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Abstract

This study outlines the use of a recently developed fraghasdd thiol reactivity profiler for Michael
acceptors to predict toxicity towardBetrahymena pyriformis and skin sensitisation potency as
determined in the Local Lymph Node Assay (LLNA). Theutiessshowed that the calculated reactivity
parameter from the profilelog RGy(calc), was capable of predicting toxicity for both endpoints with
excellent statistics. However, the study highlighted the importance dlladefined applicability
domain for each endpoint. In termsTatrahymena pyriformisthis domain was defined in terms of how
fast or slowly a given Michael acceptor reacts with thiol leading to twoaepguantitative structure
activity models. The first, for fast reacting chemicalguieed only —Log RGs(calc) as a descriptor,
whilst the second required the addition of a descriptor for hydrophobicity. Mugleifithe LLNA
required only a single descriptelpg RGo(calc), enabling potency to be predicted. The applicability
domain excluded chemicals capable of undergoing polymerisation and thoserthptedicted to be
volatile. The modelling results for both endpoints, usingtbg RGo(calc) value fran the profiler,
were in keeping with previously published studies that have utilised exgdalty determined
measurements of reactivity. This results demonstrate the output from the frdgeed thiol reactivity
profiler can be used to develop quariita structureactivity relationship models fere reactivity

towards thiol is a driver of toxicity.



I ntroduction

It is well established that various toxicological effects can occur aub ofcovalent bond formation
between electrophilic chemicals and biological nucleophiles such as lysine agishecygbups of
proteins. This includes toxicological effects in both humans and envirorinspetaes, for example
skin sensitisation or aquatic taily.}® One mechanism resulting in covalent bond formation is Michael
addition. Chemicals that act via Michael addition (known as Micheatptors) are typically organic
chemicals that contain a n-bond adjacent to a polaing group, such as a carborythis results in a
partial positive charge on the B-carbon of the n-bond, causing the electrophilic chemical to become
susceptible to a reaction with a biological nucleophile with either atimegcharge or a lone pair of
electrons® ° This nucleophilicattack at the B-carbon of the Michael acceptor results in a resonance
stabilised carbanion intermediate, with a negative chargéirg on the a-carbon. This a-carbon is

then protonated to produce the final product (known as a Mictdaty (Figure 1).

Knowledge of this mechanism has allowed for the development ofigtatialerts to identify chemicals
that may act via Michael addition, and consequently have the potentilge toxicological effect’.

9 Structural alertsan be grouped togethear form the basis of atin silico profiler’ for mechanisms
associated with specific toxicological outcomes, such as the strucental ggveloped to identify the
potential mechanism of action for skin sensitisattdhilstin silico profilers are useffor identifying
features associated with potential toxicity the information they prosidealitative (i.e. a binary yes

or no for the presence of a structural feature); they provide no inforneti@erning toxicological
potency. When using knowledgé covalent mechanisms to predict toxicological potency, a primary
assumption is that the rate of covalent bond formation (reastisitproportional to toxicity! As a
result of this assumption, there has been an increase in the number of studied docpsedicting
potency using computational methods andfochemico reactivity measurements (i.e. experimental
reactivity measurements that do not require the use of laboratory animalshrfonoexperimental
approach is the measurement of depletioreattive peptides (such as glutathione) upon exposure to
the test chemical over a fixed time perfotihere have been many experimental studies which have
successfully linked reactivity, as measured inirachemico assay, to toxicity e.g. tdetrahymena
pyriformis measured in then vitro Tetrahymena pyriformis growth impairment assdy:'® Similarly,
results of kinetic peptide depletion assays have also been used in the prediskimnsensitisation
potency* # Previousstudies have also utilised Hammett and Taft descriptors to model chemical
reactivity for the preidtion of skin sensitisatioH. These descriptors were derived from extensive
studies into the effect of substituents upon the acidic dissociatiotanb(sKa) in modehcid systems.
These efforts further demonstrate the possibility that potency can be piddicteactive chemicals

within well-defined mechanistic domains.



A number of approaches have been published that make utwmical descriptors derived from
computational iy silico) approaches aimed at quantifying chemical reactivity. These are typicall
derived from quantum mechanics calculations, and include descrigtiofsas energy values of the
highest occupied molecular orbital (HOMO) and lowest unoccupied molechital g UMO) and the
electrophilic index @).*® These descriptors are then used to relate the electronic propertiestesit
chemical to their reactivity or to their toxicity, directijowever, these descriptors quantify only the
electronic portion o€hemical reactivity and account for factors such as dterdrance at the reactive
site® Another common descriptor is the energy of activation (Eact) in which theyedifgrence
between a test chemical and a model nucleophile, (with its respective transigairsizture) is used.
This has been performed successfully for the prediction of bo#tiadpxicity and skin sensitisatioft.

20 Importantly, this type of descriptor offers the advantage thatdumts for both electronic and steric
factorsinvolved in chemical reactivity, with studies showing that this amraapable of predicting
potency for aquatic toxicity and skin sensitisatioowdver, the derivation of Eact requires is reliant
on the quantum mechanics calculations capable of ‘mapping’ out the reactionypatblwding the
identification of key intermediates and/or transition state stresturhis can be a tirEnsuming

process, requiring significant expertise in the application of such methods

Given the challenges of utilily quantum mechanics calculations to derive Eact values for use in
predictive toxicology a recent study by the current authors showed ttisapossible to predict
experimentally derived reactivity towards glutathione (expressedog®Gs,) through tle use of
fragments with prealculated Eact values for Michael acceptdiBhis approach involved defining

the length of alkyl chain of the Michael acceptor beyond which funtireeasesailed to significantly
increase the activation energy. This enabled appropriate fragments to beegendrah could be
stored in a database along with-pedculated activation energy values. The methodology was encoded
as a KNIME workflow through which chemicals of interest can inputtatuUSMILES strings and are
then compared to the fragments encoded as SMARTS patterns. The fragmentsmtedseth their
corresponding Eact values and an additional parameter that riieelstdvent amessible surface (SAS)

at the a-position of the Michael accepto©nce the query chemical has been assigned a fragment, its
corresponding Eact and SAS values are used to predict its reactivity (ex@esised RG values)
based on a previously developed QSAR model; this process is summarised in Figerefré given

the availability of a fragmertiased profiler, the aim of this study was to validate the calculatmgl

RGCso values generated from the fragment based reactivity profiler for #saltivity in predicting
toxicity to Tetrahymena pyriformis and skin sensitisatiopotency (as determined in the LLNA) for

Michael acceptors.



M ethods

Computational methods

The previously published fragmebésed reactivity profiler for thiol reactivity was utilised in the
current study to predict reactivity towards a thiol nuclelepfaefined alog RG(calc)) 2! Briefly, this
profiler was developed from a set of linear Michael acceptors with experimet¢ddiymined R
values, where the Rgis the concentration of the electrophile required to deplete the concentration of
glutathione by 50% over a fixed two hour time pefddlhe fragmenbased reactivity profiler was
trained on a set of polarised aldehydes, ketones, and esters with \a&kyingnd aryl substitutions
(Figure 3)%*

The Log RGy(calc) values for chemicals in thetrahymena pyriformisand skin sensitisation datasets
were generated using a previously developed KNIME workflow encoding the in&based reactivity
profiler for thiol reactivity (this workflow, including calculated fragmentsigilabe from the authors
on request}! The workflow utilises a database of fragments with-qaieulated activation energy
values (Eact) calculated using Density Functional TheDiyT] at the B3LYP/61G+Hd) level of
theory (calculations performed using Gaussian09 and with water as a s&ividrg) workfow is
summarised in Figure 2. Descriptors for hydrophobicity (Leg nd vapour pressure (Log VP) were
calculated using the KOWIN (V1.68) and MPBPWIN (V1.43)modules of EPI suitt .

Datasets fofletrahymena pyriformis and skin sensitisation

A set of 62 Michael acceptors from a database of 2072 chemicals with exgaelitoricity values to
Tetrahymena pyriformiswere identifiedas being within the applicability domain of the of the fragment
based thiol reactivity profiler (defined in Figure’3Y.hese toxicity data were obtained usingravitro
assay, which quantifies 50% growth inhibition of the cili#erahymena pyriformis over a 46hour
exposure period to the test chemical (also recorded asV@&(ies)?® A similar analysis of skin
sensitisation data gathered from the Local Lymph Node Assay (LLNA)tedsu a dataset of 38
Michael acceptors within the applicabilitythie fragmenbasel thiol reactivity profiler?’2The LLNA

is aninvivo based assay in which the stimulation of the lymph nodes of mice is measured upon exposure
to a test chemical. The recorded value is the concentration required to dlieefald stimulation in
the lymph nodes, this is reported as an EC3 value (% weight) for the chemlwachiemical does not
produce a threefold stimulation it is not considered a sensA&C3 values were converted to pEC3
values (Equation 1)As the test vehicle is known to influence pEC3 values, only chemicalghfon
the vehicle was recorded to be Acetone: olive oil, AOO 4:1) weredadlin the analysis, this resulted

in final dataset of 27 skin sensitising chemic#ls.

pEC3 = Log (EC3/Molecular weight) (2)



Statistical analysis

Linear regression analysis was used to develop quantitative stractivigy relationship models to
obtain correlations between calculatéag RG values and toxicity values using the Mini@ersion
17) statistical software. Outliers were identified following linearesgion analysis as chemicals with
large standardised residuals as identified by Minitab. Chemicals for which a riséichationale

enabling outlying behaviour to be explathwere subsequently removed from the analysis.

Results and Discussion

The aim of this study was to investigate the ability of a recently shddi fragmenbased thiol
reactivity profiler to predict toxicity of Michael acceptors towaf@s ahymena pyriformis and the
LLNA. 2% 2729 Analysis of theTetrahymena pyriformis data within the applicability domain of the
fragmentbased thiol reactivity profiler resulted in a dataset of 62 chemib&l&lflehydes, 12 Ketones
and 36 esters) with correspondin@skvalues (Tablel). Initial modelling using theog RGo(calc)
values alone showed a clear trend£R.45) between reactivity and toxicity Tetrahymena pyriformis
(Model 1 inFigure 5using equation 3). Interestingly, this value is lower than that published tasatda
of 41 Michael acceptors using experimentally determined glutathione idaptktta (R = 0.85)?
However, incomparisorwith the current study (usindog RGs(calc) as a measure of reactivity) this
study using experimentegactivity data also failed to predict the toxicityTirahymena pyriformis of
slow reacting chemicals such as methacrylate esters. It was suggested that for theses ¢hritiiyal

is driven by both hydrophobicity and reactivity due to them reactavg\swith proteins?

Log (1/EGo) = 0.63 + 0.61 Log RGso(calc) (Model 1)
N = 62, R= 0.45, R-adj = 0.44, s = 0.46

Consistentwith this hypothesis a related study showed splitting the data intoetastingand slow
reacting classes resulted in significantly improved modelling tsstiportantly, the toxicity to
Tetrahymena pyriformisfor the fast reacting chemicals could be predicted from experimeativity
alone, whilst those in the slow reacting class required both hydrophobicityaaigite. The authors
suggested a reactivity caff to distinguish théwo classes based equation 2where chemicals with

a D« < 3 being fast reacting and those witkx[>> 3 being slow reacting. Applying these criteria to the
current dataset, usind.og RGo(calc)as a measure of reactivity resulted in models 2 and 3 (fast and
slow reacting bemicals respectively). Forty three chemicals were assigned to the fasigetasis
(chemicals 43 in Table 1), whilst 23 chemicals were assigned to the slow reactindatiassicals
4462 in Table 1). In keeping with the previously published work using experimentallyniteder

reactivity data, toxicity tdetrahymena pyriformis for the chemicals in the fast reacting class required



only Hog RGo(calc) (model 2a), whilst the chemicals in the slow reacting class requireeHbgth

RGso(calc) and loKow (Model 2b). Figure 5 shows the correlation plots for models 2 and 3.

Dgx = Log (K, /—Log RCsy(calculated)) = LogK,,, — —Log RCs,(calculated) 2

Log (1/EGo) = 0.41 + 0.94 Log RGso(calc) (Model 2a)
N =43R?=0.78, R-adj = 0.77, s = 0.30

Log (1/EGo) =-1.82 + 0.35 og RGso(calculated) + 0.89 Ld€pw (Model 2b)
N =19,R?=0.85, R-adj = 0.83, s = 0.31

Prediction of skin sensitisation potency asdefined in the LL NA

The rate of covalent bond formation has also been shown to be important for tletigeresti skin
sensitisation potency as determined in the LLNA using both experimental and abamaltmeasures

of reactivity® ¢ 191n keeping with these studies, the fragreased reactivity algorithm was used to
predict pEC3 values for the 26 Michael acceptors within the previoustyediefipplicability domain.
These chemicals are shown in Table 2. An initial analysis of the atmorelbetween pEC3 and
LogRGso(calc) resulted in extremely poor statistics (equation 7). Despite 8, the chemicals were
predicted within a twofold error of the corresponding expenital value (chemicals with a predicted
value within 0.3 log unitef the experimental value). These predictions are within the experimental
twofold error of the LLNA3! Any chemicals outside of the twfold error of the experimental assay
were consider as outliers (labelled in Table 2) and were analysed to ratiohaliserdr in their

predictions.

Predicted pE€= 1.35 + -0.05 kog RGso(calc) (model 3)
N =26, R=0.00, R-adj = 0.00, s = 0.3

Themajority of compounds with the largest errors are chemicals thabkatde; with the majority of
these beig acrylates and methacagks (chemicals-3 in Table 2). Previous research has shown that
the skin sensitisation potency of these volatile chemicals is less than migkpécted based on their
experimentally determined chemical reactivitin addition, research has also suggested that the
acrylate and methacrylates chemicals are susceptible to polymerisation driveeragi€al chemistry

in the skin3? 3 Interestingly, the toxicity of a large number of similar chemicals towbettahymena
pyriformiswere well predicted (chemicals-B2 in Table L. This highlights the importance of defining

the applicability domain of any predictive model (experimental or computtioased on a detailed



understanding of the mechanistic chemistry of the assay. This mecheaatistiale resulted in the
removal of a total okix volatile chemicals(chemicals 35 and 10), and two additional acrylates
(chemicals 13 and 24Three of these chemicals were reemwespite being relatively wedredicted
(chemicals 10, 13 and 24) as no mechanistic rationale could be aifetedvhy they were correctly
predicted compared to the other chemicals identified. This being a cagmlging a cautionary

applicability domain to the moddor these types of chemicals.

In contrast to the ovesrediction of the majority of volatile chemicals, galbanone and spirogalbanone
were significantly under predicted using the fragmzasted reactivity algorithm (chemicals 21 and 25
in Table 2). The skin sensitisation potency of these two chemicalpredisted using -Bnethly-3-
penten-2ene as the reference fragment to take account of the effect of an alkyl group at the a-position
(which causes a decrease in the rate of the Michaéi@ureactionf! However, it is possible that a
second site of Michael addition reactivity exists for these chemicalsodiireir reported ability to
undergo double bond migration (highlighted part of the structure shown in Figtfr&hi3. type of
migration is particularly favoured when the alkene group is unsubstitutedt@El as is the case with
galbanone and spirogalbanone (Figure 7). Predicting the glutathione tgauftispirogalbanone and
galbanone with the reference fragmemtedhten-2ene (o reflect the second potential site of reactivity)
resulted in an improved pEC3 prediction of 1.84 (versus 1.36) for both galbgte@d =1.81) and
spirogalbanone (pEC3 = 2.00). Importanilyis likely that only one of these two possible sites of
reactvity can undergo Michael addition at any one time as calculations shothé¢hsteric bulk of the
cyclic ring enables only one of the alkene moieties to be conjugated withrtimngl group at a time
(data not shown). The predicted values suggest bwatrtore reactive migrated site is primarily
responsible for the skin sensitising ability of these chemicals. Te reactive alternative site for
Michael addition was utilised for these chemicals enabling them to remain withimpgiicability
domain ofthe model. This analysidemonstratesne of the strengths of the fragmdaised thiol
reactivity profiler in that it enables the investigation of alternative sftek@mical reactivity through

the use of alternate fragments.

The final chemical that as poorly predicted was 5¢gsmethyl-3-methylene-dihydro-g3H)-furone,

This chemical is a cyclic Michael acceptor in which only the a-carbon of the alkene is part of the ring
system. The development of the fragmieased reactivity algorithm showed thak tglutathione
reactivity of cyclic Michael acceptors in which both the a- and B-carbons of the alkene were part of the
ring could be successfully predicted using linear reference fragiéntkeeping with this analysis,
the analogous chemicals in thdnssensitisation data were well predicted (chemicals 6, 7 and 14 in
Table 2). Inspection of the data used to develop the fragmased reactivity algorithm shows that it
does not contain chemicals in which only the a-carbon of the double bond is partioé ring. In addition,

these types of chemicals are also not present iTetnahymena pyriformis datasetanalysed in the

9



current study. Therefore, it is impossible to ascertain as to whetheratjraeitbased reactivity
algorithm is undepredicting tke glutathione reactivity of these chemicals or if these chemicals are
more potent in the LLNA than is predicted from reactivity alone.

The analysis outlined enabled the removal of 11 chemicals resultiadimal model based on 17
chemicals with an R= 0.77 (Figure 8, model 4). Importantly, this model has a similar applicability
domain to that published using experimentally determined kinetic rateants)sin that volatile
chemicals and those that can polymerise are excluflethwever, the use ofLog RGo(calc) in the
current study enabled a greater number of chemicals to be predicted (Is7 M®rswvhilst maintaining

a similar level of statistical accuracy’(R0.77 versus 0.84).

pEC3 =1.77 + 0.43l-eg RGso(calculated) (model 4)
N=17,R>=0.76, R-adj =0.76, s = 0.12

Conclusions

The aim of this work was to validate the fragmbased reactivity profiler for thiol reactivity for
prediction of toxicity toTetrahymena pyriformisand skin sensitisation potency for Michael acceptors.
The results of this study showed the predicted reactivity vatbeg RGo(calc)) was able to predict
both endpoints within welllefined, enepoint specific applicability domains. The results showes t
importance of considering slow versus fast reacting Michael acceptors widstlingptoxicity to
Tetrahymena pyriformis and polymerisation and volatility to be important in successfully predicting
skin sensitation potency. These results were in keepitig previously published studies that has
utilised experimentally determined measurements of chemical reaativitpdel the same endpoints.
The statistical quality of resulting QSAR models demonstrated teapridicted reactivity values
generated by the fragmebased profiler for thiol reactivity are on a par with using expeartaiky
determined values. However, the use offresilico approach offers clear benefits in terms of the ability
to predict reactivity towards thiol for Michael acceptors finedficient manner, without the need to
perform either timeonsuming and expensive experimental assays or undertake complex quantum
mechanics calculation¥he fragmenbasedn silico profiler could be developed further for additional
endpoints such agenotoxicity for where lysine ithe nucleophileSuch developments are dependent
on the availability of reactivity data.

Abbreviations

Eact— Energies of Activation

HOMO — Highest Occupied Molecular Orbital
LUMO — Lowest Unoccupied Molecular Orbitals

SAS-Solvent Accessible Surface area
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SMARTS- Smiles Arbitrary Target Specification
SMILES - Simplified Molecular Input Line Entry System
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Table 1. The 62 chemicals used in the assessment of the fragment methedliftingTetrahymena pyriformis toxicity (Log 1/EGo mmol/l). Chemical

names, SMILES, experimental Log 1/&g@mol/l with-LogRGso(calc), D« and predicted Log 1/Emmol/l for the respective models are shown. N.B log

1/EGso values were calculated with model 2afast reacting chemicals-43) and model 2b for slower reacting chemicals (44-62).

Log(1/EGyq -Lo Predicted Log (1/E&g)
ID Chemical SMILES (rgn(molll) : Rcso(cglc) LogKow | Dk
Model 1 | Model 2a/b
1 | prop-2-enal C=CC=0 1.65 1.34 0.19 | -1.15 1.45 1.66
2 | (2E)ybut-2-enal C\C=C\C=0 0.88 0.66 0.60 | -0.06 1.04 1.04
3 | (2E)3-(furan2-yl)prop-2-enal 0O=C\C=C\clcccol 0.37 0.05 1.19 1.14 0.66 0.46
4 | (2E)pent2-enal CQC=0C=0 0.66 0.55 1.09 0.54 0.97 0.94
5 | 4-methylpent2-enal CC(C)C=CC=0 0.82 0.55 151 0.96 0.97 0.94
6 | hex2-enal ccac=CcC=0 0.77 0.55 1.58 1.03 0.97 0.94
7 | (2E)3-phenylprop2-enal 0O=C\C=C\clcccccl 0.68 0.05 1.82 1.77 0.66 0.46
8 | (2E)-3-[4-(dimethylamino)phenyl]prof2-enal CN(C)clccclC=C\C=0)ccl 0.52 0.05 2.00 1.95 0.66 0.46
9 | hept2-enal CCCcac=aCc=0 1.05 0.66 2.07 141 1.04 1.04
10 | (2E)oct-2-enal CCCCac=0C=0 1.20 0.55 2.57 2.02 0.97 0.94
11 | (2E)}-2-methylbut2-enal C\C=C(/C)C=0 -0.14 -0.96 1.15 2.11 0.04 -0.49
12 | non2-enal CCCCCac=0cCc=0 1.60 0.66 3.06 2.40 1.04 1.04
13 | 2-methylpeni2-enal CC\C=C(/C)C=0 -0.39 -1.05 1.64 2.69 -0.01 -0.58
14 | but-3-en2-one CC(=0)C=C 1.50 0.92 0.41 | -0.51 1.20 1.27
15 | pentl-en3-one CCC(=0)Cc=C 1.49 0.92 0.90 | -0.02 1.20 1.29
16 | hex1-en3-one CCCC(=0)C=C 1.66 0.92 1.39 0.47 1.20 1.29
17 | pent3-en2-one C\C=C\C(C)=0 0.54 0.15 0.82 0.67 0.72 0.56
18 | hex4-en3-one CCC(=0)C=CC 0.93 0.10 1.31 1.21 0.69 0.51
19 | oct1-en3-one CCCCCC(=0)C=C 1.92 0.92 2.37 1.45 1.20 1.29
20 | hept3-en2-one CCQC=C\C(C)=0 0.70 0.00 1.80 1.80 0.63 0.42
21 | oct3-en2-one CCCQC=CC(C)=0 0.74 0.00 2.29 2.29 0.63 0.42
22 | oct2-en4-one CCCCC(=0)c=0C 1.01 0.00 2.29 2.29 0.63 0.42
23| 2-methylcyclopen-enl-one CC1=CCCC1=0 -0.83 -1.25 1.26 2.51 -0.14 -0.77
24 | 3-methylpent3-en2-one C\C=C(/C)C(C)=0 -0.34 -1.25 1.37 2.62 -0.14 -0.77
25 | non-3-en2-one CCCCaC=0C(C)=0 0.98 0.00 2.79 2.79 0.63 0.42
26 | 2-hydroxyethyl prog2-enoate OCCOC(=0)C=C 0.69 0.50 -0.25 | -0.75 0.94 0.88
27 | 2-hydroxypropyl prop2-enoate CC(0)COC(=0)C=C 0.65 0.50 0.17 | -0.33 0.94 0.89
28 | methyl prop2-enoate COC(=0)C=C 0.55 0.50 0.73 0.23 0.94 0.89
29 | ethyl prop2-enoate CCOC(=0)C=C 0.52 0.50 1.22 0.72 0.94 0.89
30 | propyl prop2-enoate CCCOC(=0)C=C 0.53 0.50 1.71 1.21 0.94 0.89
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31 | 2-methylpropyl prop2-enoate CC(C)COC(=0)C=C 0.29 0.50 2.13 1.63 0.94 0.89
32 | 2-hydroxyethyl 2methylprop2-enoate CC(=C)C(=0)OCCO -1.08 -1.40 0.30 1.70 -0.23 -0.91
33 | butyl prop2-enoate CCCCOC(=0)C=C 0.52 0.50 2.20 1.70 0.94 0.89
34 | benzyl prop2-enoate C=CC(=0)OCclcccccl 1.35 0.50 2.44 1.94 0.94 0.89
35 | 3-methylbutyl prop2-enoate CC(C)CCOC(=0)C=C 0.41 0.50 2.62 2.12 0.94 0.89
36 | pentyl prop2-enoate CCCCCOC(=0)C=C 0.54 0.50 2.69 2.19 0.94 0.89
37 | cyclohexyl prop2-enoate C=CC(=0)0cCcl1cccccel 0.76 0.50 3.00 2.50 0.94 0.89
38 | methyl 2methylprop2-enoate COC(=0)C(C)=C -1.28 -1.40 1.28 2.68 -0.23 -0.91
39 | hexyl prop2-enoate CCCCCCOC(=0)C=C 0.73 0.50 3.18 2.68 0.94 0.89
40 | 2-methylpropyl (2E)but-2-enoate C\C=CQ\C(=0)OCC(C)C -0.34 -0.19 2.54 2.73 0.51 0.24
41 | butan2-yl (2E)-but-2-enoate CCC(C)OC(=0)c=CC -0.42 -0.19 2.54 2.73 0.51 0.24
42 | butyl (2E}but-2-enoate CCCCOC(=0)c=C\C -0.16 -0.19 2.61 2.80 0.51 0.24
43 | 2-ethoxyethyl 2methylprop2-enoate CCOCCOC(=0)C(C)=C -0.78 -1.40 1.49 2.89 -0.23 -0.91
44 | (2E)dec2-enal CCCCacC=0C=0 1.85 0.55 3.55 3.00 0.97 1.50
45 | heptyl prop2-enoate CCCCCCCOC(=0)C=C 1.09 0.50 3.67 3.17 0.94 1.59
46 | ethyl 2methylprop2-enoate CCOC(=0)C(C)=C -0.93 -1.40 1.77 3.17 -0.23 -0.76
47 | methyl (2E)oct-2-enoate CCCcCac=QCc(=0)oC 0.77 -0.19 3.10 3.29 0.51 0.84
48 | methyl (2E)3-phenylprop2-enoate COC(=0)C=C\clcccccl 0.58 -0.94 2.36 3.30 0.05 -0.08
49 | methyl (2E}2-methylbut2-enoate COC(=0)C{C)=C\C -0.70 -1.64 1.69 3.33 -0.38 -0.92
50 | propan2-yl 2-methylprop2-enoate CC(C)OC(=0)C(C)=C -0.88 -1.40 2.18 3.58 -0.23 -0.40
51 | propyl 2methylprop2-enoate CCCOC(=0)C(C)=C -0.66 -1.40 2.26 3.66 -0.23 -0.33
52 | methyl non2-enoate CCCCCacC=QC(=0)0C 1.04 -0.19 3.60 3.79 0.51 1.29
53 | ethyl (2E}3-phenylprop2-enoate CCOC(=0)C=C\clcccccl 0.99 -0.94 2.85 3.79 0.05 0.36
54 | ethyl (2E}2-methylbut2-enoate CCOC(=0)C{C)=C\C -0.50 -1.64 2.18 3.82 -0.38 -0.48
55 | methyl (2E}2-methylpent2-enoate CC\C=C(/C)C(=0)OC -0.38 -1.64 2.18 3.82 -0.38 -0.48
56 | 2-methylpropyl 2methylprop2-enoate CC(C)COC(=0)C(C)=C -0.28 -1.40 2.67 4.07 -0.23 0.04
57 | butyl 2-methylprop2-enoate CCCCOC(=0)C=C -0.27 -1.40 2.75 4.15 -0.23 0.11
58 | propyl (2E}3-phenylprop2-enoate CCCOC(=0)C=C\clcccecl 1.23 -0.94 3.34 4.28 0.05 0.80
59 | benzyl 2methylprop2-enoate CC(=C)C(=0)OCclcccecl 0.65 -1.40 2.98 4.38 -0.23 0.32
60 | butyl (2E)3-phenylprop2-enoate CCCCOC(=0)C=C\clcccecl 1.53 -0.94 3.83 4.77 0.05 1.24
61 | hexyl 2methylprop2-enoate CCCCCCOC(=0)C(C)=C 1.09 -1.40 3.73 5.13 -0.23 0.99
62 | 2-ethylhexyl 2methylprop2-enoate CCCCC(CC)COC(=0)C(C)=C 1.57 -1.40 4.64 6.04 -0.23 1.80
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Table 2. The 27 chemicals used in the assessment of the fralgmsexdt reactivity algorithm’s ability to predict skin sensitisation pgtgrieC3).
Chemicals SMILES, experimentaEC3 with error valuesl-ogRGso(calc) Log VP and predicted pEC3 values for all models are shown.

Predicted pEC3
ID Chemical SMILES pEC3 -Log RGsg(calc) | Log VP Model 3 Model 4
1 | Methyl methacrylate CC(=C)C(=0)0C 0.05 -1.40 1.59 1.28(1.23) -
2 | 2-Hydroxypropyl methacrylate CC(COC(=0)C(=C)C)O 0.46 -1.40 -1.10 1.28(0.82) -
3 | Ethyl acrylate CCOC(=0)C=C 0.55 0.50 1.61 1.38(0.83) -
4 | Methyl acrylate COC(=0)C=C 0.63 0.50 1.95 1.38(0.75) -
5 | Butyl acrylate CCCCOC(=0)C=C 0.81 0.50 0.74 1.38(0.57) -
6 | r-Carvone CC(=C)C1CC=C(C)C(=0)C1 1.07 -1.25 -0.86 1.29(0.22) 1.23(0.16)
7 | L-Carvone CC1=CC[C@H](CC1=0)C(=C)C 1.10 -1.25 -0.86 1.29(0.19) 1.23(0.16)
8 | aButyl cinnamic aldehyde CCCQC(C=0)=Cl/clcccecl 1.23 -1.26 -2.55 1.29(0.06) 1.23(0.00)
9 | Linalool aldehyde C\C(C=0)=C/CCC(C)(O)C=C 1.25 -0.98 -2.51 1.30(0.05) 1.35(0.10)
10 | trans2-Hexenal ccac=ac=0 1.25 0.41 0.71 1.38(0.13) -
11 | a-Amyl cinnamic aldehyde CCCCC/C(=Gclcccecl)/C=0 1.26 -1.26 -3.47 1.29(0.03) 1.23¢0.03)
12 | a-Hexylcinnamaldehyde CCCCCQC(C=0)=Cl/clcccccl 1.26 -1.26 -3.45 1.29(0.03) 1.23¢0.03)
13 | 2-Ethylhexylacrylate CCCCC(CC)COC(=0)Cc=C 1.27 0.50 -0.71 1.38(0.11) -
14 | Perillaldehyde CC(=C)Cl1lCCC(C=0)=CC1 1.27 -0.98 -1.32 1.30(0.03) 1.35(0.08)
15 | 1-(p-Methoxyphenyl)1-penten3-one CCC(=0)C=C\clccc(OC)ccl 1.31 -0.55 -2.73 1.33(0.02) 1.54(0.23)
16 | a-Methyl-cinnamic aldehyde C\C(C=0)=C/clcccccl 1.51 -1.26 -1.59 1.29¢0.22) 1.23¢0.28)
17 | Benzylidene acetone CC(=0O)\C=C\clcccccl 1.60 -0.55 -2.00 1.33¢0.27) 1.54¢0.06)
18 | 5-Methyl-2-pheny}t2-hexenal CCCOC=C(\C=0)clcccccl 1.63 -0.79 -2.55 1.31¢0.32) 1.43¢0.20)
19 | Cinnamic aldehyde 0O=C\C=C\clcccccl 1.63 0.05 -1.46 1.36¢0.27) 1.80(0.17)
20 | trans2-Decenal CCCCCcCC/C=C/C=0 1.79 0.41 -1.08 1.38(0.41) 1.95(0.16)
21 | Galbone CC1l(C)CCC=C(C1)C(=0)CCC=C 1.81 -1.25 (0.15) -1.72 1.29¢0.52) 1.84(0.03)

5,5-Dimethyt3-methylenedihydro- _ _ -0.76

22 2(3H)furone CCl(C)CC(=C)C(=0)01 1.85 -1.40 1.28(0.57) -
23 | Diethyl maleate CCOC(=0)/C=C/C(=0)OCC 1.91 0.10 -0.72 1.36(0.55) 1.82(0.09)
24 | 2-Hydroxyethyl acrylate C=CC(=0)0OCCO 1.92 0.50 -0.85 1.38¢0.54) -
25 | Spirogalbanone C=CCCC(=0)C1=CCccCc2(Cccc2)C 2.00 -1.25 (0.15Y -3.02 1.29¢0.71) 1.84(0.16)
26 | Pomarose C\C=C\C(=0)CfC)=C(/C)C(C)C 2.02 0.15 -0.55 1.36(0.66) 1.84(0.18)

*Notes chemicals with predictions outside of the experimental errah&rmodel. Error values for predicted pEC3 valuesafbchemicals are shown in
brackets.
T Chemicals with an additional.ogRGsg(calc) values use this value for Model 3 feasons discussed in the text
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Figure 1. Michael addition reaction between acrolein and a thiol nuclegBh#alutathione, alkyl).

R~

17



7 AN
Fragments (values)

|
/\\/\O/
Eact = 9.70 SAS A = 5.08

\_ J

U

Input chemical Assign Fragment QSAR Model

) PR A~ |:> ~Log RCg = 0.18 +
/‘*ﬁL g A 0.89 Eact Kcal/mol + 0.23 SAS A

Figure 2. A summary of the workflow used to predict reactivitpg-RGs).
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Figure 3: Domain covered by fragment method for Michael acceptors: Hidrogen, alkyl, aryl) (R
= Hydrogen, alkyl, aryl) (R= H) for polarised aldehydes, {R CH, Galkyl, C-aryl) for polarised
ketones. (R= OCH, OGalkyl, OC-aryl) for polarised esters.
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Figure 7. Isomerisation of galbanone to produce extended conjugated chegtitighting a possible

additional site of reactivity.
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Figure 8. The predicted pEC3 agaiesperimental pEC3 for model 4 (predicted values shown in Table
2).
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