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Detecting Physical Activity within Lifelogs towards Preventing Obesity and
Aiding Ambient Assisted Living

Abstract. Obesity is a global health issue that affects 2.1 billion people worldwididnas an economic impact
of approximately $2 trillion. It is a disease tkahmake the aging process worse by impairing physical function,
which can lead to people becoming more frail and immobile. Neverthélessnvisioned that technology can
be used to aid in motivating behavioural changes to combat this preventabitoooftie ubiquitous presence
of wearable and mobile devices has enabled a continual stream ofigbbntiata (e.g. physiological'signals) to
be collected about ourselves. This data can then be used to monitor physiitgltaciid in self-reflection and
motivation to alter behaviour. However, such information is susceptibimise interference, which makes
processing and extracting knowledge from such data challenging. Teisgmsits our approach that collects and
processes physiological data that has been collected from tri-axial accelerandterdieart-rate monitor, to
detect physical activity. Furthermore, an end-user use case applicatadadibsen proposed that integrates these
findings into a smartwatch visualisation. This provides a methoiboélsing the results to the user so that they
are able to gain an overview of their activity. The goal of the paper hastbevaluate the performance of
supervised machine learning in distinguishing physical actiVitys has been achieved by (i) focusing on
wearable sensors to collect data and using our methodtdq@gpcess this raw lifelogging tiaso that features
can be extracted/selected. (ii) Undertaking an evaluation between ten supervisad [dassifiers to determine
their accuracy in detecting human activity. To demonstrate the effedeneur method, this evaluation has
been performed across a baseline method and two other methods d@ifjdlkimg an evaluation of the processing
time of the approach and the smartwatch battery and network cossiarmdtween transferring data from the
smartwatch to the phon€he results of the classifier evaluations indicate that our approach ahamprovement

on existing studies, with accuracies of up t0°99% and sensitivitiE3085.

Keywords: Physical Activity /Recognition Signal Processing; Classification; Lifelogging; &ssed Living
Obesity

1 I ntroduction

Thereis undisputable evidence that indicates that engaging in regutacgbractivity is essential for
healthy:ageing and plays a key role in preventing premature deatbwardl chronic non-communicable diseases
(NCDs)y including cardiovascular disease, coronary heart disease, diatietes, cancer, hypertension, obesity,
depression and osteoporofis2]. Globally, the number of older people is increasing and by 2050 is expected
double from 841 million to 2 billion [3]. As a result, addressireydbsts of such demographic changes is vital for
any nation. Being physically inactive is a global issue that affects adls and is the fourth leading risk factor
for mortality around the world [2], [%]. This has serious consequences not only for our health butratbe
economy. Currently, 2.1 billion people worldwide are either overweigbbese, with the economic impact of
this affliction costing approximately $2.0 trillion [6]. The challengethisrefore to ensure that healthy life
expectancy (HLE), i.e. the average amount of years that we liveuvitdisease/injury, increases at the same rate

as life expectancy, and allows people to work for longer [7]
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Obesity isapreventable disease and with proper interventions can be tackled. Mostintly, education,
behaviour change and personal responsibility are critical elements of@mnam to reduce the onset of this
disease; however, these are complex, difficult, resource-intensive and timewiog processes for individuals
to achieve [6], [8] Factors, including the availability and affordability of food, changes in gsstchological
triggers (e.g. stress), increasingly sedentary nature of mangejgb®ffice work), transportation, and increasing
urbanization all contribute to the rise of this epidemic [6], [9]. As we agr mean body weight and body mass
index (BMI) increases, and the effects of years of reduced physiaafyaatid a poor diet becomes more apparent
and dangerous in later life, which can lead to premature physical deteriorationggmitive decline [1011]. As
a result, research into the effects of physical inactivity is growing rapidly,nitial results indicating that there
are important negative health outcomes for various markers of tei®@tygehaviour [12]. Therefore, in order for
us to age healthily and without debilitating illnesses, awareness andaatalifs towards our lifestyle choices
are essential.

In today’s society, computing devices are now capable of capturing and storing a phenomenal amount of
personal information and are increasingly being used to supporylifesivices: For instance, smartphones and
wearable technologies have enabled us to collect a wide range of personalized datalibatised for self-
reflection and thus influence behavioural change. A consequence oftemiaiology innovation, improved
connectivity and low-cost sensors is the new era of the Internatenfting (I0E) [13] which builds on the
Internet of Things (IoT) paradigm to a landscape where internet-enddolexts permit people, processes, data,
and things to make networked connections that are more relevant andevtiiaatever before. This shift is being
driven by smaller and more powerful wearable devices thatallow itethsisuwmart watches, glasses, health and
fitness trackers, etc. to be worn on the body to collect data and tranisniitfdihmation, over the network, to
provide real-time sensing [13]. This market has seen a surggcinitems and by 2018 it is predicated that
globally, there will be 177 million wearable devices [13]. Furthermor02p there will be 50 billion internet-
connected devices, which will surpass the projected world population dfilio®; thus equating to 6.58
connected devices per person [1Afditionally, advances in the areas of wireless communication, home
automation and medical monitoring systems are also revolutionising tilecheaindustry so that healthcare can
be transferred from the hospital-into the home [15].

One area where this‘surge in information capture, storage, retrieval aimitigsiris prevalent is within
the area of lifelogging [16]. Lifelogging is a subset of penasiymputing and refers to the unified and continual
digital recording of an individual’s experiences that have been captured using a variety of sensors and that are
stored permanently in a personal multimedia archive [17]. In otherswitr a platform that can be used to
gather'a continuous flow of personalized information, over a sustpéremtl of time. Such records can then be
used for a variety of activities and studies, including self-reflectiealth monitoring and other social and health-
related studies. For instance, people can examine patterns of their behavietlext on their levels of activity
and use this information to improve the quality of life [18]. Onpdrtant type of information that is required for
this activity is physiological data. The prevalent use of wearable devices isiampothod to capture such
bodily information as these devices offer low battery utilization and oftaseha multitude of sensors that are
capable of detecting physiological signas a result, the reflection of such personalized information provides
precise and clear feedback of thertspsychological state in real-time, which may reinforce or contradict the

users’ self-appraisal [19]. For example, we may think that we are quite activeetdetting on our lifelogging
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data can either confirm or deny this belief and may result in altering ibehasuch as by walking more.
Consequently, collecting data over a sustained period of time yields anpéieal amount of information [20]
Lifelogs are complex and are composed of a variety of media and informasignch, this heterogeneous nature
means that uses simple queries and ranking search results is utdikafyport many of the usefinformation
retrieval tasks in this domain [2R1]. Instead, when creating lifelogs, data needs to be intelligently analysed with
efficient indexing and data analysis tools so that such systentsacarand recognize different activities. In order

to address this challenge, supervised learning can be used to apply predid@lignmeo lifelogging data to
address these requirements.

Activity recognition is one of the major focuses of sensing techresognd assisted living [224].
However, due to the nature of sensor data, existing approaches are limitadsfmtt and movement mode
detection. For instance, body-worn accelerometers are sensitive to placetmgataohieve a higher level of
accuracy compared to those that are housed in smartpt®#h@8][ For example, wearing such a device on the
hip has been shown to achieve a higher recognition of activity compmaiedartphones, which are often in
pockets or in bags [23dditionally, the use of visual systems is another avenue thatipsoan outlet for activity
recognition [15], [2426]. Such systems are mainly focused on assisted living to mdhéoactivities and
behaviours of older people in a smart home environment [24], [2fi]sing devices such as cameras,
microphones, presence sensors, temperature sensors and smart apglipreetvities can be recognised [15],
[24-26]. This in turn enables older people to live more independently as theiommeint is constantly being
monitored for their safety. For instance, a change in someone’s daily routine could signal an underlying health
issue [24] Nevertheless, continually collecting.data produces a phenomenal amount ofaitidor As the
accumulation of data increases, the need to provide efficient and intelligentmettanalysing this information
is evident. As these datasets grow in size, this provides us with more inforthatican be used to influence our
behaviour. This is an interesting approach, which will be exploredefusththat dynamic and detailed memories
can be created that have a real impact over our lifestyle decisions.

In recognition of these issues, this paper posits our approach tHagdraslesigned to 1) collect streams
of lifelogging data from wearable accelerometer and heart rate devices, 2)spifisemformation using a
combination of signal processing and feature extraction/selection techragae3) utilise supervised machine
learning algorithms_to 'detect levels of human activity. As such, the gahéqfaper has been to evaluate the
performance of the classifiers, which are able to distinguish physicatyafiivn personal lifelogs. Furthermore,
we also evaluate the performance of the system in terms of 1) theréatadging time required for pre-processing
and extracting features from 30 seconds worth of raw data. Zpfhéime that it takes, per classifier to classify
the data: 3) The differences between the costs of transferring data swrartwatch to a smartphone, from two
different perspectives: battery and transfer time. Accelerometer and hearmteateasl been gathered from two
publically available datasetsPAMAP?2 Physical Activity Monitoring Data Set [27] and Casatlal’s activity
recognition dataset [28Furthermore, a smartwatch interface has also been presented that is able tdrdisplay
results to the user. This outlet can be used for reflection and werc# positive behavioural changssch as
promoting increased physical activity to prevent obesity. It should teel tlmat, as the main goal of the paper has
been to evaluate the classification techniques and the performance oftém, $fie smartwatch interface has

been utilized as a use case to demonstrate our approach and how itecogledhbin the future to influence
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behaviour. Therefore, an evaluation of this application, in relation to obasitxgability evaluation of the
smartwatch interface, is out of the scope of this paper.

The reminder of this paper is constructed as follows. Section 2 describes reldtéative areas of mobile
sensing and supervised learning. Section 3 details the approach treewsedo detect physical activitfrom
a collection of lifelogs that have been generated from a study in which mukiple have worbodymounted
sensors to collect physiological data. The results of our supervised leapgirgach and an evaluation of the
system’s performance have been presented in section 4, whilst section 5 presents a discussion of these results.
Finally, the paper is concluded and the future directions of the researphesented in section 6.
2 Background

One of the main factors that fuels inactivity is lack of awarenestharfdllibility of human memory [29]
Our biological memory system is highly selective, is susceptible getiimg and misremembering events and
will fade over time [30]. However, collecting and presenting personal dataecasel to gain a greater insight
into ourselves and can be used to help people become more awlaee physical activity levels to motivate
behavioural change [29h aiding this change, technology has enabled human.experiencesnached in more
ways than ever before. This has led to a new paradigromputing for human experien¢€HE) [31] that aims
to use a convergence of technology to serve, assist, and cooperate pithtpemobtrusively complement and
enrich their lives, with minimal human interaction. A key contribudbithis approach is the abundance of
information that is available through activity recognition platforwisich allow us to capture, store, upload and
share almost every moment of daily life. Utilizing.data analysis metlsods as machine learning and signal
processing, this data can then be explored to enable the creation ofentalligtems that are able to start learning
about our live. As such, this section provides an overview of previous wotkerareas of mobile sensing and
supervised learning.
21 Mobile Sensing

As technology advances, smaller and more powerful sensing devices ardéailuped that provide us
with the ability to constantly monitor ourselves. As such, a new mavesfieontinuously logging our lives has
emerged that has enabled us.to bring the areas of lifelogging amdbigeaomputing to a new level of
sophistication. One of the ultimate goals of the Quantified Self movemgnbp of people who diligently track
many kinds of.data.about themselves) and health-related technologies isftahe $bcus from patient care to
preventive care, i.e. through monitoring vital biological signs and huacsvities [32]. Existing mobile and
wearable apparatuses are able to track users’ activities and monitor some vital signs such as heart-rate. The
resource efficient integration of accelerometer sensors into wearable devicéss #rege devices to count steps
and physical activities. Single sensor tracking, such as counting stefssbe@erformed on these devices, with
more complex activity recognition requiring sensor fusion .[83} instance, while a user’s hand is moving
(accelerometer), the audio sensor can be used to detect if the uddeia ws=hicle or not. However, the downside
of such sensor fusion activities is battery consumption, which isdeb for small and ubiquitous devices such
as smartphones or wearables [34]. Therefore, existing commercial implementditaartivity recognition, such
as Google Play Servicesr Intel Context Sensing Librakyperform this process on the cloud. However, handling

such processes in the cloud does pose network and privacy isduebabkithe advantage of preserving battery.

! https://developer.android.com/google/play-services/index.html
2 https:/software.intel.com/en-us/context-sensing-sdk
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As a result of this limitation, existing fitness trackers or smartwatafeegsually restricted to step counting, heart-
rate monitoring or manual sleep monitoring. Therefore, their reflectiomaméms, such as visualizations, are
univariate.

One such approach, by Rawassizaeleal. [35] is UbiqLog, an open source, lightweight and extendable
lifelogging approach for smartphones. The approach collects user-ceatftidrdm smartphones, including
application usage, other devices in proximity of the user via Bluetooth n$#dSages, call logs, pictures, location
and high level activities of the user (e.g. walking, being in a vehialejrrg or being on a bicycle). It has been
used in a variety of lifelogging studies, where a fundamental requirghentvas uncovered was the need to
provide a method that identifies correlations between different behaviauastesult, it has been established that
visualizing activities is a very useful outlet aids in assisting userséntifiying their behaviours. However,
depicting only one activity (univariate visualization) does not provide aroppate outlet and is unsuitable for
illustrating such correlations between human activifi¢rerefore, there is a need for multivariate visualizations
that are capable of providing such a method of activity-related visuatigatio other works, theifestreams
approach [36], obtains raw contextual data from the explicit feedbackess- (offline surveys), as well as
continuous streams of data that have been collected from sensors or applarafimasd the mobile device. A
change-point detection algorithm has then been proposed to identi®ations between human activity and
feedback. However, a drawback of this work is the need foraictien from the user. This is in contrast to
UbigLog [35], which collects sensors data without the need-for manual interafrtbomghe user.

Furthermore, a subset of approaches focuses on eafftgynt inferring of users’ activities, while
collecting contextual data. For instance, AlE system (Acquisitional Context Engine) [37] mines co-occurrence
patterns among context events in an energy-efficient manner. SimilabyleMiner [38] andSeeMon[39] focus
on efficient and continuous context monitoringobileMiner uses association rule mining for predicting
contextual activities on the phone, unl&eE, which pushes all context data to a remote server where the pattern
mining takes several hours to complete and therefore has privacy, lateddata cost issueeMonuses three
optimizations: discovering change. in context at earlier stages of the proeegdeting temporal continuity of
contexts, and choosing a small subset of sensors sufficient to angwery. Similar to these approaches, Balan
et al.[40] take into considerationeach sensor’s effect on energy consumption in different sensing policies, whilst
Cui et al.[41] propose ‘an approach to reduce the usage of the battergregsimg the sampling rate when the
user is moving (detected from accelerometers) and reduce the sarafdimdniist the user is stationary.

As smaller and more powerful devices are developed, this presents us wih oprtunities to harness
their power for the purpose of multimodal sensing. These platfprovide an unobtrusive method of collecting
statistically relevant data that can be processed and visualized to prompt beahash@mge. With such
visualizations, a user might be able to identify factors that affect hisralesired behaviour. For instance, driving
to work may prevent the user from completing their daily walkiag.p
2.2 Supervised Learningin Mobile Sensing

Supervised learning is an area that is well suited to analysing behawdataabs patterns can be found
relatively quickly. For example, a pattern could relate to particular action od,m¢dnich can then be learned
over time by the system to detect and predict behaviour. Currenthymstbods have been used in photo analysis
to discern activity. In one such approach, Byehel.[42] have used supervised learning to analyse images to

detect semantic concepts. In this work, images have been analysed to detect the user’s movements, e.g. reading,


http://dx.doi.org/10.1016/j.neucom.2016.02.088

Chelsea Dobbins, Reza Rawassizadeh, and Elaheh Momeni, “Detecting Physical Activity within Lifelogs towards Preventing
Obesity and Aiding Ambient Assisted Living,” NeurocomputingDec. 2016http://dx.doi.org/10.1016/j.neucom.2016.02.088

giving a presentation or being inside a vehicle. The system has been 758eattualassifying the images. As
well as analysing images, activity recognition and classifying behavioualsa be achieved using machine
learning algorithms [435]. In one such approach, Lee and Cho [43] have developed a modlitontext-
aware system, which collects data from a number of wearable senstudjng accelerometers, gyroscopes,
physiological sensors, and data gloves. The system is able to recognize the user’s activities using probabilistic
models, which are built by using an evolutionary algorithm. The optmababilistic models, one Context
Versus-All (OVA) dynamic Bayesian networks (DBNSs), deal with the uncertagmmplete, and temporal
observations from the sensors [43]. The results indicate that diffetantiex can be recognized, using this
method. However, whilst activities can be recognized other supporting datsisg, such as photos or location.
In similar work, Qiuet al.[44] use accelerometer data and a Support Vector Machine (SVM) to classify
accelerometer features into user activities (sitting or standing, drivinkingalr lying down) [44]. The accuracy
of each activity was around 90%. This work illustrates how machine leaaridg wearable accelerometer can
be used to identify the activities of a wearer to a very high accuracyNé4grtheless, whilst these results are
encouraging, the location of these movements is unknown andwviceslased are expensive and proprietary in
nature. The next section describes our approach for detecting physicay actifelogs. In this way, we describe
the collection, processing and visualisation of raw sensor data“that hasolaned from the wearable
accelerometers and heart-rate monitor.
3 Physical Activity Detection in Lifelogs
The availability of smaller body sensing devices presents us with urgaeetonities to analyse this data

so that lifelogging technologies can move forward.into intelligestesys that can learn about their user. As such,
our approach, depicted in Fig. 1, focuses on collecting instancesloftifng data, processing this information
and returning these results to the user via their mobile device (e.gwaishrtor smartphone). Using our
approach, we are able to:

1) Collect raw data, including accelerometer and heart rate information,ausimgber of wearable sensors

2) Process and analyse this data, using various signal processinge fegraction/selection techniques

and classification algorithms, to ascertain the types of activities that are being werertak

3) Transformthis information into a visual illustration of the user’s levels of physical activity

1. Raw Data Collection TS 2. Data Analysis 3. Visualise to User

Store Data Process Data

Fig. 1. High-level overview of our approach

In this way, a variety of information can be collected, examined angdjht together, to form a snapshot
of our levels of activity, which can be used for self-reflectiorrelalising this idea, and due to the configuration

of the dataset®ur study focuses on evaluating the performance of ten clasalfiéities to categorise up to nine
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activities, across a group @R subjects. However, prior to classifying the datadata pre-processing flow is
required in order to prepare the collected raw data. This process hadepéstad in Fig. 2, with the remainder
of this section detailing these steps.

Raw Data Collection

Raw Accelerometer

Bita Raw Heart Rate Data

Data Analysis
Pre-Processing

Signal Pre-Processing

Feature Extraction

L

Feature Selection

v

Data Over-Sampling

¥

Classification

Visualise to User

Visualisation

Fig. 2/ Data processing steps of our approach
In order to test the validity. of our approach one baseline methodwandther methods have been
employed (see Fig. 3)

Baseline FS | FSO |
Approach
\___| * All generated \___ e Feature \ ¢ Feature
features used selection selection

* Oversampling

Fig. 3. Methods that we have used to illustrate the effectiveness ofethod
The baseline approach utilises all of the generated fealiresiext method; S (Feature Selectionyill
then apply our feature selection approach. This will enable us to reethuedant features and to select a subset
of the most important features to determine if the baseline resultsecemproved upon. The data will not be

oversampled within the Baselinefe8approaches. The next meth&&0O (Feature Selection and over Sampling)
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will then oversample the reduced feature set fromFtB@pproach. The results from each method will then be
compared within the evaluation.
3.1 Raw Data Collection

Our approach uses two publically available datasd®®\MAP2 Physical Activity Monitoring Data Set
[27] and Casalet al’s activity recognition dataset [28]. The PAMAP2 dataset will here on out be referred to as
dataset 1t contains 13,524,350 instances of raw multivariate, time-series datzathbeen recorded from three
tri-axial accelerometers and a heart-rate monitor. Meanwhile, Gatsall®s activity recognition dataset will here
on out be referred to almtaset 2This dataset contains 1,926,896 instances of raw univariate, sequamdial ti
series data that has been recorded from a single chest-mounted accelerometer.

In order to collect data, subjects within dataset 1 undertook a series of tiwiteeachat are a blend of
inactive states (e.g. sitting) and highly activity (e.g. running)hEBabject adhered to the data collection protocol,
which included performing each activity for up to three minutes, anitminute breaks. Subjects within dataset
2 undertook a similar data collection protocol and performed seven activitieatigatd from working at a
computer to walking. In this instance, data has been collected fromtidpaauts. Table 1 details the activity of
each dataset, the associated Metabolic Equivalent Task (MET) rate, which _can s aseiddication of the
intensity of a physical activity, and level of activity. The MET rate and le¥elctivity in Table 1 have been
provided by using the Compendium of Physical Activity [46]joliis a common reference point in the area of
estimating energy expenditure of physical activity [47].

Table 1. Summary of Activities Performe@T7]-[28]

Activity ID Activity Dataset MET Rate Activity Level

1 Lying 1 1.0 Light

2 Sitting 1 1.8 Light

3 Standing 1 1.8 Light

4 Ironing 1 2.3 Light

5 Descending Stairs 1 3.0 Moderate

6 Vacuum Cleaning 1 35 Moderate

7 Normal Walking 1 3.3-38 Moderate

8 Running 1 7.0-8.0 Highly Energetic
9 Ascending Stairs 1 8.0 Highly Energetic
10 Working at Computer 2 1.5 Light

11 Talking while Standing 2 1.8 Light

12 Standing 2 1.3 Light

13 StandinglJlF.)J\%0 \cv\lr?llgigigisand Going 2 65 Moderate

14 Walking 2 3.3-338 Moderate

15 HETE e R 2 4.0 Moderate

16 Going Up\Down Stairs 2 3.0-80 Moderate- Highly

Energetic
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As it can be seen, the dataset is composed of a suitable mixture of highveariehgy actions that will
test theclassification algorithms’ abilities to separate these times.
3.2 DataAnalysis

As detailed in Fig. 2, the data analysis stage requires the execution of a nlisibps in order to prepare
the data before it can be classified. The analysis that has occurred wihstatie has been carried out using
Matlab v2015aThe below section explains the approach that has been used to undertagivityis
3.2.1 Signal Pre-processing

Collecting raw physiological data, in general, produces a phenomenal aofidofdrmation, which is
susceptible to noise. In particular accelerometer data, is sensitive to neiferémce, position and movement
[22], [48]. Therefore, pre-processing this data essential, &r dodcharacterize the physical activity of the user,
within a certain time frame [49]. Within dataset 1, the sampling frequehtye accelerometers was 100 Hz,
whilst the heart-ratemonitor was 9 Hz. These accelerometers were situated on the dominant side’s ankle, around
the chest and on the wrist of the dominant arm. Within datasetsaniding frequency-of the accelerometer was
52 Hz and thiswas mounted on the subjects’ chest. In order to remove noise and interference from the

accelerometer data, a number of filters have been applied (see Fig4).

Combine
Butterworth Filter Normalise Data Sliding Window accelerometer
vectors

Raw Accelerometer
Data

Fig. 4. Model to filter and prepare the accelerometer data

Using the Matlab Filter Design and Analysis tool (FB4) second-order forward-backward digital low-
pass Butterworth filter, with a cut-off frequency of 3 Hz, has beesigded and applied to the data. As
demonstrated in previous work [F8P], this cut-off frequency is appropriate to filter the data, without ¢paimy
information. The signals have then been normalized and a sliding wiofi612 samples, with an overlap of
50%, has been applied to the data. The sliding window size correspondl? se&onds, which is a reasonable
amount of time to obtain a suitable period of movement [27};98B Each accelerometer provides three
acceleration vectors'ofyAAy and A signals. Pythagorean Theorem, as shown in Equation 1, hasidesbio

combine these.axes together into a single acceleration vagtpe( accelerometer [589].

a= \/Ax? + ay* + Az2 (1)

As’acceleration data is recorded as minus numbers, squaring the axi{AaJugsand A) ensures that
a valid value is returned. The data is now ready for features to betedtrac
3.2.2 Feature Extraction

Features are required so that the machine learning algorithms can classify tiiéheatthese signals are
processed, they can be analysed in two maaesandfrequencyIn thetime domain, simple mathematical and
statistical metrics can be used to extract basic signal information from raw dates@nd depicts how a signal
has changed over time [49} contrastfrequencydomain analysis illustrates how the signal's energy is distributed

over a range of frequencies [60]. As sucbguencydomain techniques have been extensively used to capture the

3 http://uk.mathworks.com/help/signal/examples/introduction-to-the-filter-design-and-analysis-tool-fdatool.html
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repetitive nature of a sensor signal. This repetition often correlates to ihdipeature of a specific activity such
as walking or running [49]. The advantage of frequency-relateahysers is that they are less susceptible to
signal quality variations [61]. Taking a similar approach to [273-F7], [62-66], feature vectors have been
generated from both domains.
Time Domain Features

From thetime domain, within dataset 1, the features that have been extracted includeatifeom the
heart-rate monitgrand from the three accelerometers iean, median, standard deviation, root mean square,
varianceandcorrelationbetween thankle to chest, chest to haaddhand to anklerespectively. Within dataset
2, the features that have been extracted from the chest accelerometde ih@mean, median, standard

deviation, root mean squarandvariance Each feature has been calculated, per activity and subject (see Fig. 5).
Pre-Processed Data

Dataset 1

(Ankle Accelerometer | ;
/ Time Domain Features

y | vvv lv YYYY v vl ¢ . A lv YYYY Y v " \ A J L J

( 1 = Standard Root Mean : Corralation | Correlation | Correlation

[ Chest Accelerometer Mean Median eSS Variance

A J Deviation Square {ankle to chest) | (chesttohand) | (hand To ankle)
Activity 1 Activity 1 Adtivity 1 Activity 1 Activity 1 Activity 1 Activity 1 Activity 1

Subjects1—7 | Subjects1-7 | Subjects1-7 | Subjects1—7 | Subjects1—7 | Subjects1-7 | Subjects1—7 | Subjects 1—7
b N Activity 2 Activity 2 Activity 2 Activity 2 Activity 2 Adtivity 2 Adtivity 2 Activity 2
[ Hand Accelerometer ‘ Subjects1—7 Subjects1—7 | Subjectsi-7 | Subjects1-7 | subjectsi-7 | Subjectsi1-7 Subjects1—7 | Subjects1-7

= Activity n Activity n Activity n Activity n Activity n Adivity n Adiivity n Activity n

Subjects 1- 7 Subjects1-7 | Subjects1-7 Subjects 1-7 Subjects1-7 Subjects1-7 Subjects1-7 Subjects1-7

y
( Heart Rate —T

Dataset 2

IfChest Accelerometer

Fig. 5. Feature extraction of the pre-processed data frorintieedomain

Following the approach in [6/Correlationhas been calculated using Pearson's Correlation as shown in
Equation 2.
DEDIY

\/(2 2 (zz)z)é y2 (21{)2)

In this way, given two distinct signalBearson's Correlation calculates the correlation between each pair

_ Xxy-
Correlation=

)

of accelerometer vectors. In this instance, this has been applied béteesrklechest, chesthand and hand
ankle accelerometers within dataset 1.
Frequency Domain Features

As previously stated, when analysing signals, translation into multipteaitis {ime andfrequency is

often required. As such, a signal can be converted between theseslosiag a mathematical operator called a
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transform(see Fig. 6). One such approach is a Fourier Trang¥&fmwhich decomposes a function into the sum
of a (potentially infinite) number of sine wave frequency compond@ihis.'spectrum' of frequency components
is the frequency domain representation of the signal [60]. Using FagtFbransform (FFT) and Power Spectral
Density (PSD) the signal has been converted frortirttesto thefrequencydomain. However, prior to calculating
the FFT, the Direct Current (DC) component of the signal needs to be deteamihezmoved (see Fig. 6), as is
the case in several studies [53],{66]. This element is the mean acceleration of the signal and is often much
larger than the remaining coefficients, which results in the signal bistagtdd [49], [66]

Once the signal has been transformed intoftbguencydomain, the extraction of frequency-related
parameters can occur. From the frequency doneaiergy entropy peak frequencyandmedian frequenchave

been calculated. Again, each feature has been calculated, per activity and(sebjédg. 6).

Pre-Processed Data Transform from time to frequency Frequency domain Frequency Domain Features
domain signals
Dataset 1 Dataset 1
? - N
[Ankde Accelerometer | | Ankle Accelerometer |
l«ﬁv Ju-vv, lvh lrn
‘ [ A EiiTony Peak Medium
—=» Remove DC | FFT and PSD ——— Frequency | Frequency
fChest Accelerometer - | Chest Accelerometer ———— Activity 1 Activity 1 Adiivity 1 Activity 1
\ ¥ A / Subjects 1—7 | Subjects1—7 | Subjects1—7 | Subjects 1-7
Activity 2 Activity 2 Activity 2 Activity 2
Subjects1—7 | Subjects1—7 | SubjectsI-7 | Subjects1-7
A Y Activity n Activity n Activity n Activity n
| Hand Accelerometer | | Hand Accelerometer | i gen i || S SEau | SfaEsien ||eilisia
Dataset 2 Dataset 2
[ Chest Accelerometer | | Chest Accelerometer

Fig. 6. Feature extraction of the pre-processed data frorfieqaencydomain
Energy has been calculated using Equation 3, whilst Equation 4 calculatentifupy [54]. When
calculating theenergyof the signal, the sum of the squared discrete PSD comporgotshe signal are utilised.

The sum was then divided by the window length for normaliz4&8h

D

Energy = length(x) ®)
_ —Xlx]log[x]

Entropy = engtho 4)

After analysing the literature [27], [587], [62-66], these features have been chosen because they
represent a range of information about the signal. This method providgsperach that enables data to be
condensed into a smaller amount of more useful information.

3.2.3 Feature Selection

Feature selection, or dimensionality reduction, has then been performaetkeinto find a subset of the
most important features. This is necessary, as some of the featurebenigtiundant [68]. To calculate this, the
discriminant capabilities of each feature, per dataset, have then been dedangiity statistical significance. In
this way, the datasets have been separated into two groups of tdatarand thetest of each feature has then

been measured, and thealues are compared and plotted. This measurement is used to get aigeaafdhow
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well separated the two groups are{89]. Fig. 7 a) illustrates the resultiqgvalue plot for dataset 1. As
represented by the blue line, 15% of the features hawea&ueclose to zero. Additionally, as depicted by the red
line, approximately 30% of the features havp-ealue< 0.05 (when p > 0.05 non-significance is frequently
reported [71]). This illustrates that, within dataset 1, ten features arficsign Fig. 7 b) illustrates the resulting
p-valueplot for dataset 2. As it can be seen, as represented by the green lioginagety 23% of the features
have ap-valueclose to zero. Additionally, as depicted by the red line, approxim@@tyof the features have a

p-value< 0.05. This illustrates that, within dataset 2, six features are significant.
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Fig. 7. (a) Plot of the associat@evalues of the features for dataset 1 ang{balues of the features in dataset 2
Forward Sequential Feature Selection (FSFS) has then been applied to the datstaldith exactly
which features are important. This feature selection algorithm, isfolne most widely used technique for feature
selection and is particularly advantageous and robust against over{i@8ng9]. The algorithm selects its
features by sequentially adding features into the model until the fit is veghri®9], [72] Fig. 8 illustrates the

FSFS approach by plotting the misclassification error (MCE) on the tessaset function of the number of
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features. In this instance, .the MCE is the number of misclassifiedvatises divided by the number of

observations in the dataset.
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Fig. 8. (a) Forward:Sequential Feature Selection (FSFS) method for dataseti(l) FSFS for dataset 2

Fig. 8 a) illustrates the resulting MCE plot for dataset 1. As it can be seen, ovag-fitticurs after ten
features as the test error values increase and the re-substitution rate decreases; huteemed an adequate
amount of features to select from the feature set. This also validafesdhe calculation that has been depicted
in Fig. 7a). Through our process of feature extraction, the features that havedieeted from dataset 1 include
heart rate_mean hand_mean chest_mediumFrequency ankle_peakFrequengcy ankle_correlation
hand_variancechest_varianceankle_medianankle_standardDeviatioandchest_standardDeviation

Fig. 8 b) illustrates the resulting MCE plot for dataset 2. As it can be eeenfitting occurs after six
features, as the test error values increase and the re-substitution rateedetineassix is deemed an adequate
amount of features to select from the feature set. This also validapesdhescalculation that has been depicted
in Fig. 7 b). Through our process of feature extraction,ghtufes that have been selected from dataset 2 include

mean standard deviatigrvariance energy entropy and peak frequency
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3.2.4 Data Over-sampling

A result of pre-processing and reducing the feature set has resultedridemsed sample of data and in
terms of learning behaviour, the minority of true positive re¢Gkssitivity) is lower. As a result, learning from
data sets that contain very few instances of the minority class ustallyoes biased classifiers that have a higher
predictive accuracy over the majority class, but poorer predictive accuracyheveninority class [73]. For
example, in the case of recognising the activity of running, giveamdom sample taken from the dataset, the
probability of a classifier classifying an activity “running” is quite low. This is because the algorithms have a
limited number of instances to learn about the features of this acfiity algorithms then have merely one
chance to correctly identify running from the test data. The probabfliagcurately identifying running out of
the majority of incorrect activities is quite low. However, in the cdseversampling the data; the algorithms
would have more information to learn off and to test against, thus incretmingrobability of correctly
identifying the activity.

In order to address this problem, the FSO method will employ ovelisey to resample the datasets and
create synthetic records. Various resampling techniques are available; includargsammgbling and over-
sampling [74]. Under-sampling reduces the number of recoods the majority_class to make it equal to the
minor class. Meanwhile, whilst over-sampling augments the minorigg &g exactly duplicating the examples
of the minority class and thus enlarges the dataset [75]. In thisigestneSynthetic Minority Over-Sampling
Technique(SMOTE) is used rather than reducing the dataset further [74]. Using SMOTeldtasets have been
oversampled using each activity label, in order to generate new syméduwatids. This approach is an accepted
technique for solving the problems related to unbalanced datasets [74].

3.2.5 Classification Algorithms

This study utilizes a number of powerful statistical classification algorithatsare often implemented for
the task of activity recognition [76The classifiers considered include the linear discriminant classifist)
quadratic discriminant classifielQDC), uncorrelated normal density based classifiéD€), polynomial
classifier POLYC), logistic classifier ([OGLC), k-nearest neighboulK\NC), decision tree TREEC), parzen
classifier PARZENC), support vector classifieBYC) and Naive Bayes classifiedAIVEBC) [77].

In this approach to data analysis, the classification algorithms are cediedgth predictive modelling, i.e.
using a sample of labelled training data, we want to test the algorithms abiéirnoabout this data to predict
the behaviour of the unseen test data [78]. As such, the labelsatre been used in our approach are the related
activity IDs that have been discussed in Table 1.

Validation:Methods

K-fold cross-validation and tHeoldoutmethod techniques, as well as a Receiver Operating Characteristics
(ROQ) graph, have been used to determine the overall accuracy and \@dlitigyalgorithms. Thieoldoutmethod
is used to partition the dataset into two independent sets, a training set argba[#3jt The test set is used to
estimate only one parameter, i.e. the error rate, and the training set is trs@a &l other parameters of the
classifier, therefore the training set must be larger than the test set [8@].dUtsimmon approach, and to avoid
overfitting, the dataset has been separated such that 80% of the whole datasetadteddsigtraining and the
remaining 20% for testing [882]. In order to maintain generalization, the learning and testing stagebd®ve
repeated. In this work, the average performance obtained fronyé&l@0Osimulations has also been utilized. This

number is considered, by statisticians, to be an adequate number of isei@tittain an average [83].
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The k-fold cross-validation techniqulas been used to estimate the accuracy of the classifiers. In this
instance, the dataset is randomly partitioned kmautually exclusive subsets. Training and testing is performed
k times [79]. During this evaluatiol,has been set to five, using 1 and 100 repetitions, respectively. &ettihg
is a typical choice as there is a lower variance in the data [72].

A ROC graph has alsbeen used to summarize the classifier’s performance and for visualization and
organization. In order to directly compare the classifiers, R@IC performances have been reduced to a single
scalar value (representing expected performance) by calculating the Areattén@eirve AUC) [84]. In terms
of theKNNC algorithm,k has been determined by using the leave-one-out error of the dataset.

3.3 Physical Activity Visualization

Using the classification methods described above, enables physical activity/inastbetidentified from
the user’s physiological data. After this stage of analysis, the results need to be communicated to the user utilizing
devices such as smartphones and smartwatches, this information cdre tbemmunicated, via multivariate
visualizations, to the user so that they can see how often they are aativedirfsee Fig. 9). This platform has
been implemented using Android wear on a Sony S3 smartwatchiowithore ' ARM Cortex-A7 1.2GHz CPU
and 512 MB Ram.

Activity
03/23/2015

327 steps

tOday 10k walking
9,673 steps to goal Sk i [ ]
WThF SSuMT ..,:.uj e
00:00 1200 23:59
327 327
a) b) c)

Fig. 9. (a) Daily smartwatch-based step-counter visualization (b) Weekly steperosisualizations from GoogleFIT and (c)

Our daily and hourly multiple-activity visualizations

Fig. 9 a) and b) depicts the default visualizations for Android YWeaatementations to illustrate a daily
and weekly log of step count and the remaining number of steghiteve a specified goal. However, the user is
unaware of how: this information maps to their activity levels antlyfies of activities that have been undertaken.
Additionally, correlation between different activities is also not suppamtedisting visualizationsTaking this
idea further, a prototype has been developed (see Fig. 9 c)) that visuafeentifser activities. Users are now
able to identify if there is any correlation between their behaviours. Thisrimeptation has been developed as a
smartwatch application that aids users in reflecting upon their behavimansgh their collected data.

The next section describes the evaluation results that have been genergtezhcis of the classifiers
described in section 3.3hese results have been used to determine each classifier’s overall performance, and
accuracy, in separating physical activity in lifelogging datasets. Auavah of the systein performance has

also been undertaken. These results have been used to determine the battenptoam of collecting data, the

4 http://www.android.com/wear/


http://dx.doi.org/10.1016/j.neucom.2016.02.088

Chelsea Dobbins, Reza Rawassizadeh, and Elaheh Momeni, “Detecting Physical Activity within Lifelogs towards Preventing
Obesity and Aiding Ambient Assisted Living,” NeurocomputingDec. 2016http://dx.doi.org/10.1016/j.neucom.2016.02.088

total execution time that it takes to process the data and the differentasnsnof battery and transfer time,
between the costs of transferring data from the smartwatch to the plasraso been undertaken.
4 Evaluation

This section presents our results that have been obtained for clasptfiyisigal activity from lifelogs,
using a number of supervised machine learning algorithms. The creddsétd have been considered, using an
80% holdout technique ang-fold cross-validation. The primary focus is to demonstrate how accurate the
algorithms are at recognising activities. In this way, we describe thedeatiian activity and use probabilistic
reasoning to filter human digital memory data that contain similar featuthese described. The evaluation has
been divided into three experiments that tests the classifiers accuracst aQalive baseline approa@) the FS
method, which utilises feature selection and 3) the FSO method that déhse® selection and oversampling.
The purpose of the evaluation is to determine if the results of the basgdoa@pcan be improved upon using
feature selection and oversampling. This evaluation has been carriesinquMatlab and PRTodlga Matlab
pattern recognition toolbox). This section has then been concluded wvithvestigation into the issues of
computation time and battery consumption.

The metrics used in this evaluation include the avesagsitivity accuracy (AUC)mean errorstandard
deviation false positivefFP9 andfalse negative¢FNs). The results have-been obtained over a 100 simulations
that have utilised randomly selected training and testing sets for each iteatibrof the metrics below has been
extended for the multi-class problem and so the measures ftrctask classification have been based on a
calculation of the averagg) of each metric [85]Sensitivity, also known as recall or true positive rate, has been

calculated using the following expression:

TP
TP+FN

Sp = ()

In this case, the average sensitivi§y)(refers to the algorithms ability tmrrectlyidentify an activity. In
this expressionTP refers to the number ®fue positivege.g. running has been correctly classified as running)
and FN refers to the number délse negativege.g. running has been classified but the uses walking).
Additionally, false negative¢FNs)'andfalse positiveFP9 have also been used as a measure withiR@e
graph in ordeto summarize the classifier’s performance. Thefalse positivg(FP) rate refers to an activity that has
been incorrectly identified (e.g. walking has been incorrectly identified@ber activity, such as running).

Accuracy refers to the algorithms precision in correctly identifying &witycand has been calculated by
using;the Area Under the Curve (AUC) functioestaug in PRTool8 and then calculating the averadgean

error refers to the average error rate of the classifiénis has been calculated using the following expression:
1vN
MERu = ;Zi=1 a; (6)
In this case, the mean error raléHRu), has been calculated against the error @t®f(the classifiers
over 100 simulationsN).The error rate is the number of incorrectly classified instances that the cldsagfier

calculated. Meanwhile, the standard deviation of the error rates has also been calsitgtete following

expression:

3 http://prtools.org/
6 http://www.37steps.com/prhtml/prtools/testauc.html
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Z?:l(xi_”)z
n

SD = (7

In this casethe standard deviatio$D) has been calculated using the meah ¢f the error ratexj of the
classifiers over 100 simulations)(
4.1 BasglineMethod — Classifier Performance

This experiment uses datasets 1 and 2 of all the generated features, avieiaiohbeen reduced using
feature selection, nor have been oversaaBlig. 10illustrates the mean averages obtained over 100 simulations
for the (a) sensitivityand (b) accuracy for dataset 1 and 2.

Sensitivity (Baseline Approach)
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AUC (Baseline Approach)
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
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M Dataset 2 77.93% 93.21% 79.73% 92.25% 88.50% 94.19% 99.56% 59.00% 91.67% 92.95%

Accuracy

Classifier
b)
Fig. 10. Classifier performance of datasets 1 and 2 for the baseline apprbask.figures compare (a) sensitivity, and (b)
accuracy between the two datasets
In this initial test, as illustrated in Fig0, both dataset did not perform particularly well. Although dataset
2 had a more stable sensitivity rate, these results were still quite low foroh tleevclassifiers. Dataset 1 did not
perform well for a number of classifiers. Nevertheless, both did achi®#é &6nsitivity with the.DC, POLYC,
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SVC and NAIVEBC classifiers. Dataset 2 outperformed dataset 1 in regard®D©, KNNC, TREEC and
PARZENC. In order to determine the accuracy of the classifierskiodd cross-validation technique has also
been used and the results are shown in Table 2.

Table 2. Cross Validation results of datasets 1 and 2 (baseline approach)

Dataset 1 Dataset 2
Cross

. 80%Holdout: 100 Crosval o Crosva,5 g 100 VA5 crossval, 5 Folds

Clleze iz Repetitions 5Folds, 1 Folds, 100 Repetitions Folds, 1 100 Repetitions

& Repetition Repetitions & Repetitio iy
n
Mean sD Mean Error Mean sD Mean sD Mean Mean SD
Error Error Error Error Error

LDC 0.5556 1.12E45 0.6508 0.6321 0.0490 0.5556 1.12E45 0.6508 0.6321 0.0490
QDC 0.8889 1.79E45 0.8889 0.8462 0.0292 0.8889 1.79E45 0.8889 0.8462 0.0292
ubDC 0.6667 7.81E416 0.6984 0.6184 0.0356 0.6667 7.81E416 0.6984 0.6184 0.0356

POLYC 0.4444  8.93E16 0.4603 0.5563 0.0485 0.4444 8.93E416 0.4603 0.5563 0.0485
LOGLC 0.6667 7.81E416 0.6349 0.6503 0.0549 0.6667 7.81E16 0.6349 0.6503 0.0549
KNNC 0.7778 = 6.69E16 0.6032 0.6446 0.0409 0.7778 6.69E46 0.6032 0.6446 0.0409
TREEC 0.2222 4.46E416 0.2540 0.2529 0.0573 0.2222 4.46E16 0.2540 0.2529 0.0573
PARZENC @ 0.7778 | 6.69E16 0.6667 0.6624 0.0248 0.7778 6.69E16 0.6667 0.6624 0.0248
svC 0.5556 1.12E45 0.6190 0.5794 0.0423 0.5556 1.12E45 0.6190 0.5794 0.0423

NAIVEBC = 0.4444 8.93E16 0.6508 0.5222  0.0413. 0.4444 8.93E16 0.6508 0.5222 0.0413

The k-fold cross-validation results, using five folds and one and ondrkd repetitions illustrates that,
across both datasets, the error rates have slightlyiimproved, ferafahe classifiers. However, the error rates
are still slightly high. This could be attributed to the size of the dataset.

4.1.1 Model Selection

To evaluate the performance of each classifierytlegfunction, within PRTool81, has been used. This
function plots thefalse positives(FPs) against théalse negativegFNs). Therefore, the optimal point of the
classifiers is as close to the axis as possible. As a result, the ROC curve depgtigedll illustrates the cut-off
values for the false negative and.false positive rates, for each of théerkssed in the baseline approach for

datasets 1 and 2.
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ROC Analysis Dataset 2 (baseline)
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Fig. 11. (a) Receiver Operator Curve (ROC) for all classifiers in dataset 1 and (b) ROC @nta¢aket 2 (baseline
approach)

Regarding dataset 1 (see Fid.a)), in terms of accuracy, several of the classifiers used performed well
such as th& DC andNAIVEBC, as they are at point 0, 0 on the graph. The AL and sensitivity values in
Fig. 10 support these findingAIVEBC has an accuracy of 96.85%, and of sensitivity of 100%, wil€l’s
accuracy is 94.90%, and sensitivity was 100%. Regarding datasetRigskkb)), in terms of accuracy, several
of the classifiers used performed well, such astbe&€ andNAIVEBC. The highAUC, and sensitivity values in
Fig. 10 support these findinghDC has an accuracy.of 93.21% and sensitivity of 100%, wNif$V/BC’s
accuracy is 92.95%, and sensitivity was 100%.

4.2 FSMethod - Classifier Performance Using Feature Selection

This experiment uses datasets‘1-and 2 of generated features thatdraveduced using feature selection
but have not been oversampl&imilarly, to the baseline method, the performance for each classifiebas
evaluated in terms afensitivity(true positive rate)mean errorstandard deviatioandAUC (accuracy). Figl2

illustrates the mean averages obtained over 100 simulations for the sensitivity@rfdr dataset 1 and 2.
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Fig. 12. Classifier performance of datasets 1 and 2 from the FS method.fiwes compare (a) sensitivity and (b)
accuracy between the two datasets

In this test, as illustrated in Fifj2, dataset 2 had a better sensitivity rate than dataset 1 and for some of the
classifiers higher accuracy as well. Nevertheless, dataset 1 still performedithdiigiv sensitivity and accuracy
results forLDC, SVC andNAIVEBC, where 100% sensitivity was achieved. Dataset 2 outperformed dataset 1 in
regards toQDC. In order to determine the accuracy.of the classifierskfo&l cross-validation technique has
also been used and the results are shown in Table:3.

Table 3. Cross Validation resulisf datasets 1 and 2 (FS method)

Dataset 1 Dataset 2
. 80% Holdout: Gz il 80% Holdout: 100 Sl | Cross Val, 5 Folds,
Classfier 00 Repetitions =~ 2 Folds 1 ek 00 Repetitions SFolds 1) 5 penetitions
P Repetition Repetitions € Repetition €p
Mean SD Mean Error Mean SD Mean SD Mean Error Mean SD
Error Error Error Error
LDC 0.4044 0.1519 0.4762 0.4398 0.0409 0.5714 5.58E416 0.5918 0.5631 0.0249
QDC 0.8767~ 0.0630 0.8571 0.8578 0.0267 0.5714 5.58E416 0.5204 0.5227 0.0341
uDC 0.5056 | 0.1344 0.5556 0.5167 0.0372 0.6429 1.34E45 0.5816 0.6288 0.0284

POLYC 0.4878 = 0.1385 0.5714 0.4843  0.0370 = 0.2143 2.79E47 0.2653 0.2559 0.0254
LOGLC 0.5511  0.1455 0.6349 0.5721 0.0465 0.2143 2.79E47 0.3061 0.2757 0.0555
KNNC 0.8133 = 0.1022 0.7937 0.7984 0.0280 0.2857 2.79E16 0.4796 0.4455 0.0297
TREEC 0.6333  0.1399 0.6984 0.6606 0.0472 0.2143 2.79E47 0.1531 0.1404 0.0376
PARZENC @ 0.8033 0.0919 0.7937 0.7978 = 0.0272 = 0.6429 1.34E45 0.6939 0.7002 0.0237
svC 0.5811 0.0984 0.5556 0.5935 0.0299 0.4286 5.58E17 0.3878 0.3817 0.0306

NAIVEBC | 0.6044 0.1153 0.5556 0.6051 0.0396 0.1429 1.39E416 0.1122 0.0982 0.0181

The k-fold cross-validation results, usirige folds andone andone hundredepetitions illustrates that
across both datasets, the error rates have slightly improved, forofahgeclassifiers. However, the error rates
are still slightly high. Again, this could be attributed to the size of dtaset.
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4.2.1 Model Selection

Fig. 13illustrates the cut-off values for the false negative and false positive rategHaf¢lae classifiers
used in datasets 1 and 2 for the FS method.
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Fig. 13. (a) Receiver Operator Curve (ROC) for all classifiers in dataset 1 and (b) R@€f@udataset 2 (FS method)
Regarding dataset 1 (see Fi@ a)), in terms of accuracy, several of the classifiers used perforeled w
such ‘as:th& DC andNAIVEBC, as they are at point 0, 0 on the graph. The AR and sensitivity values in
Fig. 12 support these finding®AIVEBC has an accuracy of 95.98%, and of sensitivity of 100%, wiil§l’s
accuracy is 94.97%, and sensitivity was 100%. Regarding datasetRigsE#b)), in terms of accuracy, several

of the classifiers used performed well, such asTfRIEECandP OLYC, as they are at point 0, 0 on the graph. The

high AUC and sensitivity values in Fid2 support these findingFREEC has an accuracy of 98.91% and
sensitivity of 100%, whilsP OLYC’s accuracy is 91.93%, and sensitivity was 100%.

As it can be seen, reducing the number of features has impravedsthits, and for the majority of the
classifiers, sensitivities are exceptionally high. However, an issue wittath is that the classification algorithms

have a limited number of records to learn from and test againstatéd & section 3.2.4, a conventional method
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to rectify this issue is by over-sampling the dataset [86]. Theretforestablish if the results can be further
improved, the datasets have been oversampled and the experimentsdrarepkated.
43 FSO Method - Classifier Performance Using The Over sampled Datasets

This experiment uses datasets 1 and 2 of generated features that haeel besth using feature selection
and have been oversampled. Higillustrates the mean averages obtained over 100 simulations for the ggnsitiv
andAUC for both datasets
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Fig. 14. Classifier performance for the oversampled datasets 1 and 2. Thesg €igungare (a) sensitivity and (b) accuracy
between the two oversampled datasets
In this test, as illustrated in Fit)4, dataset 1 had a better sensitivity rate than dataset 2 and for most of the
classifiers higher accuracy as well. Nevertheless, dataset 2 still performedithidiigiv sensitivity and accuracy
results. Both achieved 100% sensitivity with 8MC andNAIVEBC classifiers. However, the sensitivity rate of
LDC has decreased significantly, compared to the initial results. In orddetéomine the accuracy of the

classifiers, thé-fold cross-validation technique has also been repeated and the results arenshabie 4
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Table 4. Cross Validation results for the oversampled datasets 1 and 2

Dataset 1 Dataset 2
80% Holdout: 100 'O V2: Crossval,5Folds,  80% Holdout: 100 SOV, Crossval 5
Repetitions 01as, 100 Repetitions Repetitions 0'Cs, 0ds, -
Repetition Repetition Repetitions
Classifier Mean SD Mean Error Mean SD Mean SD Mean Error Mean SD
Error Error Error Error

LDC 0.2133  0.0899 0.2143 0.2217 0.0142 0.4286 5.58E47 0.4847 0.4757 0.0140
QDC 0.5883 @ 0.1273 0.5952 0.6334 0.0461 0.4000 7.81E46 0.3929 0.3564 0.0174
uDC 0.3933  0.0988 0.4206 0.4000 0.0300 0.5143 1.23E45 0.5255 0.5316 0.0197

POLYC 0.2506 = 0.0949 0.2460 0.2498 = 0.0137 0.1714 2.51E16 0.1990 0.2064  0.0139
LOGLC 0.2822  0.1325 0.3016 0.2929  0.0491 0.1714 2.51E16 0.2551 0.1915 0.0399
KNNC 0.3906 = 0.1170 0.4127 0.4046 = 0.0157 0.1714 2.51E16 0.2194 0.1978- 0.0143
TREEC 0.3039  0.0991 0.3254 0.3127  0.0313 0.1429 1.39E16 0.0561 0.0842 0.0207
PARZENC 0.5689 @ 0.0693 0.5556 0.5668 @ 0.0204 0.5429 1.23E45 0.5510 0.5497  0.0230
svC 0.5217  0.0683 0.5635 0.5248  0.0233 0.3143 4.46E16 0.3418 0.3318 0.0146

NAIVEBC 0.2489 = 0.0991 0.2778 0.2524 = 0.0170 0.0000 0 0.0204 0.0260 = 0.0065

As it can be seen, repeating the experiment with the oversampled datasets, dltisitatiee error rates
have improved, for most of the classifiers.
4.3.1 Model Selection

As in section 4.1, the ROC curve has been calculated and graphedhfavbossampled datasets. This
illustrates the cut-off values for the false negative and:false positive ratesf ¢aeltlassifiers used in datasets 1
and 2 Regarding dataset 1 (see Fi§.a)), in terms of .accuracy, several of the classifiers used perfomgigd
such as th&DC andNAIVEBC, as they are at point 0, 0 on the graph. The high AUC and segsitites in
Fig. 14 support these finding®AIVEBC has an accuracy of 0%, and of sensitivity of 100%, whiltDC’s
accuracy is 980%, and sensitivity'was 100%. Regarding dataset 2 (se&#p), in terms of accuracy, several
of the classifiers used performed well, such akKtiRC andLOGLC. The high AUC and sensitivity values in
Fig. 14 support these findingkXNNC has an accuracy of 98.75% and sensitivity of 80%, whiyELC’s
accuracy is 95.34%, and sensitivity was 100%. As it can be seen IS HRARZENC performed the worst within
both dataset and achieved 83.33% accuracy in dataset 1 and 68.05% accluatasetr2d
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Fig. 15. a) Receiver Operator Curve (ROC) for the oversampled data in dataset )} B@(ICurve for the oversampled
dataset 2

However, compared to Fi@3, Fig. 15illustrates a significant improvement, for most of the classiflars.
comparison to dataset KNNC’s accuracy has improved dramatically<by 14.38%, whilst PARZENC's has
improved by 13.93%QDC’s sensitivity has improved by 50%, whilst PARZENC's has improved by 40%. Within
dataset 2P ARZENC's accuracy has improved by 7.95%, whilddC’s has improved marginally by 4.17%. The
results indicate that the use of supervised machinelearning techisqemuraging. As demonstrated, these
machine learning algorithms are able to learn about our activities, with déggee of accuracy.
4.4 Comparison of Classification Results

A comparison between the baseline approach, FS method and FSO niethadso been conducted.
These results are encouraging and illustrate that selecting the most relevant fedtavessampling the dataset
has resulted in an improvement in the results for most of the &lgsritFor instance, as depicted in Fi§.
KNNC, TREECandP ARZENCs sensitivity has showasignificant improvement for the FSO method, as opposed
to the other approaches.
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Fig. 16. Comparison between the sensitivity for the Baseline, FS methdé@Sdnethod approaches
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Fig. 17 illustrates a comparison of the accuracy (AUC) results between the bagdimethod and FSO
approaches. As it can be seen, oversampling the dataset has intheseebsults over the majority of classifiers
across both dataset. For instance, as depicted il FiQDC, KNNC, TREEC andP ARZENC have shown great
improvement compared to the FS method and the baseline approaateg®td. Similarly for dataset DC,
UDC, POLYC andP ARZENC have produced improved results with the FSO method.

Comparison betweenthe accuracy of the Baseline, FS and FSO approaches
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Fig. 17. Comparison between the accuracy (AUC) for the Baseline, FS matitlddSO approaches
Fig. 18 illustrates a comparison between the: mean error rates of the 80% tidl@6uRepetition

experiment between the baseline, FS method and FSO approaches. Aseitsesm, oversampling the dataset
(FSO methoylhas improved the mean error rates across both datasets for the méjdessifiers. In particular,

KNNC, QDC andNAIVBC have shown asignificant reduction in the errors across both datasets.

Comparison between the 80% Holdout: 100 Repetitions Mean Error Rate of the Baseline, FS and FSO
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Fig. 18. Comparison between the 80% Holdout: 100 Repetitions Mean ErrordRdke foaseline, FS method and FSO
approaches
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Fig. 19 illustrates a comparison between the mean error rates of the Cross Védsh IFRepetition
experiment of the original and oversampled datasets. As it can begesampling the dataset has also improved
the mean error rates of this experiment, as these have now decreasgst amoshof the classifiers. In particular,
KNNC, LOGLC, TREECandP ARZENC have shown a significant reduction in the errors.

Comparison betweenthe Cross Val, 5 Folds, 1 Repetition Mean Error Rate of the Baseline, FS and FSO
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Fig. 19. Comparison between the Cross Val, 5 Folds, 1 Repetition'Mean EtmfdRéhe baseline, FS method and FSO
approaches
Fig. 20 illustrates a comparison between the mean error rates of the CrossPé#ds5D0 Repetition
experiment of the original and oversampled datasets. As it can belseessults have once again improved, as
the error rates have decreased amongst all the classifiers. In parBeilC, LOGLC, TREECandKNNC have

shown a significant reduction in the [errors.
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Fig. 20. Comparison between the Cross Val, 5 Folds, 100 Repetitions MearR&teofor the baseline, FS method and FSO

approaches
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The results are encouraging and indicate that reducing the dataset via feature selectiensanapling
has improved the algorithms ability to classifying activities. Howevés,hths been expected, as there is more
data for the algorithms to learn from and test against.

45 Network Cost and Smartwatch Battery Analysis

Table 5 illustrates the total elapsed time that it takes to pre-process and festiarets from 30 seconds

worth of raw accelerometer data

Table 5. Total time of pre-processing 30 seconds of raw accelerometer data

Data pre-processing steps of our approach

Apply Butterworth filter & Sliding Combine Feature .
. . . . Total time
normalise data window axis extraction
Time/30 secsraw data 0.106094 0.123297 0.019552 0.050056 0.298999 sec

Additionally, Fig. 21 illustrates the total time that it takes, per classifier to classify the data, over one
repetition. As it can be see@dAIVEBC is the fastest performing algorithm, across all'the classifiers. Tloistalg
has also performed well within the experiments; achieving accuracie®.@5% - 97.79% across the three
methods. For the majority of classifiers the baseline approach waswhesslélowever, this has been expected
as there were a number of redundant features in the dataset. The FS masthediuced the classification time
for most of the classifiers, whilst the FSO approach has takgerdahan the FS method but is still faster than the

Baseline method.

Classifier Performance (seconds)
750
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0.-- --. =

LDC QbC ubcC POLYC LOGLC KNNC TREEC  PARZENC SvC NAIVEBC
M Baseline (1 rep) 70.33 38.54 36.79 223.28 311.49 42.79 39.90 77.15 659.99 25.79
M FS (1rep) 67.97 36.17 35.62 211.25 272.05 43.10 38.43 79.08 617.83 24.69
FSO (1 rep) 67.70 36.11 35.95 213.66 276.03 41.07 49.98 85.03 732.31 24.68

Time (secs)

Classifiers

Fig. 21. Total processing time of classifying the data
From this analysis, we can extrapolate that the total time for classifghaytour should be performed in
the cloud. This is due to the fact that small devices, such as wearaffiesfrem resource limitations (e.g.
limited battery capacity and processing capabilities), which presents major challengearable applications

[34]. Consequentlyin-line with previous work, complex computational processing, such asficassn, has
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often been performed in the cloud [8AF a result of these issues, we believe thatprocess of data analysis
should be distributed between both the device(s) and the cloud.

To further analyse this approach, we have used a smartwagclsaample implementation scenario. As
smartwatches continue to be introdug®d the market, their computing capabilities have increased in comparison
to traditional single use-case wearables, such as body-mounted accelerometezserHaurrently the
availability of smartwatches and smartphones are dependent. Therefiamester data into the cloud it first needs
to be transferred from 1) the watch to the phone, and 2) fromhtbree to the cloud. Due to this limitation, we
believe the cost of transferring data is an important issue for smartayapdications. This challenge will be
highlighted when the system plans to transfer the raw accelerometao dla¢acloud. Accelerometer logs are
continuously increasing and can grow to become very large datasetsstocé) the accelerometer data that ha
been analysed in this paper has been collected in three-minute cyclaspiaximately 20 MB for 42 minutes
of activity. Nevertheless, an ideal system should be able to collect data atall wivich mean24-hour data
collection, thus resulting i685MB of data per day. Transferring such a huge amount of data éxpamsive for
a smartwatch, which has a limited battery capability. On the other heatdyds that'have been identified in
section 3.2.3 could be easily computed on the smartwatch, and thuee assed. as a substitute for the raw
accelerometer data. This is due to the fact that the features that have beetedexre based on simple
mathematical methods, such as calculating the average, signal entropfyepaahkcy, etc. Although there will
be an overhead of calculating these features on the smartwatch, the timmalutast is minimal, and so is not
worthy for further investigation. Here we report about the differencegebetthe costs of transferring data from
the smartwatch to the phone, from two different perspectives: batteryamsfietrtime. Fig22 visualizes the
daily cost comparison for transferring both types of data, i.eacaelerometer data and the features. To achieve
the 24 hour costs, ehave multiplied 42 minutes to 34.2851440(=minutes of a day) 42 = 34.28.
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Fig. 22..Smartwatch to smartphone transfer costs. Figure (a) illustrates the transfemaidiggnond, whilst figure (b)
illustrates the transfer cost in mAh.

As it can be seen in Fi@2, transferring the extracted features requires less battery power and &ss tim
Therefore, the processing power needed to transfer the featureséremdhwatch to the phone is less resource
intensive than transferring the raw accelerometer data. Howievare with similar works the classification
process, which is not resource efficient, will still need to be completdatioloud [87]. As a result, there is no
need to consider the battery depletion on the device for this task. Naesstlin-line with this work,
computational resources can be conserved by extracting the aforemeriéiangds on the smartwatch and

transferring these to the phone, which can then be uploaded to thdarldurdher processing.
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Such a system has the potential to provide a motivational outlet that caado tnelp the user engage in
more physical activity. In fully realising this idea, the followimgpothetical scenario has been used to illustrat
how the system could be utilized for real-life data logging and analysis

“Mary is overweight and has never been a particulpinisically active person. She leads a
predominantly sedentary lifestyle. Her routine dstssof sitting at her desk all day at work
and then sitting watching TV all night, with no f#igal exercise. Her weight has been steadily
increasing over the past few years and she hatedt&r develop health issues. Although she
is not technically obesget, she is worried that if she continues on this pitt she may
develop this condition in the future. This has et to become worried about her weighér
doctor has also become concerned about her conditid has advised her to become more
physically active. She has recenligard ofa new technology called lifelogging and thinks
that this may help her to become more motivatedrntgage in physical activity.sfa result,
she has purchased some wearable sensor node dewittest she can continually record her
daily activities. Mary records her daily activitieser a period of 16 hours.a-day, from 7 am
to 11 pm, 7 days a week (essentially, from whenwakes up torwhen she goes to sleep).
During this time, when Mary is sitting down for lgmperiods of time, her smart device (e.g.
phone/watch) displays a notification that tells lieait she has been sitting for x hours and
suggests going for a walk/run. When she has be@weaanother notification congratulates
her on this achievement. After continually loggihgr activities, she has noticed that the
notifications have made her aware of her physigattivity and she begins to move around
more and continues to log her life, in\this wafter continually logging herself for a
prolonged period, Mary notices that she -has beguloge weight and has become more
physically active. Her doctor also confirms that health issues have also began to subside
and that soon she will no longer be overweightstie continues on this path). Mdsy
lifelogging system has'helped her to transform fieysical activity habits, lose weight and
become healthier all without her having to manuahyer data into a systei.

From this scenario; we can see how the quantification of physical actsatiesccur ubiquitously and,
with our system, intelligent-applications can begin to emerge thatemsletime feedback to alter behaviour. We
believe that such outlets are important for providing an accurate measpingsifal activity and for inciting

behavioural changes.

5 Discussion

This paper demonstrates the initial results that have been obtained biyn@mignal processing and
machine learning algorithms to personal physical activity lifelogs to cldssifgviour, with the aim of motivating
the user to engage in more physical activity, through multivariate vistiafiza As it can be seen from the
classification results, this approach vyields positive and interesting results. Owerahalsof the classifiers
performed well across both datasets. These inclilé and NAIVEBC with 100% sensitivity across both
datasets. FurthermongQGLC, TREECandNAIVEBC have achieved an accuracy of 95.59%, 95.15% and 95.98%
respectively within dataset 1 aidNNC, TREEC and NAIVBC achieving accuracies of 98.93%, 98.91% and
97.52% respectively within datasetAditionally, the SMOTE [74] technique has been used to oversan®le th
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dataset, which has enabled the classification results to be improved. Thagastde availability of more data as

the accuracy is dependent on “the number of instances, attributes, and classes to be predjegeidUsing this

techniques has significantly improved the accuracies of most of thefielgsdn particular, within dataset 1,
QDC, LOGLC andTREEChave improved with accuracies of 97.03%, 97.41% and 98.4&yectively.

As indicated in Table 6, our work shows considerable improvementstaveurrent statef-the-art. The

results that we have produced are promising and provide a valid nwdtblagsifying behavioufThe novelties

that we have provided include:

Providing a methodology for processing raw lifelogging data softiatures can be extracted/selected

Providing a comparison between ten supervised learning classiftetirae approaches/to determine their

Exploring system performance issues, in terms of battery anderainsé, between the costs of transferring

An integration that enables the methodology to be employed on.a smartwatch.

Table 6. Comparison between our work and previous studies on agtgognition

1)
2)
accuracy in detecting human activity
3)
data from the smartwatch to the phone
4)
Number of
Reference Devicesused activities ;eamre
i ection
classified
Four accelerometers
Our work and a heart rate 16 Yes
monitor
Single
Leeet al.[18] accelerometer 6 No
Reiss and UIES
Stricker [27] accelerometers and 18 No
heart rate monitor
Casalestal. = Single
[28] accelerometer 5 No
Reiss and ez
accelerometers and 14 No

Stricker [88]

heart rate monitor

O

\OROOIN R U

oW

N e

O O

Data analysistechnique

Linear Discriminant Classifier (LDC)

Quadratic Discriminant Classifier (QDC)
Uncorrelated Normal Density Based

Classifier (UDC)

Polynomial Classifier (POLYC)
Logistic Classifier (LOGLC)
K-Nearest Neighbour (KNNC)
Decision Tree (TREEC)

Parzen Classifier (PARZENC)
Support Vector Classifier (SVC)

. Naive Bayes Classifier (NAIVEBC)

Artificial neural networks (ANNs)

Decision tree (C4.5)
Boosted C4.5 decision tree
Bagging C4.5 decision tree
Naive Bayes

kNN

AdaBoost
Bagging

Decision trees

K- nearest neighbours
SVM

Naive Bayes

Bagging

Boosting

Accuracy
achieved

up to 99%

94.43%- 96.61%

~90%

72%— 97%.

90.65%- 94.37%

Our classification results are an improvement over édteel. [18], who reported modest accuracies of

94.43% and 96.61%. However, our work has achieved accuracies@P@pa In their work, a single tri-axial
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accelerometer has been used to recognize human activity, whilst artificial netwatks (ANNs) have been
trained on all features to recognise the activities [18]. This is in contrast twork, where more data is obtained
with the use of three accelerometers and a heart-rate sBypsmilecting data from multiple devices ensures that
a more accurate depiction of the activity occurs, as there are multiple referensefoihermore, dataset 1 uses
existing data from the publically available PAMAP2 dataset [27]. Howevenvoik in this paper differs from
this existing work in [27] and that of Lex al.[18], in that we have used feature selection algorithms to reduce
the feature set so that only the features with the most discrimiragpabilities are fed into the classifiers. This
is an improvement as redundant features, which could negatively icdldlea results, are discarded. The work
in [27] does not use feature selection and has achieved accuracies of ~9086ngdsable to our work, which
has achieved accuracies of up to 99%. This is also an improventeetsiatesf-the-art results of similar activity
recognition problems, e.g. [18], [27], [88]. Dataset 2 also useblécally available activity recognition dataset
[28]. In this work, Casalet al.[28], do not use feature selection and they have achieved accuracies ef 72%
97%. However, our approach has achieved accuracies tf 99%. Additionally; the use of our statistical
classifiers, in particulaBVC, have been shown to produce the best accuracy-results within thef faadtiviay
recognition [59], [76]. This is in contrast to the ANN approach of|,[®hich is_ primarily used within fall
detection [76] These results are promising and provide a valid method of clasdlifghayiour.

In terms of the visualizations, this aspect demonstrates:how inteléipphitations can now begin to be
developed that are able to utilize machine-learning algorithms to-learn abodatauand then visualize this
information to the user through smartwatches. By correlating anthylisp this data to the user, it is more
accurate than recalling this information and the user can visually reflebtiorietvels of physical activity. For
instance, using self-reporting methods such as.diaries and memory wecatiay think that we are quite
physically active. However, when measuring physical activity, these agme are subject to bias and the
fallibility of human memory [89]. These methods are usually unreliablié iasunclear if self-reporting has
recorded accurately the events, a distorted memory of the evergppesximation of typical behaviour or a
perception of what is considered ideal; i.e. what the user wanted to hgg8jeMevertheless, the use of
technology and such visualizations eliminates this element of uncertdtilizing our approach, a user would
be able to reflect upon their levels of activity and if their data indicates tlyaarthehysically inactive then this
could be the catalyst to alter their behaviour.

These results are very encouraging, demonstrate the validity of ouraeppaod support the use of
machine learning in analysing personal lifelogging data. Classification id fiseénalysing this information so
that such.systems can learn about our lives, which could therebdeaupredict behaviour. This application has
the potential'to influence the behaviour of individuals by providing aroggh that learns about the user through
their collected data to predict periods of physical inactivity. This informatiéenten been visually depicted
through smartwatch interfaces to provide sufficient motivation to potgnéiiir behaviour. As it can be seen,
logging information about ourselves can be done quite easily wittsthefuwearable devices and sensors. Over
time, such systems are able to learn about our behaviour patterrsudshthe used to predict when an upcoming
period of inactivity will be occurring so that countermeasures can hia pl#ice to alter this behaviour before it
occurs and gets unmanageable. In this instance, a prompt can be neseithd/indict our activity levels. Without
user intervention, we are able to see our patterns of behaviour. Thie aardto reduce obesity levels and to

encourage users to leader a healthier lifestyle.
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6 Conclusions and Future Work

Undertaking regular physical activity and adopting a healthier lifestyle has gregen to aid in the
prevention of obesity and is particularly important for staying actidéch would allow us to live longer and
more independently into old age. In tackling this, strong eviden@amerging that focuses on the use of
technology for implementing positive behavioural changes [29]te&hnology develops, wearable devices are
becoming smaller and cheaper sensors are being integrated into eviggyaayAs a result, this widens the
opportunities to collect more human-centric information and presentshusevit and innovative ways of using
this information to increase activity.

This paper has posited our method of classifying and visualisinggigfielg data. As a result, the approach
enables the system to learn about our behaviours so that the activitjcaléms results can be.visualized to the
user By presenting the user with reliable evidence of their activity levels sas\@motivational tool to encourage
positive changes. In this sense, the system is able to learn abosgithie achieving this, our approach has been
used to collect, process and visualise raw lifelogging data. Wstigtically significant methods, features have
then been extracted and analysed. The machine learning algorithmsstheeba chosen for the evaluation have
also yielded positive results with great accuracy in detecting physical activipuafmaitial implementation of a
smartwatch interface to visualize this data has also been discOssa@sults have demonstrated the validity of
the approach and have produced excellent results in demonstrating the system’s accuracy and ability to recognize
activity. Overall, we have provided a flexible solution to collect, proceswiandlise lifelogging data that can
be used towards influencing positive behavioural changes. Hoviestber work is required. Future work would
consider implementing the system across a<focus group of usersdr acceptance testing and examine
unsupervised methods, whereby untrained data'can be fed into the dysthis. way, we can ensure the

practicality of the framework in the real world.
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