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Abstract 

This study outlines the use of a recently developed fragment-based thiol reactivity profiler for Michael 

acceptors to predict toxicity towards Tetrahymena pyriformis and skin sensitisation potency as 

determined in the Local Lymph Node Assay (LLNA). The results showed that the calculated reactivity 

parameter from the profiler, -log RC50(calc), was capable of predicting toxicity for both endpoints with 

excellent statistics. However, the study highlighted the importance of a well-defined applicability 

domain for each endpoint. In terms of Tetrahymena pyriformis this domain was defined in terms of how 

fast or slowly a given Michael acceptor reacts with thiol leading to two separate quantitative structure-

activity models. The first, for fast reacting chemicals required only –Log RC50(calc) as a descriptor, 

whilst the second required the addition of a descriptor for hydrophobicity. Modelling of the LLNA 

required only a single descriptor, -log RC50(calc), enabling potency to be predicted. The applicability 

domain excluded chemicals capable of undergoing polymerisation and those that were predicted to be 

volatile. The modelling results for both endpoints, using the –log RC50(calc) value from the profiler, 

were in keeping with previously published studies that have utilised experimentally determined 

measurements of reactivity. This results demonstrate the output from the fragment-based thiol reactivity 

profiler can be used to develop quantitative structure-activity relationship models where reactivity 

towards thiol is a driver of toxicity. 
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Introduction 

It is well established that various toxicological effects can occur as a result of covalent bond formation 

between electrophilic chemicals and biological nucleophiles such as lysine and cysteine groups of 

proteins. This includes toxicological effects in both humans and environmental species, for example 

skin sensitisation or aquatic toxicity.1-6 One mechanism resulting in covalent bond formation is Michael 

addition. Chemicals that act via Michael addition (known as Michael acceptors) are typically organic 

chemicals that contain a π-bond adjacent to a polarising group, such as a carbonyl.7 This results in a 

partial positive charge on the β-carbon of the π-bond, causing the electrophilic chemical to become 

susceptible to a reaction with a biological nucleophile with either a negative charge or a lone pair of 

electrons. 8, 9 This nucleophilic attack at the β-carbon of the Michael acceptor results in a resonance 

stabilised carbanion intermediate, with a negative charge residing on the α-carbon. This α-carbon is 

then protonated to produce the final product (known as a Michael adduct) (Figure 1). 

 

Knowledge of this mechanism has allowed for the development of structural alerts to identify chemicals 

that may act via Michael addition, and consequently have the potential to cause toxicological effects. 8, 

9 Structural alerts can be grouped together to form the basis of an ‘in silico profiler’ for mechanisms 

associated with specific toxicological outcomes, such as the structural alerts developed to identify the 

potential mechanism of action for skin sensitisation.10 Whilst in silico profilers are useful for identifying 

features associated with potential toxicity the information they provide is qualitative (i.e. a binary yes 

or no for the presence of a structural feature); they provide no information concerning toxicological 

potency. When using knowledge of covalent mechanisms to predict toxicological potency, a primary 

assumption is that the rate of covalent bond formation (reactivity) is proportional to toxicity.11 As a 

result of this assumption, there has been an increase in the number of studies focused on predicting 

potency using computational methods and/or in chemico reactivity measurements (i.e. experimental 

reactivity measurements that do not require the use of laboratory animals). A common experimental 

approach is the measurement of depletion of reactive peptides (such as glutathione) upon exposure to 

the test chemical over a fixed time period.2 There have been many experimental studies which have 

successfully linked reactivity, as measured in an in chemico assay, to toxicity e.g. to Tetrahymena 

pyriformis measured in the in vitro Tetrahymena pyriformis growth impairment assay.12-16 Similarly, 

results of kinetic peptide depletion assays have also been used in the prediction of skin sensitisation 

potency.3, 4
 Previous studies have also utilised Hammett and Taft descriptors to model chemical 

reactivity for the prediction of skin sensitisation.17 These descriptors were derived from extensive 

studies into the effect of substituents upon the acidic dissociation constant (pKa) in model acid systems. 

These efforts further demonstrate the possibility that potency can be predicted for reactive chemicals 

within well-defined mechanistic domains. 
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A number of approaches have been published that make use of chemical descriptors derived from 

computational (in silico) approaches aimed at quantifying chemical reactivity. These are typically 

derived from quantum mechanics calculations, and include descriptors, such as energy values of the 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and the 

electrophilic index (ω).18 These descriptors are then used to relate the electronic properties of the test 

chemical to their reactivity or to their toxicity, directly. However, these descriptors quantify only the 

electronic portion of chemical reactivity and account for factors such as steric hindrance at the reactive 

site.6 Another common descriptor is the energy of activation (Eact) in which the energy difference 

between a test chemical and a model nucleophile, (with its respective transition state structure) is used. 

This has been performed successfully for the prediction of both aquatic toxicity and skin sensitisation.19, 

20 Importantly, this type of descriptor offers the advantage that it accounts for both electronic and steric 

factors involved in chemical reactivity, with studies showing that this approach capable of predicting 

potency for aquatic toxicity and skin sensitisation. However, the derivation of Eact requires is reliant 

on the quantum mechanics calculations capable of ‘mapping’ out the reaction pathway including the 

identification of key intermediates and/or transition state structures. This can be a time-consuming 

process, requiring significant expertise in the application of such methods.  

 

Given the challenges of utilising quantum mechanics calculations to derive Eact values for use in 

predictive toxicology a recent study by the current authors showed  that it is possible to predict 

experimentally derived reactivity towards glutathione (expressed as –logRC50)  through the use of 

fragments with pre-calculated Eact values  for Michael acceptors.21 This approach involved defining 

the length of alkyl chain of the Michael acceptor beyond which further increases failed to significantly 

increase the activation energy. This enabled appropriate fragments to be generated which could be 

stored in a database along with pre-calculated activation energy values. The methodology was encoded 

as a KNIME workflow through which chemicals of interest can inputted using SMILES strings and are 

then compared to the fragments encoded as SMARTS patterns. The fragments are associated with their 

corresponding Eact values and an additional parameter that models the solvent accessible surface (SAS) 

at the α-position of the Michael acceptor.   Once the query chemical has been assigned a fragment, its 

corresponding Eact and SAS values are used to predict its reactivity (expressed as –Log RC50 values) 

based on a previously developed QSAR model; this process is summarised in Figure 2. Therefore given 

the availability of a fragment-based profiler, the aim of this study was to validate the calculated –Log 

RC50 values generated from the fragment based reactivity profiler for thiol reactivity in predicting 

toxicity to Tetrahymena pyriformis and skin sensitisation potency (as determined in the LLNA) for 

Michael acceptors. 
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Methods 

Computational methods 

The previously published fragment-based reactivity profiler for thiol reactivity was utilised in the 

current study to predict reactivity towards a thiol nucleophile (defined a –log RC50(calc)).21 Briefly, this 

profiler was developed from a set of linear Michael acceptors with experimentally determined RC50 

values, where the RC50 is the concentration of the electrophile required to deplete the concentration of 

glutathione by 50% over a fixed two hour time period.22  The fragment-based reactivity profiler was 

trained on a set of polarised aldehydes, ketones, and esters with varying alkyl and aryl substitutions 

(Figure 3).21   

 

The –Log RC50(calc) values for chemicals in the Tetrahymena pyriformis and skin sensitisation datasets 

were generated using a previously developed KNIME workflow encoding the fragment-based reactivity 

profiler for thiol reactivity (this workflow, including calculated fragments is available from the authors 

on request).21 The workflow utilises a database of fragments with pre-calculated activation energy 

values (Eact) calculated using Density Functional Theory (DFT) at the B3LYP/6-31G+(d) level of 

theory (calculations performed using Gaussian09 and with water as a solvent).23 The workflow is 

summarised in Figure 2. Descriptors for hydrophobicity (Log Kow) and vapour pressure (Log VP) were 

calculated using the KOWWIN (V1.68) and MPBPWIN (V1.43)modules of EPI suite .24  

 

Datasets for Tetrahymena pyriformis and skin sensitisation 

A set of 62 Michael acceptors from a database of 2072 chemicals with experimental toxicity values to 

Tetrahymena pyriformis were identified as being within the applicability domain of the of the fragment-

based thiol reactivity profiler (defined in Figure 3).25 These toxicity data were obtained using an in vitro 

assay, which quantifies 50% growth inhibition of the ciliate Tetrahymena pyriformis over a 40-hour 

exposure period to the test chemical (also recorded as EC50 values).26 A similar analysis of skin 

sensitisation data gathered from the Local Lymph Node Assay (LLNA) resulted in a dataset of 38 

Michael acceptors within the applicability of the fragment-based thiol reactivity profiler.27-29 The LLNA 

is an in vivo based assay in which the stimulation of the lymph nodes of mice is measured upon exposure 

to a test chemical. The recorded value is the concentration required to elicit a three-fold stimulation in 

the lymph nodes, this is reported as an EC3 value (% weight) for the chemical. If the chemical does not 

produce a threefold stimulation it is not considered a sensitiser. All EC3 values were converted to pEC3 

values (Equation 1). As the test vehicle is known to influence pEC3 values, only chemicals for which 

the vehicle was recorded to be Acetone: olive oil, AOO 4:1) were included in the analysis, this resulted 

in final dataset of 27 skin sensitising chemicals. 30 

 

pEC3 = Log (EC3 Molecular weight)⁄                    (1) 
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Statistical analysis 

Linear regression analysis was used to develop quantitative structure-activity relationship models to 

obtain correlations between calculated –Log RC50 values and toxicity values using the Minitab (version 

17) statistical software. Outliers were identified following linear regression analysis as chemicals with 

large standardised residuals as identified by Minitab. Chemicals for which a mechanistic rationale 

enabling outlying behaviour to be explained were subsequently removed from the analysis.     

 

Results and Discussion 

The aim of this study was to investigate the ability of a recently published fragment-based thiol 

reactivity profiler to predict toxicity of Michael acceptors towards Tetrahymena pyriformis and the 

LLNA. 25, 27-29 Analysis of the Tetrahymena pyriformis data within the applicability domain of the 

fragment-based thiol reactivity profiler resulted in a dataset of 62 chemicals (14 Aldehydes, 12 Ketones 

and 36 esters) with corresponding EC50 values (Table1). Initial modelling using the –Log RC50(calc) 

values alone showed a clear trend (R2 = 0.45) between reactivity and toxicity to Tetrahymena pyriformis 

(Model 1 in Figure 5 using equation 3). Interestingly, this value is lower than that published on a dataset 

of 41 Michael acceptors using experimentally determined glutathione depletion data (R2 = 0.85).2  

However, in comparison with the current study (using –log RC50(calc) as a measure of reactivity) this 

study using experimental reactivity data also failed to predict the toxicity to Tetrahymena pyriformis of 

slow reacting chemicals such as methacrylate esters. It was suggested that for these chemicals toxicity 

is driven by both hydrophobicity and reactivity due to them reacting slowly with proteins.2  

 

        Log (1/EC50) = 0.63 + 0.61 –Log RC50(calc)             (Model 1) 

         N = 62, R2 = 0.45, R2-adj = 0.44, s = 0.46 

 

Consistent with this hypothesis a related study showed splitting the data into fast reacting and slow 

reacting classes resulted in significantly improved modelling results.5 Importantly, the toxicity to 

Tetrahymena pyriformis for the fast reacting chemicals could be predicted from experimental reactivity 

alone, whilst those in the slow reacting class required both hydrophobicity and reactivity. The authors 

suggested a reactivity cut-off to distinguish the two classes based on equation 2, where chemicals with 

a Dkk < 3 being fast reacting and those with DKK > 3 being slow reacting. Applying these criteria to the 

current dataset, using –Log RC50(calc) as a measure of reactivity resulted in models 2 and 3 (fast and 

slow reacting chemicals respectively). Forty three chemicals were assigned to the fast reacting class 

(chemicals 1 – 43 in Table 1), whilst 23 chemicals were assigned to the slow reacting class (chemicals 

44-62 in Table 1). In keeping with the previously published work using experimentally determined 

reactivity data, toxicity to Tetrahymena pyriformis for the chemicals in the fast reacting class required 
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only –log RC50(calc) (model 2a), whilst the chemicals in the slow reacting class required both –log 

RC50(calc) and log Kow (model 2b). Figure 5 shows the correlation plots for models 2 and 3. 

 

              ��� = Log (��� −Log ��50(calculated)) = ������ −−Log ��50(calculated) ⁄  (2) 

 

 

Log (1/EC50) = 0.41 + 0.94 –Log RC50(calc)   (Model 2a) 

     N =43, R2 = 0.78, R2-adj = 0.77, s = 0.30 

 

Log (1/EC50) = -1.82 + 0.35 –Log RC50 (calculated) + 0.89 LogKow  (Model 2b) 

N = 19, R2 = 0.85, R2-adj = 0.83, s = 0.31 

 

Prediction of skin sensitisation potency as defined in the LLNA 

The rate of covalent bond formation has also been shown to be important for the prediction of skin 

sensitisation potency as determined in the LLNA using both experimental and computational measures 

of reactivity.3, 4, 6, 19 In keeping with these studies, the fragment-based reactivity algorithm was used to 

predict pEC3 values for the 26 Michael acceptors within the previously defined applicability domain. 

These chemicals are shown in Table 2. An initial analysis of the correlation between pEC3 and –

LogRC50(calc) resulted in extremely poor statistics (equation 7). Despite this, 13 of the chemicals were 

predicted within a twofold error of the corresponding experimental value (chemicals with a predicted 

value within 0.3 log units of the experimental value). These predictions are within the experimental 

twofold error of the LLNA.31 Any chemicals outside of the two-fold error of the experimental assay 

were consider as outliers (labelled in Table 2) and were analysed to rationalise the error in their 

predictions.  

 

Predicted pEC3 = 1.35 + -0.05 –Log RC50(calc)  (model 3) 

         N = 26, R2 = 0.00, R2-adj = 0.00, s = 0.3 

 

The majority of compounds with the largest errors are chemicals that are volatile, with the majority of 

these being acrylates and methacrylates (chemicals 1-5 in Table 2). Previous research has shown that 

the skin sensitisation potency of these volatile chemicals is less than might be expected based on their 

experimentally determined chemical reactivity.3 In addition, research has also suggested that the 

acrylate and methacrylates chemicals are susceptible to polymerisation driven by free radical chemistry 

in the skin.32, 33 Interestingly, the toxicity of a large number of similar chemicals towards Tetrahymena 

pyriformis were well predicted (chemicals 23-62 in Table 1). This highlights the importance of defining 

the applicability domain of any predictive model (experimental or computational) based on a detailed 
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understanding of the mechanistic chemistry of the assay. This mechanistic rationale resulted in the 

removal of a total of six volatile chemicals (chemicals 1-5 and 10), and two additional acrylates 

(chemicals 13 and 24). Three of these chemicals were removed despite being relatively well-predicted 

(chemicals 10, 13 and 24) as no mechanistic rationale could be offered as to why they were correctly 

predicted compared to the other chemicals identified. This being a case of applying a cautionary 

applicability domain to the model for these types of chemicals. 

 

In contrast to the over-prediction of the majority of volatile chemicals, galbanone and spirogalbanone 

were significantly under predicted using the fragment-based reactivity algorithm (chemicals 21 and 25 

in Table 2). The skin sensitisation potency of these two chemicals was predicted using 3-methly-3-

penten-2-one as the reference fragment to take account of the effect of an alkyl group at the α-position 

(which causes a decrease in the rate of the Michael addition reaction).21 However, it is possible that a 

second site of Michael addition reactivity exists for these chemicals due to their reported ability to 

undergo double bond migration (highlighted part of the structure shown in Figure 7).34 This type of 

migration is particularly favoured when the alkene group is unsubstituted (CH2=CR) as is the case with 

galbanone and spirogalbanone (Figure 7). Predicting the glutathione reactivity of spirogalbanone and 

galbanone with the reference fragment 3-penten-2-one (to reflect the second potential site of reactivity) 

resulted in an improved pEC3 prediction of 1.84 (versus 1.36) for both galbanone (pEC3 =1.81) and 

spirogalbanone (pEC3 = 2.00). Importantly, it is likely that only one of these two possible sites of 

reactivity can undergo Michael addition at any one time as calculations show that the steric bulk of the 

cyclic ring enables only one of the alkene moieties to be conjugated with the carbonyl group at a time 

(data not shown). The predicted values suggest that the more reactive migrated site is primarily 

responsible for the skin sensitising ability of these chemicals. The more reactive alternative site for 

Michael addition was utilised for these chemicals enabling them to remain within the applicability 

domain of the model. This analysis demonstrates one of the strengths of the fragment-based thiol 

reactivity profiler in that it enables the investigation of alternative sites of chemical reactivity through 

the use of alternate fragments.  

 

The final chemical that was poorly predicted was 5,5-dimethyl-3-methylene-dihydro-2-(3H)-furone, 

This chemical is a cyclic Michael acceptor in which only the α-carbon of the alkene is part of the ring 

system. The development of the fragment-based reactivity algorithm showed that the glutathione 

reactivity of cyclic Michael acceptors in which both the α- and β-carbons of the alkene were part of the 

ring could be successfully predicted using linear reference fragments.21 In keeping with this analysis, 

the analogous chemicals in the skin sensitisation data were well predicted (chemicals 6, 7 and 14 in 

Table 2).  Inspection of the data used to develop the fragment-based reactivity algorithm shows that it 

does not contain chemicals in which only the α-carbon of the double bond is part of the ring. In addition, 

these types of chemicals are also not present in the Tetrahymena pyriformis dataset analysed in the 
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current study. Therefore, it is impossible to ascertain as to whether the fragment-based reactivity 

algorithm is under-predicting the glutathione reactivity of these chemicals or if these chemicals are 

more potent in the LLNA than is predicted from reactivity alone.   

The analysis outlined enabled the removal of 11 chemicals resulting in a final model based on 17 

chemicals with an R2 = 0.77 (Figure 8, model 4). Importantly, this model has a similar applicability 

domain to that published using experimentally determined kinetic rate constants, in that volatile 

chemicals and those that can polymerise are excluded.3, 4 However, the use of –Log RC5o(calc) in the 

current study enabled a greater number of chemicals to be predicted (17 versus 10), whilst maintaining 

a similar level of statistical accuracy (R2 = 0.77 versus 0.84).   

 

pEC3 = 1.77 + 0.43 –Log RC50 (calculated)   (model 4) 

                  N = 17, R2 = 0.76, R2-adj = 0.76, s = 0.12 

 

Conclusions 

The aim of this work was to validate the fragment-based reactivity profiler for thiol reactivity for 

prediction of toxicity to Tetrahymena pyriformis and skin sensitisation potency for Michael acceptors. 

The results of this study showed the predicted reactivity values (-Log RC50(calc)) was able to predict 

both endpoints within well-defined, end-point specific applicability domains. The results showed the 

importance of considering slow versus fast reacting Michael acceptors when modelling toxicity to 

Tetrahymena pyriformis and polymerisation and volatility to be important in successfully predicting 

skin sensitation potency. These results were in keeping with previously published studies that has 

utilised experimentally determined measurements of chemical reactivity to model the same endpoints. 

The statistical quality of resulting QSAR models demonstrated that the predicted reactivity values 

generated by the fragment-based profiler for thiol reactivity are on a par with using experimentally 

determined values. However, the use of an in silico approach offers clear benefits in terms of the ability 

to predict reactivity towards thiol for Michael acceptors in an efficient manner, without the need to 

perform either time-consuming and expensive experimental assays or undertake complex quantum 

mechanics calculations. The fragment-based in silico profiler could be developed further for additional 

endpoints such as genotoxicity for where lysine is the nucleophile. Such developments are dependent 

on the availability of reactivity data. 

 

Abbreviations 

Eact – Energies of Activation 

HOMO – Highest Occupied Molecular Orbital 

LUMO – Lowest Unoccupied Molecular Orbitals 

SAS – Solvent Accessible Surface area 
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SMARTS – Smiles Arbitrary Target Specification 

SMILES – Simplified Molecular Input Line Entry System 
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Table 1. The 62 chemicals used in the assessment of the fragment method for predicting Tetrahymena pyriformis toxicity (Log 1/EC50 mmol/l). Chemical 
names, SMILES, experimental Log 1/EC50 mmol/l with–LogRC50(calc), Dkk and predicted Log 1/EC50 mmol/l for the respective models are shown. N.B log 
1/EC50 values were calculated with model 2a for fast reacting chemicals (1-43) and model 2b for slower reacting chemicals (44-62). 

ID 
 

Chemical 
SMILES 

Log(1/EC50) 
(mmol/l) 

 –Log 
RC50(calc) 

LogKow Dkk 
Predicted Log (1/EC50) 

Model 1 Model 2a/b  
1 prop-2-enal C=CC=O 1.65 1.34 0.19 -1.15 1.45 1.66 
2 (2E)-but-2-enal C\C=C\C=O 0.88 0.66 0.60 -0.06 1.04 1.04 
3 (2E)-3-(furan-2-yl)prop-2-enal O=C\C=C\c1ccco1 0.37 0.05 1.19 1.14 0.66 0.46 
4 (2E)-pent-2-enal CC\C=C\C=O 0.66 0.55 1.09 0.54 0.97 0.94 
5 4-methylpent-2-enal CC(C)\C=C\C=O 0.82 0.55 1.51 0.96 0.97 0.94 
6 hex-2-enal CCC\C=C\C=O 0.77 0.55 1.58 1.03 0.97 0.94 
7 (2E)-3-phenylprop-2-enal O=C\C=C\c1ccccc1 0.68 0.05 1.82 1.77 0.66 0.46 
8 (2E)-3-[4-(dimethylamino)phenyl]prop-2-enal CN(C)c1ccc(\C=C\C=O)cc1 0.52 0.05 2.00 1.95 0.66 0.46 
9 hept-2-enal CCCC\C=C\C=O 1.05 0.66 2.07 1.41 1.04 1.04 

10 (2E)-oct-2-enal CCCCC\C=C\C=O 1.20 0.55 2.57 2.02 0.97 0.94 
11 (2E)-2-methylbut-2-enal C\C=C(/C)C=O -0.14 -0.96 1.15 2.11 0.04 -0.49 
12 non-2-enal CCCCCC\C=C\C=O 1.60 0.66 3.06 2.40 1.04 1.04 
13 2-methylpent-2-enal CC\C=C(/C)C=O -0.39 -1.05 1.64 2.69 -0.01 -0.58 
14 but-3-en-2-one CC(=O)C=C 1.50 0.92 0.41 -0.51 1.20 1.27 
15 pent-1-en-3-one CCC(=O)C=C 1.49 0.92 0.90 -0.02 1.20 1.29 
16 hex-1-en-3-one CCCC(=O)C=C 1.66 0.92 1.39 0.47 1.20 1.29 
17 pent-3-en-2-one C\C=C\C(C)=O 0.54 0.15 0.82 0.67 0.72 0.56 
18 hex-4-en-3-one CCC(=O)\C=C\C 0.93 0.10 1.31 1.21 0.69 0.51 
19 oct-1-en-3-one CCCCCC(=O)C=C 1.92 0.92 2.37 1.45 1.20 1.29 
20 hept-3-en-2-one CCC\C=C\C(C)=O 0.70 0.00 1.80 1.80 0.63 0.42 
21 oct-3-en-2-one CCCC\C=C\C(C)=O 0.74 0.00 2.29 2.29 0.63 0.42 
22 oct-2-en-4-one CCCCC(=O)\C=C\C 1.01 0.00 2.29 2.29 0.63 0.42 
23 2-methylcyclopent-2-en-1-one CC1=CCCC1=O -0.83 -1.25 1.26 2.51 -0.14 -0.77 
24 3-methylpent-3-en-2-one C\C=C(/C)C(C)=O -0.34 -1.25 1.37 2.62 -0.14 -0.77 
25 non-3-en-2-one CCCCC\C=C\C(C)=O 0.98 0.00 2.79 2.79 0.63 0.42 
26 2-hydroxyethyl prop-2-enoate OCCOC(=O)C=C 0.69 0.50 -0.25 -0.75 0.94 0.88 
27 2-hydroxypropyl prop-2-enoate CC(O)COC(=O)C=C 0.65 0.50 0.17 -0.33 0.94 0.89 
28 methyl prop-2-enoate COC(=O)C=C 0.55 0.50 0.73 0.23 0.94 0.89 
29 ethyl prop-2-enoate CCOC(=O)C=C 0.52 0.50 1.22 0.72 0.94 0.89 
30 propyl prop-2-enoate CCCOC(=O)C=C 0.53 0.50 1.71 1.21 0.94 0.89 
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31 2-methylpropyl prop-2-enoate CC(C)COC(=O)C=C 0.29 0.50 2.13 1.63 0.94 0.89 
32 2-hydroxyethyl 2-methylprop-2-enoate CC(=C)C(=O)OCCO -1.08 -1.40 0.30 1.70 -0.23 -0.91 
33 butyl prop-2-enoate CCCCOC(=O)C=C 0.52 0.50 2.20 1.70 0.94 0.89 
34 benzyl prop-2-enoate C=CC(=O)OCc1ccccc1 1.35 0.50 2.44 1.94 0.94 0.89 
35 3-methylbutyl prop-2-enoate CC(C)CCOC(=O)C=C 0.41 0.50 2.62 2.12 0.94 0.89 
36 pentyl prop-2-enoate CCCCCOC(=O)C=C 0.54 0.50 2.69 2.19 0.94 0.89 
37 cyclohexyl prop-2-enoate C=CC(=O)OC1CCCCC1 0.76 0.50 3.00 2.50 0.94 0.89 
38 methyl 2-methylprop-2-enoate COC(=O)C(C)=C -1.28 -1.40 1.28 2.68 -0.23 -0.91 
39 hexyl prop-2-enoate CCCCCCOC(=O)C=C 0.73 0.50 3.18 2.68 0.94 0.89 
40 2-methylpropyl (2E)-but-2-enoate C\C=C\C(=O)OCC(C)C -0.34 -0.19 2.54 2.73 0.51 0.24 
41 butan-2-yl (2E)-but-2-enoate CCC(C)OC(=O)\C=C\C -0.42 -0.19 2.54 2.73 0.51 0.24 
42 butyl (2E)-but-2-enoate CCCCOC(=O)\C=C\C -0.16 -0.19 2.61 2.80 0.51 0.24 
43 2-ethoxyethyl 2-methylprop-2-enoate CCOCCOC(=O)C(C)=C -0.78 -1.40 1.49 2.89 -0.23 -0.91 
44 (2E)-dec-2-enal CCCCC\C=C\C=O 1.85 0.55 3.55 3.00 0.97 1.50 
45 heptyl prop-2-enoate CCCCCCCOC(=O)C=C 1.09 0.50 3.67 3.17 0.94 1.59 
46 ethyl 2-methylprop-2-enoate CCOC(=O)C(C)=C -0.93 -1.40 1.77 3.17 -0.23 -0.76 
47 methyl (2E)-oct-2-enoate CCCCC\C=C\C(=O)OC 0.77 -0.19 3.10 3.29 0.51 0.84 
48 methyl (2E)-3-phenylprop-2-enoate COC(=O)\C=C\c1ccccc1 0.58 -0.94 2.36 3.30 0.05 -0.08 
49 methyl (2E)-2-methylbut-2-enoate COC(=O)C(\C)=C\C -0.70 -1.64 1.69 3.33 -0.38 -0.92 
50 propan-2-yl 2-methylprop-2-enoate CC(C)OC(=O)C(C)=C -0.88 -1.40 2.18 3.58 -0.23 -0.40 
51 propyl 2-methylprop-2-enoate CCCOC(=O)C(C)=C -0.66 -1.40 2.26 3.66 -0.23 -0.33 
52 methyl non-2-enoate CCCCCC\C=C\C(=O)OC 1.04 -0.19 3.60 3.79 0.51 1.29 
53 ethyl (2E)-3-phenylprop-2-enoate CCOC(=O)\C=C\c1ccccc1 0.99 -0.94 2.85 3.79 0.05 0.36 
54 ethyl (2E)-2-methylbut-2-enoate CCOC(=O)C(\C)=C\C -0.50 -1.64 2.18 3.82 -0.38 -0.48 
55 methyl (2E)-2-methylpent-2-enoate CC\C=C(/C)C(=O)OC -0.38 -1.64 2.18 3.82 -0.38 -0.48 
56 2-methylpropyl 2-methylprop-2-enoate CC(C)COC(=O)C(C)=C -0.28 -1.40 2.67 4.07 -0.23 0.04 
57 butyl 2-methylprop-2-enoate CCCCOC(=O)C=C -0.27 -1.40 2.75 4.15 -0.23 0.11 
58 propyl (2E)-3-phenylprop-2-enoate CCCOC(=O)\C=C\c1ccccc1 1.23 -0.94 3.34 4.28 0.05 0.80 
59 benzyl 2-methylprop-2-enoate CC(=C)C(=O)OCc1ccccc1 0.65 -1.40 2.98 4.38 -0.23 0.32 
60 butyl (2E)-3-phenylprop-2-enoate CCCCOC(=O)\C=C\c1ccccc1 1.53 -0.94 3.83 4.77 0.05 1.24 
61 hexyl 2-methylprop-2-enoate CCCCCCOC(=O)C(C)=C 1.09 -1.40 3.73 5.13 -0.23 0.99 
62 2-ethylhexyl 2-methylprop-2-enoate CCCCC(CC)COC(=O)C(C)=C 1.57 -1.40 4.64 6.04 -0.23 1.80 
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Table 2. The 27 chemicals used in the assessment of the fragment-based reactivity algorithm’s ability to predict skin sensitisation potency (pEC3). 
Chemicals SMILES, experimental pEC3 with error values,–LogRC50(calc), Log VP and predicted pEC3 values for all models are shown. 
 

ID 
 

Chemical 
 

SMILES 
 

pEC3 
 

-Log RC50(calc) 
 

Log VP 
Predicted pEC3  

Model 3 Model 4 
1 Methyl methacrylate CC(=C)C(=O)OC 0.05 -1.40 1.59 1.28(1.23) - 
2 2-Hydroxypropyl methacrylate CC(COC(=O)C(=C)C)O 0.46 -1.40 -1.10 1.28(0.82) - 
3 Ethyl acrylate CCOC(=O)C=C 0.55 0.50 1.61 1.38(0.83) - 
4 Methyl acrylate COC(=O)C=C 0.63 0.50 1.95 1.38(0.75) - 
5 Butyl acrylate CCCCOC(=O)C=C 0.81 0.50 0.74 1.38(0.57) - 
6 r-Carvone CC(=C)C1CC=C(C)C(=O)C1 1.07 -1.25 -0.86 1.29(0.22) 1.23(0.16) 
7 L-Carvone CC1=CC[C@H](CC1=O)C(=C)C 1.10 -1.25 -0.86 1.29(0.19) 1.23(0.16) 
8 a-Butyl cinnamic aldehyde CCCC\C(C=O)=C/c1ccccc1 1.23 -1.26 -2.55 1.29(0.06) 1.23(0.00) 
9 Linalool aldehyde C\C(C=O)=C/CCC(C)(O)C=C 1.25 -0.98 -2.51 1.30(0.05) 1.35(0.10) 
10 trans-2-Hexenal CCC\C=C\C=O 1.25 0.41 0.71 1.38(0.13) - 
11 a-Amyl cinnamic aldehyde CCCCC/C(=C\c1ccccc1)/C=O 1.26 -1.26 -3.47 1.29(0.03) 1.23(-0.03) 
12 α-Hexylcinnamaldehyde CCCCCC\C(C=O)=C/c1ccccc1 1.26 -1.26 -3.45 1.29(0.03) 1.23(-0.03) 
13 2-Ethylhexyl-acrylate CCCCC(CC)COC(=O)C=C 1.27 0.50 -0.71 1.38(0.11) - 
14 Perillaldehyde CC(=C)C1CCC(C=O)=CC1 1.27 -0.98 -1.32 1.30(0.03) 1.35(0.08) 
15 1-(p-Methoxyphenyl)-1-penten-3-one CCC(=O)\C=C\c1ccc(OC)cc1 1.31 -0.55 -2.73 1.33(0.02) 1.54(0.23) 
16 a-Methyl-cinnamic aldehyde C\C(C=O)=C/c1ccccc1 1.51 -1.26 -1.59 1.29(-0.22) 1.23(-0.28) 
17 Benzylidene acetone CC(=O)\C=C\c1ccccc1 1.60 -0.55 -2.00 1.33(-0.27) 1.54(-0.06) 
18 5-Methyl-2-phenyl-2-hexenal CCCC\C=C(\C=O)c1ccccc1 1.63 -0.79 -2.55 1.31(-0.32) 1.43(-0.20) 
19 Cinnamic aldehyde O=C\C=C\c1ccccc1 1.63 0.05 -1.46 1.36(-0.27) 1.80(0.17) 
20 trans-2-Decenal CCCCCCC/C=C/C=O 1.79 0.41 -1.08 1.38(-0.41) 1.95(0.16) 
21 Galbone CC1(C)CCC=C(C1)C(=O)CCC=C 1.81 -1.25 (0.15)‡ -1.72 1.29(-0.52) 1.84(0.03) 

22 
5,5-Dimethyl-3-methylene-dihydro-
2(3H)-furone 

CC1(C)CC(=C)C(=O)O1 1.85 -1.40 
-0.76 

 
1.28(-0.57) - 

23 Diethyl maleate CCOC(=O)/C=C/C(=O)OCC 1.91 0.10 -0.72 1.36(-0.55) 1.82(-0.09) 
24 2-Hydroxyethyl acrylate C=CC(=O)OCCO 1.92 0.50 -0.85 1.38(-0.54) - 
25 Spirogalbanone C=CCCC(=O)C1=CCCC2(CCCC2)C1 2.00 -1.25 (0.15) ‡ -3.02 1.29(-0.71) 1.84(-0.16) 
26 Pomarose C\C=C\C(=O)C(\C)=C(/C)C(C)C 2.02  0.15 -0.55 1.36(-0.66) 1.84(-0.18) 

*Notes chemicals with predictions outside of the experimental error for that model. Error values for predicted pEC3 values for all chemicals are shown in 
brackets.  
‡ Chemicals with an additional –LogRC50(calc) values use this value for Model 3 for reasons discussed in the text
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Figure 1. Michael addition reaction between acrolein and a thiol nucleophile (R = glutathione, alkyl). 
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Figure 2. A summary of the workflow used to predict reactivity (-Log RC50).  
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Figure 3: Domain covered by fragment method for Michael acceptors.  (R1 = Hydrogen, alkyl, aryl) (R2 

= Hydrogen, alkyl, aryl) (R3 = H) for polarised aldehydes, (R3 = CH, C-alkyl, C-aryl) for polarised 

ketones. (R3 = OCH, OC-alkyl, OC-aryl) for polarised esters. 
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Figure 4. The predicted Log 1/EC50 values against experimental 1/EC50 values for all 62 Michael 

acceptors using –Log RC50(calc) alone (model 1). 
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Figure 5: The predicted Log (1/EC50) (mmol/l) against experimental Log (1/EC50) (mmol/l) of all 43 

fast reacting chemicals (bold circles) (model 2a, chemicals 1-43 in Table 1)) and 19 slower reacting 

chemicals (squares) (model 2b, chemicals 44-62 in Table 1) requiring hydrophobicity to be taken into 

account  
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Figure 6. Predicted pEC3 versus experimental pEC3 for all 26 Michael acceptors shown in Table 2. 

Unfilled squares = volatile chemicals; filled diamonds = galbanone and spirogalbanone; unfilled 

triangle = 5,5-dimethyl-3-methylene-dihydro-2(3H)-furone
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Figure 7. Isomerisation of galbanone to produce extended conjugated chemical highlighting a possible 

additional site of reactivity. 
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Figure 8. The predicted pEC3 against experimental pEC3 for model 4 (predicted values shown in Table 

2). 
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