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Abstract 

This thesis describes an investigation concerned with the development of an intelligent 

system for selection of grinding conditions. Based on a study of previous techniques 
for selection of grinding conditions, the study of grinding properties and the study of 

artificial intelligence techniques, the thesis proposes a multi-intelligent agent method 
for the selection of grinding conditions. The agents consist of case based reasoning, a 

neural network and rule based reasoning as well as the operator. 

It is proposed that a neural network is an appropriate method for selecting grinding 

wheels because there is no model available for the wheel selection process. The 

neural network method of selecting the grinding wheel was investigated and an 
independent system was developed. The system was trained using data from 

catalogues. It was shown that the neural network was capable of learning the 

relationship between the wheel and the grinding process without a requirement for the 
knowledge engineer to fully understand the knowledge domain. A general neural 

network prototype system was developed to provide a tool for development of the 

grinding wheel selection system. 

It is proposed that a case based reasoning method is appropriate for selection of 

grinding conditions because information for new technology, different processes and 
materials can be automatically incorporated into the system. A case based reasoning 
method for the selection of grinding conditions was developed. Techniques of case 
indexation, retrieval, modification, test and update were developed. The system was 
demonstrated to successfully learn new cases and make inferences for new problems. 

A rule based reasoning agent for the approximate selection of grinding conditions was 
developed because of the lack of initial data for the case based reasoning system. The 

knowledge was based on previous research and data acquired from handbooks. 

A blackboard method was used as a means of integrating the above systems as a 

multi-agent system. The system was developed and its performance evaluated by 

comparison with results from handbooks. The system works as expected and 
demonstrates the potential of using artificial intelligence for selection of grinding 

conditions. 
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Nomenclature 

a depth of cut 

ad dressing depth 

ACO adaptive control with optimisation 

Al artificial intelligence 

ANN artificial neural network 

Ar mean chip aspect ratio 

b grinding width 

b,,. grinding chip width 

BP error back propagation 

c specific heat capacity 

C heat flux distribution factor 

CBR case based reasoning 

de equivalent diameter 

d, equivalent diameter in an existing case 

den equivalent diameter in the Problem 

dpi desired output of the ith node for pattern p 

ds wheel diameter 

dW workpiece diameter 

dß,, 0 workpiece diameter in an existing case 

d, n workpiece diameter in the Problem 

e,, specific grinding energy 

Ep square error function 

Ea root mean square error function 

f exponent 

fd dressing lead 

fdo dressing lead in an existing case 

fd,, dressing lead in the Solution 

FFN feedforward network 
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F. specific normal grinding force 

Ft specific tangential grinding force 

F1 constant 

F2 constant 

g exponent 

G grinding ratio 

G1 constant 

heq equivalent chip thickness 

hm maximum chip thickness 

KBS knowledge based system 

1, chip length 

Id dynamic grit spacing 

le real contact length 

19 geometric contact length 

nd number of dressing passes 

netj unshaped output of the jth node 

oj output of the jth node 

opt actual output of the jth node for pattern p 

P grinding power 

Ra workpiece surface roughness 

R,. workpiece surface roughness in an existing case 

R,, workpiece surface roughness in the Problem 

RBR rule based reasoning 

RMS root mean square 

& Rockwell Hardness 

Rw, fraction of the total energy partitioned to the workpiece 

R1 constant 
QW grinding removal rate per unit wheel contact width 

of wheel axis infeed speed 
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vfo wheel axis infeed speed in an existing case 

vfn wheel axis infeed speed in the Solution 

Vm mean grinding chip volume 

VW workpiece speed 

vW0 workpiece speed in an existing case 

vwt, workpiece speed in the Solution 

v$ wheel speed 

v. wheel speed in an existing case 

V. wheel speed in the Problem 

x constant, exponent 

Td spark-out time 

wig the weight of connection between the ith node in one layer and jth node in the 

next layer 

a momentum factor 

Spy error term for pattern p on node j 

r) learning rate 

9m critical maximum workpiece temperature 

x thermal conductivity 

p density 

V 
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Chapter 1 Introduction 

1.1 The Significance of the Investigation 

Selecting machining conditions or parameters is a daily task in machine shops 

throughout the world. F. W. Taylor, realised that the selection of machining parameters 

was a very important issue. He conducted a large number of machining tests, and 

developed the well known Taylor's equation which is still in current use [Colding 

1992]. 

Grinding is an important finishing process for many engineering components. There are 

many parameters in grinding which influence each other. A problem that continues to 

confront the manufacturing industry is the establishment of efficient grinding conditions. 

This includes choosing a suitable grinding wheel, establishing the values of grinding 

parameters such as removal rate and depth of cut and establishing dressing parameters. 

The grinding conditions must meet the requirements of a specific machining task, 

characterised by the desired workpiece geometry, by the material, by the machine and by 

quality, time and cost constraints. 

Many investigations have been carried out to establish process models for grinding 

including physical and empirical models which contribute significantly to understanding 

of the process[Tönshoff 1992]. However, since physical models cannot be accurately 

defined and empirical models have a restricted range of validity, process models are not 

always reliable in practice. To achieve the required quality requirements, operating 

parameters are often determined with the aid of grinding tests, which are both time- 

consuming and costly. The process quality and productivity depend to a large extent on 

the experience of the operator. As a result, many CNC operations are run inefficiently 

and far from optimum. 

Adaptive control with optimisation(ACO) systems have been developed[Malkin 
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1981][Kelly 1989][Rowe 1991][Xiao 1993]which seek to optimise the grinding process 

as grinding proceeds. These systems seek to adjust operating parameters in a direction 

that continually optimises the process according to a predefined performance index. 

However, some parameters cannot easily be measured on-line, for example surface 

roughness is usually measured off-line. Other parameters may be adjusted by changes 

made from part to part. Optimisation may be a lengthy process depending mostly on the 

initial values of variables selected. Therefore, even with adaptive control the selection of 

proper grinding conditions is an important issue. 

Artificial intelligence (AI) is the branch of science that studies how smart a machine can 

be and which involves the capability of a machine to perform functions normally 

associated with human intelligence, such as reasoning, learning and self-improvement 

[Shoureshi 1993]. Developments in AI have had an increasing impact on manufacturing 

systems. Almost all areas of manufacturing have been affected by Al. 

Ideally, an intelligent machine tool can learn from experience and use the knowledge 

gained during the learning process to optimise the operation of the machine tool. It 

appears that precision grinding and other abrasive processes are particularly suited to the 

application of AI techniques because industrial practice relies heavily on skilled 

operators to achieve satisfactory results. It is in just such situations that there is the 

potential to systematise operator skills and knowledge [Rowe 1994a]. 

1.2 Aims and Objectives 

The aim was to investigate the potential for intelligent selection of grinding conditions 

including the grinding wheel and the values of grinding and dressing parameters. The 

specific objectives of this investigation were: 

(i) To study existing Al methods and evaluate their advantages and disadvantages for 

selection of grinding conditions. 
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(ii) To develop a hybrid AI method suitable for selection of grinding conditions. 

(iii) To develop a hybrid AI prototype system for intelligent selection of grinding 

conditions. 

1.3 Scope of the Investigation 

A review of previous work showed that there was a need for investigation of a new 

approach for selection of grinding conditions. 

Different intelligent approaches were studied and compared so that appropriate 

techniques could be found for the selection of grinding conditions. Accordingly, a 

strategy was proposed for selection of grinding conditions. 

Methods for building a feedforward(FF) neural network with a back propagation 

learning algorithm were investigated and a general prototype system developed. This 

provided a tool for intelligent selection of grinding wheels. 

A neural network-based intelligent approach was developed for the selection of 

appropriate grinding wheels to achieve a specified quality level. A system using the 

approach was built. 

A case-based reasoning (CBR) approach was proposed for the selection of grinding 

conditions. 

A rule-based reasoning approach was proposed to complement the case-based reasoning 

system for selection of grinding conditions. When case-based reasoning fails to deliver 

a recommendation, rule-based reasoning is used. 
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A multi-agent intelligent system was developed for selection of the grinding conditions 

based on the neural network, case based reasoning and rule based reasoning approaches 

mentioned. At the current stage, this system is for external plunge grinding with wheels 

dressed by single point diamond. Related technologies were also investigated. These 

technologies were object oriented programming and data base technologies. 

The system was evaluated by comparison of results with handbooks. 

Since each intelligent agent is relatively independent and autonomous, the chapters for 

describing them are presented separately. 
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Chapter 2 Review of the Approaches of Selecting Grinding 

Conditions 

2.1 Introduction 

Existing techniques employed to deal with the selection of grinding conditions can be 

classified into the following three categories: 

" Data retrieval methods; 

" Empirical model methods; 

" AI methods 

The emphasis in this review is on the application of Al methods. 

2.2. Data Retrieval Methods 

A handbook is often a logical and effective source of machinability data. Many 

handbooks are available, such as the widely used Machining Data Handbook [MDC 

1980]. However few handbooks cover more than a restricted selection of grinding 

conditions. An example is illustrated in Table 2.1. According to different materials, the 

Machining Data Handbook gives the recommended grinding wheels and conditions. 
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The computerised data retrieval method uses a database of cutting conditions either as 

suggested in the handbooks or gathered in the industrial field. Cutting conditions for 

various combinations of material, cutting tool and operation are stored and used. 

Balakrishana[Balakrishana 1983] surveyed the area of computerised machinability data 

base systems. Some two dozen systems were identified and their basic features 

characterised. Unfortunately, the systems developed were applied mainly for turning, 

drilling and milling, not for grinding. 

Although data retrieval methods are simple and practical, they have the following 

limitations[ Balakrishana 19831: 

" The recommendations represent a "starting" set of cutting conditions and hence tend to 

be conservative in order to cope with worst case machining situations rather than 

optimal. 

" The data apply only to a particular machining situation. The data may not be suitable 

for slightly different machining situations. 

2.3 Empirical Model Methods 

A model can be used to predict appropriate conditions for the grinding process. Many 

investigations have been carried out to establish process models including physical and 

empirical models [Peters 1984] [Tönshoff 1992]. Due to the fact that the physical 

interrelationships in grinding cannot be accurately defined, purely physical models are 

seldom used. Therefore, empirical models are more likely to be used for grinding. 

Tönshoff [Tönshoff 1992] reviewed the state-of-the-art in the modelling and simulation 

of grinding processes. In order to evaluate the models developed by different authors, 

the models were transformed within the framework of a unified terminology and 

reduced to basic models. Three different aspects, kinematics, grinding wheel 

topography and the workpiece characteristics were taken into account. The basic models 

were expressed in the terms of variables, factors and exponents. Major differences 
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appear in the absolute values of the derived data. This is possibly due to different 

specifications of workpiece material and grinding wheel type. It was stated that the 

complexity of models varies considerably. The question of which model is suitable for 

a given application could not be answered in general. The decision must take into 

account the required accuracy. In practice, it might often be sufficient to employ simple 

and easy-to-handle models. 

Based on empirical models and experimental investigation, many methods for selection 

of grinding conditions were proposed, such as grinding chart methods [Snoeys 1974] 

[Peters 1976] [Rowe 1987], off-line optimisation methods[Malldn 1980] [Peters 1980]. 

A limit chart method was described by Rowe[Rowe 1987]. Figure 2-1 shows a limit 

chart of the centreless grinding process for cast iron where the grinding variables are 

feedrate of and work speed vw. The process boundaries were formed by available 

machine power, thermal damage and chatter. The grinding conditions should be within 

the region enclosed by the boundaries and the maximum removal rate occurred at the 

junction of the machine power and thermal damage boundaries. 
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An off-line process optimisation system for cylindrical plunge grinding operations was 

proposed by Malkin[Malkin 1980]. The objective was to optimise grinding and 

dressing parameters to maximise the metal removal rate. Removal rate was constrained 

by the maximum permissible workpiece surface roughness and the need to avoid 

workpiece thermal damage. The optimisation algorithm was based on the use of process 

models for workpiece thermal damage, surface texture, grinding power and grinding 

wheel dressing. The optimal conditions for dressing and grinding were achieved when 

thermal damage and surface texture constraints were simultaneously achieved. The 

system was implemented on a PC computer. The user was required to input grinding 

and dressing conditions, the maximum allowable surface roughness, and the measured 

grinding power and surface roughness. The system estimated optimal grinding and 

dressing conditions plus grinding efficiency. 

Empirical models are of a limited value. Usually, an empirical model can only be used 

for the accurate description of one machining application. When employing empirical 

models for applications with changed boundary conditions, a significantly poorer 

representation of the grinding process is to be expected. 

To compensate for changing boundaries on the limit chart and for the inaccuracy of 

preset values of parameters, adaptive control with optimisation( ACO) systems provide 

on-line adjustment of the operating conditions[Malkkin 1981][Kelly 1989][Rowe 1991, 

1994][Xiao 1992,1993]. However, some parameter adjustments rely on process 

models. In addition, as outlined in Chapter 1, the performance of ACO relies on the 

initial values of operating parameters. 

2.4 Al Methods 

Advances in knowledge based systems, neural networks, fuzzy logic, and 

microprocessor technology provide tools for conceptualisation, and development of 
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intelligent manufacturing systems. For more than a decade there has been a major 

research activity related to intelligent manufacturing systems. Matsushima and Sata 

[Matsushima 1980] suggested a hierarchical structure of intelligent machine tool 

controllers to emulate human operators. The lower levels of the scheme involve off-line 

adaptive controllers and pattern recognisers. The higher level controls are global in 

nature, and process data are accumulated over a longer period of time. The results from 

the higher levels are manifested as changes in the lower level parameters. The 

conclusion of Matsushima and Sata is that off-line and on-line learning and self- 

organising techniques are crucial to the development of intelligent machine tools to 

operate the machines in optimal conditions. Ideally, an intelligent machine tool 

controller should be able to learn from experience, have self-organising knowledge 

bases, and be able to use the knowledge obtained to optimise the machining processes in 

real-time. 

A number of investigations have been carried out to apply artificial intelligence in the 

field of abrasive processes in the following activities [Rowe 1994a]: 

" storing and manipulating product information in databases 

" storing and manipulating production information in databases 

" selecting abrasive tools 

" selecting abrasive machining conditions 

" controlling abrasive machines 

" optimising abrasive process performance 

" monitoring grinding process performance 

" compensating for grinding machine and process variations. 

A summary of applications described in recent papers is given by Rowe, Li, Inasaki and 

Malkin [Rowe 1994a]. 

The emphasis in the following review is placed on grinding wheel selection and grinding 
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and dressing parameter selection. 

2.4.1 Grinding wheel selection 

Inoue [Inoue 1987], gives a detailed description of the use of rule and frame-based 

reasoning for grinding. A knowledge based system was capable of diagnosing 

vibrations in grinding through a system called GSKILL and assisted in the selection of 

an appropriate grinding wheel through the use of a system called GDMS. The decision 

support system, GDMS, made use of production rules and hierarchical frames. For 

example, a frame was employed to associate particular input data (machine tool-$T, 

workpiece-hardened, workpiece-SCM, wheel-WA, wheel-LMV, wheel-X100) with 

grinding performance factors (life constant-value, life factor-value, power factor-value, 

roughness factor-value and force factor-value). This frame AKO was associated with 

another frame, AKO-F, of implicit feedrate values. Also within GDMS a calculation 

module calculates grinding wheel life and grinding performance. The calculated data 

were then checked for constraint violations by a frame called MASTER. These 

constraint violations were fed to a production rules type knowledge base PKB and used 

to generate a frame of acceptable wheels where a change of grinding wheel is necessary. 

The knowledge based system which is programmed in Lisp is linked to a calculation 

module programmed in FORTRAN. 

Midha and Zhu [Midha 1990], Zhu and Midha[Zhu 1992a] developed a rule-based 

reasoning system for optimum abrasive wheel selection using a proprietary expert 

system shell XI plus for a variety of grinding operations. The system provided two 

main applications: superabrasive and conventional wheel selection. Having obtained the 

necessary input from the user, such as workpiece material, hardness, size and surface 

condition, surface roughness required etc, the system recommended a suitable wheel 

based on the standard marking system. The wheel characteristics which were evaluated 

by the system are grain size, grain-bond-pore percentage, number of grains per unit 

volume, number of active grains per unit area, wheel bursting speed and wheel bending 
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strength. The following is an example of the use of rules for wheel selection: 

if material group is "Ferrous metals and alloys" 

and material type is "Austenitic stainless steels" 

then grain type is "C" 

and bond type is "V" 

and structure number =6 

König [König 1991] described the "Grindex" rule based system to recommend grinding 

wheels. The system was developed within the TWAICE expert system shell. The 

knowledge base has three types of rules. The first set of rules analyses the grinding 

process. The second decides the problem solving path to be employed. The third set 

classifies and assigns knowledge from the database and procedural elements. The rule 

base uses production rules to determine a wheel specification. A production rule defines 

the relationships between an object, its attributes and its values (O-A-V) to other 

objects, attributes and values. 

Object 

If workpiece 

and workpiece 

then wheel 

Attribute 

material 

thermal treatment 

structure 

Value 

= bearing steel 

= hardened 

=6-8 

Ueda [Ueda 1988] also developed a rule based system for wheel selection written in 

Lisp. A rule based system was presented by Venk[Venk 1990] for wheel selection. 

The disadvantages of many rule/frame based expert systems are that such systems 

represent a limited body of information which may fail to be updated. If expert systems 

are not essential for the performance of a production task, the system tends to fall into 

disuse. The most successful systems are integrated into a production system and are 

maintained and updated as the technology develops. This is important since if it is 
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quicker and more reliable for the experienced user to bypass the system, the system no 

longer plays a useful function. 

2.4.2 Grinding parameter selection 

Chen [1991] presented a surface grinding process advisory system. The system 

incorporated both analytical models and heuristic rules, and searches for an optimum 

solution by using fuzzy logic as an inference mechanism. The system consisted of four 

modules. The automatic rule generation module generates a set of fuzzy rules from each 

grinding process model and stores them in an analytical database. The database 

management module synthesises the generated rules. The generated rules are 

represented in terms of fuzzy membership functions and synthesis is performed 

numerically with fuzzy sets. The fuzzy inference module automatically assigns 

membership grades to the process variables as well as design variables. The 

optimisation module defuzzifies the design variables from the fuzzy design table and 

evaluates the objective function with the newly determined values of design variables. If 

desired conditions have not been reached, the current values of design variables are fed 

back to the automatic rule generation module and the iteration continues. How to deal 

with different workpiece materials and grinding wheels was not considered. 

Midha, Zhu and Trmal [Midha 1991] and Zhu[Zhu 1992b] made use of knowledge 

engineering and process modelling for the optimum selection of grinding parameters. 

Based on the analysis of experimental data for basic grinding parameters, wheel wear 

and specific energy, process models were developed in such a way that they could be 

dynamically modified according to user input by a rule based system. The process 

models accommodate grinding parameters such as specific tangential grinding force Ft, 

, maximum temperature Tmax, wheel wear parameters. The first stage specific energy ec 

of the selection procedure was to use a rule based system "OPExpert" to give a set of 

nominal grinding values for a given grinding situation. These can be evaluated in the 

second stage for bum-free grinding and/or grinding with maximum grinding ratio with a 
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system "PRExpert". "PRExpert" is a dynamic model and rule based system for 

prediction of grinding results. A repeated use of the evaluation procedure yielded 

optimum grinding parameters for a desired criterion, e. g., low grinding force, good 

surface texture. The main attribute of the proposed approach is that grinding process 

models can be modified dynamically. The basis of the model may be demonstrated by 

the formulae used for the computation of specific tangential force F't. The specific 

tangential force is related to equivalent chip thickness heq by using a factor F and an 

exponent fin an equation of the form. 

Ft = F. (heq)f 

The effect of a wide range of parameters were taken into account by calculating their 

modifying effect on F and f using factors stored in a database. 

nn 
F=Fo+ýF1andf=fo+j f1 

where Fo and fo are the values for heq = 1. The effect of material grindability is Fi =E 

mlj. aji or in matrix form, F=M. A1. The factors mlj are tabulated according to the 

material grindability. The selectors aji are decided by a rule based system according to 

the input data. 

v. difficult difficult middle easy v. easy 

Fl Mil m12 m13 m14 m15 

fj m21 m22 m23 m24 m25 

The modifications are extracted and summed for each of the parameters of grindability - 

M, wheel hardness - H, equivalent wheel diameter - D, wheel dressing - W, and wheel 

grain size - G. 
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n 
Fi 

= M*A.. +H*A.. +D*A.. +W*A.. +G*A.. 
n 

f; 

Similar procedures were employed for surface roughness and the force ratio. Other 

parameters are then calculated using appropriate mathematical models. The advantage of 

the system is that different influencing factors for the material and wheel were taken into 

account. 

Sakakura and Inasaki [Sakakura 1992] described the use of a feedforward neural 

network used together with a Brain-State-in-a-Box network to selection of dressing 

conditions illustrated in Figure 2.2. 

The network was used to explore the potential of a system which demonstrates 

associative memory for decision making in grinding. The feedforward network (FFN) 

is trained using backpropagation. The training is based on results obtained from 

grinding experiments. The results used for training characterise the surface roughness 

values in terms of the probability density for each combination of dressing feed and 

dressing depth. The outputs of FFN may contain various combinations of dressing feed 
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and dressing depth satisfying a particular surface roughness requirement. The BSB 

network was used to recall the most suitable combinations. Other factors which affect 

the dressing conditions were not taken into account by the authors. 

Sakakura and Inasaki [ Sakakura 1993], designed a fuzzy rule based system for 

selection of grinding and dressing conditions. The fuzzy rules were based on an 

analysis of previous grinding results. A learning module evaluates individual data in a 

grinding data base and generates fuzzy rules. The rules are then stored in a fuzzy rule 

base. A maximum of 500 grinding examples were stored in the grinding data base. Old 

sets of practical grinding data are replaced by new values on a first in - first out rule. 

The learning module is based on genetic algorithms. Genetic algorithms were used to 

refine the rules in the rule base, create new rules by mutation, crossover and 

combination. Manipulation of membership functions was facilitated using binary 

strings. The fitness of a rule is calculated by a function which computes the strength of 

the match between the rule and the data in the grinding data base. Rules with high 

fitness are given a greater chance of survival than rules with low fitness. A further 

factor is introduced into the fitness test which reduces fitness of rules which are closely 

similar. The system is only suitable to the situation in which the workpiece material and 

the wheel are unchanged. 

Kim and Inasaki 1993 [ Kim 1993] also described a fuzzy rule based system to establish 

optimum grinding conditions, for maximum removal rates, subject to the constraints of 

grinding power, workpiece burn, chatter vibration, and surface roughness. Specialised 

knowledge of the grinding operation is acquired from the actual operation database. 

Coefficients in the experimental equations are obtained through the fuzzy regression 

model based on fuzzy set theory and are stored in the actual operation database. 

Liao and Chen [Liao 1994] described a neural network approach for modelling and 

optimising a grinding process using creep feed grinding of alumina with a diamond 

wheel as an example. First, a generalised back propagation neural network with two- 
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hidden layers is used to establish the process model. The structure of the network was 
5x5x4x3, namely, a input layer with 5 neurons, first hidden layer with 5 neurons, 

second hidden layer with 4 neurons and a output layer with 3 neurons. The five input 

variables used were bond type B, mesh size m, concentration c, work speed vw, and 

depth of cut a. Surface finish Ra, normal grinding force per unit width Fn, and specific 

grinding power P' were the three output variables. A total of 16 experimental samples 

are used to train the network. Once the modelling procedure has been implemented, the 

back propagation algorithm with a Boltzmann factor is used to find the global optimal 

settings for the grinding process. In the modelling procedure, inputs are fixed and 

network parameters are adjusted to minimise the error function E. A similar procedure 

is used for optimisation. The only difference is that, in the optimisation phase, the 

parameters of the network were fixed and the inputs are adjusted so that the objective 

function is minimised (or maximised) subject to certain constraints. Sathyanarayanan 

[Sathyanarayanan 1992] also utilised a neural network approach to model the creep feed 

grinding of superalloys, but did the optimisation analytically using an off-line multi- 

objective programming technique. These two systems are limited in application to 

creed-feed operations. 

Rowe [Rowe 1994b] presented a conceptual framework for an intelligent grinding 

machine as illustrated in Figure 2.3. All of the essential elements of Figure 2.3 were 

tested for plunge grinding operations. The Intelligent Grinding Machine has the 

potential to include ACO and the further AI features indicated below: 

" to remember optimised conditions for future operations in a learning database 

" to provide intelligent selection of process parameters from a learning database 

" to integrate into a CIM environment 

" to feed process information back to a higher level computer system 

" to facilitate set-up. 

In addition, some knowledge based approaches were employed to aid the selection of 

grinding conditions. Venk [Venk 1990] used a frame based system with a PCP1us 
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expert shell as a qualitative analysis tool (problem formulation) to aid optimisation of the 

centreless grinding process. 

2.5 Discussion 

A number of research applications of AI have been described in the literature. However, 

there is little evidence of the successful implementation of such techniques in standard 
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production machine tools and systems. However, it is obvious that the trend towards 

increased use of artificial intelligence in grinding systems and operations is clear, and 

unlikely to be reversed[Rowe 1994a]. 

Most of the techniques for selection of grinding conditions described in the literature, 

rely on process models. Rule based systems can be applied for selection of grinding 

wheels but it is difficult to cope with every situation for selection of grinding conditions. 

Neural networks can be used to develop models of the process but rely heavily on the 

quality and quantity of the training data. A common disadvantage of the systems 

described in the literature is that system learning is difficult. System learning usually 

requires development calling on domain experts and knowledge engineers. 
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Chapter 3 Study of the Grinding Conditions 

Grinding is a complex manufacturing process with a large number of interacting 

variables. Before designing the selection system, it is necessary to define the variables 

and to find which variables should feature in the selection process. Consideration is 

therefore given to the relationship and influence between these variables. There are 

many types of grinding process. However, their action is essentially similar. The study 

is therefore limited to the external cylindrical plunge grinding operation. 

3.1 The Basic Grinding Variables 

Figure 3.1 illustrates an external cylindrical plunge grinding system. The subscript w 

refers to workpiece parameters, and the subscript s is used for wheel parameters. 

Figure 3.1 External cylindrical plunge grinding system [King 1986] 

Material removal during grinding occurs as abrasive grains cut the workpiece surface. 

The penetration of the cutting points into the material being ground depends on the 

19 



topography of the wheel surface and the geometry and kinematic motions of the wheel 

and workpiece. The basic grinding variables may be divided into four categories as 

illustrated in Figure 3.2. 

Other Conditions 
Uncontrolled Variables 

Material properties 
Workpiece geometry 
System rigidity 
Power capacity 

Grinding Process 
Grinding Conditions Output Variables 
Controlled Variables Size 

Grinding wheel 
Roundness 

Dressing tool 
Coolant Machine Workplece 

Roughness 
Integrity 

Grinding kinematics Cycle time 
Dressing kinematics Wheel wear 

Cost 

Process Variables 

Force 
Temperature 
Vibration 
Power 

Figure 3.2 The basic grinding variables 

(i) The output variables of the system comprise: the workpiece quality, productivity and 

cost, which should meet the design and manufacturing requirements. The output 

variables are therefore the main variables to be controlled. 

(ii) Process variables include power, force, temperature and vibration. The process 

variables are affected by the grinding conditions and affect the output variables. As the 

grinding wheel engages the workpiece, forces are induced between the wheel and the 

workpiece. The force depends on the grinding conditions and affects the output 

variables and the other process variables. The higher the forces are, the faster the 

material removal rate. The force also affects the surface roughness, the deflection of the 
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system and the onset of thermal damage. For this reason, some adaptive control 

systems use controlled force techniques[Tönshoff, 1986]. However, process variables 

are intermediate variables which provide indirect evidence of the relationships between 

input and output variables. 

(iii) The input conditions may be divided into the grinding conditions which are 

selectable and other conditions which are uncontrolled. Uncontrolled variables, e. g. 

material properties, cannot be changed by the operator but have a significant effect on 

the grinding process and output variables. The grinding conditions consist of the 

grinding wheel, the coolant, the dressing conditions and the grinding kinematic 

conditions. The grinding conditions should be determined by the operator before 

starting a grinding process. 

The criterion for the selection of the grinding conditions is that the output variables must 

meet the requirements of design and manufacturing. Many papers have been published 

on the relationships between the grinding conditions, the process variables and the 

output variables[Tönshoff 1992]. Since physical models cannot be accurately defined 

and empirical models have a restricted range of validity, they are not always reliable in 

practice. But, these grinding models demonstrate qualitative relationships of the 

grinding process. Thus, in this chapter, a qualitative analysis of the main parameters is 

described. These basic parameters will be employed in later chapters. 

3.2 The Requirements to Process Variables and Output Variables 

The overall objective is to select appropriate grinding conditions which are as near to 

optimal as possible. The optimisation objective to be considered here is minimisation of 

the grinding time subject to quality constraints. The optimisation problem therefore can 

be summarised as to minimise cycle time T subject to the following constraints: 

ec 5 ec* (burning constraint) 
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Ra S Ra* (roughness constraint) 

r: 9 r* (out-of-roundness constraint) 

S: 5 s* (size constraint) 

P: 5 P* (power constraint) 3.1 

where ec is the specific grinding energy, Ra is the workpiece surface roughness, r is the 

workpiece roundness, s is the workpiece size error and P is the grinding power, the 

asterisk signifies a constraint value. In the grinding process, some output variables, 

such as surface integrity, are not conveniently measured and controlled. A process 

variable which can be reliably measured and controlled is power[Kelly 1989]. The 

power is therefore controlled to prevent thermal damage by reference to a thermal model. 

In 1988 Rowe[Rowe 1988] presented a thermal model: 

r 

e* _1 
ýKpcj le 11/2 Om 

C 
ý, `jIVN, 

J RH, U 
3.2 

where e, is the critical specific grinding energy, 8m is the critical maximum workpiece 

temperature, C is a heat flux distribution factor, xis the thermal conductivity, p is the 

density, c is the specific heat capacity, le is the real contact length, v�, is the workpiece 

speed, R, r is the fraction of the total energy partitioned to the workpiece and a is the true 

depth of cut. 

Here wheel wear and cost are not taken into account as independent variables. 

3.3 The Description of the Grinding Problem 

The selection of the grinding conditions is the solution to the grinding problem. 

Therefore, the operator should present the description of the grinding problem to the 

selection system. There are two major components of the problem description, goals to 

be achieved in solving the problem and constraints on these goals. The goals in the 
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grinding problem are the machining requirements. The constraints are the nature of the 

workpiece and the machine tool. In other words, the description of the grinding 

problem consists of the requirements to output variables and the uncontrolled variables 

which cannot be changed by the operator. 

3.4 The Grinding Conditions 

3.4.1 The grinding wheel 

The grinding wheel characteristics have a direct effect on process efficiency, accuracy, 

surface roughness and surface integrity[Nakajima 1978]. It is therefore essential to 

select an appropriate grinding wheel. The best wheel for an application is a compromise 

between the ability to cut rapidly and the ability to hold form, maintain the surface 

roughness requirements and last a long time before dressing is required[MDC 1980]. 

The specification of the grinding wheel consists of six parts: 

" Abrasive type 

" Abrasive grit size 

" Grade 

" Structure 

" Bond 

However, since the wheel structure part is use optional and it is not shown on the 

products, the wheel structure is omitted in the selection of a wheel. 

A comprehensive model is not yet available that can relate the wheel specification and the 

output variables. However, the main factors affecting grinding wheel performance are 

as follows[King 1986][MDC 1980][Universal 1992]: 

(i) The type and hardness of material to be ground affect the selection of abrasive, grit 

size and grade. Alumina is the most efficient conventional abrasive for grinding high 
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tensile materials such as steel and cast iron. Silicon carbides abrasives are used to grind 

low tensile strength materials and non-metallic materials. CBN grinding wheels are 

recommended for alloys that are difficult to grind with conventional abrasives. The 

wheel grade must be adjusted to suit the hardness of the materials. The harder the 

material, the softer the grade of wheel required. 

(ii) The surface roughness produced is affected by the abrasive grit size and bond type. 

High stock removal rates require coarse grit wheels. Small grit sizes are used to achieve 

fine finishes and close tolerances on finished workpiece geometry. Resinoid, rubber or 

shellac bonded wheels are used to achieve the finest finishes. 

(iii) The selection of wheel grade and structure depend on the contact area between the 

grinding wheel and the workpiece. Large contact areas tend to produce low grinding 

pressures and require soft grade, open structure wheels. Conversely, small contact 

areas require harder grade and closer structure wheels. The size of the workpiece also 

affects the contact area. In external grinding, the larger the workpiece, the larger the 

contact area, requiring softer grade wheels. 

(iv) The severity of the grinding operation affects the choice of grit size and grade. For 

example, a rough cast or forged workpiece requires a harder grade and coarser grit size. 

3.4.2 The dressing variables 

Dressing prepares the cutting surface of the wheel by removing dulled grains or by 

cutting through them to present new sharp grains. Dressing also removes wheel loading 

and particles of connecting bond material to open up the porosity of the wheel surface. 

Dressing conditions have an important influence on the following output and process 

variables[Verkerk 1979]: 

" Grinding force 

" Wheel wear 
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" Workpiece surface roughness 

" Specific energy 

" Surface integrity 

There are several dressing methods. However the single-point diamond dressing tool is 

commonly employed in industry. The dressing variables are: 

" Dressing lead fd 

" Dressing depth ad 

" Number of passes nd 

" Setting angle of the diamond 

" Initial diamond shape 

" Diamond wear 

In these variables, diamond wear is uncontrollable. Angle and initial shape of the 

diamond have fixed values. The number of dressing passes nd usually is not more than 

4[Pattinson 1975]. Therefore, in the selection of the dressing parameters, the main 

variables to be considered are dressing lead fd and dressing depth ad. Results from 

many investigations [Verkerk 1979] show that coarse wheel dressing ( high dressing 

lead and large dressing depth ) produces an open structure which results in good cutting 

efficiency and lower grinding force but poor workpiece finish, whereas fine dressing 

produces a more closed structure to the wheel face which results in good workpiece 

surface finish but inferior cutting properties. 

Malkin in 1989[Malkin 1989] gave a relationship between dressing parameters and 

initial workpiece surface roughness : 

Ra = R1 fy2ad 
vs 

3.3 

where Rl and x are empirical constants. The exponent x lies typically in the range 0.15 - 
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0.6. Equation 3.1 applies for short grinding cycles with frequent wheel redressing. In 

such cases, the wheel may be dressed once per part, usually prior to the final finishing 

stage of the grinding cycle. With longer grinding cycles and less frequent dressing, 

wear of the grinding wheel alters its topography and the surface roughness changes with 

time[Malkin 1989]. 

As mentioned in section 3.2, abrasive grit size can significantly affect the surface 

roughness. For conventional abrasive wheels dressed prior to use, the grit size is 

usually found to have only a minor influence on the initial workpiece roughness after 

dressing. However, with continued grinding after the initial effects of dressing are 

removed, abrasive grit size more strongly affects the surface roughness [Malkin 1989]. 

The best approach should consider the effects of the dressing and the wheel grit size. 

Selection of the appropriate values of the dressing variables and wheel grit size can make 

the grinding behaviour more stable for the period of grinding before wheel re-dressing. 

A dressing strategy has been proposed to obtain a stable grinding wheel working 

surface[Rowe 1995]. 

The process of selecting the values of dressing parameters is made more difficult due to 

the uncertainty introduced by the shape of the dressing diamond which will change with 

the wear. The process is much simpler when a muldpoint dressing tool is employed 

[Verkerk 1979]. However, the process outlined is considered to be the most practicable 

approach for the present state of knowledge. 

3.4.3 The grinding variables 

The controlled grinding variables include the feed and speeds. The kinematic variables 

affect the process and output variables. The main controlled grinding variables are: 

" Wheel speed vs 

" Work speed vw 

" Feedrate vf 
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Spark-out time Td 

Many papers have been published on the relationships between the controlled grinding 

variables, the process variables and the output variables[Tönshoff 1992]. In practice, 

one of the most important and reliable basic parameters is the equivalent chip thickness 

heq which correlates fairly well with the main grinding parameters, as shown by many 

experiments[Peters 1976]. The equivalent chip thickness is defined as: 

I 

h =v�, 
a 

_Q�, _'r e4 vs vs vs 
3.4 

The relationship between heq and specific normal grinding force Fn', specific tangential 

grinding force Ft', specific energy ec, roughness Ra and the G ratio may be fairly well 

approximated by power function[Peters 1976]: 

Ft=F, h4 3.5 

Fn = F2 hfe 3.6 

ec = F1 he41 3.7 

Ra Rihq 3.8 

G=Glh; 3.9 

where F1, F2, R! and GI are empirical constants, and the f, x and g are exponents. The 

factors and exponents depend on the nature of the workpiece material and the grinding 

wheel. 

Since heq takes no account of wheel grit spacing or workspeed, Rowe [Rowe 1987] 
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proposed two basic parameters for describing the kinematic relationship between 

grinding parameters and applied them in an ACO system. The two parameters were 

mean grinding chip volume Vm and the mean chip aspect ratio A. The two parameters 

are defined as: 

vm=hegldbc =nd 
Idb 3.10 

vs 

_ 
1,0.5devs 3.11 Ar 
hm ldVw 

where Id is the dynamic grit spacing, be is the grinding chip width, dw is the work 

diameter, lc is the chip length, hm is the maximum chip thickness and de is the equivalent 

diameter. 

Another basic parameter based on the kinematics of the grinding process is the ratio 

between the equivalent chip thickness and the geometric contact length hegllg 

[Brinksmeier 1993]. The parameter hegllg includes the effects of workspeed but takes 

no account of the wheel grit spacing. It was argued that hegllg correlates fairly well 

with the main grinding parameters and can be used to relate optimal grinding conditions 

from one operation to another. 

In these basic models, spark-out time is not included. However, spark-out time will 

affect the roundness and the roughness of the workpiece. The spark-out period may be 

determined in the grinding process because the spark-out period required is strongly 

dependent on the deflection of the system. The deflection depends on the stiffness of 

the workpiece, the stiffness of the machine and the efficiency of the removal process. 

When an appropriate adaptive control system is available, spark-out period can be 

automatically adjusted[Rowe 1991]. 
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3.5 The Grinding Conditions Selected by Selection System 

From the above sections, it can be seen that not all grinding conditions can or need be 

selected. Some conditions are uncontrolled and some have fixed or optimal values. In 

addition, some values are better determined during the grinding process. Therefore, the 

independent grinding conditions to be selected are: 

" Abrasive type 

" Grain size 

" Wheel grade 

" Bond 

" Dressing lead fd 

" Dressing depth ad 

" Wheel speed vs 

" Work speed vW, 

" Feedrate vf 

" Coolant 

3.6 Conclusions 

There is a large number of variables in grinding each of which influence each other. 

Basic control parameters have been proposed which correlate fairly well with the main 

grinding control variables [Peters 1976] [Rowe 1987]. However, a comprehensive 

model which can widely and reliably relate all the variables of the grinding processes is 

not yet available. 
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Chapter 4 Strategy . and Methodology for Selection of 
Grinding Conditions 

The purpose of this chapter is to describe the basic concepts and features of artificial 

intelligence techniques and propose a strategy for selection of grinding conditions with 

suitable intelligent techniques. 

4.1 Artificial Intelligence Techniques in Engineering 

A commonly accepted definition of Artificial Intelligence is that "Artificial intelligence is 

the subfield of computer science concerned with the use of computers in tasks that are 

normally considered to require knowledge, perception, reasoning, learning, 

understanding and similar cognitive abilities" [Duda 1979]. AI methodologies applied in 

engineering mainly include the following approaches: 

" Rule or frame based reasoning 

" Case based reasoning 

" Artificial neural networks 

" Fuzzy logic 

" Genetic algorithms 

" Hybrid methods 

The principal categories are rule/frame based reasoning, case based reasoning and 

artificial neural networks. Fuzzy logic is usually associated with rule based systems or 

neural networks. Genetic algorithms are usually employed as an optimisation or 

learning technique. 

4.1.1 Rule based reasoning 

The rule based reasoning system is a kind of knowledge based system (KBS) 

employing production rules as the main form of knowledge representation and 
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manipulation. A rule is a conditional statement that specifies an action that is supposed 

to take place under a certain set of conditions. The set of rules is usually in the form of 

IF<some condition is met> TIEN<execute some action> [Adeli 1990]. It is useful to 

structure problem-solving systems in a way that facilitates a description of a search 

process. Many existing expert systems employ rule based reasoning. 

Rule based reasoning has the following generally positive features [Dagli 1994]: 

" Ease of exploring the knowledge base, i. e., the encoding of information in readable 

form. 

" Ease of modification of the knowledge base, i. e., a rule may be added or removed. 

" Flexibility of processing, i. e., the Inference mechanism may be chosen to suit the 

problem. 

In grinding, it is difficult to build a formal relationship between the grinding wheel 

specification and the grinding behaviour. Almost all existing intelligent systems[Inoue 

1987] [Venk 1990] [Zhu 1992a] for selection of grinding wheels employ rule based 

reasoning. 

Rule based reasoning also has drawbacks. It is time consuming, both for the system 

developer and the contributing expert, to extract and encode a collection of rules into a 

coherent knowledge base. For example, Zhou's system[Zhu 1992b] for wheel selection 

contained over 2,000 rules. For poorly understood domains, for example, selection of 

the values of dressing and grinding parameters, it is difficult to code the imprecise 

knowledge involved in rules. In such cases, decision makers rely heavily on their 

experience rather than on explicitly stated rules. In existing intelligent systems, the 

selection of the values of dressing and grinding parameters mostly rely on process 

models. The rule based system mainly play the role of an assistant. The most serious 

limitation of rule based systems is an inability to learn from operating experience and the 

inability to take account of developing technology. In practice, an intelligent system 

may have only a small volume of initial knowledge and machine learning is therefore 
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important if relevant operating experience is to be accumulated. 

4.1.2 Artificial neural network (ANN) 

Artificial neural networks(ANNs) constitute a new approach to computation. As 

formulated by Kohonen[Kohonen 1988] " artificial neural networks are massively 

parallel interconnected networks of simple, usually adaptive elements and their 

hierarchical organisations which are intended to interact with the objects of the real 

world in the same way as biological nervous systems do". ANNs are useful for 

classification, autoassociation, time-series prediction and function approximation. 

Neural networks have the following main advantages comparing with rule based 

reasoning: 

" knowledge is obtained by learning from examples. Therefore an ANN can be used in 

problems with poorly understood domains, especially for modelling multivariable, non- 

linear systems. This feature is particularly relevant to the grinding process. 

" Knowledge is stored in a distributed fashion. The knowledge is not stored by address 

or in a particular neuron of the network. Instead, each item of knowledge is stored over 

all neurons, and each neuron contributes to representing many pieces of knowledge. 

Generally, distributed schemes require less memory for storing knowledge and are 

naturally fault tolerant. 

" Neural networks can provide solutions to problem which have not previously been 

experienced as long as the solutions lie within the same domain as the training data. 

These characteristics make neural networks potentially useful for modelling grinding 

processes[Sathyanarayanan 1992][Liao 1994]. The neural network can model the 

grinding process as a black box and there is no need to fully understand the grinding 

process. 

The main disadvantage of ANNs for grinding is the difficulty of finding sufficient 
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reliable training data to cover the whole domain of interest. Training data are obtained 

mainly through grinding experiments although production data could also be 

employed[Sathyanarayanan 1992] [Liao 1994]. For a workpiece - wheel combination, a 

group of training data can be used to train an ANN. However, when the workpiece- 

wheel combination changes, the neural network needs to be retrained based on relevant 

information. The training of an ANN is time consuming and is not guaranteed to 

provide a reliable results. Neural networks are therefore suitable for a particular 

operation where training data are available. It is difficult therefore to develop an ANN 

which can model the grinding process comprehensively. 

To date, many kinds of neural network architecture have been developed. Popular 

neural networks include the multi-layer feedforward network, adaptive resonance theory 

(ART) models and Hopfield models [Monostori 1992]. However, for modelling, the 

network most commonly used is the multi-layer feedforward network incorporating an 

error feed back propagation learning algorithm. The multi-layer feedforward network 

has proved to be capable of approximating any non-linear function with arbitrary 

accuracy, Homik, Stinchcombe and White [Hornik 1989]. 

4.1.3 Case based reasoning 

Case-Based Reasoning(CBR) is an approach which seeks to identify a close match 

between a new operation to be performed and the characteristics of a previously 

successful case stored in a case base. The approach solving a problem is to remember a 

similar problem solved in the past and adapt the solution to solve the new problem. An 

early description of the concept of case based reasoning was given in Dynamic Memory 

[Schank 1982]. The approach is close to the human decision-making piocess[Yoon 

1993]. In this process, the key point is usage of experience instead of rules. This is a 

major difference between skilled operators and novices. A novice solving an operating 

problem usually uses rules but this is not always the best way to solve a problem, 

particularly when the problem lies outside the domain of the available rules. 
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CBR has several advantages [Kesler 1993]. 

" CBR can be used in problems with poorly understood domains . It does not require 

understanding of why a previous solution was successful. Case based systems can 

often avoid some of the difficult representational and behavioural modelling needed 

when using a rule based approach. 

" CBR automates the process of incorporating new knowledge into an existing 

knowledge base. A CBR system automatically utilises this additional knowledge for 

solution of future problems. 

" The knowledge acquisition bottleneck is much easier with CBR than with other 

learning methods. The reason for this is that the classification model used for 

information retrieval provides the basis for storage of new information. Cases unlike 

rules require a minimum of debugging of the interactions between them. Thus, initial 

knowledge acquisition can be routine. 

CBR technology has received much recent attention [Barletta 1991] [ O'connor 1992] 

[Mott 1993] [Tsatsoulis 1993] [Watson 1995] but is still a relatively young area within 

AI and there are still many problems that need to be researched. In grinding, it is 

difficult if not impossible to obtain enough cases to cover the whole problem space in 

the initial stage when the system is set up. CBR may fail to give a solution where the 

number of cases is insufficient. 

4.1.4 Comparison of different approaches 

Each of the above described methodologies has their advantages and disadvantages. A 

comparison of the main features of the different methodologies is given in Table 4.1. 

From Table 4.1, it can be seen that case based reasoning has the best overall 

performance. 
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Table 4.1 The main features of intelligent technologies 

Subject RBR ANN CBR 

knowledge acquisition difficult easy easy 

Learning poor good very good 

Development time low fast fast 

Maintenance difficult in easy easy 

large system 

Explanation fair none good 

Major source of expert database, casebase, 

knowledge expert expert 

4.1.5 The hybrid intelligent system 

Real world grinding problems are varied and complex. A grinding application may 

neither fit the assumptions of a single technology nor be effectively solved by the 

strengths and capabilities of a single technology. One approach to deal with complex 

real world problems is to integrate the use of several other technologies in order to 

combine their different strengths and overcome a single technology's weakness to 

generate hybrid solutions[Dagli 1994]. Hybrid systems can be developed in a variety of 

ways. For example, one technology may embed another or several technologies to 

complete a task in an integrated approach. The 'blackboard' architecture [Engelmore 

1988] is a hybrid intelligent framework having the greatest potential for complex 

problem-solving. 

A blackboard model is a highly structured, opportunistic problem-solving model that 

prescribes the organisation of knowledge and data and the problem-solving behaviour 

within the overall organisation[Engelmore 1988]. The basic principle of the model can 

be described using the following example. 

The system operates in a similar manner to a group of experts collaborating to solve a 

35 



complex problem. The experts have at their disposal their collective expertise and a 

large blackboard. Each expert is a specialist whose knowledge may be relevant at some 

point in the problem-solving process. The experts agree to maintain a record of their 

current best partial solution(s) to the problem on the blackboard for all to see. Anyone 

able to contribute to the current partial solution writes their contribution on the 

blackboard. The information on the blackboard may also be modified or deleted by 

experts during problem solving. Each expert watches the blackboard, looking for 

opportunities to contribute to the solution which arises in the course of problem solving 

as the combination of items on the blackboard fits their particular specialist expertise 

[Mirzai 1990]. 

The blackboard is a conceptual, and not a computational, framework[Dagli 1994]. It 

allows many different extensions and variations to this prescriptive model. The 

application itself and the various knowledge agents available to build the system will 

determine the final implemented form of the blackboard. The concept embraces the 

notion of problem decomposition with different agents attacking areas of the problem to 

which agents are most suited. This allows for very flexible knowledge application and 

the utilisation of multiple inferencing techniques and approaches[Occello 1994] 

[Cheerier 1994] [Mani 1994][Botti 1995]. 

4.2 The Strategy for the Selection of Grinding Conditions 

Based on the above description, it is expected that a system can be achieved which can 

select grinding conditions using existing grinding knowledge. The store of knowledge 

should improve and increase continually through operation. The system should be 

integrated into a production system and be maintained and updated as the technology 

develops. This is important since if it is quicker and more reliable for the experienced 

user to bypass the system, the system no longer plays a useful function[Rowe 1996]. 

The case based reasoning approach was adopted for the selection of grinding conditions 

36 



because the process is affected by a large number of factors, the effects of which are 

poorly defined. Using grinding experience as the main source of system knowledge, 

rather than explicit rules, the development of the knowledge base is easier and faster. 

The most important factor in using case based reasoning is that technology can be 

relatively easily updated by incorporating new cases into the case base. The operator 

can add the new cases into the case base without the assistance of the knowledge 

engineer. In addition, CBR avoids the drawback with neural networks that training is 

time consuming and not guaranteed. However, it is difficult to find enough grinding 

cases to cover a sufficiently large problem coverage in the initial stage of development. 

Case based reasoning may therefore fail to provide a solution if the number of cases is 

insufficient. Therefore, other techniques need to be associated with case based 

reasoning. 

Generalisation of rule based systems for a wide range of grinding operations may prove 

to be intractable. So far, since deep knowledge of the grinding process is lacking, it is 

impossible to build a comprehensive rule base to meet the requirements of most 

situations. However, in the initial stage of case based reasoning when cases are 

insufficient to cover the whole of the problem space, rule based systems can be used to 

suggest a starting point for decision making in grinding. 

A feedforward network with backpropagation learning was adopted for the grinding 

wheel selection system A neural network approach can be developed as an independent 

system for selection of the grinding wheel but also used to complement the case based 

reasoning. Catalogue data were used to provide training data. 

In some situations, the operator may have to make decisions. For example, if the values 

of operating parameters recommended by the system are considered to be unsuitable for 

any reason, the operator should provide alternative values. For example, the operator 

may decide to use the existing wheel on a machine to save time. 
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A multi-agent approach is proposed for the hybrid system. Agents are capable of acting 

independently, cooperatively and collaboratively to achieve a collective goal. The agents 

interact through a blackboard model. The system is illustrated in Figure 4.1. 

Figure 4.1 A blackboard model for grinding operation 

The proposed system has four knowledge agents: 

(i) Case based reasoning is employed as the main problem-solving part which can select 

combinations of the grinding wheel and values of control parameters. 

(ii) Rule based reasoning is employed to select values of the control parameters, where 

relevant data are unavailable in the case base. 

(iii) A neural network is employed to select a grinding wheel if required. 

(iv) The operator can make a final decision about the wheel or the values of control 

parameters. 

Each knowledge agent can make a contribution to problem solution. The priority of the 

agents in decision-making is : 

1. Operator 
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2. Case based reasoning 

3. Rule based reasoning and the neural network 

The main advantages of the hybrid approach proposed are: 

" Each knowledge source can make a contribution to the problem solution, without 

having to solve the problem in its entirety. Therefore, the hybrid approach allows for 

incomplete knowledge of the domain. 

" Each knowledge source can employ different representational methods of the 

knowledge and inference engines. Therefore, the model can combine advantages of 

different methods and overcome weaknesses of a single approach. 

" Each knowledge base is separate and independent. The addition, deletion or 

modification of a knowledge base does not affect other knowledge bases. The 

knowledge bases can therefore be developed independently. 

The following chapters will describe the principle and development of the different 

knowledge agents and the design and testing of the whole system. 

4.3 The Software Approach and Tools for Development of the System 

Three independent systems were developed. 

"A prototype neural network system 

"A wheel selection system using a neural network 

"A multi-agent system for selection of grinding conditions 

The systems were developed in the DOS character(text)-based, rather than in a graphical 

environment, which means the systems run faster. At the time of development, Dos 

was considered to be more suitable for an industrial environment. The system was 

developed using an object-oriented programming approach employing the Borland C+" 

programming language. 
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The object-oriented programming paradigm is a software design and development 

technology. The technology incorporates several sophisticated and efficient mechanisms 

that provide an organisational framework for the development of a large and complex 

software project. Much of the value of object-oriented programming results from the 

feature of inheritance. The idea of inheritance is that a programmer starts with a library 

of already-developed object types, or classes, and uses the object classes for new 

applications by adding data elements or operations to form new classes. 

Inheritance is a particularly useful feature for designing user interfaces. Developing a 

user-friendly interface may take much time and effort. The user interfaces of the 

systems were developed using the Borland Turbo Vision package which is included in 

Borland versions Cam- 3.0 or 3.1. Turbo Vision is an object-oriented, event-driven 

environment. The Turbo Vision Package includes many classes which can be inherited 

for developing user interfaces. 
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Chapter 5 The Prototype Neural Network System 

The development of the neural network application required a development tool. There 

are a number of commercial neural network development tools available. However, 

these tools have some limitations for practical problems. 

(1) It may be inconvenient to transfer the trained neural network into the application 

system. For example, the NeuralDesk [NeuralDesk 1992] package only gives a textual 

report of the network construction and values of the weights. 

(2) It may not be possible to integrate a commercial development package into an 

industrial application system because of the size, cost and copyright problems of the 

package. If an executable application is employed rather than the complete package, re- 

training will be difficult in an industrial application. 

A prototype neural network system was therefore developed and embedded in an 

application system. This chapter describes the principle and the structure of the 

prototype. 

5.1 Multilayer Feedforward Network with the Error Back Propagation 

Learning Algorithm 

5.1.1 An artificial neuron 

A single artificial neuron is an information-processing unit that is fundamental to the 

operation of a neural network. Figure 5.1 shows the model for a neuron used in the 

prototype. The inputs are attenuated by the neuron weights, w; , and summed to 

produce the value net. The value net is operated on by an activation function to produce 

an output. The activation function used was the sigmoidal function. 
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Fig. 5.1 An artificial neuron 

The operation of the neuron is described by the equations 

n 

net=I w; x; 
i=o 

1 
out =f (net) _ 1+ e-net 

5.1.2 The multilayer feedforward network 

5.1 

5.2 

Fig. 5.2 The multi-layer feedforward neural network 

The multilayer feedforward network consisted of a set of neurons logically arranged into 
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three or more layers as illustrated in Figure 5.2. There is an input layer and an output 

layer, each containing at least one neuron. Neurons in the input layer do not themselves 

have inputs, and do no processing of any sort. Their output is defined by the network 

input. There are usually one or more hidden layers sandwiched between the input and 

output layers. The term "feedforward" means that information flows in one direction 

only. The inputs to neurons in each layer come exclusively from the outputs of neurons 

in the previous layer, and outputs from these neurons pass exclusively to neurons in the 

following layer. 

The output of every neuron in the network is computed using equations 5.1 and 5.2. 

These equations can be expressed as follows. 

n 
nett = w; j o; 

i-o 5.3 

oj =f(nett)= 
1 5.4 

1+ e'"eti 

where: 

oi output of the jth node 

nett unshaped output of thejth node 

f (nett) shaping function of thejth node 

wij the weight of a connection between the ith node in one layer 

and jth node in the next layer 

5.1.3 The error back propagation learning algorithm 

The values of the connecting weights determine the behaviour of a feedforward 

network. Training is the process of adjusting these weight values so that the network 

behaviour matches some desired behaviour. By far the most common training or 

learning algorithm for multilayer feedforward network is error back propagation(BP) 

[Rumelhart 1986]. The mechanism of the back propagation procedure is a 
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generalisation of gradient descent techniques. The network is presented with a series of 

pattern pairs. Each pair consists of an input pattern and a target output pattern. Each 

pattern is a vector of real numbers. The target output pattern is the desired response to 

the input pattern and is used to determine the error values in the network when the 

weights are adjusted. 

Suppose there are n outputs in the network. For pattern p, the desired outputs are 

represented as vector D=(dp, p, ..., dp, n_I), while the corresponding actual outputs are 

represented as vector O=(op, O, ..., op, n_1). The error function Ep is defined as 

1 n-1 
Ep=2I (dpi- op. +) 

i=O 
5.5 

Ep is a square error function. The function is easily computed and perhaps most 

importantly, its partial derivative with respect to individual weights can be computed 

explicitly [Masters 1993]. When Ep approximates to 0, mapping between inputs and 

outputs for pattern p is realised. The gradient descent technique is applied to change the 

weights in its original and simplest form by an amount proportional to the partial 

derivative of the error function Ep in respect to the given weight. 

Ow;, -_77 
aEP 

aw;, 
5.6 

where j denotes a neuron in a layer and ia neuron in the preceding layer, and wji the 

weight between these two neurons. The constant 71 is called the learning rate, and is 

usually set within the range 0<71 <1. The learning rate is used to adjust the size of each 

step leading towards an optimum solution. 

One major problem with the conventional BP algorithm is its slow convergence speed. 

Many improvements have been suggested to accelerate the convergence speed. Equation 

5.4 gives the method most commonly used[Monostori 1992] which was employed in 
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the proposed prototype system. 

dwji(t + 1) t) 1 DEp 
+a dwji(t) 5.7 

p awji 

where t is a timestep, a is a momentum factor, usually set within the range 0: 5 a 5l. 

The effects of the momentum term are to magnify the learning rate for flat regions of 

weight space where the gradients are more or less constant, and to prevent oscillations. 

The computation of the partial derivatives in Equation 5.6 and 5.7 is as follows. 

aEp 
_ 

aEp anetpj 
5.8 

awl; anetpj aWji 

where, according to Equation 5.3 

anetpi 
=05.9 awl; pi 

Defming, 

Spy 5.10 a ep, 

where, SPA is an error term for pattern p on node j ,. 

aEp 
= SP; Op; 5.11 

awl; 

For the output neurons 

p=d- o1 
ate 

= Cd -o 
e-, ýrj S -aE PJ anetpj PJ PJI önetpj - PJ PJ) (1+ e-�aril 
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= OP! (1 
- ooJ) (ddl - ool) 5.12 

For the hidden neurons 

s. - 
ate 

- 
DEp Dopj 

PJ a zetpj io 
1 

3netPj 

DEp 

_ 

aEp anetpm 

aoP jm aliCtpm DOPj 

aEa 
anetPm a0PJ W im Opi 

m1 

DE PWjm-ý SpmWjm 

m 
anetpm 

m 

aOpj e-netj 

anetPj nett 
-API 

C1- OPJý 
(1+ e'}2 

SPj = Opi (1 
- OPj) 

18pm 
Wjm 

m 5.13 

where m is a node in the layer following node j. 

Equation 5.7 can be expressed as : 

w1(t +1) =wy(t) +i1 Spjop; +a (w; ý(t) -w; ý(t -1)) 5.14 
P 

Doubling all individual errors will quadruple the mean square error, causing difficulty in 

comparing results[Masters 1993]. Therefore, during training, the network performance 

is monitored using the root mean square (RMS) error. The RMS error is computed 

from 

k n-1 
1 

Ea ='Iy' (dp; - op; ý n2 /k 5.15 
p=l i=O 
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where n is the number of the outputs and k is the number of the patterns in the training 

set. 

5.2. The Structure of the Prototype 

The structure of the system is illustrated in Figure 5.3. The operational structure of the 

system consists of three parts: the training module, the test module and the application 

module. For ease of use, the system has a user-friendly interface which consists of four 

modules: the file editor, the system set-up window, the training display window and the 

test window. 

Figure 5.3 The structure of the prototype 

First of all, it must be determined how many hidden layers the prototype should have. 

Theoretically, a BP network with one hidden layer is sufficient to solve most modelling 

problems, provided sufficient hidden neurons are available[Hornik 1989]. However, in 

practice, the number of neurons is not unlimited, and a BP network with two hidden 

layers has been reported to have more general classification boundaries and faster 

convergence speed than a single hidden layer network[Chester 1990] [Obradovic 1990]. 
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In some cases three hidden layers are required and may provide even faster 

convergence[NeuDesk]. Therefore, up to three hidden layers were provided in the 

prototype system. The upper limit of the number of neurons in each hidden layer 

depends only on the capacity of the computer memory available. 

A second problem is that neural networks need a huge amount of memory for training. 

To speed up the training process, training patterns are read once from training data files 

and stored in memory. Moreover, large numbers of weights need to be stored in 

memory. All data are stored in the form of two-dimensional matrices. For a large 

network, a static storage scheme occupies a lot of memory leading to the problems of 

insufficient memory. In addition, since the prototype cannot know the size required in 

advance, static storage has a low efficiency of memory usage. In the system 

developed, a double pointer technique was employed to arrange memory for the two- 

dimensional matrices. This system is a dynamic storage scheme. For example, the 

weights between the input layer and the first hidden layer can be stored in dynamically 

arranged memory using C++ code as follows: 

float ** weight in 
_hidden]; 

// ** denotes the double pointer 

weight in hiddenl = (float **) calloc ( number in, sizeof(float*)); 

for (i =0; i< number in; i ++) 

*(weight in_hiddenl + i) =(float *) calloc (number hiddenl, sizeof(float); 

According to the number of the inputs denoted as number in and the number of neurons 

in the first hidden layer denoted as number hiddenl, the memory required can be 

arranged exactly. If the use of the weights finishes, the memory is freed for other use. 

5.3 The Executive Modules of the System 

5.3.1 Training module 

The training method is implemented in two stages. During the forward pass, the outputs 
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of all neurons are calculated. Then, using a backward pass, starting at the output 

neurons, the derivatives required for the weight modification are computed. The 

training procedure is as follows: 

1. The weights in the network are initialised to some small non-zero value. A back- 

propagation network is sensitive to the initial values of weights[Zurada 1992]. Properly 

selected initial weights can shorten learning time and result in stable weights. In the 

prototype, the initial weights are randomly selected between -0.2 and 0.2. 

2. The output of each neuron is computed for the presented input in order from the input 

layer to the output layer. This is a forward pass. The computation uses equations 5.3 

and 5.4. 

3. A comparison is made of the output opt of each output neuron j against the presented 

ideal output value dpj and the output error Spy is computed for each output neuron j 

using equation 5.12. 

4. The errors Spy are computed using equation 5.13 for each hidden neuron j. 

5. The sum of the error squared Ep is computed using equation 5.5. 

6. The procedure is repeated from step 2 for the remaining input-out pairs in the training 

set. 

7. The RMS error is computed using equation 5.15. The procedure is stopped if E. is 

less than given 6, ; otherwise, training is continued. 

8. The weights between the hidden layer and the output layer are adjusted using 

equations 5.12 and 5.14. 

9. The weights between the hidden layers and the weights between the hidden layer and 

the input layer are adjusted using equations 5.13 and 5.14. 

10. The procedure is repeated from step 2. 

The programming instructions for training were included in an independent module as 

illustrated in Figure 5.4. The module communicates with the user through the user 

interface and communicates with other modules in the system through the configuration 

file and weight file. 
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Figure 5.4 Training module 

5.3.2 Test module 

After a neural network is trained, it must be tested. If the test results are not satisfactory 

the system must be retrained. The test should use a data set which has not been 

previously employed by the network. The test procedure is a forward pass as follows: 

1. The system configuration and the test data are loaded. 

2. The output of each neuron for the test input is computed in order from the input layer 

to the output layer. The computation uses equations 5.3,5.4. 

3. The computed results are displayed and saved. 

4. A comparison is made by the user between each system output and the ideal output in 

order to judge if the training is successful. 

The module is independent as illustrated in Figure 5.5. The module communicates with 

the other modules via data files. 
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Figure 5.5 Test module 

5.3.3 Application module 

The application module illustrated in Figure 5.6 is a forward pass algorithm similar to 

the test module. However, the application module is an independent package which can 

be embedded into an application system. 

Input data from the Configuration and weight file 
application system 

Application module 

Output to the application system 

Figure 5.6 Application module 
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5.4 The Prototype System Development Environment 

The prototype system has an integrated development environment for developing a 

neural network. The environment is easy to use. All functions of the system are 

accessible from one clear and simple display - the main screen illustrated in Figure 5.7. 

The system can be operated using either the keyboard or the mouse. 

  About 

Fccdforward Neural Network 

Version 1.0 

Copyright © 1994 AMT Research Laboratory 

OK 

Figure 5.7. The main screen of the system integrated development environment 

The main screen consists of three parts, in order from top to bottom: 

" The main menu 

" The edit window and dialogue boxes 

" The hot key reference line 

The main menu is used to tell the system to do something. When a main menu item is 
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selected, a pull down menu is displayed that contains a list of choices. Table 5.1 shows 

what each menu selection does. 

The edit window is used to edit the file and the dialogue box is used to input items that 

are not easily entered using a menu or display output information. 

The hot key reference line displays several hot keys. 

Table 5.1 The main menu 

Item Purpose 

About the system 

File Loads and saves files, invokes DOS, and exits the system 

Edit Performs various editing functions 

Training Sets up the neural network and trains the network 

Test Tests the neural network 

Exit Exits the system 

5.4.1 File editor 

For training and testing the neural network, a specified data format is required. The 

prototype system provides a data editor for the user. The editor is similar to many text 

editors such as the Borland C++ editor. The user can also employ other editors such as 

the DOS editor. The file editor consists of a file item and an edit item in the main menu. 

The editor includes the following functions which are displayed in the pull-down 

menus.: 

". File item 

File open, New file, Save file, Save as, Change directory, DOS shell, Exit 

" Edit item 

Undo, Cut, Copy, Paste, Show clipboard, Clear. 
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The data format in the prototype is that each input data item must be separated by a 

comma while each group pattern is separated by a'Return line', which is easy to edit. A 

format example is illustrated in Figure 5.8. When data are saved as a data file, the 

format presents the information without any additional data about the number of inputs, 

the number of patterns and the identification for different inputs and patterns . The 

output data has the same format. The data file can therefore be read easily by different 

systems. In addition, neural networks require inputs in the range from 0 to 1. Since the 

net uses the sigmoidal activation function, it restricts the output value to the range 

between 0 and 1 and it is difficult to produce output values close to 0 or closed to 1. It 

is suggested that the output operation should be set in the region between 0.1 and 

0.9[NeuralDesk 1992]. 

Inputl Input2 Input3 

Pattern] 0.1, 0.5, 1.0, 

Pattern2 0.2 0.9, 0.3, 

Pattern3 0.5, 0.5, 0.0, 

0 

0 

0 

Figure 5.8 Data format 

5.4.2 System setup window 

090 

The Training item in the main menu includes `system setup' and `training network'. 

Before training a network, the structure of the neural network must be determined. The 

structure of the system includes the number of hidden layers, the number of the neurons 

in each hidden layer, the value of the learning rate, the value of the momentum factor 

and the value of the error threshold. The system setup window is illustrated in Figure 

5.9. 
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File Edit Training Test Exit 

  3ystcm ýOctup 

Number of Hidden Neurons 
First Layer (1 - 60 ): 15 
Second Layer (0 - 60 ): 0 
Third Layer (0 - 60 

Learning Rate (0 - 0.9 ): 0.1 
Momentum Factor (0 - 0.9): 0. g 
Error Threshold: 0.005 

OK Cancel 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 5.9 System setup menu 

The number of input and output neurons of the network is automatically determined by 

the system according to the training data set. The system reads the input and output data 

from the training data files, then the system determines the number of inputs and the 

number of outputs as well the number of patterns according to the number of commas 

and the number of Returns in the training data set. For example, in the input data file, 

the number of commas is n and the number of Returns is k, which means the inputs 

should be equal to n/k and the training patterns should be equal to k. Similarly, in the 

out data file, the number of commas is m and the number of Returns is j, which means 

the outputs should be equal to m/j and the training patterns should be equal to j. If n/k 

or rn/j is not an integer, or the number of input training patterns k does not equal the 

number of output training patterns j, the data file has an error and must be checked. 

5.4.3 Training process monitoring and control 

In the training process, it should be possible to monitor the training information and 
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control the training process. Figure 5.10 illustrates the training monitoring and control 

window. 

Current Epoch 1845 

Current Error 0.099770 

[C- Stop OKJ uu l Train 

Figure 5.10. Training monitoring and control 

The training display has two information outputs: 'current epoch' and 'current error'. 

The current epoch value refers to the number of times the training process has been 

completed and the weights adjusted. Current error refers to the average error of the 

neural network based on equation 5.15 for the current conditions. 

The training process can be controlled by the user through the window command 

buttons. The functions of these buttons in the window are as follows: 

" The Train button is used to start the system training 

" The Stop button is used to suspend the training process and keep the current system 

situation in the last epoch. The training process can continue from a stop point if the 

Train button is pressed. 

" The OK button is used to switch off the training window whether the training process 

is finished or not. The system configuration and the training result or the current system 

situation can be saved as a file. 
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" The Cancel button is used to stop the training process and erase the network structure 

and the window. 

5.4.4 Test window 

When testing the network, the tested network output will be displayed in the screen 

using the test window illustrated in Figure 5.11. The window is only used to display 

and the content cannot be changed by the user. 

File Edit Training Test Exit 

  Test Result Window 

0.438528,0.331749,0.14982,0.100585, 
0.786273,0.877353,0.29999,0.300022, 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 5.11. Test result window 

5.5 The Prototype System Test and Evaluation 

The prototype system was tested by modelling and solving a non-linear function. For 

simplicity, the non-linear function was a two-dimensional one: 

y=0.1 + (6x3 
- 9x2 + 4x)/1.25, O <_1 5.13 
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10 equally spaced points were defined as training data as illustrated in Table 5.2. 

Table 5.2 Training data 

X y 

0.0 0.1000 

0.1 0.3528 

0.2 0.4904 

0.3 0.5416 

0.4 0.5352 

0.5 0.5000 

0.6 0.4648 

0.7 0.4584 

0.8 0.5096 

0.9 0.6472 

1.0 0.9000 

The neural network structure consisted of one input node that denoted the x variable, 

one hidden layer that had five neurons and one output neuron that denoted the y 

variable. This structure is illustrated in Figure 5.12. 

Figure 5.12 The test neural network 
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The training parameters were: 

learning rate: 0.3 

momentum 0.9 

RMS error threshold 0.002 

After training, a set of data were used to test the network. To observe the training 

results, the test set included the training input data. Table 5.3 illustrates the ideal values 

derived from the equation, the network output values and the errors. The RMS error 

can also be used to evaluate the test results. However, the variable k in equation 5.15 is 

now the number of patterns in the test set instead of in the training set. 

Table 5.3. Network function test 
X ideal value 

output 
value error value 

0.00 0.1000 0.100996 -0.000996 
0.05 0.2426 0.227162 0.015438 
0.10 0.3528 0.351074 0.001726 
0.15 0.4342 0.438453 -0.004253 
0.20 0.4904 0.492768 -0.002368 
0.25 0.5250 0.524468 0.000532 
0.30 0.5416 0.540210 0.001390 
0.35 0.5438 0.543227 0.000573 
0.40 0.5352 0.535491 -0.000291 
0.45 0.5194 0.519560 -0.000160 
0.50 0.5000 0.499455 0.000545 
0.55 0.4806 0.480019 0.000581 
0.60 0.4648 0.465393 -0.000593 
0.65 0.4562 0.458226 -0.002026 
0.70 0.4584 0.460320 -0.001920 
0.75 0.4750 0.474176 0.000824 
0.80 0.5096 0.504696 0.004904 
0.85 0.5658 0.560431 0.005369 
0.90 0.6472 0.651555 -0.004355 
0.95 0.7574 0.776157 -0.018757 
1.00 0.9000 0.897088 0.002912 
RMS ERROR 0.005816 
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Figure 5.13 shows that the network models the function within a 1% root mean square 

error. However, it is obvious that the errors are bigger where the curves are steeper. If 

the number of training points in these areas are increased the accuracy can be further 

improved. 

y 
0.9 

0.8 
V 

0.7 

0.6 / 

0.5 

0.4 

0.3 / 

0.2 

0.1 
0I"',,, 

0 0.2 0.4 0.6 0.8 1 

X- theory 0- network 

R 

Figure 5.13 Locus of the function and the network approximation 

For further evaluation of the prototype, the system was compared with a commercial 

package, NeuralDesk II[NeuralDesk 1992]. NeuraiDesk II is a neural network software 

package developed by Neural Computer Sciences. The package consists of a 

feedforward neural network with a backpropagation learning algorithm. Neural Desk is 

based on the Microsoft Windows environment. The prototype and NeuralDesk were 

both used to model and solve function 5.13. For exact comparison of the two systems, 

the same training parameters were employed. Since the average error was calculated 

using different methods in the two systems, the maximum error method was used, 

where training is terminated when the error for every output in every pattern in the set is 
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below the error value set. The training parameters were as follows: 

learning rate: 0.1 

momentum 0.9 

Max. error value 0.004 

The results for the two systems are illustrated in Table 5.4 

Table 5.4 Test comparison for the prototype and the NeuralDesk 

x y y y Theoretical Prototype NeuDesk 
value 

0.00 0.1000 0.100515 0.100544 

0.05 0.2426 0.228578 0.227493 

0.10 0.3528 0.351883 0.351320 

0.15 0.4342 0.437600 0.438516 

0.20 0.4904 0.491632 0.492811 

0.25 0.5250 0.524148 0.524517 

0.30 0.5416 0.540715 0.540153 

0.35 0.5438 0.543950 0.542990 

0.40 0.5352 0.535893 0.535168 

0.45 0.5194 0.519514 0.519345 

0.50 0.5000 0.499104 0.499411 

0.55 0.4806 0.479521 0.480011 

0.60 0.4648 0.464921 0.465347 

0.65 0.4562 0.458069 0.458341 

0.70 0.4584 0.460768 0.460924 

0.75 0.4750 0.475175 0.475264 

0.80 0.5096 0.505599 0.505600 

0.85 0.5658 0.560251 0.559980 

0.90 0.6472 0.650150 0.649419 

0.95 0.7574 0.775442 0.774873 

1.00 0.9000 0.898159 0.899250 

RMS ERROR 0.005382 0.005481 
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Some performance indexes of the systems are as follows: 

Prototype NeuralDesk 

Training epoch: 102296 114215 

Training Time 5 minutes 16 minutes 

RMS error 0.005382 0.005481 

From the above it can be seen that the two systems have similar performance. 

However, the prototype ran much faster than NeuralDesk because the prototype is text- 

based while NeuralDesk is graphic-based. In addition, the prototype can produce a 

directly embedded package whilst the NeuralDesk only produces a textual report file. 

5.6 Local Minima Problem of the BP Algorithm 

The backpropogation algorithm is not guaranteed to converge to the correct solution. 

This is because that the backpropogation algorithm may settle in a local minimum. 

However, in practice the problem of local minima can usually be overcome by multiple 

starts with different random weights[Lippmann 1987]. The high-dimensional weight 

space provides a large number of degrees of freedom. In addition, the momentum term 

in equations 5.7 and 5.14 helps to prevent the algorithm converging at a local minimum. 

5.7 Summary 

A prototype neural network development tool has been successfully developed and 

tested. The system has several advantages: 

" Using a text-based environment, the system runs much faster than a Windows-based 

system. This is very important because training is time consuming. 

" The prototype employs a user-friendly interface. 

" The application module of the prototype can be easily integrated into an application 

system. 
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Chapter 6 Grinding Wheel Selection Using a Neural Network 

Wheel selection using a neural network was not only developed as an independent 

system but also as an intelligent agent integrated into a multi-agent system for selection 

of the grinding conditions. The system developed emphasised the external grinding 

operation and the selection of aluminium oxide and silicon carbide wheels. 

6.1 The Structure of the Wheel Selection System 

The neural network system treats the wheel selection process as a black box as 

illustrated in Figure 6.1. 

Neural network 

Grinding input Wheel output FBIaceckl 

box 
selection 

Figure 6.1 neural network modelling 

The system consists of input, output, encode and neural network functional modules. 

The system is illustrated in Figure 6.2. 
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Figure 6.2 Functional modules of the wheel selection system 

6.1.1 The system input 

In Chapter 3, the factors affecting grinding wheel performance were described. The 

wheel selection system was based on those factors. The input variables are summarised 

as follows: 

Process type: 

Process types included external, surface, internal and centreless grinding. The grinding 

methods include traverse grinding and plunge grinding. 
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Material type 

Workpiece materials are divided into groups based on their properties and their effect on 

the wheel performance. The division is based on the classification employed in the 

reference Grinding Data Book[Universal 1992]. The groupings employed are: 

general steel 

tool steel 

high alloy steel 

martensitic stainless steel 

austenitic stainless steel 

cast iron 

non-ferrous metal 

Material hardness 

Material hardness is classified as soft(<5ORc), medium(50-58Rc) and hard(>58Rc). 

Workpiece surface roughness 

The maximum acceptable workpiece surface roughness is classified by the centre line 

average value in µm. 

Severity of operation 

Severity of operation is classified under the following headings[Universal 1992]: 

rough cast or forged 

interrupted cut 

wide wheel, light pressure 

narrow wheel, high pressure 

large diameter workpiece 

small diameter workpiece 

The severity of operation is constituted by four independent inputs: 

rough cast or forged 
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interrupted cut 

wide wheel, light pressure or narrow wheel, high pressure 

large diameter workpiece or small diameter workpiece 

The items in different groups can be chosen simultaneously according to the operating 

situation. However, the items in the same group cannot be chosen simultaneously. For 

example, 'interrupted cut' and 'small diameter workpiece' can be chosen 

simultaneously. If the operating situation does not include a 'severity' condition, no 

items need be chosen. 

6.1.2 The system output 

The specification of the grinding wheel is given as the system output . The output 

includes four variables in the specification: 

abrasive type 

abrasive grit size 

grade 

bond 

6.1.3 Encoding 

When training the network, the input and output training pairs must be encoded into a 

form that the neural network can recognise so that the input information can be 

recognised and the output results interpreted. The encoding methods are important for 

the effectiveness of the neural network. Suitable methods can ease the training process 

and allow higher accuracy. 

Material encoding 

Materials were encoded using the one-of-n method which uses the binary code. The 

method uses as many input neurons as there are values that the variables can take. There 
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are 7 material groups and therefore 7 neurons are allocated to the material inputs. 

Exactly one of the neurons will be turned on according to the value of the variables. All 

of the other neurons will be turned off. The advantage of the encoding method is not to 

imply any order relationship among these variables. However, this method requires 

more neurons. These codes are illustrated in table 6.1 

Table 6.1 Material encodin 

material neul neu2 

encoding 

neu3 neu4 neu5 neu6 neu7 

general steel 1 0 00 0 0 0 

tool steel 0 1 00 0 0 0 

high alloy steel 0 0 10 0 0 0 

martensitic stainless steel 0 0 01 0 0 0 

austenitic stainless steel 0 0 00 1 0 0 

cast iron 0000010 

non-ferrous metal 0000001 

Surface roughness encoding 

Surface roughness is an ordinal variable. Surface roughness is encoded using the one- 

of-one method, namely, one input neuron expresses all possible values as illustrated in 

Table 6.2. 

Table 6.2 Roughness encoding 

roughness (Ra) >0.9 0.7-0.9 0.4-0.7 0.2-0.4 <0.2 

encoding 0 0.2 0.4 0.6 0.8 

Hardness encoding 

Material hardness is an ordinal variable, and was therefore encoded using the one-of-one 

method illustrated in Table 6.3. 

67 



Table 6.3 hardness encoding 

hardness <5ORc 50-58Rc >58Rc 

encoding 0 0.5 1 

The encoding of the severity of operation 

There are various variables in the severity of operation. All variables could be 

independently encoded to train a neural network, but it would make the system 

complicated and a large training set would be required to cover the high order of multi- 

dimensional space. To make the system more effective, an encoding method using 

some rules derived from grinding knowledge was employed. 

The severity of operation as well as the grinding method, traverse or plunge grinding, 

mainly affect the selection of the abrasive grit size and the grade. The encoding method 

employed merges these variables into two codes. One code corresponds to the effect on 

abrasive grit size while the other code corresponds to the effect on grade. Table 6.4 

shows the effects of the severity of operation and the grinding method[Universal 1992]. 

Table 6.4 The effects of the severity of operation 

grit size 

rough cast or forged 1 size coarser 

interrupted cut 1 size finer 

wide wheel, light pressure 1 size coarser 

narrow wheel, high pressure 1 size finer 

large diameter workpiece no change 

small diameter workpiece no change 

grade 

1 grade harder 

2 grades harder 

1 grade softer 

1 grade harder 

1 grade softer 

1 grade harder 

plunge grinding 1 size finer no change 

Accordingly, the codes are shown in Table 6.5.0.1 denotes no change. 0.0 and 0.2 or 

0.3 denotes change in two different ways as explained below. 
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Table 6.5 Severity of operation encodin 

codel code2 

rough cast or forged 0.0 0.2 

interrupted cut 0.2 0.3 

wide wheel, light pressure 0.0 0.0 

narrow wheel, high pressure 0.2 0.2 

large diameter workpiece 0.1 0.0 

small diameter workpiece 0.1 0.2 

plunge grinding 0.2 0.1 

Where some items can be chosen simultaneously, the codes are merged. The principle 

employed to merge these items is that if the effects of the items are all positive or are all 

negative the maximum effect is used as the input and if the effects of some items are 

positive but the rest are negative the average effect is used as the input. The rule is 

separately applied to code 1 and code2. The rule is: 

IF min code(items) >0 

THEN code = max code (items) 

IF min code(items) =0 

AND max code(items) >0 

THEN code = max code (items) - 0.1 

IF max code=0 

THEN code =0 

For example, if 'interrupted cut' and 'large diameter workpiece' are chosen, the input 

code is: 

code1 = max code( 0.2,0.1) = 0.2 

code2 = max code(0.3,0.0) - 0.1 = 0.2 
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The encoding method uses existing grinding knowledge to achieve a simple neural 

network and training process. Since the effect of these factors is relatively small, the 

wheel selection is not highly sensitive to the accuracy of the knowledge. 

Output encoding 

The wheel specification includes abrasive type and bond type, grit size and grade. 

However, to prevent the system becoming too complicated, the output employs one-to- 

one encoding. The encoding is illustrated in Table 6.6. 

Table 6.6 Output encodin 

Abrasive type I IA 48A 51A WA C 

Encoding 0.1 0.3 0.5 0.7 0.9 

Grit size 24 30 36 46 60 80 100 120 150 180 220 

Encoding 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Grade Q P 0 NM LK J I H G 

Encodin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Bond type Vitrified Resinoid Rubber Shellac 

Encoding 0.1 0.2 0.3 0.4 

6.2 The Neural Network Topology Architecture 

A three layer network with one hidden layer was employed for wheel selection. The 

number of input and output neurons of the neural network is determined by the input 

and output as well as the encoding form. Therefore, the system has 11 input neurons, 7 

for workpiece material, 1 for material hardness, 1 for surface roughness and 2 for 

grinding method and severity of operation. The system has 4 output neurons, one each 

for abrasive type, grit size, grade and bond. However, there is no rule for the selection 

of the optimal number of neurons in the hidden layer. A straightforward way to deal 

with the problem is to start from a small number of neurons, then , gradually increase 

the neurons in the hidden layer until an acceptable accuracy and speed of convergence is 

70 



obtained [Rangwal a 1989]. According to this, twelve neurons were required in the 

hidden layer. The three layer neural network for wheel selection is illustrated in Figure 

6.3. 

Figure 6.3. Neural network for wheel selection 

6.3 The Training of the Neural Network 

Data sets in sufficient volume and coverage suitable for training were not available from 

recent grinding experience. Training data were therefore taken from published 

handbooks, for example, the Grinding Data Book published by Unicorn Abrasives UK 

Ltd[Universal 1992] and the Machining Data Handbook published by Metcut Research 

Associates Inc. [MDC 19801. 

Training data were collected to cover the required problem space. Forty seven examples 

were taken as training data spread over the required problem space. Table 6.7 illustrates 

the encoding of the examples in the training set. 
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Table 6.7 Training examples and the encoding 
Inp ut Out ut 

Ste tool sup ms as cas n-f rou har s1 s2 abr grit gra bon 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.2 0.4 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.1 0.1 0.9 0.2 0.4 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.1 0.1 0.9 0.2 0.6 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.1 0.7 0.3 0.7 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.1 0.7 0.3 0.7 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.2 0.3 0.4 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.4 0.0 0.1 0.1 0.9 0.4 0.4 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.6 0.0 0.1 0.1 0.9 0.5 0.4 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.6 0.5 0.1 0.1 0.4 0.5 0.6 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.1 0.1 0.2 0.7 0.4 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.1 0.1 0.4 0.3 0.6 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.5 0.1 0.1 0.9 0.7 0.6 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.1 0.1 0.4 0.7 0.6 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.1 0.1 0.7 0.4 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 1.0 0.1 0.1 0.9 0.8 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.5 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.7 0.2 0.8 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.3 0.3 0.4 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.0 0.0 0.2 0.7 0.5 0.6 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.3 0.3 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.3 0.7 0.4 0.5 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 1.0 0.0 0.0 0.9 0.7 0.8 0.1 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.0 0.2 0.3 0.7 0.9 0.5 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.0 0.0 0.0 0.9 0.6 0.5 0.1 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.3 0.9 0.3 0.2 0.1 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.8 1.0 0.2 0.3 0.7 0.9 0.5 0.1 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.2 0.7 0.1 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.4 0.2 0.7 0.1 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.4 0.3 0.7 0.1 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.0 0.1 0.1 0.9 0.3 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.1 0.9 0.2 0.7 0.1 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.1 0.3 0.5 0.7 0.1 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.6 0.0 0.1 0.1 0.9 0.5 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.0 0.1 0.1 0.9 0.5 0.7 0.1 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.8 0.0 0.1 0.1 0.3 0.7 0.7 0.1 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.0 0.1 0.1 0.4 0.7 0.7 0.1 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.0 0.1 0.1 0.9 0.7 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.0 0.1 0.1 0.9 0.7 0.7 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.0 0.9 0.2 0.8 0.1 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.3 0.2 0.7 0.1 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.4 0.0 0.2 0.3 0.4 0.5 0.5 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.0 0.2 0.1 0.9 0.8 0.7 0.1 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.2 0.9 0.3 0.6 0.1 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.3 0.3 0.8 0.5 0.1 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.4 0.6 0.8 0.1 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.0 0.1 0.3 0.9 0.7 0.5 

. 
0.1 
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The meanings of the abbreviations in Table 6.7 are as follows: 

ste general steel 

tool tool steel 

sup high alloy steel 

ms martensitic stainless steel 

as austenitic stainless steel 

cas cast iron 

n-f non-ferrous metal 

rou roughness 

har hardness 

sl severity of operation codel 

s2 severity of operation code2 

abr abrasive type 

grit abrasive grit size 

gra grade 

bon bond 

The meanings of thes, 

Workpiece material: 

Material hardness: 

Surface roughness: 

Severity of operation: 

Grinding method: 

Wheel specification 

codes are given in Table 6.1-6.6. For example No. 1: 

General steel 

<50Rc 

> 0.9 Ra (µm) 

None 

Traverse grinding 

11A36MV or 48A 36MV 

The settings for the training parameters were: 

learning rate: 0.1 

momentum 0.6 

RMS error value 0.005 

73 



The learning rate and the momentum were chosen based on training trials to achieve a 

fast training process. The training process performance results were: 

training epoch: 61465 

training time 83 minutes 

6.4 Network Test 

To test the trained wheel selection system, a test procedure was required. The test used 

an example set that had not been previously employed by the network. These examples 

were collected from the same sources as the training examples. The input of test 

examples and the encoding are illustrated in the Table 6.8. The meanings of these codes 

are shown in Table 6.1-6.5. 

Table 6.8 Test input codes 

ste tool sup ms as cas n-f rou har sl s2 
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.3 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.4 0.5 0.2 0.3 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.3 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.6 0.0 0.0 0.1 

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.6 1.0 0.1 0.1 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.6 0.0 0.1 0.1 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.1 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 0.0 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.1 0.1 

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.0 0.2 0.3 

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.6 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 0.0 0.2 0.3 

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.0 0.1 0.0 
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The required output codes for the inputs and the network output codes are illustrated in 

Table 6.9. 

Table 6.9 The output codes 

Req uired output Network ou put 

as grit grad bon as grit grad bon 

0.7 0.3 0.8 0.1 0.709619 0.279449 0.790056 0.100000 

0.2 0.6 0.5 0.1 0.192915 0.554553 0.529875 0.100000 

0.7 0.5 0.5 0.1 0.711707 0.461198 0.493476 0.100002 

0.9 0.5 0.4 0.1 0.923340 0.454635 0.434441 0.099991 

0.9 0.3 0.2 0.1 0.890099 0.298992 0.205683 0.099999 

0.9 0.4 0.4 0.1 0.884158 0.415262 0.369250 0.100000 

0.7 0.6 0.7 0.1 0.646959 0.631757 0.686459 0.099994 

0.3 0.5 0.7 0.1 0.297592 0.516528 0.688266 0.099999 

0.3 0.5 0.7 0.1 0.304983 0.499852 0.699258 0.099995 

0.3 0.4 0.8 0.1 0.285608 0.396980 0.759940 0.099997 

0.4 0.4 0.7 0.1 0.410171 0.378865 0.708914 0.100000 

0.4 0.5 0.8 0.1 0.368516 0.540422 0.776152 0.099993 

0.4 0.2 0.6 0.1 0.437132 0.184437 0.640509 0.100004 

0.9 0.2 0.7 0.1 0.876583 0.223106 0.682052 0.099999 

0.9 0.4 0.5 0.1 0.916948 0.357931 0.531671 0.100001 

0.9 0.4 0.8 0.1 0.889208 0.386951 0.783292 0.099999 

0.9 0.5 0.5 0.1 0.889075 0.502965 0.451223 0.099995 

0.9 0.2 0.7 0.1 0.886889 0.198336 0.690944 0.100003 

0.9 0.5 0.8 0.1 0.906652 0.489587 0.811433 0.099994 
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The wheel specifications corresponding to Table 6.9 are shown in Table 6.10. 

Table 6.10 Wheel specifications 

Required output Network ouput 

WA461V WA46IV 

11A, 48A100LV 11A100LV 

WA80LV WA80LV 

C80MV C80MV 

C460V C460V 

C60MV C60MV 

WA100JV WA100JV 

48A80JV 48A80JV 

48A80JV 48A80JV 

48A60IV 48A601V 

48A, 51A60JV 51A60JV 

48A, 51A150W 48A150W 

48A, 51A36KV 51A36KV 

C36JV C36JV 

C60LV C60LV 

C60IV C60IV 

C80LV C80LV 

C36JV C36JV 

C801V C80IV 

All the test results fitted the requirement. Therefore, the training may be considered to 

be successful. 

6.5 Alternative Wheel Selections 

The neural network gives a single specification for the wheel. The wheel is probably the 
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most suitable recommendation based on the training data set and the grinding 

requirements. However, if the wheel recommended is not available the user needs a 

suggestion for an alternative. The system provides choices based on the following 

principles. 

" The wheel grade can change a grade softer or a grade harder than the grade 

recommended. For example, if the grade recommended was K, the alternative may be J 

or L. The range of grades is from E to Z. 

" The grit size can be changed to a size finer or a size coarser than the grit size 

recommended. For example, if the grit size recommended is 80, the alternative may be 

100 or 60. Frequently used grit sizes are 24,30,36,46,60,80,100,120,150,180, 

220 

" The abrasive type can be changed to a basically similar type. For example, the type 

48A can be replaced by the 51A or 51A can be replaced by 48A. The 11A can be 

replaced by the 48A. However, Type WA for grinding hardened steel and Type C for 

grinding low tensile strength materials such as cast iron and non-ferrous materials are 

not recommended replacements for ensuring the grinding performance. 

6.6 The CBN Wheel 

The above description does not include the selection of CBN wheels because currently 

there is insufficient CBN wheel information available to train the neural network. To all 

situations, the Machining Data Handbook[MDC 1980] provides only a choice, 

B100T100B. For a CBN wheel, the single recommendation was adopted for the 

system as a basic specification for a guide to the user. According to the principles of 

selecting the grit size and the grade of conventional wheel, it might be assumed that the 

same principles are suitable for the CBN wheel. However, there is insuffient evidence 

to prove the assumption. 
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6.7 Implementation of the Wheel Selection System 

6.7.1 The system configuration 

Two versions of the wheel selection system were developed, one for incorporation into 

the system for grinding conditions and the other for independent wheel selection. The 

system described here is the independent system for wheel selection. The system 

consisted of two parts, 'Training' and 'Enquiring'. The training process was completed 

using the neural network prototype system described in Chapter 5. The wheel selection 

system directly uses the training result through a link to the application network which is 

a module in the neural network tool. This relationship between training and application 

is illustrated in Figure 6.4. 

Figure 6.4 Training and application 

6.7.2 The system user interface 

The main screen 

The wheel selection system has a main screen which consists of the main menu, the 

dialogue area and the hot key reference line. The main screen is illustrated in Figure 6.5 
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  About 

Intelligent Wheel Selection 

Version 2.0 

Copyright © 1995 AMT Research Laboratory 

OK 

Figure 6.5 The main screen of the wheel selection system 

When a main menu item is selected, a pull down menu is displayed that contains a list of 

choices. Table 6.11 shows what each menu selection does. 

Table 6.11 The content of main menu 

Item Purpose 

About the system illustrated in Figure 6.5 

Process Choose which grinding process is required 

Wheel Input workpiece information and output result 

Exit Exits the system 

Process input 

Different grinding processes require different grinding wheels so that the user is 

required to input the grinding process information first. Because different processes 

require different grinding information, the process item was separated from the grinding 

information. The process selection dialogue is illustrated in Figure 6.6. The system 
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default value is external grinding. If the user does not use the menu, the system will 

assume external grinding as the user input. At present, the system is only developed for 

external grinding. 

Process Wheel Exit 

F1 Help NO Menu Alt-X Exit Alt-F3 Close 

Figure 6.6 Process input 

Workpiece information input and system output 

After the process has been selected, the workpiece information is entered. The input 

dialogue for external grinding is illustrated in Figure 6.7. When the system input is 

complete and the OK button has been pressed, the system will retain the information and 

give the result for the wheel selection using the neural network. Based on the result, the 

system will list four choices. Figure 6.8 illustrates the output screen. If the user wants 

more choices, use of the'More" button, will provide alternatives based on the principles 

described in section 6.7. 
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Process Wheel Exit 

I- 
materials 
a stT eels 

Severity o1 
[] Rough 

ce 

Im 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 6.7 System input 

Process Wheel Exit 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close I 

Figure 6.8 System recommendation 
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6.8 Application Example 

The following example illustrates how the system works. 

The user inputs the following information: 

Process type: Cylindrical grinding 

Workpiece material: General steel 

Material hardness: 50 - 57 Re 

Surface roughness: 0.4 Ra (µm) 

Severity of operation: Large diameter workpiece and interrupted cut 

Grinding method: Traverse grinding 

Wheel type: Conventional 

The result displayed on the screen is 

The recommendation is 

48A60LV 

Alternatives are 

48A60MV 

48A60KV 

48A80LV 

48A46LV 

6.9 Conclusions 

This study of the potentional application of neural network techniques for grinding 

wheel selection demonstrates the following features: 

(i) A neural network system is easily and quickly developed when training data are 

available. 

(ii) The system is flexible, allowing for further learning from new data to enlarge and 

improve the knowledge base 
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(iii) A large amount of knowledge requires only a small amount of memory. 

(iv) A major limitation of the system is the lack of sufficient examples from recent 

practice to train the system., especially there is a lack of CBN wheel examples. 
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Chapter 7 The Selection of Grinding Conditions Using Case 

Based Reasoning 

7.1 The Case Based Reasoning Approach 

Figure 7.1 illustrates the mental process adopted by an operator in seeking to determine 

suitable grinding conditions for a new problem. In this process, the key point is the use 

of experience instead of rules. Figure 7.2 illustrates a case-based reasoning approach 

designed to mimic the decision process of a skilled operator. The CBR system 

developed aims to produce suitable grinding conditions based on past optimal cases 

stored in a case base. Instead of developing a knowledge base that contains explicit 

rules, the CBR system is based on a case base of prior cases or examples. 

n 
rS.. 

Recall the most appropriate problem 
based on experience 

Modify the old problem to meet the new 
problem 

"fest and further modify 

Remember the solution for future 
reference 

Figure 7.1. Typical procedure for dealing with a new problem 
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Cases """"" 

Adaption " 
Solution 

Rctricv; il " 
" 

Learning 

The range of valid grinding conditions 

Figure 7.2. Optimisation of grinding conditions 

The basic approach proposed for the development of the case-based reasoning system 

for grinding was as follows: 

(i) Each of the key features of the grinding problem are assigned an index. Indexation is 

employed to establish similarity between cases, since the indexes define and clarify the 

relationships between elements of a problem that are considered to be important for the 

determination of a solution. 

(ii) Past cases with indexes similar to the problem specification are retrieved from the 

case base. The indexes assigned to the key variables of the problem specification are 

matched with similar cases in memory. 

(iii) The old case from memory is adapted to match the new problem. If an exact case 

exists in memory, it is used directly. If there are almost similar cases, the nearest case is 

adapted to conform to the new demands. 

(iv) The new solution is tested. A new solution must be tested to decide if it indeed 

solves the problem. If the test is successful, the new case is stored in the case base for 

future retrieval. If the solution proposed is unsuccessful, the case must be further 
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modified. 

Figure 7.3 is a flowchart for the case based reasoning system. The flowchart illustrates 

the basic process of case based reasoning and learning. The boxes represent processes, 

and the ovals represent knowledge structures. 

Figure 7.3 The flowchart of case base reasoning 

7.2 Case Representation 

A case base was designed to contain knowledge about previously successful grinding 

operations. The cases contain information about the grinding operation, such as the 

process, the wheel, the coolant, workpiece data and values of control parameters. Each 

case is a practical machining record relating technological parameters and machining 

results. Ideally, these cases should be optimal, or at least, close to optimal. A case 
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consists of three main parts, Problem, Index, and Solution, where the use of the capital 

letter denotes the specific definitions given below. 

(i) Problem. A Problem consists of the workpiece information and the machining 

requirements which cannot be changed by the operator as described in Chapter 3. 

(ii) Index. An Index is based on the use of keywords or values to identify the features 

of the Problem. The case-based system automatically creates an Index for a Problem as 

the information is entered by the user. Different Problems give rise to different 

combinations of features which become different cases. A part number is a specific 

Index for a Problem. The part number may be used to identify the same Problem which 

make the reasoning process simple. 

(iii) Solution. A Solution includes the specifications of the grinding wheel, the coolant 

and the values of control parameters. A Solution is assumed to be an optimal 

combination. However, in practice, the grinding wheel may sometimes be constrained 

by other manufacturing considerations. With a variety of batches of different 

workpieces, it is often necessary to avoid wheel changes; a few general purpose wheels 

may be used to grind a wide variety of materials, even if at less than optimum efficiency 

[MDC 1980]. In addition, wheel speed and wheel diameter may be fixed or varied by 

the operator according to the practical environment. Therefore, the grinding wheel, 

wheel speed and wheel diameter may be taken either as part of the Solution or as part of 

the Problem according to the requirements of the production situation. However, the 

more variables the Problem includes, the more restrictions the Solution has, that is, there 

will be fewer suitable cases in the case base. The only dressing tool currently 

considered is a single point diamond. If another type of dressing tool is employed the 

dressing conditions will need to be adjusted appropriately. 

The prototype case description is illustrated in Figure 7.4. 
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Problem Solution 
Process Work Speed 
Power Infeed 
Material Dressing Lead 
Hardness Dressing Depth 
Roughness Spark-out time 
Roundness Coolant 
Size tolerance 
Initial diameter 
Final diameter 
Width Solution/Problem 

Grinding Wheel 
Wheel Speed 

Index Wheel Diameter 
Part number 

Dressing tool 

Figure 7.4 Case prototype 

7.3 Case Collection 

Cases in the case library should provide as much coverage as possible of the nature of 

the Problem. However, as with all human operators, a case based reasoning system 

needs to be given time to learn and develop. Therefore, case collection has two stages; 

initial collection of cases and case collection by learning from operational experience. 

Initial collection of cases can be conceived as coming from several different places: an 

existing database, journals, textbooks, human experts and grinding experiments. These 

cases should be optimal or reasonable combinations of grinding conditions. Table 7.1 

illustrates a grinding case taken from an experiment[Chen 19951. 
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Table 7.1 A grinding case 

Machine tool Jones&Shipman S 10 

Material High-carbon steel 

Hardness 62 Rc 

Max. roughness 0.45 µm Ra 

Size tolerance ±12µm 

Roundness tolerance 1.5 µm 

Start diameter 16 mm 

Finish diameter 15.70 mm 

width 24 mm 

wheel WA80JV 

Wheel speed 33 m/s 

Wheel diameter 365 mm 

Dresser Single point diamond 

Coolant Water based 

Workspeed 0.25 m/s 

Feedrate 0.02 mm/s 

Dressing depth 0.015 mm 

Dressing lead 0.15 mm/rev 

Spark-out time 4s 

Specific energy 60 J/mm3 

Grinding ratio 42 

Most grinding cases described in publications do not provide complete information. 

This is possibly because investigators were concerned with a specific aspect of the 

process rather than the whole grinding problem. It is therefore difficult to find enough 

grinding cases to cover an adequate Problem space in the initial case collection. The 

case based reasoning system therefore must learn during the process of its usage. This 

is a key issue which decides whether case based reasoning will be successful or not. A 

major advantage of CBR is the automation of the process of incorporating new 
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knowledge into an existing knowledge base. 

7.4 Indexation 

There are three basic approaches to indexation: nearest neighbour, inductive and 

knowledge-based[Barletta 1991]. The proposed system employs a knowledge-based 

approach which applies existing knowledge to determine which features are important 

for case retrieval. This is the preferred approach to indexation if such knowledge is 

available[Barletta 1991]. 

If the grinding conditions for a Problem can be deduced from an existing case to an 

acceptable accuracy, the two cases are considered to be similar. If the definition of 

similarity is too strict, the number of suitable cases may be very small and if the 

definition is too loose, the accuracy of the Solution will be poor. The features of a 

Problem are therefore divided into the categories `Very Important', `Important' and 

`Unimportant' according to the grinding domain knowledge. Very Important indexes 

are used to index the basic similarity of cases. For example, initially in the selection 

process it is considered to be Very Important that materials to be ground should have 

similar grindability and grinding wheels should have the same abrasive type, bond type 

and grit size. The Very Important indexes are used to determine a set of applicable 

cases. If there is a mismatch in this category the case is rejected. The Important indexes 

are used to choose the nearest case from those applicable cases determined by the Very 

Important indexes. If there is a mismatch in this category the case may be modified to fit 

the Problem. The features which do not affect the selection of cases are assumed to be 

Unimportant. Unimportant features are ignored. The process of deciding the categories 

of features depends on grinding knowledge and is discussed below. 

The Indexes are described by a set of symbols. The symbolic set is called the Index 

Vocabulary. Usually, the Index Vocabulary is a subset of the vocabulary used for full 

symbolic representations of cases[Koloden 1993]. The selection of the symbolic 
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vocabulary should be clear and simple. In the Solution or Problem part, if an item is 

indexed as 0, it denotes that the item is to be determined as part of the Solution and is 

not constrained as part of the Problem. 

Workpiece material Indexing 

The workpiece material which has various properties is the most important factor to 

affect grindablity. Materials are therefore grouped based on experience according to the 

similarity of properties affecting grindability. Associated properties include the density, 

the melting temperature, the specific heat and the thermal conductivity. It is assumed 

that materials in the same group have similar properties so that they can use the same 

starting conditions. Table 7.2 gives approximate properties of materials taken from 

references[Ashby 1992][Kalpakjian 1991]. 

Table 7.2 Properties of the material groups 

Material Density Tensile Melting Specific heat Thermal 

(kg/m3) strength temperature (Jkg-'K-1) conductivity 

(MPa) (K) (Wm-'K-1) 

Mild steel 7.9 430 1765 482 60 

High carbon 7.8 650-2000 1570 460 40 

steels 

Low alloy 7.8 420-2000 1750 460 40 

steels 

High alloy 7.8 460-1700 1680 500 12-30 

steels 

Cast irons 7.4 10-800 1403 511 53 

Superalloys 7.9 1300 1550 1550 11 

Al alloy 2.63-2.82 80-150 476-654 880-920 121-239 

Cu alloy 7.47-8.94 300-500 885-1260 377-435 29-234 

Ni alloy 7.75-8.85 550-1500 1110-1454 381-544 12-63 

Ti alloys 4.43-4.70 1000-1300 1549-1649 502-544 8-12 
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Accordingly, an example of the material groups and their Indexes is illustrated in Table 

7.3. 

Table 7.3 Material Indexes 

Material Index 

Low-c steel & alloy LS 

High-c steel & alloy HS 

Tool steel TS 

High speed steel SS 

Superalloy SA 

Austenitic stainless AS 

Martensitic stainless MS 

Cast iron CI 

Al alloy AA 

Mg alloy MA 

Cu alloy CA 

Ni alloy NA 

Ti alloy TA 

Since it is not known how to modify a case for different materials, the material groups 

belong to the Very Important category. However, the grouping does not detail each 

kind of material. Differences are dealt with as follows. Material hardness is used to 

distinguish the grindability of a material within a material group. For more accurate 

matching in each material group, specific material names can be used as sub-indexes. 

The material sub-indexes belong to the Important category. For example, Index HS- 

1080 means a material classified as AISI 1080 which belongs in the High-C steel & 

alloy material group. 
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Material hardness Index 

Small variations in material microstructure can make a large difference in grinding 

behaviour. Hardness is a primary indicator of machinability and therefore hardness is 

used to take account of microstructure [ASM 1989]. Material hardness also affects the 

grinding force and the selection of the wheel. The hardness is classified as soft(< 

50Rc), medium(50-57Rc) and hard(>57Rc). The indexes are S, M and H. Since it is 

not know how to modify a case for the effect of material hardness, these indexes belong 

to the Very Important category. 

Grinding wheel Index 

Usually, a grinding wheel specification has five elements as outlined in Chapter 3. 

However, the most important factors affecting grindability are abrasive type, grit size 

and the bond type. Therefore, the grinding wheels are indexed according to abrasive 

type, grit size and bond type as illustrated in table 7.4. The wheel indexes belong to the 

Very Important category. If the grinding wheel is to be selected as part of the Solution, 

the wheel Indexes are set to 0. 

Table 7.4 Indexes for grinding wheel 

Abrasive Aluminium Silicon CBN 

type oxide carbide 

Index A C B 

Bond type Resin Vitrified Metal Rubber Shellac 

Index B V M R. E 

Grit size 10 12 14 16 20 30 36 46 60 80 100 ... 
Index AB CDE FG HIJK 

Workpiece roughness Index 

Workpiece roughness is divided into 5 groups each associated with a particular wheel 

grit size. Values of Ra between 0.10 and 1.6 µm are represented by numbers from 1 to 

5 and associated with the values as a sub-Index. Examples are illustrated in Table 7.5. 
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The main Indexes belong to the Very Important category because the necessary 

modification for different wheels is unknown. The sub-Indexes belong to the Important 

category because some grinding parameters can be modified to meet the variety. In the 

same roughness group, wheel grit size is unchanged. If the wheel has been specified, 

the wheel grit size implies a particular roughness group. In this situation, the main 

roughness group indexes will be set to 0. 

Table 7.5 Example of indexes for roughness 

Roughness Index 

Ra) 

1.60 1-1.60 

1.40 1-1.40 

1.10 1-1.10 

0.90 2-0.90 

0.80 2-0.80 

0.70 2-0.70 

0.50 3-0.50 

0.40 3-0.40 

0.35 4-0.35 

0.25 4-0.25 

0.20 4-0.20 

0.17 5-0.17 

0.14 5-0.14 

0.12 5-0.12 

0.10 5-0.10 

Other Indexes 

The values of workpiece diameter are directly employed as Indexes. For example, the 

workpiece diameter Index 25 denotes that the workpiece initial diameter is 25mm. In a 

similar manner, the values of wheel diameter and wheel speed are directly employed as 
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Indexes. When wheel diameter and wheel speed are to be selected as part of the process 

of achieving the Solution, the Problem Index is initially set to 0. From equations 3.4, 

3.10 and 3.11, workpiece diameter, wheel diameter and wheel speed affect the basic 

parameters. However, the values of these parameters can be modified to meet different 

requirements. Therefore, the workpiece diameter Index, wheel diameter Index and 

wheel speed Index belong to the Important class. 

Other features which do not affect the selection of initial grinding conditions are 

classified as Unimportant. These features do not need an Index. Unimportant features 

for selection purpose include the roundness, size tolerance, width etc. These features 

may possibly be controlled in-process in some cases. For example, the grinding width 

affects the power and force. The grinding width can therefore be used to increase or 

decrease feedrate proportionally to ensure that the power does not exceed the power 

capacity of the machine. This is a feature of adaptive control. The Unimportant features 

may not be input into the system or be input into the system as a reference for adaptive 

control. 

7.5 Information Retrieval 

7.5.1 Use of a part number 

When repeatedly machining specific parts of a type which have been ground before, it 

may be preferred to retain the previous grinding conditions. To retrieve the conditions 

and avoiding repeated input and reasoning, the simplest way is to use the unique 

identification provided by the part number. The user inputs the part number, and the 

system looks for the number in the casebase. If successful, the exact case is located, 

otherwise the system fails to produce an answer. 

7.5.2 Using the Index 

Selection of an appropriate case is achieved when the Problem Index is matched with a 
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case in the case base. When a user inputs the Problem, the system identifies the features 

of the Problem and creates the Problem Index. The system then matches the Index of a 

Problem with the Index of a case which consists of two steps: 

" The system matches the Very Important Indexes. The Very Important Indexes of the 

Problem and of the case in the case library must be same. If the match is successful for 

one or more cases, a set of applicable cases has been located. The system then proceeds 

to the next step, otherwise, the system fails to complete the reasoning process and quits 

the process. 

"A nearest case is retrieved from the set of applicable cases through matching where 

possible the Important Indexes. The nearest case is decided based on the similarity 

metric, described below. 

Figure 7.5 Retrieving a case 

Depending on whether a grinding wheel is specified or whether the system is to select a 

suitable wheel, the retrieval process will match different indexes as illustrated in Figure 

7.5. 

96 



A similarity metric is proposed to judge the similarity between a new case as defined by 

the Problem and an old case located by the Very Important Indexes. The nearest case is 

the case with the highest similarity value. The similarity metric is defined as : 

n 

weights x sim; 
similarity = i-1 7.1 

n 

weight; 
i=i 

where, weight; denotes the importance of each feature and the complexity of the 

modification. The more important the feature is or the more difficult the modification, 

the higher is the value of the weight. The values of the weights for the important 

features are listed in Table 7.3. Different materials in the same material group will have 

different properties. Unfortunately, there is insufficient available information to allow a 

case to be modified to compensate for differences. Therefore, it was decided to make 

the material weight equal to 1. The importance of other features will be seen in the 

following modifications. 

Table 7.3 weights of the features 

Feature Weight 

material 1 

roughness 0.6 

workpiece dW 0.4 

wheel speed 0.4 

wheel ds 0.4 

Simi denotes the similarity of the ith feature of two cases. For the material feature, 

sim(material) is defined as: if the materials are the same, the sim(material)=1, otherwise, 

sim(material)=O. For other features, simi is defined as: 
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Problemi - Casei 2 
simý = 1- 

variable range 

} 

where 

Problem; = the value of ith feature in Problem 

Casei = the value of ith feature in existing case 

variable range = variable range of the value of ith feature 

7.6 Modification of a Case 

7.2 

In most situations, the case retrieved will not exactly fit the problem definition. The case 

must therefore be modified to conform to the new requirements. There are ten 

independent variables to be determined as outlined in Chapter 3. Since the Problem case 

is almost similar to a stored Solution, it is expected that the stored case needs only a 

minor modification to apply to the Problem. The strategy for modification of a case is 

based on the following assumptions: 

(i) Since similar cases belong to the same material and roughness groups, the wheel and 

fluid need not be changed. 

(ii) The wheel speed, v, either has a fixed value or an optimal value has been 

established, which is not affected by the variations of other variables. Therefore, wheel 

speed does not need modification. 

(iii) There are many factors which affect surface roughness. The most sensitive 

parameter is dressing lead fd. Dressing lead is therefore modified by the system to 

satisfy the required surface roughness and other parameters are unchanged. 

Based on the above assumptions, the feedrate, vf, the workspeed, v, , and the dressing 

lead, fd, there are three parameters which require modification in case-based reasoning. 
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For changes in work diameter or wheel speed and wheel diameter, the following is an 

explanation of the process of modification. 

In Section 3.4.3, four kinds of basic parameters were discussed, which correlate fairly 

well with the main grinding parameters. The parameters are equivalent chip thickness 

heq, mean grinding chip volume Vm, the mean chip aspect ratio Ar and the ratio between 

the equivalent chip thickness and the geometric contact length heq/lg. The values, of and 

vW are modified based on these parameters. 

To maintain optimal conditions, the equivalent chip thickness heq, mean grinding chip 

volume Vm, the mean chip aspect ratio Ar and the ratio between the equivalent chip 

thickness and the geometric contact length heq/lg should all be unchanged. In a similar 

grinding process, the wheel is unchanged and the values of parameters need only a 

minor modification. Therefore, the dynamic grit spacing Id and the grinding chip width 

bb may be assumed to be unchanged. For changes in workpiece diameter from dW0 to 

d%vn or wheel speed from v,,. to vsn the feedrate is changed from vfo to v&. 

From equation 3.10 

V. = heqldbc =x 
dwoldbcyfo 

=9d vnldbcyjn 7.3 
vso vsn 

and therefore 

_ 
dw0 ysn 

Vfn _ Vf0 dwn vso 7.4 

For changes in equivalent diameter from deo to den or wheel speed from v, to vsn, the 

work speed is changed from vv, o to vwn. 

From equation 3.11 

99 



is 0"5deoyso O. 5denysn 
Ar = hm = ldVwo = ldvwn 

7.5 

and therefore 

den Vsn 
vwn = vwo deo vso 7.6 

where de = 
d'd,, 

ds+d,, 

By a similar procedure, from equation 3.4 and 3.12 the same results as equations 7.4 

and 7.6 can be obtained, which provides support for the modification strategy. 

For a different surface roughness, dressing depth ad and equivalent chip thickness heq 

are unchanged, a change of surface roughness from R.. to Ra� will require a change in 

dressing lead from fd. to fd.: 

From equation 3.3, 

fdoRan 
fdn =2 

ao 7.7 

The process of selecting a value of dressing feed is not an exact process due to the 

uncertainty introduced by the shape of the dressing diamond which will change with the 

wear mentioned in Section 3.4.3. However, with a little modification the method is 

feasible. 

The modification of the dressing parameters is difficult so that the weight of the 

roughness is taken to be 0.6. From equations 7.4 and 7.6, the modifications caused by 

workpiece diameter dw,, wheel diameter d$ and wheel speed v$ are relatively more reliable 
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than the modifications caused by roughness. Taking both reliability and sensitivity into 

account, the weights are assigned a value of 0.4. 

7.7 Evaluation of the Solution 

The Solution should be evaluated and if necessary modified further. New Solutions are 

stored in the case base and form new cases. This process provides the learning 

capability of the case-based reasoning system. Two approaches to implementation are 

proposed, depending on whether the system is used with or without adaptive control. 

(i) Learning from an Adaptive Control Optimisation system 

Figure 7.6 illustrates a framework combining case-based reasoning and adaptive control 

optimisation. 

Case-based Adaptive CNC 
control Grinding g reasoning optimisation 

(ý> 
machine 

Figure 7.6. Combination of CBR and ACO 

Case-based reasoning is an off-line reasoning approach while adaptive control is an on- 

line and real-time control system. Adaptive control adapts the values of parameters to 

take account of the changes in the operating environment in order to maintain optimal 

grinding conditions. Moreover, if the values produced by case-based reasoning are 

close to optimal, adaptive control adapts the values to optimal for the particular grinding 

wheel condition and learns the values. An adaptive control system can therefore provide 
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feedback of learned values to a case-based reasoning system which stores the new case 

for future reference. The approach is based on the system proposed by [Rowe 

1991][Rowe 1995]. The system adapts and optimises the parameters subject to the 

limitations of burn, power and roughness. 

(ii) Learning from the Operator 

The case-based reasoning system can also be used to recommend grinding conditions to 

the operator as illustrated in Figure 7.7. When satisfactory values have been achieved in 

practice, the operator stores the Solution in the case-based reasoning system. 

pC CNC 

Case-based Operator Grinding 

reasoning 
Lý> 

I 

Lý 

I 

machine 

%ýýp %ýýp 
Figure 7.7. CBR consulting system 

When saving a new case into the case base, it is possible that the new case has the same 

Index as an existing case. There is the danger that poor quality new information can 

over-write good quality old information. Therefore, when the new case is saved into the 

case base, the system compares the cases to determine which is better. The basic for 

comparison is the specific removal rate: 

Qw = 7rdwvj 

Since dy is the same in the two cases, vf can be used for comparison. The case having 

the higher vfis retained in the case base. 
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7.8 An Example 

The following example illustrates how the system works. 

(i) Problem description 

The user inputs the following information: 

" External cylindrical plunge grinding with single-point dressing 

" Workpiece material: High carbon steel & alloy group, AISI 1080 

" Material hardness: 62 Rc. 

" Workpiece diameter. 25 mm 

" Grinding width: 30 mm. 

" Specified roughness: 0.40 µm Ra. 

The Grinding wheel, coolant, wheel diameter, wheel speed, workspeed, feedrate, 

dressing depth and dressing feed are to be selected by the case-based reasoning system. 

(ii) Problem indexation 

According to the features of the problem, the Indexes are determined by the system as 

HS, H, 0,3, - 1080,0.40,25,0,0. 

where, HS identifies high-carbon steel, H...... high hardness, 0 ...... wheel to be 

selected, 3...... roughness in the third group. The former features belong to the Very 

Important category. 

1080...... material, 0.40 (Ra) 
...... roughness, 25 (mm) ....... work diameter, 

0...... wheel diameter to be selected, 0...... wheel speed to be selected. These latter 

features belong to the Important category. 

(iii) Case retrieval 

The system searches a set of cases with the same Very Important identifiers, then, uses 

the similarity algorithm to retrieve a nearest case. 

The case index is: 
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" HS, H, AVK, 3, - 1060,0.45,16,365,33, 

The Problem description of the nearest case retrieved is therefore: 

" Workpiece material: high-carbon steel group, AISI 1060 and high hardness 

" Dressing tool: single point diamond 

- dw = 16 mm, Ra = 0.45 mm, b= 24 mm 

The corresponding solution of the case retrieved is: 

" wheel: 

" coolant: 

" wheel diameter. 

" wheel speed: 

" work speed: 

" feedrate: 

" dressing lead: 

" dressing depth: 

WA60JV, 

water based 

ds = 365 mm, 

vs=33m/s, 

vom, = 0.25 m/s, 

vf=0.02 min/s, 

fd = 0.15 mm/s, 

ad = 0.015 mm 

(iv) The Solution 

The Solution is then achieved by modifying the nearest case retrieved from the case 
base. Using the kinematic relationships, of is modified to 0.013 mm/s, vw is modified 

to 0.38 m/s and fd is modified to 0.12 mm/s. The values of the parameters for the 

solution are illustrated in Table 7.4, and can be compared with the values for the nearest 

case. 

v) Learning and storing the new case 

The initial values of the grinding parameters are presented to the operator either for use 

by the ACO system or for direct use by the operator. The learned values together with 

the problem description constitute a new case which is stored in the case base. These 

values may be modified by the operator after testing, where the operator is allowed this 

discretion. 
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Table 7.4 Case study 

Problem Similar case Solution 

material high-c steel, AISI1080 high-c steel, AISI1060 high-c steel, AISI1080 

wheel WA80JV WA80JV 

coolant water based water based 

hardness 62, Rc 60 Re: 62 Rc 

dw 25 mm 16 mm 25 mm 

b 30 mm 24 mm 30 mm 

Ra 0.40 um 0.45 um 0.40 um 

ds 365 mm 365 mm 

VS 33 m/s 33 m/s 

VW 0.25 m/s 0.38 m/s 

Vf 0.02 mm/s 0.013 mm/s 

Ad 0.15 mm/r 0.12 mm/r 

ad 0.015 mm 0.015 mm 

V. Imp. Indexes HS, H, 0,3 HS, H, AVK, 3 HS, H, AVK, 3 

Imp Indexes 1080,0.40,25,0.0 1060,0.45,16,365,33 1080,0.40,25,365,33 

Part No. 
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Chapter 8 The Selection of Grinding Conditions Using Rule 

Based Reasoning 

Case based reasoning is the preferred method for selection of grinding conditions. 

However, when the number of grinding cases are insufficient to cover the whole 

grinding problem space, rule base reasoning is a useful approach to provide a set of 

starting conditions. The approach is employed as one of the intelligent agents for 

selection of grinding conditions. 

8.1 The Architecture of Rule Based Reasoning for Selection of Grinding 

Conditions 

The basic architecture of the rule based reasoning agent for selection of grinding 

conditions is illustrated in Figure 8.1, which includes: 

"A knowledge base containing a set of production rules 

" An inference engine 

"A memory containing the current state description 

Figure 8.1. Main components of the rule based reasoning agent 

The flow of information involved in the development of the rule based reasoning system 

is illustrated in Figure 8.2. 
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Figure 8.2 The information flow for developmentof the rule based system 

8.2 Rule Base for Grinding Conditions 

The knowledge base stores information about the grinding domain. It contains symbolic 

representation of expert rules based on judgement and experience. 

The basic knowledge for selection of grinding conditions was collected and refined from 

The Machining Data Handbook [MDC 1980] and The Grinding Data Book[Universal 

1992]. In these knowledge sources, knowledge mainly exists in databases or as some 

basic principles. An example of recommendations for cylindrical grinding with 

conventional wheels is illustrated in Table 8.1. 

Table 8.1 Example of recommendations for cylindrical grinding I MDC 19801 

The data in the table can be encoded into rules. The roughness Ra < 0.8 µm is assumed 

for finish grinding, otherwise the operation is assumed to be rough grinding. The 

infeed values in the table are for traverse grinding, namely the infeed on diameter per 
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traversing pass. For plunge grinding, the recommendations should be transferred to the 

infeed on radius per second, namely the feedrate v f. The transformation uses the 

following equation: 

av 
vf= 

xdw 

where a is equal to half the infeed on diameter per traverse. 

Accordingly, one rule is: 

IF workpiece material is general carbon and alloy steels 

AND material hardness < 50 Rc 

AND wheel is conventional wheel 

AND roughness < 0.8 Ra 

THEN wheel speed = 28-33 m/s 

AND workspeed = 0.35-0.5 m/s 

AND feedrate S 0.013/2 x 0.35 x 1000/(n x dW) 

8.1 

In the rule, wheel specification is not included. The wheel selection in Table 8.1 is 

imprecise because the effects of the roughness requirements and the operation severity 

were not taken into account in the wheel recommendation. The neural network for 

wheel selection described in Chapter 5 can provide a better result. 

The rules for dressing values are derived from Table 8.2. 



Accordingly, two rules are: 

IF roughness z 0.8 µm 

THEN dressing depth = 0.025 mm 

AND dressing lead = 0.18 mm/rev. 

IF roughness < 0.8 µm 

THEN dressing depth = 0.012-0.019 mm 

AND dressing lead = 0.10 mm/rev. 

I 

3 Oils-heavy duty 

4 Emulsifiable oils - light duty ( general purpose) 

5 Emulsifiable oils - heavy duty 

6 Chemicals and synthetics - light duty ( general purpose) 

7 Chemicals and synthetics - heavy duty 

where number 3 is oil-based, others are water-based. 

An example of a rule for coolant is: 

IF workpiece material is general carbon and alloy steels 

AND wheel is conventional wheel 

AND material hardness < 48 Rc 
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THEN coolant = Emulsifiable oils - light duty / 

Chemicals and synthetics - light duty 

The three kinds of rules are expressed as follows: 

IF workpiece material is general carbon and alloy steels 

AND material hardness < 50 Rc 

AND wheel is conventional wheel 

AND roughness Ra< 0.8 gm 

THEN wheel speed = 28-33 m/s 

AND workspeed = 0.35-0.5 m/s 

AND feedrate S 0.0132 x 0.35 x 1000/( it xd w) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0.1 mm/r 

AND coolant = Emulsifiable oils - light duty / 

Chemicals and synthetics - light duty 

According to the above methods, a set of rules was developed. Some examples of the 

rules in the set are illustrated in the following. 

Rule 5 

IF workpiece material is tool steel 

AND material hardness > 50 Rc 

AND wheel is conventional wheel 

AND roughness < 0.8 gm 

THEN wheel speed = 28-30 m/s 

AND workspeed = 0.3-0.5 m/s 

AND feedrate S 0.01/2 x 0.3 x 1000/( 7c x dW, ) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0.1mm/r 
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AND coolant = Emulsifiable oils - heavy duty / 

Chemicals and synthetics - heavy duty 

Rule 12 

IF workpiece material is cost iron 

AND material hardness < 50 Rc 

AND wheel is conventional wheel 

AND roughness < 0.8 µm 

THEN wheel speed = 28-33 m/s 

AND workspeed = 0.35-0.5 m/s 

AND feedrate 5 0.025/2 x 0.3 x 1000/( nx dW) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0.1mm/r 

AND / coolant = Emulsifiable oils - light duty 

Chemicals and synthetics - light duty 

Rule 13 

IF workpiece material is cost iron 

AND material hardness > 50 Rc 

AND wheel is conventional wheel 

AND roughness < 0.8 µm 

THEN wheel speed = 28-33 m/s 

AND workspeed = 0.35-0.5 m/s 

AND feedrate S 0.013/2 x 0.35 x 1000/( it x d, ) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0. lmm/r 

AND coolant = Emulsifiable oils - heavy duty / 

Chemicals and synthetics - heavy duty 
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Rule 20 

IF workpiece material is superalloys 

AND wheel is conventional wheel 

AND roughness < 0.8 µm 

THEN wheel speed = 15-18 m/s 

AND workspeed = 0.25-0.5 m/s 

AND feedrate S 0.005/2 x 0.25 x 1000/( 7c xd w) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0. lmm/r 

AND coolant = oils-heavy 

Rule 34 

IF workpiece material is aluminum alloys 

AND wheel is conventional wheel 

AND roughness < 0.8 µm 

THEN wheel speed = 28-33 m/s 

AND workspeed = 0.25-0.77 m/s 

AND feedrate S 0.013/2 x 0.25 x 1000/( it xd ,) 

AND dressing depth = 0.012-0.019 mm 

AND dressing lead = 0. lmm1r 

AND coolant = oils-light duty 

8.3 Inference Engine 

The inference engine provides the reasoning strategy for searching the knowledge base 

to determine which rules apply to the situation and makes the appropriate decision. Two 

forms of reasoning strategy are forward chaining and backward chaining[Adeli 1990]. 

In forward chaining, the system starts with known facts and searches to determine 

which rules are satisfied by the facts. Conclusions are reached on the basis of the rules 

which are true, and the search continues until a solution or set of solutions is found. 
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Backward chaining starts with a solution and works backwards to determine whether the 

required antecedents are satisfied. Backward chaining is commonly used for condition 

monitoring and problem diagnosis whereas forward chaining is more often used for 

planning and selecting values of process parameters to be employed. Some systems 

employ a combination of these techniques[Rowe 1994a]. 

The approach adopted for selection of grinding conditions was the forward chaining 

reasoning. The basic reasoning method is a pattern-matching algorithm. In a 

predetermined order, the condition portions of rules are compared with the current state 

of facts. When all the conditions of a rule are satisfied, then that rule becomes eligible 

for execution. Once a rule is executed, the conclusion part is added to the working 

memory. 

For example, the following facts are the working memory. 

Fact 1: workpiece material is tool steel 

Fact 2: material hardness > 50 Rc 

Fact 3: wheel is conventional wheel 

Fact 4: roughness = 0.4 µm 

Fact 5: workpiece diameter = 30 mm 

Rule 5 can be executed because fact 1, fact 2, fact 3 and fact 4 match its LHS. As a 

result, and according to fact 5, the following facts are added to the working memory: 

wheel speed = 28-30 m/s 

workspeed = 0.3-0.5 m/s 

feedrate S 0.026 mm/s 

dressing depth =0.012 - 0.019 mm 

dressing lead =0.10 mm/n 

coolant = Emulsifiable oils - heavy duty / 

Chemicals and synthetics - heavy duty 
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Since there are no other rules to be executed, the process stops. Thus the above facts 

are the conclusions of the reasoning process. 
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Chapter 9 The Development of a Multi-Agent System for 

Selection of Grinding Conditions 

9.1 Introduction 

In Chapter 4, a multi-agent strategy for selection of grinding conditions was proposed. 

A concept framework of the system was proposed. The principle and structure of each 

agent, as an independent system, was described in Chapters 6,7 and 8. This chapter 

deals with the implementation of the whole system by merging the agents using a 

blackboard model. 

9.2 The System Structure and Principle 

Problem Possible Partial Partial 

description solution solution sulutic 

Material Case bw,, d 
CRule 

based Neural 

database rc'soninb uoning network 

Figure 9.1 The structure 
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Figure 9.1 illustrates the structure of the multi-agent system modelled using the 

blackboard approach. The model consists of three basic parts, knowledge agents, 

blackboard and control unit. 

9.2.1 The knowledge agents 

The knowledge agents were described in previous Chapters. 

9.2.2 The blackboard 

Blackboard 

Level 4 
Learning values Agents 

------------------- 
Level3 

Final solution 
Agents 

------------------ 
Level 2 

Partial solution 
Agents 

-------------------- 
Level l Agents 
Problem 

Figure 9.2 the structure of blackboard 

The blackboard can be characterised as a global database, or more simply, a working 

memory [Engelmore 19881. The purpose of the blackboard is to hold computational and 

solution-state data needed by and produced by the knowledge agents. These data can be 

input data, partial solutions and final solutions. The blackboard is also the medium for 

all communications between the independent knowledge agents. For the user, the 

blackboard is a computer screen which displays the input and output and other functions 
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are transparent. The blackboard has a hierarchical structure which consists of four level 

working memories as illustrated in figure 9.2 

9.2.3 The control mechanism 

The knowledge agents respond opportunistically to changes on the blackboard. The 

control mechanism is to monitor the changes on the blackboard and decide which 

knowledge agent to actuate next [Engelmore 1988]. In the proposed system, the control 

itself is a knowledge agent. The control mechanism uses a set of control rules to solve 

the problem of `what next'. The rules are as follows: 

Rule 1 

IF 

THEN 

Rule 2 

IF 

THEN 

Rule 3 

IF 

AND 

AND 

THEN 

Rule 4 

operator input occurs at any time 

actuate operator agent 

problem description in blackboard 

actuate case based agent 

problem description in blackboard 

no solution in blackboard after case based agent actuated 

wheel is not in blackboard 

actuate neural network agent 

IF problem description in blackboard 

AND no solution in blackboard after case based agent actuated 

AND wheel is in blackboard 

THEN actuate rule based agent 
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Accordingly, the system control flowchart is illustrated in Figure 9.3 

Figure 9.3 The control flowchart 
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9.3 The Implementation of the Multi-agent System 

The multi-agent system is a large complex system. The system was divided into agent 

functional modules. The agent functional modules were developed individually, then 

the modules were combined as a whole system. However, for convenience, the 

implementation of the system described here is divided into the Input (problem 

description) module, the Select (solution) module and the Cases (knowledge learning 

from operator) module. Figure 9.4 illustrates the system main screen in which the 

system main menu shows the three functions. 

Input Select Cases Exit 

About 

Intelligent System for Selection of 
Grinding Conditions 

Version 1.0 

Copyright(c) 1995 By AMT Research Lab 

OK 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.4 System main screen 

Table 9.1 shows what each menu selection does. Figure 9.5 shows the content of the 

pull down menus in each main menu item. The operational procedure for selection of 

grinding conditions is first to input information using the Input module and then to select 

grinding conditions using the Select module. If the input module has not been used, the 

Select module cannot be actuated. 
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Table 9.1 System main menu 

Item Purpose 

About the system 

Input Input process and workpiece information 

Select Select wheel and grinding and dressing parameters 

Cases Browse and edit the case base 

Exit Exits the system 

Input Select Cases Exit 
I 

out Process 

II 
Wheel Conditions 

I 

Case base 

I 

Ex it 

Figure 9.5 System pull down menus 

Each functional module is described in the following sections. 

9.4 System Input Module 

The system input module performs the grinding problem description. The input 

requirement has been described in Chapter 3 and 7. The input item has a pull down 

menu which has two parts, process information input and workpiece information input. 

The two parts are separately completed in two input dialogue boxes. 

9.4.1 Process information input 

Process information describes the machine tool and the grinding method. Figure 9.6 

shows the dialogue box for process information input. To date, the developed system 
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only works for external plunge grinding. However, if the system is developed further it 

will include other process types. Information on the power available is useful for an 

adaptive control system. 

r- 
Input Select Cases Exit 

Process 

(") External 
() Internal 
() Centrclcss 
() Surface 

OK 
ýMmmm 

Machining Type 

(") Plunge 
O Traverse 

Power Available 1kw 

rEiTni-c-c-li 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.6 Process input dialogue box 

9.4.2 Workpiece information input 

The workpiece information inputs are illustrated in Figure 9.7. Some of the inputs are 

not essential for the Problem description but are useful for reference such as the 

workpiece width, size tolerance and roundness tolerance. Therefore, they are not 

required but are expected to be entered by the operator. 
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I Input Select Cases Exit I 

nece 

Start diameter 25 mm 

Finish diameter 24.70 mm 

Width 30 nom 

Max. roughness Ra 0.40 µm 

Size tolerance ±20 µm 

Roundness tot. 2 µm 

OK Cancel 
Lazumm" 

I F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.7 Workpiece information input 

9.4.3 Workpiece material database 

In the workpiece information input, the workpiece material is a Very Important input. 

There are many materials used in grinding. A database is therefore designed to manage 

the selection of materials. 

Database structure 

According to Chapter 7, materials are grouped according to their properties and 

individual material names are used to associate the materials in a group. For the 

convenience of the user, the material group, material properties and individual material 

names are arranged into an hierarchical database. Figure 9.8 shows the relationship 

between the material group, the material properties and individual materials. 
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Figure 9.8 Material database 

The material group includes the material catalogue illustrated in Table 7.3. The material 

properties element includes a set of data: Index, group name, thermal conductivity, 

specific heat, critical temperature, melting temperature and density. Material properties 

are employed by the adaptive control system[Rowe 19911. Each material group has a 

set of properties. Individual materials are those materials belonging to the same material 

group. 

The workpiece material input is actually a process of selection of a material from the 

database. Firstly, the material group is selected and the corresponding individual 

material names are displayed. Then, the individual material is selected. Figure 9.9 

illustrates the selection screen. To the left of the picture is the material group. To the 

right of the picture are the individual materials corresponding to a selected material 

group. Two views are displayed using listboxes with scrollers. The user can use the 

mouse or a key to scroll the list in the listboxes. In the materials listbox, double clicking 

an item will select the material and its corresponding material group. Pressing the OK 

button will also select the highlighted items. 
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Input Select Cases Exit 

Workpiccc Material 
Material Groups Materials 

Low-C & Alloys Steels AISI 1005 AISI 1017 
High-C &Alloys Steels AISI 1006 AISI 1018 
Tool Steels AISI 1008 AISI 1019 

High Speed Steels AISI 1009 AISI 1020 

Superalloys AISI 1010 AIS11021 

Martensitic Stainless Steels AISI 1011 
AISI 1022 
AISI1023 

Austenitic Stainless Steels AISI 1012 AISI 1025 
Cast Irons AISI 1013 AISI 1026 
Al Alloys AISI 1015 AISI 1029 

Cu Alloys 
AISI 1016 AISI 1109 

Delete I Add I mit j >e ley Add Edit 
l- 

Save OK 

FI Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.9 The selection of material 

Database management 

The database can be up-dated, by deleting from, adding to or editing the contents. 

(i) Editing the material group and its properties 

Normally, the material group and the material properties are modified simultaneously. 

Therefore, the modification uses an edit interface as illustrated in figure 9.10. 
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Input Select Cases Exit 

  Wnrknirre Material 

F1 Help F10 Menu A1t-X Exit Alt-F3 Close 

Figure 9.10 Material group and properties edit interface 

(ii) Editing the individual material 

Input Select Cases Exit 

  Workpiece Material 

Material Groups Materials 
1017 Low- AlInvq Step 

. Material 1018 High- I 
1019 Tool 1020 

High Material 1021 
Super AIS11005 1022 
Marto 1023 
Auste OK Caneel 1025 
Cast 1 1026 

Al Al] 1029 
1109 

Cu Al 
&üt d Delete it Delete Add 

Save OK 

F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.11 Material edit interface 

If a material group name is deleted, the set of corresponding materials are automatically 
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deleted by the database management. If a material group is added, the corresponding 

materials should be created and inserted in a suitable position in the individual material 

set. In addition, existing materials can be edited. Figure 9.11 illustrates the material edit 

interface. 

After the modifications are completed, the results are saved using the save button shown 

in Figure 9.9. 

9.5 System Select Module 

After the system Input is complete, the system Select function can be actuated. The 

system Select module includes two parts: wheel selection and the grinding condition 

selection. The grinding condition selection function includes the wheel selection. 

However, if the user wants only to select a wheel, the wheel selection item can be used. 

9.5.1 Wheel selection 

Wheel selection in the separate wheel selection item uses the neural network described in 

Chapter 6. After using the system input, the wheel recommendation will be given. 

9.5.2 Grinding condition selection 

Grinding condition selection includes the selection of a wheel, values of grinding and 

dressing parameters as well as coolant selection. However, the wheel can be selected 

either by the system or by the user. If the user wants to specify the wheel, a dialogue 

illustrated in Figure 9.12 is used to input the wheel specification before the system 

selects the grinding conditions. The meanings of the symbols in the figure are illustrated 

in Table 7.4. 
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Figure 9.12 Operator input wheel 

Following the inputs previously described, the system will actuate the case based 

reasoning agent. If the case based reasoning is successful, the recommendation of 

grinding conditions will be given as illustrated in Figure 9.13. If the user wants to have 

a look at the similar case from which the recommendation was derived, he can use the 

Old Case button to get the old case illustrated in Figure 9.14. The recommended 

grinding conditions can be modified by the user using the keyboard. If the 

recommended conditions are satisfied, they can be saved as a new case through the 

"Save Case" button. 

If the case base reasoning agent fails to give the solution, the system automatically 

actuates the rule based reasoning agent and the neural network agent to give the 

recommendation as illustrated in Figure 9.15. However, if the user has specified the 

wheel, the system adopts the wheel specified by the user instead of by the neural 

network. The rule based reasoning only gives a range of the values of the operating 

parameters. After the user obtains satisfactory values, the values can be saved as a new 

case through the "Save Case" button. 
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Input Select Cases Exit 

Index 
Part number 
Process 
Machine tool 
Power 
Material group 
Material 
Hardness 
Max roughness 
Size tolerance 
Roundness tol. 
Start diameter 
Finish diameter 
Width 

Wheel WA80JV 
Wheel speed 33 m/s 
Wheel diameter 365 mm 
Dresser Single point diamond 

Coolant Water based 
Workspeed 0.38 m/s 
Fecdrate 0.013 mm/s 
Dressing depth 0.015 mm 
Dressing lead 0.12 mm/rev 
Spark-out time 4s 
Equivalant diameter 27.72 mm 
Specific removal rate 1 mm2/s 
Specific energy 
Grinding ratio 

Save Case Old Case OK 

F1 Help NO Menu Alt-X Exit Alt-F3 Close 

Figure 9.13 Sample recommendations from the case based reasoning agent 

Input Select Cases Exit 

Index 
Part number 
Process 
Machine tool 
Power 
Material group 
Material 
Hardness 
Max roughness 
Size tolerance 
Roundness tol. 
Start diameter 
Finish diameter 
Width 

Lase 

Wheel WA80JV 
Wheel spend 33 m/s 
Wheel diameter 365 nim 
Dresser Single point diamond 

Coolant Water based 

Workspeed 0.25 m/s 
Feedrate 0.02 mm/s 
Dressing depth 0.015 mm 
Dressing lead 0.15 mm/rev 
Spark-out time 4s 
Equivalant diameter 15.33 min 
Specific removal rate 1 mm2/s 
Specific energy 60 J/mm3 
Grinding ratio 42 

UK 

1 
Fl Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.14 Old case 
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Input Select Cases Exit 

Index 
Part number 
Process 
Machine tool 
Power 
Material group 
Material 
Hardness 
Max roughness 
Size tolerance 
Roundness tol. 
Start diameter 
Finish diameter 
Width 

Wheel 
Wheel speed 
Wheel diameter 

Coolant 
Workspeed 
Feedrate 
Dressing depth 
Dressing lead 
Spark-out time 
Equivalant diameter 
Specific removal rate 
Specific energy 
Grinding ratio 

Save Case 

WASON 
20-30 m/s 

Single point diamond 
Emu oils-heave 
0.3-0.5 m/s 
< 0.024 mm/s 
0.012-0.019 mm 
0.1 mm/rcv 

L "h 

I 
F1 Help F10 Menu Alt-X Exit Alt-F3 Close 

Figure 9.15 Sample recommendations from the rule based reasoning agent 

9.6 Case Base Management 

The multi-agent system learning is completed by individual knowledge agents. Neural 

network learning requires retraining using the neural network development tool and the 

procedure is completed by a knowledge engineer. Rule based reasoning learning 

requires the rules in the rule base to be edited and this is completed through the 

cooperation of experts and a knowledge engineer. Case based reasoning learning takes 

place by editing the cases in the case base. It can be achieved by an expert or by an 

operator without requiring the intervention of a knowledge engineer. Moreover, if the 

system is connected with an adaptive control CNC system the adaptive values can be fed 

back to the case base. 
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Input Select Cases Exit I 

Tr unv 

HSHAVK I HSMAVK5 LSMAVK3 
HSHAVL3 LSLAVL3 TSHAVL3 

Index 
Part number 
Process 
Machine tool 
Power 
Material group 
Material 
Hardness 
Max roughness 
Size tolerance 
Roundness tol. 
Start diameter 
Finish diameter 
Width 

Wheel WA8OJV 
Wheel speed 33 ni/s 
Wheel diameter 365 nom 
Dresser Single point diamond 
Coolant Water based 
Workspeed 0.25 nVs 
Feedrate 0.02 mm/s 
Dressing depth 0.015 mm 
Dressing lead 0.15 mm/rev 
Spark-out time 4s 
Equivalant diameter 15.33 men 
Specific removal rate I mm2/s 
Specific energy 60 J/mm3 
Grinding ratio 42 

Delete Add Ecüt [ Save [ Cancel 
ýMmmmml 

Fl Help NO Menu Alt-X Exit Alt-F3 Close 

Figure 9.16 Case base 

Figure 9.16 is a user interface of the case base. The user can edit a case directly through 

the interface and can browse through all the cases by means of an index search. The 

cases are sorted by the Indexes in alphabetical order. The indexes displayed in the top 

of the figure are restricted to Very Important Indexes. The user can delete, add and edit 

a case and save the case. Since these cases form an important body of knowledge on 

which the system relies, a password security system is built-in to prevent unauthorised 

editing. 

9.7 Application Example 

This section shows a comprehensive example which illustrates the operating procedure 

of the system. 
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The user inputs the following information using the system Input module: 

(i) process information 

" External cylindrical plunge grinding 

" Power available: 3 kw 

(ii) workpiece information 

" Workpiece material: High carbon steel & alloy group, AISI 1080 

" Material hardness: 62 Rc 

" Wheel to be selected by the system 

" Workpiece diameter. 25 mm 

" Grinding width: 30 mm 

" Specified roughness: 0.40 µm Ra. 

Then Select module operates. First, the system uses the case based reasoning agent to 

give the following Solution: 

" wheel: WA80JV, 

" coolant: water based 

" wheel diameter. ds = 365 mm, 

" wheel speed: vs = 33 m/s, 

" work speed: vW = 0.38 m/s, 

" feedrate: vf=0.013 mm/s, 

" dressing lead: fd = 0.12 mm/s, 

" dressing depth: ad = 0.015 mm 

The results are derived from a similar case, which was illustrated in Table 7.4. If the 

similar case had not existed, other agents would have been actuated. For example, the 

neural network agent gives the wheel as: 

WA80JV 

Alternatives: 

WA80KV 
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WA80IV 

WA100JV 

WA60JV 

Then the rule based reasoning agent gives the other grinding conditions: 

wheel speed = 28-33 m/s 

workspeed = 0.35-0.5 m/s 

feedrate S 0.029 mm/s 

dressing depth =0.012-0.019 mm 

dressing lead =0.1 mm/rev 

coolant = Emulsifiable-heavy 

After the operator uses these results and modifies them if applicable, the solution can be 

saved as a new case. 
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Chapter 10 The Evaluation of the Strategy and the System 

This chapter describes the initial evaluation of the system, in relation to: 

(1) Grinding conditions recommended 

(2) Use of the system and further development 

10.1 Consideration of Evaluation Techniques 

(i) Experimental evaluation 

It was considered that although the most reliable approach to testing and validation of the 

selection system would be by experiment, this approach was not realistic. Figure 10.1 

illustrates a possible experimental approach. 

Figure 10.1 A possible approach to experimental evaluation of the system 

A possible experimental procedure would be as follows: 

(1) Select the grinding wheel, grinding coolant, the values of the dressing parameters 

and the values of the grinding parameters using the selection system. 
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(2) Set up the grinding machine with the recommended grinding conditions and optimise 

the grinding conditions from part to part based on the power limit, the burn limit and the 

roughness limit. The optimisation objective here is minimisation of the cycle time. The 

optimisation variables are vf, vW and fd. 

(3) Compare the recommended values and the optimised values, evaluate the results and 

store the optimum grinding conditions in the case base. 

The above process may be repeated for different grinding problems, including different 

workpiece materials, different wheels and different grinding requirements. However, 

the experiments will be time consuming and expensive to cover a substantial range of 

grinding problems. It is therefore proposed that a better approach is that system tests 

and system learning are undertaken simultaneously while the system is used. This 

proposed approach gives full play to the advantage of the strategy. It was therefore 

decided that an experimental approach was not feasible to test the comprehensiveness of 

the system or its effectiveness. It was not the objective of the research to test the ACO 

system which was the subject of previous investigations[Kelly 1989] [Rowe 1991]. 

(ii) Expert evaluation 

It might be possible that experienced researchers, engineers and skilled operators, could 

evaluate the system by using it. The selection system has been demonstrated to a 

number of grinding experts from the AMT Research Laboratory, Lucas Group, Jones & 

Shipman Plc. and Unicorn Abrasive UK Ltd. As a general evaluation, these experts 

thought the strategy was an original and reasonable approach which is easy to use. 

However, the system was not evaluated in detail. 

(iii) Handbook evaluation 

This approach evaluates the system comparing the system output and information 

derived from existing knowledge from handbooks. While the knowledge from 
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handbooks is less than optimal, this approach allows recommendations for a wide 

domain of grinding conditions to be tested against the system recommendations. 

10.2 Comparison of the System Output and Data From the Handbooks 

The system was evaluated by comparison of the system output and data from 

handbooks[MDC 1980] [Universal 1992]. The data for the wheel specification and the 

values of dressing parameters were from The Grinding Data Book[Universal 1992]. 

The data for the values of the grinding parameters were from The Machining Data 

Handbook[MDC 1980]. The following is a description of the process employed for the 

comparison. To simplify the process, the Problem description only lists the variables 

which affect the grinding conditions. Common input information is: external cylindrical 

plunge grinding and single point diamond dressing. 

Evaluation example 1. 

Problem input: 

" Workpiece material: Low & Medium carbon steel & alloy group, AISI 1050 

" Material hardness: 50 R, 
ý 

" Wheel selection by the system 

" Workpiece diameter. 54.8 mm 

" Specified roughness: 0.55 µm Ra. 

System Handbook 

" wheel: 11A6OK5V, 48A80KV, 

" coolant: water based water based, 

" wheel diameter. ds = 226 mm, not available, 

" wheel speed: vs = 26.13 m/s, vs = 28 - 33 m/s, 

" work speed: vw = 0.47 m/s, vw = 0.35 - 0.5m/s, 

" feedrate: vf=0.02 mm/s, of =<0.013 mm/s, 

" dressing lead: fd = 0.095 nuns, fd = 0.10 mm/s, 

" dressing depth: ad = 0.015 mm ad = 0.012 - 0.19 mm 
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The system recommended values derived from a similar case in case base. Case 4 in 

Table 10.1 is the nearest case. Since the roughness and the workpiece diameter were 

different from Case 4, the case was modified to meet the new requirement. The system 

recommended values mostly fell in the range of the recommendations of the handbook. 

However, the feedrate of recommended from the handbook tends to be conservative. 

The wheelspeed in the case was lower than handbook recommendation, perhaps 

because the wheel diameter in the case was rather smaller. The wheel specifications had 

some differences that may depend on which wheel was available. Since the old case 

was a successful case and the modification methods employed basic models which were 

proven to be reliable, the Solution provides a high confidence level. The user can 

modify the Solution according to his own knowledge. 

Five example cases from different sources are illustrated in Table 10.1. 
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Table 10.1 Grindina cases 

Case 1 Case 2 Case 3 Case 4 Case 5 

[Chen 1995] [Peters 1977] [Saks. 1992] [Zhu 1992] [Trmal 1974] 

Machine tool J&S S 10 

Material High-c steels AISI 52100 SCM435 Low-c steels High-c steels 

Hardness (Re) 62 62 50-58 50-58 42 

Max. roug. (Ra) 0.45 µm 1 µm 0.09 inn 0.40 µm 0.40 µm 

Size tol. ±12 gm 

Roundness 1.5 µm 

Start diameter 16 mm 80 mm 50 mm 45.08 mm 35 mm 

Finish diameter 15.70 mm 44.78 mm 

width 24 mm 20 mm 24 mm 12.05 mm 20 mm 

wheel WA8OJV EK6OL7VX A60L8V 11A60K5V WA80MV 

Wheel speed 33 m/s 45 m/s 40.9 m/s 26.13 m/s 30 m/s 

Wheel diameter 365 mm 680 mm 415 mm 226 mm 300 mm 

Dresser SPD SPD SPD SPD SPD 

Coolant Water based Oil EPS 12 Water based 

Workspeed 0.25 m/s 0.75 m/s 0.21 m/s 0.4 m/s 0.33 m/s 

Feedrate 0.02 mm/s 0.013 mm/s 0.003 mm/s 0.024 mm/s 0.0087 mm/s 

Dressing depth 0.015 mm 0.05 mm 0.02 mm 0.015 mm U. UZ mm 

Dressing lead 0.15 mm/rev 0.2 mm/rev 0.03 mm/rev 0.05 mm/rev 0.167 mm/rev 

Spark-out time 4s 3s 2s 

Specific energy 60 J/mm3 

Grinding ratio 42 

These cases are good for recommending grinding conditions. However, these cases 

may not be optimal because they may be optimised for some specific aspect. In 

addition, it is obvious that five cases are far too few for effective use of the case based 

reasoning. 
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More comparisons are illustrated in Table 10.2. These examples were selected to cover 

different kinds of Problems, namely, all material groups, different material hardness, 

different roughness requirements and different workpiece diameters. The wheel can be 

specified by the system or by the user. To simplify the table, the Problem description is 

expressed by the Index. 

Table 10.2 The comparison of the system output and handbooks output 
No Problem Solution Handbook Similar case 

Solution 

1 LS, M, 0,3 11A60K5V 48A80KV 11A60K5V 
1026,0.45,40 Water based Emu oils - light Water based 

vs=26.13 m/s v8=28-33 m/s va=26.13 m/s 

vw, =0.36 m/s v,, =0.35-0.5 m/s vw, =0.4 m/s 

vf-- 0.027 mm/s v f< 0.018 mm/s vt= 0.024 mm/s 
fd=0.063 mm/r fd=. 1 mm/r fd=0.05 mnVr 
ad=0.015 mm ad=0.012-0.019 mm ad=0.015 mm 

2 LS, M, AVI`, A60LV 48A80KV 11A60K5V 
2 Water based Emu oils - heavy Water based 
1025,0.5,40, v6=33 m/s v`=28-33 m/s v. =26.13 m/s 
33,220 v, =0.44 m/s v, =0.35-0.5 m/s vW=0.4 r/s 

v= 0.034 mm/s v< 0.018 mm/s vf= 0.027 mm/s 
User specified fd=0.078 mm/r fd=0.1 mm/r fd=0.05 mnVr 

wheel ad=0.015 mm ad=0.012-0.019 mm ad=0.015 mm 
3 HS, H, 0,3 WA80JV WA80JV WA80JV 

1080,0.4,25 Water based Oils-heavy Water based 

vs=33 m/s vs=28-33 m/s v1=33 m/s 
vW=0.38 m/s vW=0.35-0.5 m/s v,,, ß. 25 m/s 
vf= 0.013 mm/s vt< 0.029 mm/s v r-- 0.02 mm/s 
fd=0.12 mm/r fd=0.1 mnVr fd=0.15 mnVr 
ad=0.015 mm ad=0.012-0.019 mm =0.015 mm 

4 HS, H, 0,3 WA80JV WA80JV WA80JV 
1060,0.6,20 Water based Oils-heavy Water based 

vg=33 m/s va=28-33 m/s vs=33 m/s 
vW=0.31 m/s vW=0.35-0.5 m/s vW O. 25 mis 

v= 0.016 mm/s v f< 0.036 mm/s yr 0.02 mm/s 
fd=0.19 mm/r f40.1 mm/r fd=0.15 mnVr 
ad=0.015 mm ad=0.012-0.019 mm as=0.015 mm 
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No Problem Solution Handbook Similar case 
Solution 

5 HS, H, 0,1 EK6OL7VX WA46JV EK6OL7VX 
1060,0.95, Oil EPS 12 Oils-heavy Oil EPS 12 
28.5 v8=45 m/s v1=28-33 m/s v, =45 m/s 

vw, =0.29 m/s vW=0.35-0.5 m/s v,, =0.75 m/s 
v== 0.036 mm/s vf< 0.098 mm/s vt= 0.013 mm/s 
fd=0.18 mm/r fd=O. 18 mm/r fd=0.2 mm/r 
ad=0.05 mm ad=0.025 mm ad= 0.05 mm 

6 HS, H, 0,4 WA100JV WAl00JV Rule based and 
1070,0.25, Oils-heavy duty Oils-heavy neural network 
38.5 vs=28-33 m/s va=28-33 m/s based 

v, =0.35-0.5 m/s vW=0.35-0.5 m/s 
v f<0.019 mm/s V f< 0.0 19 mm/s 
fd=0.1 mm/r fd=0.1 mm/r 

=0.012-0.019 mm =0.012-0.019 mm 
7 HS, H, BBL, B120T100B B120T100B Rule based and 

3,1070,0.5, Emu oils - heavy Emu oils - heavy user required the 
38.5 vs=25-38 m/s va=25-38 m/s CBN wheel 

vW=0.25-0.5 m/s vW=0.25-0.5 m/s 
v f<0.052 mm/s v f< 0.052 mm/s 
fd=0.1 mmlr fd=0.1 mm/r 

=0.012-0.019 mm =0.012-0.019 mm 
8 TS, H, 0,2 WA80JV WA80JV Rule based and 

A3,0.5,40 Emu oils - heavy Emu oils - heavy neural network 

v8=20-30 m/s v1=20-30 m/s based 

vW=0.3-0.5 m/s v,,, =0.3-0.5 m/s 
vf< 0.0 12 mm/s vf< 0.0 12 mm/s 
fd=0.1 mnyr fd=0.1 mm/r 

=0.012-0.019 mm ad=0.012-0.019 mm 
9 Cl, M, 0,2 C60KV C60KV Rule based and 

ASTM A3, Emu oils - heavy Emu oils - heavy neural network 
0.6,50 vs=28-33 m/s vs=28-33 m/s based 

vW=0.35-0.5 m/s vW=0.35-0.5 m/s 
vf< 0.014mm/s vf< 0.014mm/s 
fd=0.1 mnVr fd=0.1 mm/r 

A -- I ad=0.012-0.019 mm ad=0.012-0.019 mm 
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No Problem Solution Handbook Similar case 
Solution 

10 CI, L, 0,1 C46MV C46MV Rule based and 
ASTM A3, Emu oils - light Emu oils - light neural network 
1.0,20 v8=28-33 m/s va=28-33 m/s based 

vw, =0.35-0.5 m/s v,, =0.35-0.5 m/s 
v f< 0.14 mm/s v f< 0.14 mm/s 
fd=0.18 mm/r fd=O. 18 mm/r 
ad=0.025 mm ad=0.025 mm 

11 HT, H, 0,2 WA60JV WA60JV Rule based and 
M1,0.6,38 Emu oils - heavy Emu oils - heavy neural network 

vs=20-28 m/s v$=20-28 m/s based 

vW=0.3-0.5 m/s vW=0.3-0.5 m/s 
v f< 0.01 mm/s v f< 0.01 mm/s 
fd=0.1 mm/r fd=0.1 mm/r 
ad=0.012-0.019 mm ad=0.012-0.019 mm 

12 HT, M, 0,2 48A60KV 48A60KV Rule based and 
Tl, 0.95,52 Emu oils - heavy Emu oils - heavy neural network 

vS=20-28 m/s v, =20-28 m/s based 

vW=0.3-0.5 m/s vW=0.3-0.5 m/s 
v f< 0.023 mm/s v f< 0.023 mm/s 
fd=0.18 mnyr fd=0.18 mm/r 

=0.025 mm =0.025 mm 
13 MS, L, 0,2 48A80JV 48A80JV Rule based and 

ASTM A217, Emu oils - heavy Emu oils - heavy neural network 
0.7,43 vs=28-33 m/s va=28-33 m/s based 

vW=0.25-0.5 m/s vW=0.25-0.5 m/s 
vf< 0.012mm/s vf< 0.012 mm/s 
fd=0.1 mm/r fd=0.1 mm/r 
aa=0.012-0.019 mm =0.012-0.019 mm 

14 MS, L, 0,2 48A46JV 48A46JV Rule based and 
ASTM A217, Emu oils - heavy Emu oils - heavy neural network 
0.95,36 vs=28-33 m/s v`=28-33 m/s based 

vW=0.25-0.5 m/s vW=0.25-0.5 m/s 
v f< 0.077 mm/s v f< 0.077 mm/s 
fd=0.18 mm/r fd=O. 18 mm/r 
ad=0.025 mm ad=0.025 mm 
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No Problem Solution Handbook Similar case 
Solution 

15 AS, L, 0,3 C80JV C80JV Rule based and 
ASTM A296, Emu oils - heavy Emu oils - heavy neural network 
0.55,28 vB=28-33 m/s v, =28-33 m/s based 

v,, =0.25-0.5 m/s v, =0.25-0.5 m/s 
v f< 0.018 mm/s v f< 0.018 mm/s 
fd=0.1 mm/r W. l mm/r 
ad=0.012-0.019 mm ad=0.012-0.019 mm 

16 AS, L, 0,2 C46JV C46JV Rule based and 
ASTM A296, Emu oils - heavy Emu oils - heavy neural network 
1,35 v8=28-33 m/s vs=28-33 m/s based 

v,, =0.25-0.5 m/s vW=0.25-0.5 m/s 
vf< 0.057 mm/s v f< 0.057 mm/s 
fd=0.18 mm/r fd=0.18 mm/r 
ad=0.025 mm ad=0.025 mm 

17 AA, L, 0,2 C46JV C46JV Rule based and 
ASTM A296, Oils - light Oils - light neural network 
0.98,40 vs=28-33 m/s vs=28-33 m/s based 

vW=0.25-0.77 m/s v, y=0.25-0.77 m/s 
v f< 0.05 mm/s v f< 0.05 mm/s 
fd=0.18 mm/r fd=0.18 mni/r 

=0.025 mm =0.025 mm 
18 NA, L, 0,2 C60JV C60JV Rule based and 

Nickel 200, Emu oils - heavy Emu oils - heavy neural network 
0.75,34 vs=28-33 m/s va=28-33 rn/s based 

v,, =0.25-0.5 m/s v, =0.25-0.5 m/s 
v f< 0.015 mm/s v1<0.015 mm/s 
fd=0.1 mm/r fd=0.1 mmlr 

ad=0.012-0.019 mm =0.012-0.019 mm 
19 CA, L, 0,2 C80JV C80JV Rule based and 

Nickel 200, Emu oils - heavy Emu oils - heavy neural network 
0.7,45 vS=28-33 m/s v5=28-33 m/s based 

v, =0.35-0.5 m/s v,,, =0.35-0.5 m/s 
vf< 0.016mm/s vf< 0.016mm/s 
fd=0.1 mm/r fd=O. 1 mnyr 
ad=0.012-0.019 mm =0.012-0.019 mm 
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No 1 Problem 

20 TA, L, 0,2 

Ti-8Mn, 

0.65,38 

Solution 

C80JV 
Special - light 

vs=15-20 m/s 
vW=0.35-0.5 m/s 
V f< 0.0 19 mm/s 
fd=0.1 mrn/r 

-- . 012-0.019 mm 

Handbook 

C80JV 
Special-light 

vs=15-20 m/s 
vW=0.35-0.5 m/s 
v< 0.019 mm/s 
fd=(). l mni/r 
ai=0.012-0.019 mm 

Similar case 
Solution 

Rule based and 

neural network 
based 

Since the cases in the case base were mainly in the Carbon & Alloy Steel groups, most 

Solutions in the material groups in Table 10.2 were case based. The Solutions from 

case based agent mostly fell in the range of the recommendations of the handbook. 

Some differences in the system output and the Handbook output can be explained as in 

example 1. 

Since there were insufficient cases in the case base, for other material groups, the 

system Solutions were obtained from the rule based reasoning agent and the neural 

network agent and the comparison showed the system Solutions fitted the handbook 

outputs very well. 

10.3 Use of the System and Further Development 

In use, the system has the following features: 

1. The user is guided to the next step of operation. 
2. The user can exit the system at any time. 

The system employed the menus and the dialogue boxes as input and output interfaces. 

The choice-list method was used as much as possible for the user input so that the user 

can input information according to the format the system required. The material data 

base and the case base can browse, add, delete and modify easily. Moreover, the 
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system can be operated using the keyboard or the mouse. Therefore, the use of the 

system is convenient and the user can easily master the operational method. However, 

the system help function remains to be completed. 

The learning of the case based reasoning agent and neural network agent can be 

completed without changing any programme code. The learning of the case base 

reasoning agent can be directly completed by the operator. The following is an example 

for the system learning test. 

The example in No 8 in Table 10.1 gave an initial set of grinding conditions. The 

grinding conditions were then modified as follows: 

" wheel: WA80JV, 

" coolant: Emulsifiable oils - heavy duty 

" wheel speed: vs = 30 m/s, 

" wheel diameter. ds = 300 mm 

" work speed: vw = 0.4 m/s, 

" feedrate: of = 0.014 mm/s, 

" dressing lead: fd = 0. lmnVr, 

" dressing depth: ad = 0.015 mm 

The new grinding conditions were saved as a case in the case base and a similar grinding 

problem was given: 

Problem input: 

" Workpiece material: Tool steel, WI 

" Material hardness: 60 Rc 

" Wheel selection by the system 

" Workpiece diameter. 32.5 mm 

" Specified roughness: 0.4 µm Ra. 
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System output: 

" wheel: WA80JV, 

" coolant: Emulsifiable oils - heavy duty 

" wheel speed: vs = 30 m/s, 

" wheel diameter. d$ = 300 mm 

" work speed: vw = 0.35 m/s, 

" feedrate: vf=0.017 mm/s, 

" dressing lead: fd = 0.064 mm/r, 

" dressing depth: ad = 0.015 mm 

The solution was based on the newly learned case. If the solution is satisfied or is 

modified, the case can be saved as a new case. 

10.4 Discussion 

It has been shown that it is possible to design a system for selection of grinding 

conditions using case based reasoning. Since a database is continually generated using 

successful cases, the system is capable of automatically updating itself taking account of 

the latest technology. Theoretical or empirical models of the grinding process are 

unnecessary because grinding cases are represented directly. The case base can be 

edited very easily so that new cases can be added into the knowledge base by the user 

without the assistance of a knowledge engineer. With use of the system, more grinding 

cases are obtained and more knowledge is learned, which shows that case based 

reasoning inherently incorporates an incremental learning mechanism. A disadvantage 

of case based reasoning is the need for initial grinding cases to cover the whole problem 

space. Case based reasoning must therefore be used in conjunction with other methods 

to set up initial grinding conditions in the first instance. It has been shown that the use 

of cases in the case base can be extended by inferencing using a kinematic model for 

'near neighbour' cases . Other agents demonstrated for generating approximate 

conditions included a rule based system for grinding conditions and a neural network for 
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wheel selection. Finally, expert knowledge can be captured directly from the operator. 

It is therefore concluded that case based reasoning provides a flexible and practically 

ideal technique for selecting grinding conditions. 

Since there is no model for selecting the grinding wheel, the neural network has been 

shown to be an appropriate method for wheel selection. Since explicit rules are not 

needed, a neural network system for wheel selection was easily and quickly developed 

using training data from catalogues and reference books. The system is flexible, 

allowing for further learning from new data to enlarge and improve the knowledge base. 

However, further learning requires the network to be retrained which requires the 

assistance of a knowledge engineer. Obviously, the learning mechanism inherent in 

case based reasoning is vastly superior to the learning process employed for a neural 

network. However, while the case based reasoning agent can cope with the 

comprehensive grinding problem as it is experienced and provides for any grinding 

situation, it would be a very large task to programme the case base for a comprehensive 

range of cases involving a wide range of grinding wheels. Using a neural network 

however, it was possible to capture information for selection of a wide range of grinding 

wheels with a relatively small training data set. Trials demonstrated that the system 

reliably predicts the same wheels as would be found from the handbooks used for the 

reference data. A major disadvantage of the wheel selection system was the lack of 

sufficient examples from recent practice to train the system, especially as there was a 

lack of data for CBN wheels. In principle, it is not difficult to train using a range of data 

from the main manufacturers to increase the scope of the neural network system and 

thus make it reasonably comprehensive. 

Since there is an incomplete understanding of the grinding process, the rule based 

reasoning agent can only provide approximate values for grinding conditions. 

However, it has been shown that it is possible to design a rule based agent to suggest a 

starting point where case based reasoning fails to provide a solution. The evaluation of 

the system shows that the selection system currently relies mainly on the rule based 
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agent, except for problems in the Carbon & Alloy Steel groups. 

It has been argued that a single technology cannot effectively solve the whole grinding 

problem. The multi-agent approach has shown the ability to integrate different 

intelligent technologies into one system. It has also been shown that the multi-agent 

system can automatically actuate different agents to provide the solution. The system is 

convenient to use and to extend. Much work is required to improve the system but the 

multi-agent system has shown the potential to be the best approach to solve the problem 

of the selection of grinding conditions. 
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Chapter 11 Conclusions 

It has been shown that it is possible to design a system for selection of grinding 

conditions which is flexible and incorporates automatic updating of the database. It has 

been shown that in the initial training of the intelligent system, the need for knowledge 

acquisition is an impediment to the provision of a comprehensive system. Therefore, 

the incorporation of a learning ability is of the greatest importance in an intelligent 

system for grinding, to allow for updating using the latest information and the most 

modem technology. 

Case based reasoning is a highly suitable approach for the selection of grinding 

conditions. Results from case based reasoning provide a high level of confidence. The 

most important advantage of case based reasoning is that technology can be relatively 

easily updated by incorporating new cases into the case base. However, it is difficult to 

find enough grinding cases to cover a sufficiently large problem space for the initial 

training of the system. Case based reasoning may fail to provide a solution for 

problems where there is a lack of relevant cases. Therefore, other techniques need to be 

used in association with case based reasoning. 

It has been shown that a neural network can be trained for selection of a wide range of 

wheels using a relatively small set of training data. The modelling does not require a full 

understanding of the relationships between the grinding wheel and the grinding process. 

However, the application of expert knowledge to formulate rules helps to reduce the 

complexity of the network. 

A rule based reasoning approach can provide approximately suitable values for grinding 

conditions although the conditions recommended may be far from optimal. However, a 

rule based system provides a starting point if case based reasoning fails to provide a 

solution . 
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A multi-agent approach has been proposed. The multi-agent approach combines 

different representational methods for the knowledge and inferencing techniques, 

including case based reasoning, rule based reasoning, neural network reasoning and 

operator input. The multi-agent approach combines the strengths and overcomes the 

weaknesses of the different agents employed, to generate hybrid solutions. 

It has been shown that the intelligent system based on the multi-agent approach works as 

expected. The system can provide optimal, near optimal or approximately suitable 

grinding conditions depending on the situations and the agent employed. The system 

has a good learning ability. The user can update the cases in the case base without the 

help of a knowledge engineer. It is therefore expected that the effectiveness of the 

system will be increased with system application. 

Although further work is required to complete a comprehensive system for a range of 

grinding processes, the system demonstrates the principle of a multi-agent system for 

selection of grinding conditions which can easily be extended. As demonstrated, the 

system already covers a useful range of external cylindrical grinding practice with 

conventional wheels. 
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Chapter 12 Suggestions for Further Work 

The system should be applied in industry in order to further evaluate the strategy and the 

system and obtain more application cases. 

The system is mainly developed for external cylindrical plunge grinding. Other types of 

grinding process require to be incorporated into the system. In addition, the selection of 

CBN wheels and diamond wheels should be investigated. 

Some technologies for developing the system need further improvement. For example, 

the method of arrangement and management of the computer memory for an increasingly 

large case base should be investigated. 

An adaptive control agent should be included into the system so that the system can have 

a self-learning ability. 
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