refers to perfectly correlated descriptors, since the binary descriptors corresponding to the different “Cell 771 

type” labels are partially correlated. Only results without correlated descriptors were presented in the 772 

main text. 773 

Descriptor Experimental value 
Correlated descriptors 

Yes No 

Treatment Time [h] 
24 A A 

48 B No label 

Cell type 

16HBE C C 

A549 D D 

HaCaT E E 

NRK-52E F F 

THP-1 G G 

Average size [nm] 
≤ 27.5 H No label 

> 27.5 I I 

Aspect ratio [adimensional] 
= 1.0 J No label 

> 1.0 K K 

Zeta potential [mV] 
≥ -32.0 L L 

< -32.0 M No label 
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 777 
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Table 3: Descriptors used for CORAL and Random Forest software. Each descriptor was derived based 793 

on the presence/absence of the relative single character in the original pseudo-SMILES used as input for 794 

the CORAL software. Only the approach without correlated descriptors is described.  795 

ID 
CORAL:  

Pseudo-SMILES 

Random Forest: Explicit representation of descriptors 

pEC25 
A C D E F G I K L 

119 AGK 1 0 0 0 0 1 0 1 0 -1.299 

104 ACIK 1 1 0 0 0 0 1 1 0 -1.272 

186 GK 0 0 0 0 0 1 0 1 0 -1.165 

105 CIK 0 1 0 0 0 0 1 1 0 -1.135 

101 CK 0 1 0 0 0 0 0 1 0 -1.105 

100 ACK 1 1 0 0 0 0 0 1 0 -1.026 

102 ADK 1 0 1 0 0 0 0 1 0 -0.920 

103 DK 0 0 1 0 0 0 0 1 0 -0.872 

107 DIK 0 0 1 0 0 0 1 1 0 -0.844 

106 ADIK 1 0 1 0 0 0 1 1 0 -0.822 

121 AEL 1 0 0 1 0 0 0 0 1 -0.394 

127 AGIL 1 0 0 0 0 1 1 0 1 -0.281 

120 ADL 1 0 1 0 0 0 0 0 1 -0.223 

129 AEIL 1 0 0 1 0 0 1 0 1 -0.197 

128 ADIL 1 0 1 0 0 0 1 0 1 -0.147 

122 AFL 1 0 0 0 1 0 0 0 1 -0.070 

130 AFIL 1 0 0 0 1 0 1 0 1 0.059 

123 AGL 1 0 0 0 0 1 0 0 1 0.365 

131 AGIL 1 0 0 0 0 1 1 0 1 0.483 
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Table 4: Coefficient of determination (R2) and root-mean-square error (RMSE) statistics for the LOO training and 805 

test sets for both CORAL and Random Forest approaches. LOO was performed five times using five different 806 

training set splits, i.e. five different partitions of a given LOO training set to yield an internal “test set” for 807 

hyperparameters’ selection, for CORAL and five different seeds for Random Forest. R2 and RMSE values were 808 

computed on the predicted values for each training set. Average and standard error of the mean (here reported in 809 

brackets) for training set results were calculated over the 19 models – one for each instance in the dataset – for 810 

each run of the LOO procedure. These statistics were compared with those obtained from the LOO (i.e. test) 811 

predictions. Global results for training sets were calculating by averaging over all the 95 models developed (i.e. 812 

19 models × 5 LOO runs) whereas, for test sets, global results were obtained by averaging over the five statistics 813 

resulting from LOO. N.B. For both methods, only results without perfectly correlated descriptors are presented. 814 

For Random Forest, only results without bootstrap sampling are presented.  815 

Software Run 
R2 RMSE 

Training set Test set Training set Test set 

CORAL 

split 1 
0.8031  

(0.0166) 
0.6529 

0.2540 

 (0.0083) 
0.3443 

split 2 
0.8567 

 (0.0056) 
0.6243 

0.2176 

 (0.0085) 
0.3675 

split 3 
0.8570 

 (0.0029) 
0.6143 

0.2119 

(0.0034) 
0.3712 

split 4 
0.7876 

 (0.0077) 
0.6436 

0.2675 

 (0.0064) 
0.3441 

split 5 
0.8383  

(0.0108) 
0.7082 

0.2222 

 (0.0067) 
0.3010 

global 
0.8285 

 (0.0052) 

0.6486 

 (0.0164) 

0.2347 

 (0.0038) 

0.3456 

 (0.0125) 

Random 

Forest 

seed 

1 

0.8717 

 (0.0023) 
0.7741 

0.2022  

(0.0026) 
0.2646 

seed 

2 

0.8736 

 (0.0020) 
0.7899 

0.1995 

 (0.0023) 
0.2544 

seed 

3 

0.8725 

 (0.0022) 
0.7822 

0.2015 

 (0.0025) 
0.2597 

seed 

4 

0.8711 

 (0.0023) 
0.7707 

0.2022 

 (0.0025) 
0.2665 

seed 

5 

0.8726 

 (0.0022) 
0.7864 

0.2004 

 (0.0025) 
0.2568 

global 
0.8723 

 (0.0010) 

0.7807 

 (0.0036) 

0.2011 

 (0.0011) 

0.2604 

 (0.0023) 

 816 

 817 
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Figures 818 

Figure 1: Zeta potential versus in vitro cytotoxicity experimental values for each silica nanoparticle in the 819 

dataset. The graph shows the gap of toxicological data between -0.822 (ID 106) and -0.394 (ID 121). 820 

With the “I” symbols are indicated silica nanoparticles with aspect ratio greater than 1 whereas the “O” 821 

symbols refer to nanoparticles with aspect ratio equal to 1. N.B. the labels refer to the descriptors used to 822 

encode toxicologically relevant variables for modelling. 823 
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Figure 2: Average of the scaled variable importance measures for CORAL and Random Forest (without bootstrap 836 

sampling) methods. N.B. (1) All values were scaled to lie between 1 and 0 by dividing by the range (maximum – 837 

minimum) of values for each variable importance method. (2) Each binary descriptor takes the value 1 or 0, 838 

depending upon the value of the corresponding experimental condition or physico-chemical property. Results 839 

were obtained without perfectly correlated descriptors. Error bars represent the standard error of the mean. 840 
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Figure 3: Comparison of the feature contribution results for CORAL and Random Forest methods. For 856 

CORAL, the “feature contributions” are the correlation weights obtained for a given model built on a 857 

given LOO training set. For Random Forest, feature contributions were summarised as pseudo-858 

coefficients for a given model built on a given LOO training set. The average value was calculated 859 

across all the 95 models developed on LOO training sets. Error bars represent the standard error of 860 

the mean. N.B. For both methods, only results without perfectly correlated descriptors are presented. 861 

For Random Forest, only results without bootstrap sampling are presented. 862 
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Supplementary Information 873 

Table S1: Summary of the comparison between CORAL and Random Forest approaches. The average and standard error of the mean (in parentheses) of the coefficient of 874 
determination (R2) and the root-mean-square error (RMSE) were calculated across the 95 models developed in leave-one-out on different subsets. For Random Forest, the out-875 
of-bag (OOB) subset refers to the results obtained by predicting the training set based on out-of-bag samples and, otherwise, training set predictions were made via applying 876 
all trees in the model to each training set instance. We considered the influence of correlated descriptors on both methods. N/A = not applicable. As explained in the main text, 877 
“no” correlated descriptors refers to the absence of perfectly correlated descriptors. 878 

Software 
Correlated 

descriptors 

Bootstrap 

sampling 
LOO subset 

Run 1 Run 2 Run 3 Run 4 Run 5 Global 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

CORAL 

Yes 

N/A 

Training 
0.8144 

(0.0074) 

0.2519 

(0.0057) 

0.8200 

(0.0311) 

1.0537 

(0.8322) 

0.8528 

(0.0037) 

0.2157 

(0.0034) 

0.7838 

(0.0085) 

0.2688 

(0.0066) 

0.8444 

(0.0053) 

0.2229 

(0.0060) 

0.8231 

(0.0071) 

0.4026 

(0.1663) 

Test 0.6053 0.3916 0.0293 7.8504 0.6465 0.3708 0.6508 0.3336 0.6303 0.3661 
0.5124 

(0.1210) 

1.8625 

(1.4970) 

No 

Training 
0.8031 

(0.0166) 
0.2540 

(0.0083) 
0.8567 

(0.0056) 
0.2176 

(0.0085) 
0.8570 

(0.0029) 
0.2119 

(0.0034) 
0.7876 

(0.0077) 
0.2675 

(0.0064) 
0.8383 

(0.0108) 
0.2222 

(0.0067) 
0.8285 

(0.0052) 
0.2347 

(0.0038) 

Test 0.6529 0.3443 0.6243 0.3675 0.6143 0.3712 0.6436 0.3441 0.7082 0.3010 
0.6486 

(0.0164) 

0.3456 

(0.0125) 

Random 

 Forest 

Yes 

Yes 

Training 

OOB 
0.7866 

(0.0040) 
0.2533 

(0.0030) 
0.7897 

(0.0040) 
0.2514 

(0.0029) 
0.7884 

(0.0032) 
0.2523 

(0.0028) 
0.7875 

(0.0046) 
0.2526 

(0.0033) 
0.7897 

(0.0042) 
0.2515 

(0.0031) 
0.7884 

(0.0018) 
0.2522 

(0.0013) 

Predicted 
0.8985 

(0.0025) 

0.1758 

(0.0026) 

0.9000 

(0.0024) 

0.1743 

(0.0026) 

0.8985 

(0.0022) 

0.1755 

(0.0024) 

0.8991 

(0.0026) 

0.1751 

(0.0028) 

0.9000 

(0.0026) 

0.1744 

(0.0027) 

0.8992 

(0.0011) 

0.1750 

(0.0012) 

Test 0.7981 0.2468 0.7996 0.2459 0.7959 0.2481 0.7940 0.2494 0.7901 0.2519 
0.7955 

(0.0017) 

0.2484 

(0.0010) 

No 

Training 

OOB 
0.7869 

(0.0032) 
0.2530 

(0.0028) 
0.7911 

(0.0032) 
0.2504 

(0.0026) 
0.7932 

(0.0035) 
0.2491 

(0.0027) 
0.7894 

(0.0032) 
0.2515 

(0.0027) 
0.7919 

(0.0030) 
0.2500 

(0.0027) 
0.7905 

(0.0014) 
0.2508 

(0.0012) 

Predicted 
0.8732 

(0.0018) 

0.1961 

(0.0022) 

0.8743 

(0.0021) 

0.1953 

(0.0022) 

0.8742 

(0.0021) 

0.1953 

(0.0023) 

0.8752 

(0.0021) 

0.1944 

(0.0022) 

0.8743 

(0.0020) 

0.1953 

(0.0023) 

0.8742 

(0.0009) 

0.1953 

(0.0010) 

Test 0.7857 0.2542 0.7896 0.2519 0.7927 0.2500 0.7920 0.2505 0.7977 0.2470 
0.7915 

(0.0020) 

0.2507 

(0.0012) 

No 

Yes 

Training 

OOB 
0.7792 

(0.0047) 

0.2594 

(0.0032) 

0.7805 

(0.0043) 

0.2591 

(0.0028) 

0.7819 

(0.0051) 

0.2574 

(0.0035) 

0.7801 

(0.0040) 

0.2591 

(0.0030) 

0.7772 

(0.0042) 

0.2606 

(0.0031) 

0.7798 

(0.0020) 

0.2591 

(0.0014) 

Predicted 
0.8989 

(0.0026) 

0.1795 

(0.0027) 

0.8989 

(0.0024) 

0.1793 

(0.0025) 

0.8993 

(0.0026) 

0.1782 

(0.0027) 

0.8990 

(0.0024) 

0.1789 

(0.0025) 

0.8985 

(0.0025) 

0.1792 

(0.0026) 

0.8989 

(0.0011) 

0.1790 

(0.0011) 

Test 0.7757 0.2617 0.7896 0.2544 0.7744 0.2622 0.7900 0.2538 0.7867 0.2559 
0.7833 

(0.0034) 

0.2576 

(0.0018) 

No 

Training 

OOB 
0.7732 

(0.0049) 

0.2644 

(0.0038) 

0.7854 

(0.0030) 

0.2563 

(0.0026) 

0.7737 

(0.0030) 

0.2641 

(0.0028) 

0.7723 

(0.0042) 

0.2642 

(0.0034) 

0.7717 

(0.0039) 

0.2639 

(0.0031) 

0.7753 

(0.0018) 

0.2626 

(0.0014) 

Predicted 
0.8717 

(0.0023) 

0.2022 

(0.0026) 

0.8736 

(0.0020) 

0.1995 

(0.0023) 

0.8725 

(0.0022) 

0.2015 

(0.0025) 

0.8711 

(0.0023) 

0.2022 

(0.0025) 

0.8726 

(0.0022) 

0.2004 

(0.0025) 

0.8723 

(0.0010) 

0.2011 

(0.0011) 

Test 0.7741 0.2646 0.7899 0.2544 0.7822 0.2597 0.7707 0.2665 0.7864 0.2568 
0.7807 

(0.0036) 

0.2604 

(0.0023) 

   879 
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Figure S1: Comparison between Random Forest %IncMSE and IncNodePurity scaled variable importance methods with and without bootstrap sampling. Average and standard 880 

error of the mean (SEM) – here reported as error bar - were calculated across all the models developed by LOO. Perfectly correlated descriptors were deleted. 881 

 882 
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Figure S2: Comparison between scaled variable importance results for CORAL and Random Forest, including perfectly correlated descriptors. Average and standard error of 883 

the mean (SEM) – here reported as error bars - were calculated across all the models developed by LOO. 884 

 885 
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Figure S3: Feature contribution analysis for CORAL and Random Forest methods with correlated descriptors. Error bars represent the standard error of the mean. 886 
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Details on the CORAL software settings and optimisation   889 

As reported in the CORAL software documentation (version: December 17, 2014 for Microsoft Windows, 890 

available at http://www.insilico.eu/coral/), in order to use the software, specific text files must be prepared as 891 

input. The CORAL software requires the dataset used for model development to be split into three subsets, each 892 

of which is labelled with a different character in the input file, termed “sub-training” (“+”), “calibration” (“-“) and 893 

“test” (“#”) subsets. (Since the model hyperparameters may be optimised based upon performance on this “test” 894 

set, it may be considered an internal “test” set.) Each of these must contain a minimum number of 3 instances 895 

having a similar experimental range in order for the software to work properly. The exact CORAL settings we 896 

used in this work are shown in Figure S4. In this work we applied the “additive scheme” for which the optimal 897 

descriptor DCW is calculated by summing the correlation weights CWs of each single attribute Sk which is present 898 

in the input pseudo-SMILES (see main text). Moreover, we selected the “classic scheme” which doesn’t use the 899 

“calibration” subset. The input files we used do contain instances with the “-“ label for calibration subset but this 900 

label was automatically converted by the software into the “+” label for the sub-training subset (see input and 901 

output files in Supplementary Information). We applied the recommended approach [40, 42] of optimising the 902 

CORAL hyperparameters (i.e. the threshold and number of epochs, “T” and “N”) on the internal test set i.e. 903 

instances labelled with “#” (see input files). According to the recommended approach, we prepared five splits of 904 

the same input dataset by shuffling the instances between training and test subsets with the rationale of having a 905 

similar experimental range among the subsets. Table S2 shows the five different splits we used in this work. For 906 

the LOO calculation, a Python script was written to create 19 input text files each containing 18 instances for 907 

CORAL modelling (see Supplementary Information). For each time the CORAL software was used for modelling, 908 

the single item external test set was predicted using the “Start of DCW and Endpoint Calculation for inserted 909 

SMILES” button as shown in Figure S5. 910 

Computational resources used to carry out the calculations 911 

We performed all the calculations, including with Random Forest, on a 32-bit Windows 7 machine with an Intel® 912 

Core™ i3-2120 CPU 3.30 GHz processor and 4 GB of installed memory (RAM). 913 
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Figure S4: CORAL graphical user interface settings used in this work. 919 
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Table S2: ID and experimental values (EXP column) for each split of the dataset used for CORAL modelling. 939 

N.B. (1) The “+”, “-” and “#” symbols stand for sub-training, calibration and test subsets, respectively. (2) For 940 

“external” LOO validation, one instance was removed at a time and not used for model optimisation, which was 941 

performed on the internal “test” subset (“#”), i.e. each of these splits of the dataset corresponds to a different split 942 

of the corresponding LOO training set.  943 

Subset 
Split 1 Split 2 Split 3 Split 4 Split 5 

ID EXP ID EXP ID EXP ID EXP ID EXP 

+ 119 -1.299 119 -1.299 119 -1.299 119 -1.299 119 -1.299 

+ 105 -1.135 100 -1.026 105 -1.135 105 -1.135 105 -1.135 

+ 102 -0.920 102 -0.920 102 -0.920 102 -0.920 107 -0.844 

+ 106 -0.822 106 -0.822 127 -0.281 106 -0.822 106 -0.822 

+ 120 -0.223 128 -0.147 120 -0.223 120 -0.223 128 -0.147 

+ 123 0.365 123 0.365 123 0.365 128 -0.147 100 -1.026 

+ 131 0.483 131 0.483 131 0.483 131 0.483 131 0.483 

- 104 -1.272 104 -1.272 104 -1.272 104 -1.272 104 -1.272 

- 101 -1.105 127 -0.281 101 -1.105 101 -1.105 101 -1.105 

- 103 -0.872 107 -0.844 100 -1.026 100 -1.026 103 -0.872 

- 121 -0.394 121 -0.394 107 -0.844 121 -0.394 121 -0.394 

- 129 -0.197 129 -0.197 129 -0.197 129 -0.197 129 -0.197 

- 130 0.059 130 0.059 130 0.059 130 0.059 130 0.059 

# 186 -1.165 186 -1.165 186 -1.165 186 -1.165 186 -1.165 

# 100 -1.026 105 -1.135 103 -0.872 127 -0.281 123 0.365 

# 107 -0.844 103 -0.872 121 -0.394 123 0.365 102 -0.920 

# 127 -0.281 101 -1.105 106 -0.822 103 -0.872 127 -0.281 

# 128 -0.147 120 -0.223 128 -0.147 107 -0.844 120 -0.223 

# 122 -0.070 122 -0.070 122 -0.070 122 -0.070 122 -0.070 
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Figure S5: Screenshot of the CORAL graphical user interface showing an example of calculation of a single item 952 

external test set for LOO. 953 
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