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Abstract

This thesis describes an investigation concerned with the development of an intelligent
system for selection of grinding conditions. Based on a study of previous techniques
for selection of grinding conditions, the study of grinding properties and the study of
artificial intelligence techniques, the thesis proposes a multi-intelligent agent method
for the selection of grinding conditions. The agents consist of case based reasoning, a

neural network and rule based reasoning as well as the operator.

It is proposed that a neural network is an appropriate method for selecting grinding
wheels because there is no model available for the wheel selection process. The
neural network method of selecting the grinding wheel was investigated and an
independent system was developed. The system was trained using data from
catalogues. It was shown that the neural network was capable of learning the
relationship between the wheel and the grinding process without a requirement for the
knowledge engineer to fully understand the knowledge domain. A general neural
network prototype system was developed to provide a tool for development of the

grinding wheel selection system.

It 1s proposed that a case based reasoning method is appropriate for selection of
grinding conditions because information for new technology, different processes and
materials can be automatically incorporated into the system. A case based reasoning

method for the selection of grinding conditions was developed. Techniques of case
indexation, retrieval, modification, test and update were developed. The system was

demonstrated to successfully learn new cases and make inferences for new problems.

A rule based reasoning agent for the approximate selection of grinding conditions was
developed because of the lack of initial data for the case based reasoning system. The

knowledge was based on previous research and data acquired from handbooks.

A blackboard method was used as a means of integrating the above systems as a

multi-agent system. The system was developed and its performance evaluated by
comparison with results from handbooks. The system works as expected and
demonstrates the potential of using artificial intelligence for selection of grinding

conditions.
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Nomenclature

depth of cut

dressing depth

adaptive control with optimisation
artificial intelligence

artificial neural network

mean chip aspect ratio

grinding width

grinding chip width

error back propagation

specific heat capacity

heat flux distribution factor

case based reasoning

equivalent diameter

equivalent diameter in an existing case
equivalent diameter in the Problem
desired output of the ith node for pattern p
wheel diameter

workpiece diameter

workpiece diameter in an existing case
workpiece diameter in the Problem
specific grinding energy

square error function

root mean square error function
exponent

dressing lead

dressing lead in an existing case
dressing lead in the Solution

feedforward network
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specific normal grinding force

specific tangential grinding force

constant

constant

exponent

grinding ratio

constant

equivalent chip thickness
maximum chip thickness
knowledge based system
chip length

dynamic grit spacing

real contact length
geometric contact length
number of dressing passes
unshaped output of the jth node
output of the jth node

actual output of the jth node for pattern p

grinding power

workpiece surface roughness

workpiece surface roughness in an existing case

workpiece surface roughness in the Problem

rule based reasoning

root mean square

Rockwell Hardness

fraction of the total energy partitioned to the workpiece

constant

grinding removal rate per unit wheel contact width

wheel axis infeed speed



Vio  wheel axis infeed speed in an existing case
Vin wheel axis infeed speed in the Solution
Vm  mean grinding chip volume

Vw workpiece speed

Vwo  Workpiece speed in an existing case

vwn  Workpiece speed in the Solution

Vs wheel speed

Vso  Wheel speed in an existing case

vsn  Wwheel speed in the Problem

X constant, exponent

Tq spark-out time

wij  the weight of connection between the ith node in one layer and jth node in the

next layer

o momentum factor

Opj  error term for pattern p on node j

1 learning rate

Om  critical maximum workpiece temperature
K thermal conductivity

P density
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Chapter 1 Introduction

1.1 The Significance of the Investigation

Selecting machining conditions or parameters is a daily task in machine shops
throughout the world. F. W. Taylor, realised that the selection of machining parameters
was a very important issue. He conducted a large number of machining tests, and
developed the well known Taylor’s equation which is still in current use [Colding

1992].

Grinding is an important finishing process for many engineering components. There are
many parameters in grinding which influence each other. A problem that continues to
confront the manufacturing industry is the establishment of efficient grinding conditions.
This includes choosing a suitable grinding wheel, establishing the values of grinding
parameters such as removal rate and depth of cut and establishing dressing parameters.
The grinding conditions must meet the requirements of a specific machining task,

characterised by the desired workpiece geometry, by the material, by the machine and by

quality, time and cost constraints.

Many investigations have been carried out to establish process models for grinding
including physical and empirical models which contribute significantly to understanding

of the process[Tonshoff 1992]. However, since physical models cannot be accurately

defined and empirical models have a restricted range of validity, process models are not
always reliable in practice. To achieve the required quality requirements, operating
parameters are often determined with the aid of grinding tests, which are both time-
consuming and costly. The process quality and productivity depend to a large extent on

the experience of the operator. As a result, many CNC operations are run inefficiently

and far from optimum.

Adaptive control with optimisation(ACQO) systems have been developed[Malkin



1981][Kelly 1989][Rowe 1991][Xiao 1993]which seek to optimise the grinding process

as grinding proceeds. These systems seck to adjust operating parameters in a direction
that continually optimises the process according to a predefined performance index.
However, some parameters cannot easily be measured on-line, for example surface
roughness is usually measured off-line. Other parameters may be adjusted by changes
made from part to part. Optimisation may be a lengthy process depending mostly on the

initial values of variables selected. Therefore, even with adaptive control the selection of

proper grinding conditions 1s an important issue.

Artificial intelligence (Al) is the branch of science that studies how smart a machine can

be and which involves the capability of a machine to perform functions normally

associated with human intelligence, such as reasoning, learning and self-improvement
[Shoureshi 1993]. Developments in AI have had an increasing impact on manufacturing

systems. Almost all areas of manufacturing have been affected by Al

Ideally, an intelligent machine tool can learn from experience and use the knowledge
gained during the learning process to optimise the operation of the machine tool. It
appears that precision grinding and other abrasive processes are particularly suited to the

application of AI techniques because industrial practice relies heavily on skilled
operators to achieve satisfactory results. It is in just such situations that there is the

potential to systematise operator skills and knowledge [Rowe 1994a).

1.2 Aims and Objectives

The aim was to investigate the potential for intelligent selection of grinding conditions
including the grinding wheel and the values of grinding and dressing parameters. The

specific objectives of this investigation were:

(i) To study existing AI methods and evaluate their advantages and disadvantages for

selection of grinding conditions.



(1) To develop a hybrid AI method suitable for selection of grinding conditions.

(i1i) To develop a hybrid Al prototype system for intelligent selection of grinding

conditions.

1.3 Scope of the Investigation

A review of previous work showed that there was a need for investigation of a new

approach for selection of grinding conditions.

Different intelligent approaches were studied and compared so that appropriate
techniques could be found for the selection of grinding conditions. Accordingly, a

strategy was proposed for selection of grinding conditions.

Methods for building a feedforward(FF) neural network with a back propagation
learning algorithm were investigated and a general prototype system developed. This

provided a tool for intelligent selection of grinding wheels.

A neural network-based intelligent approach was developed for the selection of
appropriate grinding wheels to achieve a specified quality level. A system using the

approach was built.

A case-based reasoning (CBR) approach was proposed for the selection of grinding

conditions.

A rule-based reasoning approach was proposed to complement the case-based reasoning
system for selection of grinding conditions. When case-based reasoning fails to deliver

a recommendation, rule-based reasoning is used.



A multi-agent intelligent system was developed for selection of the grinding conditions
based on the neural network, case based reasoning and rule based reasoning approaches
mentioned. At the current stage, this system is for external plunge grinding with wheels
dressed by single point diamond. Related technologies were also investigated. These

technologies were object oriented programming and data base technologies.

The system was evaluated by comparison of results with handbooks.

Since each intelligent agent is relatively independent and autonomous, the chapters for

describing them are presented separately.



Chapter 2 Review of the Approaches of Selecting Grinding

Conditions

2.1 Introduction

Existing techniques employed to deal with the selection of grinding conditions can be

classified into the following three categories:

e Data retrieval methods;
* Empirical model methods;
e Al methods

The emphasis in this review is on the application of AI methods.

2.2. Data Retrieval Methods

A handbook is often a logical and effective source of machinability data. Many
handbooks are available, such as the widely used Machining Data Handbook [MDC

1930]. However few handbooks cover more than a restricted selection of grinding
conditions. An example is illustrated in Table 2.1. According to different materials, the

Machining Data Handbook gives the recommended grinding wheels and conditions.



The computerised data retrieval method uses a database of cutting conditions either as
suggested in the handbooks or gathered in the industrial field. Cutting conditions for
various combinations of material, cutting tool and operation are stored and used.
Balakrishana[Balakrishana 1983] surveyed the arca of computerised machinability data
base systems. Some two dozen systems were identified and their basic features
characterised. Unfortunately, the systems developed were applied mainly for turning,

drilling and milling, not for grinding.

Although data retrieval methods are simple and practical, they have the following
limitations[ Balakrishana 1983]:

» The recommendations represent a “starting” set of cutting conditions and hence tend to
be conservative in order to cope with worst case machining situations rather than
optimal.

» The data apply only to a particular machining situation. The data may not be suitable

for slightly different machining situations.

2.3 Empirical Model Methods

A model can be used to predict appropriate conditions for the grinding process. Many
investigations have been carried out to establish process models including physical and
empirical models [Peters 1984] [Tonshoff 1992]. Due to the fact that the physical

interrelationships in grinding cannot be accurately defined, purely physical models are

seldom used. Therefore, empirical models are more likely to be used for grinding.

Tonshoff [Tonshoff 1992] reviewed the state-of-the-art in the modelling and simulation
of grinding processes. In order to evaluate the models developed by different authors,
the models were transformed within the framework of a unified terminology and
reduced to basic models. Three different aspects, kinematics, grinding wheel

topography and the workpiece characteristics were taken into account. The basic models

were expressed in the terms of variables, factors and exponents. Major differences




appear in the absolute values of the derived data. This is possibly due to different
specifications of workpiece material and grinding wheel type. It was stated that the

complexity of models varies considerably. The question of which model is suitable for
a given application could not be answered in general. The decision must take into
account the required accuracy. In practice, it might often be sufficient to employ simple

and easy-to-handle models.

Based on empirical models and experimental investigation, many methods for selection
of grinding conditions were proposed, such as grinding chart methods [Snoeys 1974]
[Peters 1976] [Rowe 1987], off-line optimisation methods[Malkin 1980] [Peters 1930].

A limit chart method was described by Rowe[Rowe 1987]. Figure 2-1 shows a limit
chart of the centreless grinding process for cast iron where the grinding variables are

feedrate vgand work speed vy. The process boundaries were formed by available
machine power, thermal damage and chatter. The grinding conditions should be within
the region enclosed by the boundaries and the maximum removal rate occurred at the

junction of the machine power and thermal damage boundaries.



An off-line process optimisation system for cylindrical plunge grinding operations was
proposed by Malkin[Malkin 1980]. The objective was to optimise grinding and
dressing parameters to maximise the metal removal rate. Removal rate was constrained
by the maximum permissible workpiece surface roughness and the need to avoid
workpiece thermal damage. The optimisation algorithm was based on the use of process
models for workpiece thermal damage, surface texture, grinding power and grinding
wheel dressing. The optimal conditions for dressing and grinding were achieved when
thermal damage and surface texture constraints were simultaneously achieved. The
system was implemented on a PC computer. The user was required to input grinding
and dressing conditions, the maximum allowable surface roughness, and the measured
grinding power and surface roughness. The system estimated optimal grinding and

dressing conditions plus grinding efficiency.

Empirical models are of a limited value. Usually, an empirical model can only be used

for the accurate description of one machining application. When employing empirical

models for applications with changed boundary conditions, a significantly poorer

representation of the grinding process is to be expected.

To compensate for changing boundaries on the limit chart and for the inaccuracy of
preset values of parameters, adaptive control with optimisation( ACQ) systems provide
on-line adjustment of the operating conditions[Malkin 1981][Kelly 1989][Rowe 1991,
19941[Xiao 1992, 1993]. However, some parameter adjustments rely on process
models. In addition, as outlined in Chapter 1, the performance of ACO relies on the

initial values of operating parameters.

2.4 Al Methods

Advances in knowledge based systems, neural networks, fuzzy logic, and

microprocessor technology provide tools for conceptualisation, and development of



intelligent manufacturing systems. For more than a decade there has been a major

research activity related to intelligent manufacturing systems. Matsushima and Sata
[Matsushima 1980] suggested a hierarchical structure of intelligent machine tool
controllers to emulate human operators. The lower levels of the scheme involve off-line
adaptive controllers and pattern recognisers. The higher level controls are global in
nature, and process data are accumulated over a longer period of time. The results from
the higher levels are manifested as changes in the lower level parameters. The
conclusion of Matsushima and Sata is that off-line and on-line learning and self-
organising techniques are crucial to the development of intelligent machine tools to
operate the machines in optimal conditions. Ideally, an intelligent machine tool
controller should be able to learn from experience, have self-organising knowledge

bases, and be able to use the knowledge obtained to optimise the machining processes in

real-time.

A number of investigations have been carried out to apply artificial intelligence in the

field of abrasive processes in the following activities [Rowe 1994a]:

. storing and manipulating product information in databases

. storing and manipulating production information in databases
. selecting abrasive tools

. selecting abrasive machining conditions

. controlling abrasive machines

. optimising abrasive process performance

. monitoring grinding process performance

. compensating for grinding machine and process variations.

A summary of applications described 1n recent papers is given by Rowe, L1, Inasaki and
Malkin [Rowe 1994a].

The emphasis in the following review is placed on grinding wheel selection and grinding



and dressing parameter selection.

2.4.1 Grinding wheel selection

Inoue [Inoue 1987], gives a detailed description of the use of rule and frame-based
reasoning for grinding. A knowledge based system was capable of diagnosing
vibrations in grinding through a system called GSKILL and assisted in the selection of
an appropriate grinding wheel through the use of a system called GDMS. The decision
support system, GDMS, made use of production rules and hierarchical frames. For
example, a frame was employed to associate particular input data (machine tool-$T,
workpiece-hardened, workpiece-SCM, wheel-WA, wheel-LMV, wheel-X100) with
grinding performance factors (life constant-value, life factor-value, power factor-value,
roughness factor-value and force factor-value). This frame AKO was associated with
another frame, AKO-F, of implicit feedrate values. Also within GDMS a calculation
module calculates grinding wheel life and grinding performance. The calculated data
were then checked for constraint violations by a frame called MASTER. These
constraint violations were fed to a production rules type knowledge base PKB and used

to generate a frame of acceptable wheels where a change of grinding wheel is necessary.

The knowledge based system which is programmed in Lisp is linked to a calculation

module programmed in FORTRAN.

Midha and Zhu [Midha 1990], Zhu and Midha[Zhu 1992a] developed a rule-based
reasoning system for optimum abrasive wheel selection using a proprietary expert
system shell XI plus for a variety of grinding operations. The system provided two
main applications: superabrasive and conventional wheel selection. Having obtained the
necessary input from the user, such as workpiece material, hardness, size and surface
condition, surface roughness required etc, the system recommended a suitable wheel

based on the standard marking system. The wheel characteristics which were evaluated
by the system are grain size, grain-bond-pore percentage, number of grains per unit

volume, number of active grains per unit area, wheel bursting speed and wheel bending

10




strength. The following is an example of the use of rules for wheel selection:

if material group is "Ferrous metals and alloys"
and matenal type is "Austenitic stainless steels"
then grain typeis "C"

and bond typeis "V"

and structure number=6

Konig [Konig 1991] described the "Grindex" rule based system to recommend grinding
wheels. The system was developed within the TWAICE expert system shell. The
knowledge base has three types of rules. The first set of rules analyses the grinding
process. The second decides the problem solving path to be employed. The third set
classifies and assigns knowledge from the database and procedural elements. The rule
base uses production rules to determine a wheel specification. A production rule defines
the relationships between an object, its attributes and its values (O-A-V) to other

objects, attributes and values.

Object Attribute Value
If workpiece material = bearing steel
and workpiece thermal treatment = hardened
then wheel structure =06-8

Ueda [Ueda 1988] also developed a rule based system for wheel selection written in

Lisp. A rule based system was presented by Venk[Venk 1990] for wheel selection.

The disadvantages of many rule/frame based expert systems are that such systems
represent a limited body of information which may fail to be updated. If expert systems
are not essential for the performance of a production task, the system tends to fall into
disuse. The most successful systems are integrated into a production system and are

maintained and updated as the technology develops. This is important since if it is

11
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quicker and more reliable for the experienced user to bypass the system, the system no

longer plays a useful function.
2.4.2 Grinding parameter selection

Chen [1991] presented a surface grinding process advisory system. The system
incorporated both analytical models and heuristic rules, and searches for an optimum
solution by using fuzzy logic as an inference mechanism. The system consisted of four
modules. The automatic rule generation module generates a set of fuzzy rules from each
grinding process model and stores them in an analytical database. The database
management module synthesises the generated rules. The generated rules are
represented in terms of fuzzy membership functions and synthesis is performed
numerically with fuzzy sets. The fuzzy inference module automatically assigns
membership grades to the process variables as well as design variables. The
optimisation module defuzzifies the design variables from the fuzzy design table and
evaluates the objective function with the newly determined values of design variables. If
desired conditions have not been reached, the current values of design variables are fed
back to the automatic rule generation module and the iteration continues. How to deal

with different workpiece materials and grinding wheels was not considered.

Midha, Zhu and Trmal [Midha 1991] and Zhu[Zhu 1992b] made use of knowledge

engineering and process modelling for the optimum selection of grinding parameters.
Based on the analysis of experimental data for basic grinding parameters, wheel wear
and specific energy, process models were developed in such a way that they could be

dynamically modified according to user input by a rule based system. The process

models accommodate grinding parameters such as specific tangential grinding force F,,
specific energy €., maximum temperature Tmax, wheel wear parameters. The first stage

of the selection procedure was to use a rule based system “OPExpert” to give a set of
nominal grinding values for a given grinding situation. These can be evaluated in the

second stage for burn-free grinding and/or grinding with maximum grinding ratio with a

12



system “PRExpert”. “PRExpert” is a dynamic model and rule based system for

prediction of grinding results. A repeated use of the evaluation procedure yielded
optimum grinding parameters for a desired criterion, e.g., low grinding force, good

surface texture. The main attribute of the proposed approach is that grinding process

models can be modified dynamically. The basis of the model may be demonstrated by

the formulae used for the computation of specific tangential force F’t. The specific

tangential force is related to equivalent chip thickness heq by using a factor F and an

exponent f in an equation of the form.

The effect of a wide range of parameters were taken into account by calculating their

modifying effect on F and f using factors stored in a database.

n n
F=F,+) Fjandf=f+) f;
1=1 i=1

where F and f are the values for heg = 1. The effect of material grindability is Fj=2Z
mjj.ajj Or In matrix form, F = M.A1. The factors mj; are tabulated according to the

material grindability. The selectors aji are decided by a rule based system according to

the input data.

v. difficult  difficult middle easy V. easy
F1  mq mj2 mj3 mi4 = mj5
i1 mj] m2?2 m)3 mp4 M5

The modifications are extracted and summed for each of the parameters of grindability -

M, wheel hardness - H, equivalent wheel diameter - D, wheel dressing - W, and wheel

grain size - G.

13



n
). F
<
‘ = M*A.. +H*A. +D*A.. +W*A.. +G*A..

n

2, fi

i=]

Similar procedures were employed for surface roughness and the force ratio. Other
parameters are then calculated using appropriate mathematical models. The advantage of

the system is that different influencing factors for the material and wheel were taken into

account.

Sakakura and Inasaki [Sakakura 1992] described the use of a feedforward neural
network used together with a Brain-State-in-a-Box network to selection of dressing

conditions illustrated in Figure 2.2.

The network was used to explore the potential of a system which demonstrates

associative memory for decision making in grinding. The feedforward network (FFN)

is trained using backpropagation. The training is based on results obtained from

grinding experiments. The results used for training characterise the surface roughness
values in terms of the probability density for each combination of dressing feed and

dressing depth. The outputs of FFN may contain various combinations of dressing feed

14



and dressing depth satisfying a particular surface roughness requirement. The BSB
network was used to recall the most suitable combinations. Other factors which affect

the dressing conditions were not taken into account by the authors.

Sakakura and Inasaki [ Sakakura 1993], designed a fuzzy rule based system for
selection of grinding and dressing conditions. The fuzzy rules were based on an
analysis of previous grinding results. A learning module evaluates individual data in a
grinding data base and generates fuzzy rules. The rules are then stored in a fuzzy rule
base. A maximum of 500 grinding examples were stored in the grinding data base. Old
sets of practical grinding data are replaced by new values on a first in - first out rule.
The learning module is based on genetic algorithms. Genetic algorithms were used to
refine the rules in the rule base, create new rules by mutation, crossover and
combination. Manipulation of membership functions was facilitated using binary
strings. The fitness of a rule is calculated by a function which computes the strength of
the match between the rule and the data in the grinding data base. Rules with high
fitness are given a greater chance of survival than rules with low fitness. A further

factor is introduced into the fitness test which reduces fitness of rules which are closely

similar. The system is only suitable to the situation in which the workpiece material and

the wheel are unchanged.

Kim and Inasaki 1993 [ Kim 1993] also described a fuzzy rule based system to establish

optimum grinding conditions, for maximum removal rates, subject to the constraints of
grinding power, workpiece burn, chatter vibration, and surface roughness. Specialised
knowledge of the grinding operation is acquired from the actual operation database.
Coefficients in the experimental equations are obtained through the fuzzy regression

model based on fuzzy set theory and are stored in the actual operation database.

Liao and Chen [Liao 1994] described a neural network approach for modelling and
optimising a grinding process using creep feed grinding of alumina with a diamond

wheel as an example. First, a generalised back propagation neural network with two-

15



hidden layers is used to establish the process model. The structure of the network was

OX5x4x3, namely, a input layer with 5 neurons, first hidden layer with 5 neurons,

second hidden layer with 4 neurons and a output layer with 3 neurons. The five input
variables used were bond type B, mesh size m, concentration ¢, work speed vy and
depth of cut a. Surface finish Ry, normal grinding force per unit width Fp, and specific
grinding power P' were the three output variables. A total of 16 experimental samples
are used to train the network. Once the modelling procedure has been implemented, the
back propagation algorithm with a Boltzmann factor is used to find the global optimal
settings for the grinding process. In the modelling procedure, inputs are fixed and
network parameters are adjusted to minimise the error function E. A similar procedure
1s used for optimisation. The only difference is that, in the optimisation phase, the
parameters of the network were fixed and the inputs are adjusted so that the objective
function is minimised (or maximised) subject to certain constraints. Sathyanarayanan
[Sathyanarayanan 1992] also utilised a neural network approach to model the creep feed
grinding of superalloys, but did the optimisation analytically using an off-line multi-
objective programming technique. These two systems are limited in application to

creed-feed operations.

Rowe [Rowe 1994b] presented a conceptual framework for an intelligent grinding
machine as illustrated in Figure 2.3. All of the essential elements of Figure 2.3 were

tested for plunge grinding operations. The Intelligent Grinding Machine has the

potential to include ACO and the further Al features indicated below:

. to remember optimised conditions for future operations in a learning database
. to provide intelligent selection of process parameters from a learning database
o to integrate into a CIM environment

. to feed process information back to a higher level computer system

. to facilitate set-up.

In addition, some knowledge based approaches were employed to aid the selection of

grinding conditions. Venk [Venk 1990] used a frame based system with a PCPlus

16



expert shell as a qualitative analysis tool (problem formulation) to aid optimisation of the

centreless grinding process.

2.5 Discussion

A number of research applications of Al have been described in the literature. However,

there is little evidence of the successful implementation of such techniques in standard

17



production machine tools and systems. However, it is obvious that the trend towards

increased use of artificial intelligence in grinding systems and operations 1s clear, and

unlikely to be reversed[Rowe 1994a].

Most of the techniques for selection of grinding conditions described in the literature,
rely on process models. Rule based systems can be applied for selection of grinding
wheels but it is difficult to cope with every situation for selection of grinding conditions.
Neural networks can be used to develop models of the process but rely heavily on the
quality and quantity of the training data. A common disadvantage of the systems
described in the literature is that system learning is difficult. System learning usually

requires development calling on domain experts and knowledge engineers.
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Chapter 3 Study of the Grinding Conditions

Grinding 1s a complex manufacturing process with a large number of interacting
variables. Before designing the selection system, it is necessary to define the variables
and to find which variables should feature in the selection process. Consideration is
therefore given to the relationship and influence between these variables. There are
many types of grinding process. However, their action 1s essentially similar. The study

1s therefore limited to the external cylindrical plunge grinding operation.

3.1 The Basic Grinding Variables

Figure 3.1 illustrates an external cylindrical plunge grinding system. The subscript w

refers to workpiece parameters, and the subscript s is used for wheel parameters.

Workpiece Grinding wheel =~
Vs |
Vw ‘\
ks

g @:‘

Feedslide|

Bed

Figure 3.1 External cylindrical plunge grinding system [King 1986]

Material removal during grinding occurs as abrasive grains cut the workpiece surface.

The penetration of the cutting points into the material being ground depends on the
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topography of the wheel surface and the geometry and kinematic motions of the wheel
and workpiece. The basic grinding variables may be divided into four categories as

illustrated in Figure 3.2.

Other Conditions

Uncontrolled Variables

Material properues
Workpiece geometry
System rigidity
Power capacity

Y

Grinding Process

Grinding Conditions | Output Variables |

]QC_onltmlléd:Ya'i*iiibles. Size
Roundness

Grinding wheel Roughness

Dressing tool Machine J. | Workpiece

Integrity
Cycle ime

Wheel wear
Cost

Coolant
Grinding kinematics
Dressing kinematics

. Process Variables

Force

Temperature
Vibration

Power

Figure 3.2 The basic grinding variables

(1) The output variables of the system comprise: the workpiece quality, productivity and
cost, which should meet the design and manufacturing requirements. The output

variables are therefore the main variables to be controlled.

(i1) Process variables include power, force, temperature and vibration. The process
variables are affected by the grinding conditions and affect the output variables. As the

grinding wheel engages the workpiece, forces are induced between the wheel and the
workpiece. The force depends on the grinding conditions and affects the output
variables and the other process variables. The higher the forces are, the faster the

material removal rate. The force also affects the surface roughness, the deflection of the
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system and the onset of thermal damage. For this reason, some adaptive control
systems use controlled force techniques[Tonshoff, 1986]. However, process variables
are intermediate variables which provide indirect evidence of the relationships between

input and output variables.

(iii) The input conditions may be divided into the grinding conditions which are
selectable and other conditions which are uncontrolled. Uncontrolled variables, e.g.
material properties, cannot be changed by the operator but have a significant effect on
the grinding process and output variables. The grinding conditions consist of the
grinding wheel, the coolant, the dressing conditions and the grinding kinematic
conditions. The grinding conditions should be determined by the operator before

starting a grinding process.

The criterion for the selection of the grinding conditions is that the output variables must
meet the requirements of design and manufacturing. Many papers have been published
on the relationships between the grinding conditions, the process variables and the
output variables[Tonshoff 1992]. Since physical models cannot be accurately defined
and empirical models have a restricted range of validity, they are not always reliable 1n
practice. But, these grinding models demonstrate qualitative relationships of the

grinding process. Thus, in this chapter, a qualitative analysis of the main parameters 1s

described. These basic parameters will be employed in later chapters.

3.2 The Requirements to Process Variables and Output Variables

The overall objective is to select appropriate grinding conditions which are as near to

optimal as possible. The optimisation objective to be considered here is minimisation of
the grinding time subject to quality constraints. The optimisation problem therefore can

be summarised as to minimise cycle time T subject to the following constraints:

ec Se.” (burning constraint)
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R, £ R,* (roughness constraint)

r<r* (out-of-roundness constraint)
s <s* (size constraint)

P<P* (power constraint) 3.1

where e, is the specific grinding energy, R, is the workpiece surface roughness, r is the
workpiece roundness, s is the workpiece size error and P is the grinding power, the
asterisk signifies a constraint value. In the grinding process, some output variables,
such as surface integrity, are not conveniently measured and controlled. A process
variable which can be reliably measured and controlled is power[Kelly 1989]. The
power is therefore controlled to prevent thermal damage by reference to a thermal model.

In 1988 Rowe[Rowe 1988] presented a thermal model:

I | 1/2f I \}/2 9;:
= — | 3.2
=T (rcpc)w 2(vw) Ry a
where e: is the critical specific grinding energy, 9,: is the critical maximum workpiece

temperature, C is a heat flux distribution factor, xis the thermal conductivity, p is the

density, ¢ is the specific heat capacity, /. is the real contact length, v,, is the workpiece

speed, R, is the fraction of the total energy partitioned to the workpiece and a is the true

depth of cut.

Here wheel wear and cost are not taken into account as independent variables.

3.3 The Description of the Grinding Problem

The selection of the grinding conditions is the solution to the grinding problem.

Therefore, the operator should present the description of the grinding problem to the
selection system. There are two major components of the problem description, goals to

be achieved in solving the problem and constraints on these goals. The goals in the
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grinding problem are the machining requirements. The constraints are the nature of the
workpiece and the machine tool. In other words, the description of the grinding
problem consists of the requirements to output variables and the uncontrolled variables

which cannot be changed by the operator.

3.4 The Grinding Conditions

3.4.1 The grinding wheel

The grinding wheel characteristics have a direct effect on process efficiency, accuracy,
surface roughness and surface integrity[Nakajima 1978]. It is therefore essential to

select an appropriate grinding wheel. The best wheel for an application is a compromise
between the ability to cut rapidly and the ability to hold form, maintain the surface
roughness requirements and last a long time before dressing is required[MDC 1980].
The specification of the grinding wheel consists of six parts:

e Abrasive type

 Abrasive grit size

» Grade

e Structure

 Bond

However, since the wheel structure part is use optional and it is not shown on the

products, the wheel structure is omitted in the selection of a wheel.

A comprehensive model is not yet available that can relate the wheel specification and the
output variables. However, the main factors affecting grinding wheel performance are

as follows[King 1986][MDC 1980][Universal 1992]:

(i) The type and hardness of material to be ground affect the selection of abrasive, grit

size and grade. Alumina is the most efficient conventional abrasive for grinding high
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tensile materials such as steel and cast iron. Silicon carbides abrasives are used to grind

low tensile strength materials and non-metallic materials. CBN grinding wheels are
recommended for alloys that are difficult to grind with conventional abrasives. The
wheel grade must be adjusted to suit the hardness of the materials. The harder the

material, the softer the grade of wheel required.

(ii) The surface roughness produced is affected by the abrasive grit size and bond type.
High stock removal rates require coarse grit wheels. Small grit sizes are used to achieve
fine finishes and close tolerances on finished workpiece geometry. Resinoid, rubber or

shellac bonded wheels are used to achieve the finest finishes.

(iii) The selection of wheel grade and structure depend on the contact area between the
grinding wheel and the workpiece. Large contact areas tend to produce low grinding
pressures and require soft grade, open structure wheels. Conversely, small contact
areas require harder grade and closer structure wheels. The size of the workpiece also
affects the contact area. In external grinding, the larger the workpiece, the larger the

contact area, requiring softer grade wheels.

(iv) The severity of the grinding operation affects the choice of grit size and grade. For

example, a rough cast or forged workpiece requires a harder grade and coarser grit size.

3.4.2 The dressing variables

Dressing prepares the cutting surface of the wheel by removing dulled grains or by

cutting through them to present new sharp grains. Dressing also removes wheel loading

and particles of connecting bond material to open up the porosity of the wheel surface.

Dressing conditions have an important influence on the following output and process
variables[Verkerk 1979]:
 Grinding force

e Wheel wear
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* Workpiece surface roughness
» Specific energy
 Surface integrity

There are several dressing methods. However the single-point diamond dressing tool is
commonly employed in industry. The dressing variables are:

* Dressing lead fg

» Dressing depth ag

 Number of passes ng

* Setting angle of the diamond

e Initial diamond shape

e Diamond wear

In these variables, diamond wear is uncontrollable. Angle and initial shape of the
diamond have fixed values. The number of dressing passes ng usually is not more than
4[Pattinson 1975]. Therefore, in the selection of the dressing parameters, the main
variables to be considered are dressing lead fq and dressing depth ag. Results from
many investigations [Verkerk 1979] show that coarse wheel dressing ( high dressing
lead and large dressing depth ) produces an open structure which results in good cutting
efficiency and lower grinding force but poor workpiece finish, whereas fine dressing

produces a more closed structure to the wheel face which results in good workpiece

surface finish but inferior cutting properties.

Malkin in 1989[Malkin 1989] gave a relationship between dressing parameters and

initial workpiece surface roughness :

Ry = le;ﬂajld(g"—)‘ 3.3

Vs
where R; and x are empirical constants. The exponent x lies typically in the range 0.15 -
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0.6. Equation 3.1 applies for short grinding cycles with frequent wheel redressing. In

such cases, the wheel may be dressed once per part, usually prior to the final finishing
stage of the grinding cycle. With longer grinding cycles and less frequent dressing,

wear of the grinding wheel alters its topography and the surface roughness changes with
time[Malkin 1989].

As mentioned in section 3.2, abrasive grit size can significantly affect the surface
roughness. For conventional abrasive wheels dressed prior to use, the grit size is
usually found to have only a minor influence on the initial workpiece roughness after
dressing. However, with continued grinding after the initial effects of dressing are
removed, abrasive grit size more strongly affects the surface roughness[Malkin 1989].
The best approach should consider the effects of the dressing and the wheel grit size.
Selection of the appropriate values of the dressing variables and wheel grit size can make
the grinding behaviour more stable for the period of grinding before wheel re-dressing.
A dressing strategy has been proposed to obtain a stable grinding wheel working
surface[Rowe 1995].

The process of selecting the values of dressing parameters is made more difficult due to

the uncertainty introduced by the shape of the dressing diamond which will change with
the wear. The process is much simpler when a multipoint dressing tool is employed
[Verkerk 1979]. However, the process outlined is considered to be the most practicable

approach for the present state of knowledge.

3.4.3 The grinding variables

The controlled grinding variables include the feed and speeds. The kinematic variables
affect the process and output variables. The main controlled grinding variables are:
* Wheel speed vg

* Work speed vy
e Feedrate v¢

26



» Spark-out time Ty

Many papers have been published on the relationships between the controlled grinding
variables, the process variables and the output variables[Tonshoff 1992). In practice,
one of the most important and reliable basic parameters is the equivalent chip thickness
heq which correlates fairly well with the main grinding parameters, as shown by many

experiments[Peters 1976]. The equivalent chip thickness is defined as:

heq=vwa=9_,t=7rdwv[ 3.4
Vs Vs Vs

The relationship between h.4 and specific normal grinding force F, , specific tangential

grinding force F; , specific energy e, roughness R, and the G ratio may be fairly well

approximated by power function[Peters 1976]:

F,=F i 3.5
F,=Fy 3.6
e, =Fy hf;l 3.7
Ra=Ry k], 3.8
G =Gy b 3.9

where F;, F3, R; and G are empirical constants, and the f, x and g are exponents. The

factors and exponents depend on the nature of the workpiece material and the grinding

wheel.

Since h.4takes no account of wheel grit spacing or workspeed, Rowe [Rowe 1987]
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proposed two basic parameters for describing the kinematic relationship between
grinding parameters and applied them in an ACO system. The two parameters were

mean grinding chip volume V), and the mean chip aspect ratio A,. The two parameters

are defined as:
Vm — heqldbc — Mledbcvz 3-10
A 1
A, = _I_c_ _ 0.5d,v; 311
hm ldVw

where 4 is the dynamic grit spacing, b, is the grinding chip width, d, is the work
diameter, I, is the chip length, &y, is the maximum chip thickness and d, is the equivalent

diameter.

Another basic parameter based on the kinematics of the grinding process is the ratio

between the equivalent chip thickness and the geometric contact length heg/lg
[Brinksmeier 1993]. The parameter keg/lg includes the effects of workspeed but takes
no account of the wheel grit spacing. It was argued that heq/lg correlates fairly well
with the main grinding parameters and can be used to relate optimal grinding conditions

from one operation to another.

In these basic models, spark-out time is not included. However, spark-out time will

affect the roundness and the roughness of the workpiece. The spark-out period may be
determined in the grinding process because the spark-out period required is strongly

dependent on the deflection of the system. The deflection depends on the stiffness of
the workpiece, the stiffness of the machine and the efficiency of the removal process.

When an appropriate adaptive control system is available, spark-out period can be

automatically adjusted[Rowe 1991].
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3.5 The Grinding Conditions Selected by Selection System

From the above sections, 1t can be seen that not all grinding conditions can or need be
selected. Some conditions are uncontrolled and some have fixed or optimal values. In
addition, some values are better determined during the grinding process. Therefore, the
independent grinding conditions to be selected are:

e Abrasive type

e Grain size

* Wheel grade

* Bond

* Dressing lead {4

* Dressing depth ag

* Wheel speed vy

* Work speed vy

* Feedrate v¢

* Coolant

3.6 Conclusions

There is a large number of variables in grinding each of which influence each other.
Basic control parameters have been proposed which correlate fairly well with the main

grinding control variables [Peters 1976) [Rowe 1987]. However, a comprehensive

model which can widely and reliably relate all the variables of the grinding processes is

not yet available.
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Chapter 4 Strategy. and Methodology for Selection of
Grinding Conditions

The purpose of this chapter is to describe the basic concepts and features of artificial
intelligence techniques and propose a strategy for selection of grinding conditions with

suitable intelligent techniques.

4.1 Artificial Intelligence Techniques in Engineering

A commonly accepted definition of Artificial Intelligence is that “Artificial intelligence is
the subfield of computer science concerned with the use of computers in tasks that are
normally considered to require knowledge, perception, reasoning, learning,
understanding and similar cognitive abilities” [Duda 1979]. Al methodologies applied in
engineering mainly include the following approaches:

* Rule or frame based reasoning

 Case based reasoning

e Artificial neural networks
e Fuzzy logic

e Genetic algorithms

e Hybrid methods

The principal categories are rule/frame based reasoning, case based reasoning and
artificial neural networks. Fuzzy logic is usually associated with rule based systems or
neural networks. Genetic algorithms are usually employed as an optimisation or

learning technique.

4.1.1 Rule based reasoning

The rule based reasoning system 1s a kind of knowledge based system (KBS)

employing production rules as the main form of knowledge representation and
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manipulation. A rule is a conditional statement that specifies an action that is supposed
to take place under a certain set of conditions. The set of rules is usually in the form of
IF<some condition is met> THEN<execute some action> [Adeli 1990]. It is useful to
structure problem-solving systems in a way that facilitates a description of a search

process. Many existing expert systems employ rule based reasoning.

Rule based reasoning has the following generally positive features [Dagli 1994]:

» Ease of exploring the knowledge base, i.e., the encoding of information in readable
form.

'+ Ease of modification of the knowledge base, i.e., a rule may be added or removed.

» Flexibility of processing, i.e., the Inference mechanism may be chosen to suit the

problem.

In grinding, it is difficult to build a formal relationship between the grinding wheel
specification and the grinding behaviour. Almost all existing intelligent systems[Inoue

1987] [Venk 1990] [Zhu 1992a] for selection of grinding wheels employ rule based

reasoning.

Rule based reasoning also has drawbacks. It is time consuming, both for the system
developer and the contributing expert, to extract and encode a collection of rules into a
coherent knowledge base. For example, Zhou’s system[Zhu 1992b] for wheel selection
contained over 2,000 rules. For poorly understood domains, for example, selection of
the values of dressing and grinding parameters, it is difficult to code the imprecise
knowledge involved in rules. In such cases, decision makers rely heavily on their
experience rather than on explicitly stated rules. In existing intelligent systems, the

selection of the values of dressing and grinding parameters mostly rely on process

models. The rule based system mainly play the role of an assistant. The most serious
limitation of rule based systems is an inability to learn from operating experience and the
inability to take account of developing technology. In practice, an intelligent system

may have only a small volume of 1nitial knowledge and machine learning is therefore
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important if relevant operating experience is to be accumulated.

4.1.2 Artificial neural network (ANN)

Artificial neural networks(ANNSs) constitute a new approach to computation. As
formulated by Kohonen[Kohonen 1988] * artificial neural networks are massively
parallel interconnected networks of simple, usually adaptive elements and their
hierarchical organisations which are intended to interact with the objects of the real
world in the same way as biological nervous systems do”. ANNSs are useful for

classification, autoassociation, time-series prediction and function approximation.

Neural networks have the following main advantages comparing with rule based
reasoning:

* knowledge is obtained by learning from examples. Therefore an ANN can be used in
problems with poorly understood domains, especially for modelling multivariable, non-
linear systems. This feature is particularly relevant to the grinding process.

* Knowledge is stored in a distributed fashion. The knowledge is not stored by address
or in a particular neuron of the network. Instead, each item of knowledge is stored over
all neurons, and each neuron contributes to representing many pieces of knowledge.
Generally, distributed schemes require less memory for storing knowledge and are
naturally fault tolerant.

* Neural networks can provide solutions to problem which have not previously been

experienced as long as the solutions lie within the same domain as the training data.

These characteristics make neural networks potentially useful for modelling grinding

processes[Sathyanarayanan 1992][Liao 1994]). The neural network can model the

grinding process as a black box and there 1s no need to fully understand the grinding

process.

The main disadvantage of ANNs for grinding is the difficulty of finding sufficient
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reliable training data to cover the whole domain of interest. Training data are obtained
mainly through grinding experiments although production data could also be
employed[Sathyanarayanan 1992][Liao 1994]. For a workpiece - wheel combination, a
group of training data can be used to train an ANN. However, when the workpiece-
wheel combination changes, the neural network needs to be retrained based on relevant
information. The training of an ANN is time consuming and is not guaranteed to
provide a reliable results. Neural networks are therefore suitable for a particular
operation where training data are available. It is difficult therefore to develop an ANN

which can model the grinding process comprehensively.

To date, many kinds of neural network architecture have been developed. Popular
neural networks include the multi-layer feedforward network, adaptive resonance theory

(ART) models and Hopfield models [Monostori 1992]. However, for modelling, the

network most commonly used is the multi-layer feedforward network incorporating an
error feed back propagation learning algorithm. The multi-layer feedforward network

has proved to be capable of approximating any non-linear function with arbitrary

accuracy, Hornik, Stinchcombe and White [Hornik 1989].

4.1.3 Case based reasoning

Case-Based Reasoning(CBR) is an approach which seeks to identify a close match
between a new operation to be performed and the characteristics of a previously
successful case stored in a case base. The approach solving a problem is to remember a
similar problem solved in the past and adapt the solution to solve the new problem. An
early description of the concept of case based reasoning was given in Dynamic Memory
[Schank 1982]. The approach is close to the human decision-making process[Yoon

1993). In this process, the key point is usage of experience instead of rules. Thisis a
major difference between skilled operators and novices. A novice solving an operating

problem usually uses rules but this is not always the best way to solve a problem,

particularly when the problem lies outside the domain of the available rules.
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CBR has several advantages [Ketler 1993].

» CBR can be used in problems with poorly understood domains . It does not require
understanding of why a previous solution was successful. Case based systems can
often avoid some of the difficult representational and behavioural modelling needed
when using a rule based approach.

 CBR automates the process of incorporating new knowledge into an existing
knowledge base. A CBR system automatically utilises this additional knowledge for
solution of future problems.

» The knowledge acquisition bottleneck is much easier with CBR than with other
learning methods. The reason for this is that the classification model used for
information retrieval provides the basis for storage of new information. Cases unlike
rules require a minimum of debugging of the interactions between them. Thus, initial

knowledge acquisition can be routine.

CBR technology has received much recent attention [Barletta 1991] [ O'connor 1992]
[Mott 1993] [Tsatsoulis 1993][Watson 1995] but is still a relatively young area within

Al and there are still many problems that need to be researched. In grinding, it is

difficult if not impossible to obtain enough cases to cover the whole problem space in
the initial stage when the system is set up. CBR may fail to give a solution where the

number of cases is insufficient.

4.1.4 Comparison of different approaches

Each of the above described methodologies has their advantages and disadvantages. A
comparison of the main features of the different methodologies is given in Table 4.1.

From Table 4.1, it can be seen that case based reasoning has the best overall

performance.
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Table 4.1 The main features of intelli gent technologies

Subject RBR ANN CBR
knowledge acquisition  difficult easy casy
Learning poor good very good
Development time low fast fast
Maintenance difficult in easy easy

large system

Explanation fair none good
Major source of expert database, casebase,
knowledge expert expe

4.1.5 The hybrid intelligent system

Real world grinding problems are varied and complex. A grinding application may
neither fit the assumptions of a single technology nor be effectively solved by the
strengths and capabilities of a single technology. One approach to deal with complex
real world problems is to integrate the use of several other technologies in order to
combine their different strengths and overcome a single technology's weakness to
generate hybrid solutions[Dagli 1994]. Hybrid systems can be developed in a variety of
ways. For example, one technology may embed another or several technologies to
complete a task in an integrated approach. The 'blackboard’ architecture [Engelmore
1988] is a hybrid intelligent framework having the greatest potential for complex

problem-solving.

A blackboard model is a highly structured, opportunistic problem-solving model that
prescribes the organisation of knowledge and data and the problem-solving behaviour

within the overall organisation[Engelmore 1988]. The basic principle of the model can

be described using the following example.

The system operates in a similar manner to a group of experts collaborating to solve a
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complex problem. The experts have at their disposal their collective expertise and a
large blackboard. Each expert is a specialist whose knowledge may be relevant at some
point in the problem-solving process. The experts agree to maintain a record of their
current best partial solution(s) to the problem on the blackboard for all to see. Anyone
able to contribute to the current partial solution writes their contribution on the
blackboard. The information on the blackboard may also be modified or deleted by
experts during problem solving. Each expert watches the blackboard, looking for
opportunities to contribute to the solution which arises in the course of problem solving

as the combination of items on the blackboard fits their particular specialist expertise

[Mirzai 1990].

The blackboard is a conceptual, and not a computational, framework[Dagli 1994]. It
allows many different extensions and variations to this prescriptive model. The
application itself and the various knowledge agents available to build the system will
determine the final implemented form of the blackboard. The concept embraces the
notion of problem decomposition with different agents attacking areas of the problem to
which agents are most suited. This allows for very flexible knowledge application and

the utilisation of multiple inferencing techniques and approaches[Occello 1994]

[Chevrier 1994] [Mani 1994][Botti 1995].

4.2 The Strategy for the Selection of Grinding Conditions

Based on the above description, it is expected that a system can be achieved which can
select grinding conditions using existing grinding knowledge. The store of knowledge
should improve and increase continually through operation. The system should be

integrated into a production system and be maintained and updated as the technology
develops. This is important since if it is quicker and more reliable for the experienced

user to bypass the system, the system no longer plays a useful function[Rowe 1996].

The case based reasoning approach was adopted for the selection of grinding conditions
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because the process is affected by a large number of factors, the effects of which are
poorly defined. Using grinding experience as the main source of system knowledge,

rather than explicit rules, the development of the knowledge base is easier and faster.
The most important factor in using case based reasoning is that technology can be
relatively easily updated by incorporating new cases into the case base. The operator
can add the new cases into the case base without the assistance of the knowledge
engineer. In addition, CBR avoids the drawback with neural networks that training is
time consuming and not guaranteed. However, it is difficult to find enough grinding
cases to cover a sufficiently large problem coverage in the initial stage of development.
Case based reasoning may therefore fail to provide a solution if the number of cases is
insufficient. Therefore, other techniques need to be associated with case based

reasoning.

Generalisation of rule based systems for a wide range of grinding operations may prove
to be intractable. So far, since deep knowledge of the grinding process is lacking, it is
impossible to build a comprehensive rule base to meet the requirements of most
situations. However, in the initial stage of case based reasoning when cases are
insufficient to cover the whole of the problem space, rule based systems can be used to

suggest a starting point for decision making in grinding.

A feedforward network with backpropagation learning was adopted for the grinding

wheel selection system. A neural network approach can be developed as an independent

system for selection of the grinding wheel but also used to complement the case based

reasoning. Catalogue data were used to provide training data.

In some situations, the operator may have to make decisions. For example, if the values
of operating parameters recommended by the system are considered to be unsuitable for

any reason, the operator should provide alternative values. For example, the operator

may decide to use the existing wheel on a machine to save time.
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A multi-agent approach is proposed for the hybrid system. Agents are capable of acting
independently, cooperatively and collaboratively to achieve a collective goal. The agents

interact through a blackboard model. The system 1s 1llustrated in Figure 4.1.

Knowledge Sources

. CBR

g RBR

Neural
—
-

Figure 4.1 A blackboard model for grinding operation

Blackboard
(global database)

The proposed system has four knowledge agents:

(i) Case based reasoning is employed as the main problem-solving part which can select
combinations of the grinding wheel and values of control parameters.
(ii) Rule based reasoning is employed to select values of the control parameters, where

relevant data are unavailable 1n the case base.

(iii) A neural network is employed to select a grinding wheel if required.

(iv) The operator can make a final decision about the wheel or the values of control

parameters.

Each knowledge agent can make a contribution to problem solution. The priority of the
agents in decision-making 18 :

1. Operator
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2. Case based reasoning

3. Rule based reasoning and the neural network

The main advantages of the hybrid approach proposed are:

» Each knowledge source can make a contribution to the problem solution, without
having to solve the problem in its entirety. Therefore, the hybrid approach allows for
incomplete knowledge of the domain.

* Each knowledge source can employ different representational methods of the
knowledge and inference engines. Therefore, the model can combine advantages of
different methods and overcome weaknesses of a single approach.

* Each knowledge base is separate and independent. The addition, deletion or
modification of a knowledge base does not affect other knowledge bases. The

knowledge bases can therefore be developed independently.

The following chapters will describe the principle and development of the different

knowledge agents and the design and testing of the whole system.

4.3 The Software Approach and Tools for Development of the System

Three independent systems were developed.

* A prototype neural network system
* A wheel selection system using a neural network

* A multi-agent system for selection of grinding conditions

The systems were developed in the DOS character(text)-based, rather than in a graphical

environment, which means the systems run faster. At the time of development, Dos

was considered to be more suitable for an industrial environment. The system was

developed using an object-oriented programming approach employing the Borland Ct+

programming language.
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The object-oriented programming paradigm is a software design and development
technology. The technology incorporates several sophisticated and efficient mechanisms
that provide an organisational framework for the development of a large and complex
software project. Much of the value of object-oriented programming results from the
feature of inheritance. The idea of inheritance is that a programmer starts with a library

of already-developed object types, or classes, and uses the object classes for new

applications by adding data elements or operations to form new classes.

Inheritance is a particularly useful feature for designing user interfaces. Developing a
user-friendly interface may take much time and effort. The user interfaces of the
systems were developed using the Borland Turbo Vision package which is included in
Borland versions C*+3.0 or 3.1. Turbo Vision is an object-oriented, event-driven
environment. The Turbo Vision Package includes many classes which can be inherited

for developing user interfaces.
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Chapter S The Prototype Neural Network System

The development of the neural network application required a development tool. There
are a number of commercial neural network development tools available. However,
these tools have some limitations for practical problems.

(1) It may be inconvenient to transfer the trained neural network into the application
system. For example, the NeuralDesk [NeuralDesk 1992] package only gives a textual
report of the network construction and values of the weights.

(2) It may not be possible to integrate a commercial development package into an
industrial application system because of the size, cost and copyright problems of the
package. If an executable application is employed rather than the complete package, re-

training will be difficult in an industrial application.

A prototype neural network system was therefore developed and embedded in an

application system. This chapter describes the principle and the structure of the

prototype.

S.1 Multilayer Feedforward Network with the Error Back Propagation
Learning Algorithm

5.1.1 An artificial neuron

A single artificial neuron is an information-processing unit that i1s fundamental to the
operation of a neural network. Figure 5.1 shows the model for a neuron used in the
prototype. The inputs are attenuated by the neuron weights, w; and summed to

produce the value net. The value net is operated on by an activation function to produce

an output. The activation function used was the sigmoidal function.
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Fig. 5.1 An artificial neuron

The operation of the neuron is described by the equations

n
né’t:z Wi Xi 5.1

1
out = f(net) = .2
() 1+ ¢

5.1.2 The multilayer feedforward network

welghts welghts
inputy -outpuip

outputy

inputy

inputy, . O - - Outpuly
Input hidden output
layer layers layer

Fig. 5.2 The multi-layer feedforward neural network

The multilayer feedforward network consisted of a set of neurons logically arranged 1nto
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three or more layers as illustrated in Figure 5.2. There is an input layer and an output

layer, each containing at least one neuron. Neurons in the input layer do not themselves
have inputs, and do no processing of any sort. Their output is defined by the network
input. There are usually one or more hidden layers sandwiched between the input and
output layers. The term “feedforward” means that information flows in one direction

only. The inputs to neurons in each layer come exclusively from the outputs of neurons
in the previous layer, and outputs from these neurons pass exclusively to neurons in the

following layer.

The output of every neuron in the network is computed using equations 3.1 and 5.2.

These equations can be expressed as follows.

n
nel; = Z Wij Oj

i=0 5.3
oj=f(net)=— 5.4
1+ el
where:
0j output of the jth node
net; unshaped output of the jth node
[ (net;) shaping function of the jth node
Wi the weight of a connection between the ith node 1n one layer
and jth node in the next layer

5.1.3 The error back propagation learning algorithm

The values of the connecting weights determine the behaviour of a feedforward
network. Training is the process of adjusting these weight values so that the network
behaviour matches some desired behaviour. By far the most common training or
learning algorithm for multilayer feedforward network is error back propagation(BP)

[Rumelhart 1986]. The mechanism of the back propagation procedure is a
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generalisation of gradient descent techniques. The network is presented with a series of
pattern pairs. Each pair consists of an input pattern and a target output pattern. Each
pattern is a vector of real numbers. The target output pattern is the desired response to
the input pattern and is used to determine the error values in the network when the

weights are adjusted.

Suppose there are n outputs in the network. For pattern p, the desired outputs are
represented as vector D=(dp, ..., dp n-1), While the corresponding actual outputs are

represented as vector 0=(0p 9, ..., 0p 5-1). The error function E, is defined as
1 n-1
Ep=3 z;,) (dp,i - 0p,if 5.5
j=

E, is a square error function. The function is easily computed and perhaps most
importantly, its partial derivative with respect to individual weights can be computed
explicitly [Masters 1993]. When Ej, approximates to 0, mapping between inputs and
outputs for pattern p is realised. The gradient descent technique is applied to change the

weights in its original and simplest form by an amount proportional to the partial

derivative of the error function Ep 1n respect to the given weight.

3,

aWﬁ

Awj; = - 5.6

where j denotes a neuron in a layer and i a neuron in the preceding layer, and w;; the

weight between these two neurons. The constant 7 is called the learning rate, and is

usually set within the range 0<77 <1. The learning rate is used to adjust the size of each

step leading towards an optimum solution.

One major problem with the conventional BP algorithm is its slow convergence speed.
Many improvements have been suggested to accelerate the convergence speed. Equation

5.4 gives the method most commonly used[Monostori 1992] which was employed in
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the proposed prototype system.

Aw;it+1)=-1n Z —a-é‘&+ o Aw;ji(1) 5.7
p aWﬁ

where ¢ 1s a timestep, o 1s a momentum factor, usually set within the range 0 < @ <1.
The effects of the momentum term are to magnify the learning rate for flat regions of

weight space where the gradients are more or less constant, and to prevent oscillations.

The computation of the partial derivatives in Equation 5.6 and 5.7 is as follows.

aWj; _anetpj aw,-; .

where, according to Equation 5.3

aLetEi — opi 5_9
IWiji
Defining,
anetpj

where, O,; is an error term for pattern p on node j ,.

OF,

For the output neurons

oFE 00,; e e
. — = a _& = A o -
SPJ one rpj (dPJ OPJ) a ne fpj (dPJ OPJ) (1+ e-net;)z
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= 0pj (1 - 0p)) (dp; - Opj)

For the hidden neurons

0E, _0E, dop;
onety; aop, anetp,

SPJ

Z oE p dnet pm

Z Z Wim Opl
- erpm BoP,
oE
= 2 =L Win= ) SymW;
Jjm pm’7 | m
~ dnetym =~
aoj _ e-Mtj

anetpj (1+ e-net,—)2

8pj = 0pj (1 - 0pj) X, Spm Wim

m

where m is a node in the layer following node j.

Equation 5.7 can be expressed as :

wii(t +1) =w;(t) + i 2 OpjOpi + O (wi(t) -wii(e -1))

P

Doubling all individual errors will quadruple the mean square error, causing difficulty in
comparing resultsfMasters 1993). Therefore, during training, the network performance

is monitored using the root mean square (RMS) error. The RMS error is computed

from

= 0p;j (1 - 0p))
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where n is the number of the outputs and k is the number of the patterns in the training

SEt.

5.2. The Structure of the Prototype

The structure of the system is illustrated in Figure 5.3. The operational structure of the
system consists of three parts: the training module, the test module and the application
module. For ease of use, the system has a user-friendly interface which consists of four
modules: the file editor, the system set-up window, the training display window and the

test window.

- Training
indow : monitor

Application
. system

Application
module

File edit Training
environment module
Test window

Figure 5.3 The structure of the prototype

First of all, it must be determined how many hidden layers the prototype should have.
Theoretically, a BP network with one hidden layer is sufficient to solve most modelling

problems, provided sufficient hidden neurons are available[Hornik 1989]. However, in
practice, the number of neurons is not unlimited, and a BP network with two hidden
layers has been reported to have more general classification boundaries and faster

convergence speed than a single hidden layer network[Chester 1990] [Obradovic 1990].
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In some cases three hidden layers are required and may provide even faster

convergence[NeuDesk]. Therefore, up to three hidden layers were provided in the
prototype system. The upper limit of the number of neurons in each hidden layer

depends only on the capacity of the computer memory available.

A second problem 1s that neural networks need a huge amount of memory for training.
To speed up the training process, training patterns are read once from training data files
and stored 1n memory. Moreover, large numbers of weights need to be stored in
memory. All data are stored in the form of two-dimensional matrices. For a large
network, a static storage scheme occupies a lot of memory leading to the problems of
insufficient memory. In addition, since the prototype cannot know the size required in
advance, static storage has a low efficiency of memory usage. In the system
developed, a double pointer technique was employed to arrange memory for the two-
dimensional matrices. This system is a dynamic storage scheme. For example, the
weights between the input layer and the first hidden layer can be stored in dynamically

arranged memory using C**+ code as follows:

float ** weight in_hiddenl; /| ** denotes the double pointer

weight in_hiddenl = (float **) calloc ( number in, sizeof{float*));

for (i =0; i < number in; i ++)

*(weight_in_hiddenl + i ) =( float *) calloc (number hiddenl, sizeof(float),

According to the number of the inputs denoted as number_in and the number of neurons
in the first hidden layer denoted as number_hiddenl, the memory required can be

arranged exactly. If the use of the weights finishes, the memory is freed for other use.

5.3 The Executive Modules of the System

5.3.1 Training module

The training method is implemented in two stages. During the forward pass, the outputs
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of all neurons are calculated. Then, using a backward pass, starting at the output
neurons, the derivatives required for the weight modification are computed. The

training procedure 1s as follows:

1. The weights in the network are initialised to some small non-zero value. A back-
propagation network is sensitive to the initial values of weights[Zurada 1992). Properly
selected initial weights can shorten learning time and result in stable weights. In the
prototype, the initial weights are randomly selected between -0.2 and 0.2.

2. The output of each neuron is computed for the presented input in order from the input
layer to the output layer. This is a forward pass. The computation uses equations 5.3
and 5.4.

3. A comparison is made of the output o,; of each output neuron j against the presented
1deal output value dp; and the output error §,; is computed for each output neuron j

using equation 5.12.

4, The errors §,; are computed using equation 5.13 for each hidden neuronj .
5. The sum of the error squared E, 1s computed using equation 5.5.
6. The procedure is repeated from step 2 for the remaining input-out pairs in the training

set.
7. The RMS error 1s computed using equation 5.15. The procedure is stopped if E, is

less than given 0, ; otherwise, training is continued.

8. The weights between the hidden layer and the output layer are adjusted using

equations 5.12 and 5.14.
9. The weights between the hidden layers and the weights between the hidden layer and

the input layer are adjusted using equations 5.13 and 35.14.

10. The procedure is repeated from step 2.

The programming instructions for training were included in an independent module as
illustrated in Figure 5.4. The module communicates with the user through the user

interface and communicates with other modules in the system through the configuration

file and weight file.
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System setup Training data ﬁle

Training
Alogrithm

Training monitoring Configuration and wel ght nle

Figure 5.4 Training module
5.3.2 Test module

After a neural network is trained, 1t must be tested. If the test results are not satisfactory
the system must be retrained. The test should use a data set which has not been

previously employed by the network. The test procedure is a forward pass as follows:

1. The system configuration and the test data are loaded.

2. The output of each neuron for the test input is computed in order from the input layer
to the output layer. The computation uses equations 3.3, 5.4.

3. The computed results are displayed and saved.
4. A comparison is made by the user between each system output and the ideal output in

order to judge if the training is successful.

The module is independent as illustrated in Figure 5.5. The module communicates with

the other modules via data files.
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Test data file Configuration and weight file

Test algorithm

Test result window Test result file

Figure 5.5 Test module

5.3.3 Application module

The application module illustrated in Figure 5.6 is a forward pass algorithm similar to
the test module. However, the application module is an independent package which can

be embedded into an application system.

Input data from the Configuration and weight file
application system

N

Application module

Output to the application system

Figure 5.6 Application module
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5.4 The Prototype System Development Environment

The prototype system has an integrated development environment for developing a

neural network. The environment is easy to use. All functions of the system are
accessible from one clear and simple display - the main screen illustrated in Figure 5.7.

The system can be operated using either the keyboard or the mouse.

= File Edit Training Test Exit

% About .

Feedforward Neural Network

Version 1.0

| Copyright © 1994 AMT Research Laboratory

Fl Help FIO Menu  Alt-X Exit  Alt-F3 Close

Figure 5.7. The main screen of the system integrated development environment

The main screen consists of three parts, in order from top to bottom:

e The main menu
* The edit window and dialogue boxes

* The hot key reference line

The main menu is used to tell the system to do something. When a main menu item is
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selected, a pull down menu is displayed that contains a list of choices. Table 5.1 shows

what each menu selection does.

The edit window 1s used to edit the file and the dialogue box is used to input items that

are not easily entered using a menu or display output information.

The hot key reference line displays several hot keys.

Table 5.1 The main menu

Item Purpose

= About the system

File Loads and saves files, invokes DOS, and exits the system
Edit Performs various editing functions

Training Sets up the neural network and trains the network

Test Tests the neural network

Exit Exits the system

5.4.1 File editor

For training and testing the neural network, a specified data format is required. The
prototype system provides a data editor for the user. The editor is similar to many text
editors such as the Borland C*+ editor. The user can also employ other editors such as
the DOS editor. The file editor consists of a file item and an edit item in the main menu.

The editor includes the following functions which are displayed in the pull-down

menus..

o, File item
File open, New file, Save file, Save as, Change directory, DOS shell, Exit
» Edit item

Undo, Cut, Copy, Paste, Show clipboard, Clear.
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The data format in the prototype is that each input data item must be separated by a
comma while each group pattern is separated by a 'Return line', which is easy to edit. A
format example is illustrated in Figure 5.8. When data are saved as a data file, the
format presents the information without any additional data about the number of inputs,
the number of patterns and the identification for different inputs and patterns . The
output data has the same format. The data file can therefore be read easily by different
systems. In addition, neural networks require inputs in the range from 0 to 1. Since the
net uses the s;igmoidal activation function, it restricts the output value to the range
between 0 and 1 and it is difficult to produce output values close to 0 or closed to 1. It

1s suggested that the output operation should be set in the region between 0.1 and

0.9[NeuralDesk 1992].

Inputl Input2 Input3 . . ‘
Patternl 0.1, 0.5, 1.0,
Pattern2 0.2 0.9, 0.3,
Pattern3 0.5, 0.5, 0.0,

Figure 5.8 Data format

5.4.2 System setup window

The Training item in the main menu includes ‘system setup’ and ‘training network’.
Before training a network, the structure of the neural network must be determined. The
structure of the system includes the number of hidden layers, the number of the neurons

in each hidden layer, the value of the learning rate, the value of the momentum factor

and the value of the error threshold. The system setup window is illustrated in Figure

5.9.
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File Edit Training Test Exit

3 System Setup S

Number of Hidden Neurons -
l First Layer (1 - 60 ): 15 I |

| Second Layer (0-60): |0
| Third Layer (0-60): |0

Learning Rate (0 - 0.9 ): 0.1
Momentum Factor (0 -0.9): {0.8
Error Threshold: 0.005

= o = ——— _— — - —pen — - — i i—

Fl Help F10 Menu  Alt-X Exit  Alt-F3 Close

Figure 5.9 System setup menu

The number of input and output neurons of the network 1s automatically determined by
the system according to the training data set. The system reads the input and output data
from the training data files, then the system determines the number of inputs and the
number of outputs as well the number of patterns according to the number of commas

and the number of Returns in the training data set. For example, in the input data file,
the number of commas is n and the number of Returns is k&, which means the inputs

should be equal to n/k and the training patterns should be equal to k. Similarly, in the
out data file, the number of commas is m and the number of Returns 1s j, which means
the outputs should be equal to m/j and the training patterns should be equal to j. If n/k

or m/j is not an integer, or the number of input training patterns k£ does not equal the

number of output training patterns j , the data file has an error and must be checked.

5.4.3 Training process monitoring and control

In the training process, it should be possible to monitor the training information and
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control the training process. Figure 5.10 illustrates the training monitoring and control

window.

File Edit Training Test Exit

N B Training

Current Epoch 1845

l Current Error 0.098770

|Train I ‘ Stop !I ‘ OK I ‘Canccl“

e i —

F1 Help F10 Menu  Alt-X Exit  Alt-F3 Close

Figure 5.10. Training monitoring and control

The training display has two information outputs: 'current epoch’ and ‘current error'.
The current epoch value refers to the number of times the training process has been
completed and the weights adjusted. Current error refers to the average error of the
neural network based on equation 5.15 for the current conditions.

The training process can be controlled by the user through the window command
buttons. The functions of these buttons in the window are as follows:

 The Train button is used to start the system training

» The Stop button is used to suspend the training process and keep the current system
situation in the last epoch. The training process can continue from a stop point if the
Train button 1s pressed.

* The OK button is used to switch off the training window whether the training process

18 finished or not. The system configuration and the training result or the current system

situation can be saved as a file.
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* The Cancel button is used to stop the training process and erase the network structure

and the window.

5.4.4 Test window

When testing the network, the tested network output will be displayed in the screen
using the test window illustrated in Figure 5.11. The window is only used to display

and the content cannot be changed by the user.

= File Edit Tramning Test Exit

m ‘ Test Result Window

| || 0.438528, 0.331749, 0.14982, 0.100585,
0.786273, 0.877353, 0.29999, 0.300022, I

-
| ARV MR RN F R R RN R AT RN R R RSN AT IR PAETATTER RN
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

-y |

F1 Help F10 Menu  Alt-X Exit  Alt-F3 Close

Figure 5.11. Test result window

5.5 The Prototype System Test and Evaluation

The prototype system was tested by modelling and solving a non-linear function. For

simplicity, the non-linear function was a two-dimensional one:

y=0.1 +(6x3 - 9x2 + 4x)/1.25, 0<x<1 5.13
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10 equally spaced points were defined as training data as illustrated in Table 5.2.

Table 5.2 Training data

X y

0.0 0.1000
0.1 0.3528
0.2 0.4904
0.3 0.5416
0.4 0.5352
0.5 0.5000
0.6 0.4648
0.7 0.4584
0.8 0.5096
0.9 0.6472
1.0 0.9000

F

The neural network structure consisted of one input node that denoted the x variable,
one hidden layer that had five neurons and one output neuron that denoted the y

variable. This structure is illustrated in Figure 5.12.

input hidden output
layer layer layer

Figure 5.12 The test neural network
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The training parameters were:
learning rate: 0.3
momentum 0.9

RMS error threshold 0.002

After training, a set of data were used to test the network. To observe the training
results, the test set included the training input data. Table 5.3 illustrates the ideal values
derived from the equation, the network output values and the errors. The RMS error
can also be used to evaluate the test results. However, the variable k in equation 5.15 is

now the number of patterns in the test set instead of in the training set.

Table 5.3. Network function test

X gdeal value gutput value °fFof value
0.00 0.1000 0.100996 -0.000996
0.05 0.2426 0.227162 0.015438
0.10 0.3528 0.351074 0.001726
0.15 0.4342 0.438453 -0.004253
0.20 0.4904 0.492768 -0.002368
0.25 0.5250 0.524468 0.000532
0.30 0.5416 0.540210 0.001390
0.35 0.5438 0.543227 0.000573
0.40 0.5352 0.535491 -0.000291
0.45 0.5194 0.519560 -0.000160
0.50 0.5000 0.499455 0.000545
0.55 0.4806 0.480019 0.000581
0.60 0.4648 0.465393 -0.000593
0.65 0.4562 0.458226 -0.002026
0.70 0.4584 0.460320 -0.001920
0.75 0.4750 0.474176 0.000824
0.80 0.5096 0.504696 0.0049504
0.85 0.5658 0.560431 0.005369
0.90 0.6472 0.651555 -0.004355
0.95 0.7574 0.776157 -0.018757
1.00 0.9000 0.897088 0.002912
RMS ERROR 0.005816

M——-—
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Figure 5.13 shows that the network models the function within a 1% root mean square
error. However, it is obvious that the errors are bigger where the curves are steeper. If

the number of training points in these areas are increased the accuracy can be further

improved.

Figure 5.13 Locus of the function and the network approximation

For further evaluation of the prototype, the system was compared with a commercial
package, NeuralDesk II[NeuralDesk 1992]. NeuralDesk II is a neural network software
package developed by Neural Computer Sciences. The package consists of a
feedforward neural network with a backpropagation learning algorithm. Neural Desk is
based on the Microsoft Windows environment. The prototype and NeuralDesk were
both used to model and solve function 5.13. For exact comparison of the two systems,
the same training parameters were employed. Since the average error was calculated

using different methods in the two systems, the maximum error method was used,

where training 1s terminated when the error for every output in every pattern in the set is
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below the error value set. The training parameters were as follows:

learning rate: 0.1

momentum 0.9

Max. error value 0.004

The results for the two systems are illustrated in Table 5.4

Table 5.4 Test comparison for the prototype and the NeuralDesk

" 'JI{‘heoretical i; >
value rototype NeuDesk

0.00 0.1000 0.100515 0.100544
0.05 0.2426 0.228578 0.227493
0.10 0.3528 0.351883 0.351320
0.15 0.4342 0.437600 0.438516
0.20 0.4904 0.491632 0.492811
0.25 0.5250 0.524148 0.524517
0.30 0.5416 0.540715 0.540153
0.35 0.5438 0.543950 0.542990
0.40 0.5352 0.535893 0.535168
0.45 0.5194 0.519514 0.519345
0.50 0.5000 0.499104 0.499411
0.55 0.4806 0.479521 0.480011
0.60 0.4648 0.464921 0.465347
0.65 0.4562 0.458069 0.458341
0.70 0.4584 0.460768 0.460924
0.75 0.4750 0.475175 0.475264
0.80 0.5096 0.505599 0.505600
0.85 0.5658 0.560251 0.559980
0.90 0.6472 0.650150 0.649419
0.95 0.7574 0.775442 0.774873
1.00 0.9000 0.898159 0.899250
RMS ERROR 0.005382 0.005481
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Some performance indexes of the systems are as follows:

Prototype NeuralDesk
Training epoch: 102296 | 114215
Training Time 5 minutes 16 minutes
RMS error 0.005382 0.005481

From the above it can be seen that the two systems have similar performance.
However, the prototype ran much faster than NeuralDesk because the prototype is text-
based while NeuralDesk is graphic-based. In addition, the prototype can produce a
directly embedded package whilst the NeuralDesk only produces a textual report file.

5.6 Local Minima Problem of the BP Algorithm

The backpropogation algorithm is not guaranteed to converge to the correct solution.
This is because that the backpropogation algorithm may settle 1in a local minimum.
However, in practice the problem of local minima can usually be overcome by multiple
starts with different random weights[Lippmann 1987). The high-dimensional weight
space provides a large number of degrees of freedom. In addition, the momentum term

in equations 5.7 and 5.14 helps to prevent the algorithm converging at a local minimum.

S.7 Summary

A prototype neural network development tool has been successfully developed and
tested. The system has several advantages:

» Using a text-based environment, the system runs much faster than a Windows-based
system. This 1s very important because training is time consuming.

» The prototype employs a user-friendly interface.

» The application module of the prototype can be easily integrated into an application

system.
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Chapter 6 Grinding Wheel Selection Using a Neural Network

Wheel selection using a neural network was not only developed as an independent
system but also as an intelligent agent integrated into a multi-agent system for selection
of the grinding conditions. The system developed emphasised the external grinding

operation and the selection of aluminium oxide and silicon carbide wheels.

6.1 The Structure of the Wheel Selection System

The neural network system treats the wheel selection process as a black box as

illustrated in Figure 6.1.

Neural network

Grinding 1nput Wheel output

' > Black box >
wheel selection

Figure 6.1 neural network modelling

The system consists of input, output, encode and neural network functional modules.

The system 1s illustrated in Figure 6.2.
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Input

Output

Process type
Material type
Material hardness
Surface roughness
Severity of operation

Abrasive type
QGrit size
Grade

Bond type

Encode

J\

Training

Figure 6.2 Functional modules of the wheel selection system

6.1.1 The system input

In Chapter 3, the factors affecting grinding wheel performance were described. The
wheel selection system was based on those factors. The input variables are summarised

as follows:

Process type:
Process types included external, surface, internal and centreless grinding. The grinding

methods include traverse grinding and plunge grinding.



Material type

Workpiece matenals are divided into groups based on their properties and their effect on
the wheel performance. The division is based on the classification employed in the

reference Grinding Data Book[Universal 1992]. The groupings employed are:
general steel

tool steel

high alloy steel
martensitic stainless steel
austenitic stainless steel
cast 1ron

non-ferrous metal

Material hardness
Material hardness is classified as soft(<50Rc), medium(50-58Rc¢) and hard(>58Rc).

Workpiece surface roughness
The maximum acceptable workpiece surface roughness is classified by the centre line

average value in pm.

Severity of operation

Severity of operation is classified under the following headings[Universal 1992]:
rough cast or forged

interrupted cut

wide wheel, light pressure

narrow wheel, high pressure

large diameter workpiece

small diameter workpiece

The severity of operation is constituted by four independent inputs:

rough cast or forged
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interrupted cut

wide wheel, light pressure or narrow wheel, high pressure

large diameter workpiece or small diameter workpiece

The items in different groups can be chosen simultaneously according to the operating

situation. However, the items in the same group cannot be chosen simultaneously. For
example, 'interrupted cut' and 'small diameter workpiece' can be chosen

simultaneously. If the operating situation does not include a 'severity' condition, no

items need be chosen.

6.1.2 The system output

The specification of the grinding wheel is given as the system output . The output
includes four variables in the specification:
abrasive type

abrasive grit size

grade
bond

6.1.3 Encoding

When training the network, the input and output training pairs must be encoded into a
form that the neural network can recognise so that the input information can be
recognised and the output results interpreted. The encoding methods are important for

the effectiveness of the neural network. Suitable methods can ease the training process

and allow higher accuracy.

Material encoding

Materials were encoded using the one-of-n method which uses the binary code. The

method uses as many input neurons as there are values that the variables can take. There
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are 7 material groups and therefore 7 neurons are allocated to the material inputs.

Exactly one of the neurons will be turned on according to the value of the variables. All

of the other neurons will be turned off. The advantage of the encoding method is not to
1mply any order relationship among these variables. However, this method requires

more neurons. These codes are illustrated in table 6.1

Table 6.1 Material encoding
—encoding 0000000

material neul neu2 neu3 neud neud neub neu?
general steel 1 0 0 0 0 0 0
tool steel 0 1 0 0 0 0 0
high alloy steel 0 0 1 0 0 0 0
martensitic stainless steel 0 0 0 1 0 0 0
austenitic stainless steel 0 0 0 0 1 0 0
cast 1ron 0 0 0 0 0 1 0
non-ferrous metal 0 0 0 0 0 0 1

Surface roughness encoding

Surface roughness is an ordinal variable. Surface roughness is encoded using the one-

of-one method, namely, one input neuron expresses all possible values as illustrated in

Table 6.2.

Table 6.2 Roughness cncoding
roughness (R)) >0.9 0.7-0.9  0.4-0.7 0.2-04 <0.2

encoding 0 0.2 0.4 0.6 0.8
Hardness encoding

Material hardness is an ordinal variable, and was therefore encoded using the one-of-one

method illustrated in Table 6.3.
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Table 6.3 hardness encoding
hardness <50Rc 50-58Rc  >58Rc

encoding O 0.5 1

The encoding of the severity of operation

There are various variables in the severity of operation. All variables could be
independently encoded to train a neural network, but it would make the system
complicated and a large training set would be required to cover the high order of multi-
dimensional space. To make the system more effective, an encoding method using

some rules derived from grinding knowledge was employed.

The severity of operation as well as the grinding method, traverse or plunge grinding,
mainly affect the selection of the abrasive grit size and the grade. The encoding method
employed merges these variables into two codes. One code corresponds to the effect on
abrasive grit size while the other code corresponds to the effect on grade. Table 6.4

shows the effects of the severity of operation and the grinding method[Universal 1992].

Table 6.4 The effects of the severity of operation

grit size grade

rough cast or forged 1 size coarser 1 grade harder
interrupted cut 1 size finer 2 grades harder
wide wheel, light pressure 1 size coarser 1 grade softer
narrow wheel, high pressure 1 size finer 1 grade harder
large diameter workpiece no change 1 grade softer
small diameter workpiece no change 1 grade harder
plunge grinding 1 size finer no change

Accordingly, the codes are shown in Table 6.5. 0.1 denotes no change. 0.0 and 0.2 or

0.3 denotes change in two different ways as explained below.
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Table 6.5 Severitx of operation encoding

codel code2
rough cast or forged 0.0 0.2
interrupted cut 0.2 0.3
wide wheel, light pressure 0.0 0.0
narrow wheel, high pressure 0.2 0.2
large diameter workpiece 0.1 0.0
small diameter workpiece 0.1 0.2
plunge grinding 0.2 0.1

Where some items can be chosen simultaneously, the codes are merged. The principle
employed to merge these items is that if the effects of the items are all positive or are all
negative the maximum effect is used as the input and if the effects of some items are

positive but the rest are negative the average effect is used as the input. The rule is

separately applied to codel and code2. The rule is:

IF min code(items) > 0

THEN code = max code (items)

IF min code(items) = 0

AND max code(items) >0

THEN code = max code (items) - 0.1
IF max code =0

THEN code=0

For example, if 'interrupted cut' and 'large diameter workpiece' are chosen, the input

code 1s:
codel = max code( 0.2, 0.1) =0.2
code2 = max code(0.3, 0.0) - 0.1 = 0.2
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The encoding method uses existing grinding knowledge to achieve a simple neural
network and training process. Since the effect of these factors is relatively small, the

wheel selection is not highly sensitive to the accuracy of the knowledge.

Qutput encoding

The wheel specification includes abrasive type and bond type, grit size and grade.
However, to prevent the system becoming too complicated, the output employs one-to-

one encoding. The encoding is illustrated in Table 6.6.

Table 6.6 Output encoding
Abrasivetype 11A 48A 51A WA C

Encoding 0.1 03 0.5 0.7 0.9

Grit size 24 30 36 46 60 80 100 120 150 180 220
Encoding 0 01 02 03 04 05 0.6 07 0.8 0.9 1
Grade Q P O N M L K J 1 H G
Encoding 0 01 02 03 04 0.5 0.6 07 0.8 09 1

Bond type Vitrified Resinoid Rubber Shellac
Encoding 0.1 0.2 0.3 0.4

6.2 The Neural Network Topology Architecture

A three layer network with one hidden layer was employed for wheel selection. The
number of input and output neurons of the neural network is determined by the input
and output as well as the encoding form. Therefore, the system has 11 input neurons, 7
for workpiece material, 1 for material hardness, 1 for surface roughness and 2 for
grinding method and severity of operation. The system has 4 output neurons, one each
for abrasive type, grit size, grade and bond. However, there is no rule for the selection

of the optimal number of neurons in the hidden layer. A straightforward way to deal



obtained[Rangwala 1989]. According to this, twelve neurons were required in the

hidden layer. The three layer neural network for wheel selection is illustrated in Figure

6.3.

| - abrasive type
Workpiece materials
grit size
grade
Material hardness
Surface roughness bond
grinding methods :l

severity of operation

Figure 6.3. Neural network for wheel selection

6.3 The Training of the Neural Network

Data sets in sufficient volume and coverage suitable for training were not available from
recent grinding experience. Training data were therefore taken from published
handbooks, for example, the Grinding Data Book published by Unicorn Abrasives UK
Ltd[Universal 1992] and the Machining Data Handbook published by Metcut Research
Associates Inc.[MDC 1980].

Training data were collected to cover the required problem space. Forty seven examples
were taken as training data spread over the required problem space. Table 6.7 illustrates

the encoding of the examples in the training set.
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Table 6.7 Training examples and the encodins
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The meanings of the abbreviations in Table 6.7 are as follows:

ste general steel

tool tool steel

sup high alloy steel

ms martensitic stainless steel
as austenitic stainless steel
cas cast 1ron

n-f non-ferrous metal

rou roughness

har hardness

sl severity of operation codel
s2 severity of operation code2
abr abrasive type

grit abrasive grit size

gra grade

bon bond

The meanings of these codes are given in Table 6.1-6.6. For example No.1:
Workpiece material:  General steel

Material hardness: <50 Rc

Surface roughness: > 0.9 Ra (um)

Severity of operation: None

Grinding method: Traverse grinding

Wheel specification 11A36MYV or 48A 36MV

The settings for the training parameters were:
learning rate: 0.1
momentum 0.6

RMS error value 0.005
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The learning rate and the momentum were chosen based on training trials to achieve a

fast training process. The training process performance results were:

training epoch: 61465

training time 83 minutes

6.4 Network Test

To test the trained wheel selection system, a test procedure was required. The test used
an example set that had not been previously employed by the network. These examples
were collected from the same sources as the training examples. The input of test
examples and the encoding are illustrated in the Table 6.8. The meanings of these codes

are shown in Table 6.1-6.5.

Table 6.8 Test input codes
ste tool sup ms a cas n-f rou har s1 s2

1.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.0
1.0

1.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
1.0
1.0
1.0
0.0
0.0
0.0

0.0
0.0
0.0
1.0
1.0
1.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0

1.0

0.0 1.0
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0.2
0.8
0.4
0.4
0.0
0.6
0.6
0.6
0.4
0.4
0.6
0.8
0.0
0.0
0.2

0.6
0.4
0.0
0.6

1.0
0.0
1.0
0.5
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.1
0.2
0.2
0.0
0.1
0.1
0.2
0.1
0.0
0.2
0.1
0.1
0.2
0.0
0.2

0.1

0.0
0.0
0.3
0.3
0.3
0.1
0.1
0.1
0.1
0.0
0.1
0.0
0.2
0.1
0.3
0.0
0.3

0.1

0.0 0.1 0.0
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The required output codes for the inputs and the network output codes are illustrated in

Table 6.9.

Table 6.9 The output codes

Required output Network ouput

as grit grad bon as grit grad bon

0.7 0.3 0.8 0.1 0709619 0.279449 0.790056 0.100000
0.2 0.6 0.5 0.1 0.192915 0.554553 0.529875  0.100000
0.7 0.5 0.5 0.1 0.711707 0.461198 0.493476 0.100002
0.9 0.5 0.4 0.1 0923340 0.454635 0.434441 0.099991
0.9 0.3 0.2 0.1 0.890099 0.298992 0.205683  0.099999
0.9 0.4 0.4 0.1 0.884158 0.415262 0.369250 0.100000
0.7 0.6 0.7 0.1 0.646959 0.631757 0.686459 0.099994
0.3 0.5 0.7 0.1 0297592 0.516528 0.688266 0.099999
0.3 0.5 0.7 0.1 0304983 0.499852 0.699258 0.099995
0.3 0.4 0.8 0.1 0.285608 0.396980 0.759940 0.099997
0.4 0.4 0.7 0.1 0410171 0.378865 0.708914  0.100000
0.4 0.5 0.8 0.1 0.368516 0.540422 0.776152 0.099993
0.4 0.2 0.6 0.1 0.437132 0.184437 0.640509 0.100004
0.9 0.2 0.7 0.1 0.876583 0.223106 0.682052  0.099999
0.9 0.4 0.5 0.1 0916948 0.357931 0.531671 0.100001
0.9 0.4 0.8 0.1 0.889208 0.386951 0.783292  0.099999
0.9 0.5 0.5 0.1 0.889075 0.502965 0.451223 0.099995
0.9 0.2 0.7 0.1 0.886889 0.198336 0.690944 0.100003
0.9 0.5 0.8 0.1 0.906652 0.489587 0.811433 0.099994
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The wheel specifications corresponding to Table 6.9 are shown in Table 6.10.

Table 6.10 Wheel specifications

Required output Network ouput
WA461V WAA46IV
11A,48A100LYV 11A100LV
WARBOLYV WABOLV
C8OMV CS8OMV
C460V C460V
C60MV C60MV
WAI100JV WA100JV
48A80JV 48 A80JV
48 A80JV 48 A80JV
48 A60IV 48 A60IV
48A,51A60]JV 51A60JV
48A,51A150IV 48A150IV
48A,51A36KV 51A36KV
C36JV CialvV
COo0LYV CO60LYV
Co0LvV Co01V
C80LYV C80LV
C36]JV C36JV
C80IV C80IV

All the test results fitted the requirement. Therefore, the training may be considered to

be successful.

6.5 Alternative Wheel Selections

The neural network gives a single specification for the wheel. The wheel is probably the
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most suitable recommendation based on the training data set and the grinding
requirements. However, if the wheel recommended is not available the user needs a

suggestion for an alternative. The system provides choices based on the following

principles.

 The wheel grade can change a grade softer or a grade harder than the grade

recommended. For example, if the grade recommended was K, the alternative may be J

or L. The range of grades is from E to Z.

* The grit size can be changed to a size finer or a size coarser than the grit size

recommended. For example, if the grit size recommended 1s 80, the alternative may be

100 or 60. Frequently used grit sizes are 24, 30, 36, 46, 60, 80, 100, 120, 150, 180,
220

» The abrasive type can be changed to a basically similar type. For example, the type

48A can be replaced by the S1A or 51A can be replaced by 48A. The 11A can be
replaced by the 48A. However, Type WA for grinding hardened steel and Type C for
grinding low tensile strength materials such as cast iron and non-ferrous materials are

not recommended replacements for ensuring the grinding performance.

6.6 The CBN Wheel

The above description does not include the selection of CBN wheels because currently
there is insufficient CBN wheel information available to train the neural network. To all
situations, the Machining Data Handbook[MDC 1980] provides only a choice,
B100T100B. For a CBN wheel, the single recommendation was adopted for the
system as a basic specification for a guide to the user. According to the principles of
selecting the grit size and the grade of conventional wheel, it might be assumed that the

same principles are suitable for the CBN wheel. However, there is insuffient evidence

to prove the assumption.
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6.7 Implementation of the Wheel Selection System
6.7.1 The system configuration

Two versions of the wheel selection system were developed, one for incorporation 1nto
the system for grinding conditions and the other for independent wheel selection. The
system described here is the independent system for wheel selection. The system
consisted of two parts, "Training' and 'Enquiring’. The training process was completed
using the neural network prototype system described in Chapter 5. The wheel selection
system directly uses the training result through a link to the application network which 1s

a module in the neural network tool. This relationship between training and application

1s 1llustrated in Figure 6.4.

Enquiring Training

' $

Wheel selection system Neural network tool

Configuration and weights

Application network

Figure 6.4 Training and application

6.7.2 The system user interface

The main screen
The wheel selection system has a main screen which consists of the main menu, the

dialogue area and the hot key reference line. The main screen is illustrated in Figure 6.5
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