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Abstract 

Given the fact that people, especially in advanced countries, are living longer due to the 

advancements in medical sciences which resulted in the prevalence of age-related diseases 

like Alzheimer’s and dementia. The occurrence of such diseases continues to increase and 

ultimately the cost of caring for these groups will become unsustainable. Addressing this 

issue has reached a critical point and failing to provide a strategic way forward will 

negatively affect patients, national health services and society as a whole.  

Three distinctive development stages of neurodegenerative diseases (Retrogenesis, Cognitive 

Impairment and Gait Impairment) motivated me to divide this research work into two main 

parts. To fully achieve the purpose of early detection/diagnosis, I aimed at analysing the gait 

signals as well as EEG signals, separately, as both of these signals severely get affected by 

any neurological disease.  

The first part of this research work focuses on the discrimination analysis of gait signals of 

different neurodegenerative diseases (Parkinson’s, Huntington, and Amyotrophic Lateral 

Sclerosis) and also of control subjects. This involves relevant feature extraction, solving the 

issues of imbalanced datasets and missing entries and lastly classification of multiclass 

datasets. For the classification and discrimination of gait signals, eleven (11) classifiers are 

selected representing linear, non-linear and Bayes normal classification techniques. Results 

revealed that three classifiers have provided us with higher accuracy rate which are UDC, 

LDC and PARZEN with 65%, 62.5% and 60% accuracy, respectively. Further, I proposed and 

developed a new classifier fusion strategy that combined classification algorithms with 

combining rules (voting, product, mean, median, maximum and minimum). It generates 

better results and classifies subjects more accurately than base-level classifiers.  

The last part of this research work is based on the rectification and computation of EEG 

signals of mild Alzheimer’s disease patients and control subjects. To detect the perturbation 

in EEG signals of Alzheimer’s patients, three neural synchrony measurement techniques; 

phase synchrony, magnitude squared coherence and cross correlation are applied on three 

different databases of mild Alzheimer’s disease (MiAD) patients and healthy subjects. I have 

compared right and left temporal parts of brain with rest of the brain area (frontal, central and 

occipital), as temporal regions are relatively the first ones to be affected by Alzheimer’s. Two 

novel methods are proposed to compute the neural synchronization of the brain; Average 

synchrony measure and PCA based synchrony measure. These techniques are evaluated for 

three different datasets of MiAD patients and control subjects using the Wilcoxon ranksum 

test (Mann-Whitney U test). Results demonstrated that PCA based method helped us to find 

more significant features that can be used as biomarkers for the early diagnosis of 

Alzheimer’s. 
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Chapter 1 Introduction 

1.1 Background 

Advancements in machine learning provoke new challenges by integrating data mining with 

biomedical sciences in the area of computer science. This emergent research line provides a 

multidisciplinary approach to combine engineering, mathematical analysis, computational 

simulation, and neuro-computing to solve complex problems in medical science. One of the 

most significant applications of machine learning is data mining. Data mining provides a 

solution to find out the relationships between multiple features, ultimately, improving the 

efficiency of systems and designs of the machines. Data mining techniques provide computer 

based information systems to find out data patterns, generate information for the hidden 

relationships and discover knowledge that unveils significant findings that cannot be 

accessible by traditional computer based systems. 

The types of machine learning can be supervised, unsupervised or reinforced. In supervised 

learning, the labels for each class are provided for the classifier at the training stage. In 

unsupervised learning, also known as clustering, the class labels are not known, but the 

classifier is asked to group the instances into groups where they display the same pattern of 

features, and hence each cluster may represent one class. In reinforcement learning, the 

classifier makes a classification of each instance and is given a score after each classification, 

to reflect how well it classified the instance. The classifier then adjust its future actions 

accordingly [1].  
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Neurodegenerative diseases (NDDs) are accompanied by the deterioration of functional 

neurons in the central nervous system. These include Parkinson’s, Alzheimer’s, Huntington’s, 

and Amyotrophic Lateral Sclerosis among others. The progression of these diseases can be 

divided into three well recognized stages; retrogenesis, cognitive impairment and gait 

impairment. Retrogenesis is the initial stage of any NDD which starts with the 

malfunctioning of cholinergic system of basal fore brain that further extends to Entorhinal 

Cortex and Hippocampus [2]. As a result of retrogenesis, the memory of the patients severely 

affected due to the accumulation of pathological neurofibrillary plaques and tangles in the 

entorhinal cortex (EC), hippocampus, caudate, substantia nigra parts of the brain [3]. This 

stage is known as “Cognitive Impairment”. Finally, a patient cannot maintain his/her healthy, 

normal gait due to disturbances in cortico-cortical and cortico-subcortical connections in the 

brain, e.g., frontal connection with parietal lobes and frontal lobes with basal ganglia, 

respectively [4].    

Early detection/diagnosis of life threatening and irreversible diseases such as 

neurodegenerative diseases (Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic 

Lateral Sclerosis) is an area of great interest for researchers from different academic 

backgrounds. Diagnosing NDDs at earlier stage is hard where symptoms are often dismissed 

as normal consequences of aging. Moreover, the situation becomes more challenging where 

the symptoms or data patterns of different NDDs turn out to be similar and discrimination 

among these diseases becomes as crucial as the treatment itself. In this research work, we 

claim the significance of analysing gait signals for discriminating movement disorders in 

different NDDs for accurate diagnosis and in time treatment of the patients as well as the 

early diagnosis of these diseases using EEG signals.       

One significant tool for the discrimination of different NDDs is “Gait Signals”. Hausdorff et 

al [5] suggested that the understanding of relationship between loss of motor neurons and the 

perturbation in the stability of stride-to-stride dynamics can help us to monitor 

neurodegenerative diseases progression and in assessing potential therapeutic interventions. 

Furthermore, they claimed a reduced stride-interval correlation with aging in Huntington’s 

disease. Later in 2010, the same gait signals are used by Yunfeng and Krishnan [6] to 

estimate the probability density functions (PDFs) of stride intervals and its two sub-phases 
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for Parkinson’s disease. Moreover,  Masood et al. used the same dataset of gait signals for the 

discrimination of different NDDs [7].   

The other important tool for the early diagnosis and treatment of neurological and 

neurodegenerative diseases is the electroencephalogram (EEG) signals. Hans Berger for the 

first time measured the first EEG in humans and still nowadays EEG is extensively used to 

evaluate neurological diseases [8]. The EEG signals originate from the cerebral cortex and 

evoke by auditory and somatosensory stimuli.  

The goal, here, is to implement a data mining approach with innovative ideas, using gait and 

EEG signals as a discriminative and diagnostic tool, to design a diagnostic and therapeutic 

system for the early diagnosis of life threatening diseases such as Alzheimer’s, Parkinson’s, 

Huntington and Amyotrophic lateral sclerosis, etc.      

1.2 Problem Statement/Motivations 

This section provides a detail ensight of the challenges and the problems need to be looked 

into, from two different perspectives—challenges with the early diagnosis of NDDs and 

issues related to machine learning. 

1.2.1 Issues with the Early Diagnosis of NDDs  

Neurodegenerative diseases, especially Alzheimer’s disease is the most prevalent form of 

dementia and according to statistics, 5-10% of the population is affected by these diseases 

above the age of 65 [9]. The clinical symptoms of the disease are characterized by 

progressive amnesia, linking it with the continuous and gradual loss of cognitive power and 

finally, paralyzing the person by affecting the motor neurons. NDDs triggered by the 

deterioration of neuronal cells due to accumulation of neurofibrillary tangles and pathological 

proteins (such as α-synuclein, tau proteins etc.) and also the senile plaques in cortio-cortical 

and cortio-sub cortical parts of the brain [3]. Since the occurrence of memory loss can be 

related to one of the aging factors, the ability to predict or diagnose a NDD turns out to be 

impossible at an earlier stage.  
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Advances in medicine and healthier lifestyle choices are allowing people to live longer [10]. 

However, as this shift continues, so does an increase in age-related neurodegenerative 

diseases, such as Alzheimer’s and dementia [11]. Currently, treating neurodegenerative 

diseases, places considerable pressure on national healthcare systems [12]. Many believe that 

significant increases will be unsustainable [13]. The solution is not obvious; however, 

approaches centred on early detection, and management are likely to yield some interesting 

results. Nonetheless, early detection of neurodegenerative diseases is still a major unresolved 

and significant area of concern for national healthcare services, globally. Neurodegenerative 

diseases are one of the leading causes of death, even in developed countries. A progressive 

central nervous system disorder leads towards severe neurodegenerative diseases like 

Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic Lateral Sclerosis. Due to the 

insidious onset and gradual progression of pathological changes, it is crucial to divide the 

evolution of neurodegenerative diseases into different stages in order to detect their 

symptoms earlier. 

One possible approach is to build on the advances made in e-Health systems to improve the  

detection, diagnoses and treatment of such diseases to support disease management and 

integrated care strategies [14]. This will allow physicians to incorporate information and 

communication technologies into the decision-making process to enhance the diagnosis of 

such diseases and inform treatment strategies [15]. The research agenda is timely, given that 

conclusive diagnosis of these diseases is currently only possible posthumously, by direct 

examination of the affected brain tissue after the death of a patient [16]. Compounding the 

problem further, obvious symptoms of neurodegenerative diseases are only visible during the 

advanced stages of the illness (i.e., gait impairment) when no possible cure is available. This 

often leaves the patient in a miserable condition awaiting his or her death. Clearly, new 

approaches are required to detect the early onset of symptoms associated with such diseases 

to either prevent or mitigate disease progression [17]. 

At a basic level, it allows individual patterns or features within the data to be explicitly 

associated with particular diseases. For example, abnormal and chaotic body movements 

caused by damage to neurons can be associated with Huntington’s disease. At a more 

advanced level, the similarities between different neurodegenerative diseases need to be 

clearly defined. This will allow a patient’s unique needs to be considered when deciding on 
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appropriate treatments. While, having similar characteristics, different neurological diseases 

cause atrophy in different parts of the brain; Huntington’s disease causes damage to the 

caudate, Parkinson’s damages the substantia nigra, and Amyotrophic lateral sclerosis (ALS) 

damages the lower motor and pyramidal neurons, resulting in severe damage to body 

movement. Furthermore, there is a need to take into account other features directly related to 

diseases such as age, gender and so on. Clearly, focusing on a single correlation is unlikely to 

identify a particular neurodegenerative disease. Solutions that are designed to make 

correlations between multiple patterns or features within the data are likely to be particularly 

effective in identifying specific neurodegenerative diseases. 

The loss of cognitive power is generally associated with a decrease of functional 

synchronization of different parts of the brain. Hence, loss of functional interaction between 

cortical areas could be considered a possible symptom of any NDD. Finding the 

synchronization in terms of coherence and correlation can possibly provide significant 

information in the early diagnosis of NDDs. However, the compactness of EEG signals 

because of different frequency bands makes this task less straightforward. More research is 

still required to find out the exact role of each frequency band in the early diagnosis of these 

diseases. 

1.2.2 Issues related to Machine Learning Approach 

In the context of machine learning, data mining offers many challenges that needed to be 

considered to get optimal results from a classifier. These factors can affect the mining process 

in terms of computation time, extraction and selection of appropriate features and 

implementation of new approaches that can help us to get expected results. This section, 

briefly states those challenges: 

 Skewed datasets: Learning of a classifier from an imbalanced datasets usually 

generates biased results. In this case, a classifier becomes more sensitive (highly 

trained) for the majority class and less sensitive (less trained) for minority class. 

Ultimately, the results obtained from such classification make the situation more 

complicated, especially, when the data is being processed from a real time 
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environment—biomedical, genetics, radar signals, intrusion detection, risk 

management and credit card scoring [18].  

 Handling missing data: There are many reasons behind missing entries in a dataset. 

A damage in the remote sensor network, failure of gene microarray to yield gene 

expression, finger prints, dust or manufacturing defects, missing applicable tests while 

diagnosing patients, can be some of the reasons of missing entries in a dataset, as 

described by Marlin in [19]. Feature extraction and feature classification based on 

these datasets that lead to unreliable results. Problems of missing data should be 

incorporated before starting a computation process. 

 Multiclass datasets: The problem of skewed datasets becomes even more 

complicated when it comes to multiclass datasets. Practically speaking, in real world 

environments, mostly the datasets come from a multiclass domain, for instance, 

protein fold classification [20]. These multiclass datasets pose new challenges as 

compared to simple two-class problems. Zhou et al. in their paper [21] argue that 

handling multiclass datasets is much harder than handling two-class problem 

domains. Jeopardizing the problem further, almost all classifier evaluation techniques 

are designed for two-class problems and become unfit for multiclass problems. 

 Extraction and selection of relevant features: The accuracy of a classifier is 

directly dependent on the variables that are provided for the classification. The 

analysis of gait as well as EEG signals and extraction of relevant information is not an 

easy task. Gait signals may be contaminated with other muscle movement signals or 

by the environmental data. Similarly, EEG signals may contain the signals of eye 

movements or externally generated signals (power line, electrode movement, etc.). In 

the presence of these artifacts, discrimination or classification leads to wrong results. 

This problem motivates some preprocessing steps to get clean signals before 

classification. Once the signals are extracted, the next challenge is the selection of the 

most relevant features among others. This not only saves computation time but also 

reduces the complexity of the system. 

 Data Filtering: Previous studies focus on the analysis of compact EEG signals 

without filtering them into narrow frequency bands. This does not provide optimal 

information about the frequency band which is more important in detecting 

Alzheimer’s (or other NDDs) at its earlier stage. 
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 Selection of a Classifier: In the field of pattern recognition, the main focus is the 

successful classification of the features with the maximum possible accuracy rate. A 

classifier with a specific set of features may or may not be an appropriate option for 

another set of features. Moreover, different classification algorithms achieve different 

degrees of success for different kinds of applications [22]. In this case, selection of an 

appropriate classifier becomes a challenging task. Indeed, further research is still 

required to generalize the performance of the classifiers. 

1.3 Aims and Objectives 

The main aim of this research work is to provide an early diagnostic and therapeutic system 

for NDDs using machine learning techniques. More precisely, it focuses on the study of gait 

as well as EEG signal processing and classification techniques to propose new methods that 

can help clinicians for the early diagnosis of these diseases. 

Following are the main objectives to achieve this aim: 

 Collection of gait signals for different neurodegenerative diseases such as 

Parkinson’s, Hartington’s, and Amyotrophic lateral sclerosis and also for control 

subjects; 

 Removing artifacts and handling missing entries of datasets and addressing the issues 

with imbalanced datasets and proposing oversampling and under-sampling methods to 

handle this; 

 Classification and evaluation of multiclass datasets using PRTools (a Matlab 

integrated pattern recognition tool) using a set of linear, nonlinear and Bayes normal 

classifiers;  

 Performance evaluation of classifiers from two different perspectives, i.e., 

Visualization Techniques (ROC analysis and Reject Curves) and Statistical 

techniques (Confusion Matrix, Precision, Recall, Sensitivity, specificity and F-

Measure); 

 Collection of EEG signals of Alzheimer’s patients and control subjects using 32-

channel electrodes and filtering of EEG signals into different optimized frequency 

bands to improve the detection accuracy; 
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 Compute the neural synchronization of Alzheimer’s patients and healthy persons by 

using neural synchrony measurement techniques (Phase synchrony, Coherence, and 

Correlation); 

 Propose a novel method to compute the synchronization of neuronal activities using 

Principal Component Analysis (PCA). Also, measure and compare the perturbation in 

the functional brain activities of Alzheimer’s patients with the neuronal activities of 

control subjects by applying the Wilcoxon rank-sum test; 

 Develop and implement the Gram-Schmidt orthogonalization process for constructing 

an orthogonal basis for a Euclidean space to find out the best features that can act as 

biomarkers for the early detection of Alzheimer’s 

1.4 Novel Contributions 

Based on the developmental stages of NDDs, this research work has been divided into two 

parts. Part I is based on the discrimination analysis of gait signals of different NDD patients 

while Part II represents the analysis of EEG signals of Alzheimer’s patients as well as control 

subjects. Novel contributions of the research work are presented below:  

Part I-Discrimination of gait signals: during the analysis of gait signals of different NDDs 

and control subjects, we propose the following methods to handle the challenges that are 

described in section 1.2: 

 The possible solutions of imbalanced datasets are provided in terms of under-

sampling and over-sampling. We intend to produce more pseudo-data to solve the 

problem of getting biased results due to different numbers of entries in each set.  

 In our research work, we intend to select all significant features that have direct or 

indirect impact on the progression of NDDs. For instance, age, gender, weight of the 

subjects, BMI factor and exact level of severity of the disease are important features 

that are being neglected in the available literature. 

 For the discrimination of gait signals of different NDDs that arose by similar causes, 

we intend to implement a wide variety of classifiers. They belong to linear, non-linear 

and Bayes normal classifiers.  
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 Due to multiclass datasets, it is impossible to check the accuracy of the classifier 

using a single evaluation technique. It is intended to represent results using different 

evaluation techniques—visualization and statistical techniques. 

 In this research work, I intend to propose a classifier fusion strategy from base-level 

classifiers to get higher accuracy rates and to resolve the ambiguity of selection of a 

classifier, for a particular dataset. 

Part II-Computation of EEG signals: this part is based on the rectification of EEG signals 

to find out those significant features that can help clinicians to diagnose Alzheimer’s at 

earlier stage. Following are the novel contributions of our research work for processing the 

EEG signals: 

 In order to find out those hidden patterns that are usually neglected during compact 

EEG processing, we intend to divide each EEG signal from each channel into five 

narrow frequency bands – delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ). After 

that, each data band is used to measure the synchronization in each part of the brain. 

These frequency bands can help to extract the most significant features that can later 

be used as biomarkers for the early diagnosis of Alzheimer’s.  

 We propose two novel methods to compute EEG signals; one is called PCA based 

synchrony measure while the other is called Average synchrony measure. In the PCA 

based method, we intend to eliminate all redundant information that can be a base of 

providing biased results. The results of these methods are compared using the 

Wilcoxon rank-sum test. 

Part III-Benefits of Computing Gait and EEG Signals: In this research work, two 

different kinds of signals are computed – Gait and EEG signals. Gait signals are particularly 

used for the exact diagnosis of a specific NDD for the accurate and in time treatment of the 

patients. For instance, diagnosis time is of vital importance in the treatment of a disease 

especially for chronic diseases. The main challenge with NDDs is that they all pose the same 

symptoms at the final stage—gait disorder. At this stage, it is very difficult to discriminate a 

specific neurodegenerative disease with a non-invasive method. Automatic classification of 

gait patterns by statistical pattern recognition techniques will help to solve this problem by 

discriminating different NDDs according to their data patterns. This will save the time of 
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doctors/practitioners not only for diagnosing exact NDDs but also their timely treatment of 

the disease. 

On the other hand, EEG signals provide significant information for the early detection of 

NDDs. EEG generates by bioelectric phenomenon that is stimulated from the cerebral cortex 

by auditory and somatosensory stimuli is further investigated, explored and interpreted to 

understand the brain functionality and to identify different pathologies. This process 

particularly helps to find out those diseases that are impossible to be cured by medication, for 

instance, the neurodegenerative diseases. This phenomenon also helps for the early detection 

of life threatening diseases and widely used in the clinical studies.    

1.5 Thesis Organization 

This thesis is organized as follows: 

Introduction (Chapter 1): this chapter highlights the importance of diagnosing NDDs at 

earlier stage and also presents the potential of the machine learning approach to achieve this 

target. In addition, the issues related to early diagnosis are discussed in detail. This chapter 

clearly advocates the development of new approaches and methods in machine learning to get 

optimal benefits from it, in the area of computer science.  

Background (Chapter 2): this chapter elaborates different types of NDDs, their 

developmental stages and their symptoms at each stage. Moreover, a background of signal 

classification and signal processing is presented in it. It highlights the differences between 

supervised and unsupervised machine learning. Furthermore, different types of supervised 

machine learning techniques are discussed in detail.  

A Strategic Framework for the Early Detection of NDDs (Chapter 3): this chapter 

presents an explanation of each module of the proposed framework, from data collection to 

its processing and then concluding the final results. Moreover, it gives an idea of the tools 

and techniques that are used to complete this research work. 

Assessment of Gait Dynamics (Chapter 4): this chapter demonstrates the assessment of gait 

signals of different NDDs and control subjects. It also presents the possible solutions of 



1.5 Thesis Organization   11 

 

skewed datasets, missing data entries, multiclass pattern recognition, and discrimination 

among similar diseases. Moreover, it discusses eleven different classification techniques for 

discriminating the gait signals of NDDs and control subjects. It also presents various 

performance evaluation techniques to measure the accuracy of each classifier.  

Classifier Fusion Strategy (Chapter 5): it presents our novel idea to combine base-level 

classifiers to achieve higher accuracy rate. Moreover, it highlights six different combining 

rules (product, maximum, minimum, mean, median and voting) and their importance in 

combining the classifiers. The main purpose is to check if the new approach shows superior 

performance compared to the stand-alone classifiers. Instead of looking for better classifiers 

and more appropriate set of features, this chapter provides an insight of looking at the best set 

of classifiers and the best combination method. 

Neural Synchrony Measurement (Chapter 6): this chapter demonstrates the significance of 

computing EEG signals to measure neural synchronization of Alzheimer’s disease and 

control subjects. It presents our novel methods to apply three neural synchrony measurement 

techniques (phase synchrony, cross correlation and MS coherence) on three different datasets 

of EEG signals. These methods are; PCA based synchrony measure and Average synchrony 

measure. The Wilcoxon ranksum (Mann-Whitney) test is used to compare the results of these 

two methods. Later, Gram Schmidt orthogonalization is applied with the “n-probe” function 

to get the most important features that can help clinicians for the classification and also for 

the early diagnosis of AD.  

Conclusions and Future Work (Chapter 7): this chapter provides the summary and 

conclusions extracted from the whole research work.  It also highlights the novel 

contributions and the limitations of the work and discusses some probable future directions. 
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Chapter 2 Neurodegenerative 

Diseases and Machine Learning 

2.1 Introduction 

This chapter provides a brief overview of neurodegenerative diseases, their development 

stages and importance of their early detection.  It also gives a detailed insight of signal 

processing in terms of feature extraction, feature selection and feature classification. A brief 

description of gait and EEG signals is also provided because of the major role they play in the 

early detection/diagnosis of Alzheimer’s and other neurodegenerative diseases. This chapter 

also presents a great deal of information about different kinds of classification algorithms. As 

such, it details the different processing steps of the early detection of neurodegenerative 

diseases, that is, measurements of gait and brain activity, preprocessing, feature extraction 

and classification.    

2.2 Neurodegenerative Diseases (NDDs) 

Neurodegenerative diseases is an umbrella term used to describe medical conditions that 

directly affect the neurons within the brain [23]. These include Parkinson’s, Alzheimer’s, 

Huntington’s, and Amyotrophic Lateral Sclerosis among others. Patients suffering with these 

kinds of disease, experience a cognitive decline over a long period and symptoms include gait 

abnormalities; problems with speech, and memory loss due to progressive cognitive 

deterioration [24]. Given the fact that people are now living longer, neurodegenerative 
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diseases have become more prevalent in developed countries and this is placing a major 

economic burden on health care services. For example, in 2005 it was estimated to cost USD 

315 billion to treat the 29.3 million people suffering with dementia [25]. In 2009, it was 

estimated to cost USD 422 billion to treat 34 million people with dementia around the world 

[26]. As the disease progresses the patient starts acting like a child because the degenerative 

mechanism reverses the process of neurons development which ultimately results in the form 

of functional disturbances, behavioural change, disabilities, cognitive and neurological 

disorders. 

The rapid development of e-Health systems focused on improving the pattern of diagnosing 

and treating disease with the help of disease management or integrated care strategies [14]. 

The decision process taken by the physicians during diagnosis and treatment may be further 

improved through the implementation of information technology [15]. Unfortunately, 

conclusive diagnosis of NDDs is only possible posthumously, by direct examining the 

affected brain tissues after the death of a patient [16]. Obvious symptoms of these diseases 

are only visible at the last stage (Gait Impairment), when no remedy could be effective and 

the patient is left in a miserable condition waiting for his/her death. To gain a better 

understanding of neurodegenerative diseases it is worth considering some of these in more 

detail. 

2.2.1 Alzheimer’s disease (AD) 

Alzheimer’s is a neurodegenerative disease which poses the greatest growing challenge 

among the aging population [27]. The results from a recent survey show that while cancer 

and heart disease have typically been the top priorities in healthcare, Alzheimer’s has become 

just as important in recent years [28]. This disease is so far proven incurable and irreversible. 

The exact cause is unknown and there is no evidence to suggest whether the disease or the 

build-up proteins is the root cause. 

The changes in the brain that accompany these symptoms are “tangles” and “plaque” of a 

toxic protein—Amyloid Beta (Aβ). These pathological neurofibrillary tangles accumulate in 

the entorhinal cortex and hippocampus parts of the brain that are responsible for the short 

term and the long term memory of a person [29]. Neuroscientists have reported that in order 
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to keep memory alive the communication between these two parts is very essential and any 

hurdle between these two regions breaks the circuit and leads towards memory disturbance 

and eventually memory loss [3]. 

2.2.2 Parkinson disease (PD) 

Parkinson is another neurodegenerative disease, first described by James Parkinson in 1817 

[30]. More than 2% of the population over 65 years and approximately 5–20/100,000 

individuals per year are affected by this disease, indicating its prevalence and incidence rate 

linked with aging [31]. According to a UK health economic report, the total cost needed to be 

invested for the treatment of an individual is £5993 which is a huge economic burden and a 

probable threat is the increment in this cost in the coming years [32]. 

Parkinson’s disease is characterized by the dopaminergic deterioration process of the nerve 

cells of substantia nigra [33], a part of the brain responsible for the production of 

“dopamine”—a chemical which works as a neurotransmitter  for controlling movements in 

different parts of the body. The degenerative process starts from the base of the brain, leading 

to the destruction of olfactory bulbs, followed by the lower brain stem and subsequently 

susbstantia nigra and mid brain [34]. Eventually, it destroys the limbic system and frontal 

neocortex resulting in cognitive and psychiatric symptoms.  

2.2.3 Huntington’s disease (HD) 

Huntington’s has first discovered by George Huntington in 1872, and is a devastating 

degenerative neuropsychiatric disorder [35]. According to a report, the overall prevalence of 

Huntington’s disease is 8 out of 10,000 people in caucasian populations [36]. So far, no 

preventive measures have been discovered for this fatal disease.  

A specific part of the brain, PolyQ, has the Huntington’s gene with 11-34 repeated sections of 

glutamine—responsible for the production of cytoplasmic protein called Huntington. When 

the PolyQ region generates more sections of glutamine, a mutant Huntington protein is 

produced which is the actual cause of Huntington’s disease [37]. This disease is an incurable 
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hyperkinetic motor disorder. The primary symptoms of this disease are jerky and shaky 

movements called chorea [38]. 

2.2.4 Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic Lateral Sclerosis (ALS) also known as Lou Gehrig’s disease is another 

neurological disease that degenerate both the lower motor neurons (LMN) and upper motor 

neurons (UMN). This male dominant disease has been mostly seen in individuals, 40 to 70 

years old [39]. This disease, either in sporadic or familial forms, occur with an estimated 

incidence of 0.4 to 1.8 per 100,000, quite uniformly throughout the world [40]. 

To date, it is believed that the actual cause of this disease is a mutant gene, superoxide 

dismutase (SODI) that affects the motor neurons of the brains. Moreover, the toxicity in 

Cerebrospinal fluid (CSF) is also considered a cause of neuron degeneration [41]. Motor 

neurons are the nerve cells that are responsible for voluntary movement of the muscles [42]. 

Weaknesses in arms and leg muscles are the earlier symptoms of ALS which leads to sever 

attack to chest muscles, leaving patients unable to breathe [43]. 

This brief introduction reveals that different neurological diseases cause atrophy in different 

parts of the brain; Alzheimer’s causes deterioration in cortex and hipcampus, Huntington’s 

disease causes damage in caudate, Parkinson’s in substantia nigra and Amyotrophic lateral 

sclerosis (ALS) damages the lower motor and pyramidal neurons, resulting in a severe 

damage to body movement. 

2.3 The Developmental stages of NDDs 

This section explains the development stages of NDDs, and the symptoms that appear at each 

stage. We also discuss how we can detect neurological diseases from the pre-clinical stage to 

their last stage. The development cycle of neurodegenerative diseases is divided into three 

main stages: 

1. Retrogenesis; 

2. Cognitive Impairment; 
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3. Gait Abnormality; 

Retrogenesis: The starting point of NDDs is a malfunctioning of the cholinergic system of 

the basal fore brain, which further extends to the Entorhinal Cortex and the Hippocampus that 

are responsible for the short and the long term memory [2]. These changes in the brain 

usually start 10-20 years in advance and the first visible sign of NDDs is forgetfulness or 

some problems in short term memory, e.g., forgetting the place for eye-glasses, everyday 

objects, misplacing the keys, etc. Symptoms may include enhanced memory loss, attention 

loss, difficulties in recognizing the family members, needing help in getting dressed and also 

gait problems. 

The disease with its progression starts affecting the cerebral cortex resulting in the form of 

further decrease in cognitive power. This stage is linked with the clinical diagnosis of NDDs 

in patients which include confusing among familiar places, losing decision power, mis-

placing valuable things, mood and personality changes, childish actions in office, increased 

anxiety, loss of spontaneity and sense of initiatives [2, 44]. 

Further atrophy in the affected area of the cerebral cortex results in the form of serious 

problems with language, sensory neurons and reasoning. Patients show serious attitude 

towards wandering and agitation. Symptoms may include enhanced memory loss, attention 

loss, difficulties in recognizing family members, needing help in getting dressed and also gait 

problems. 

 

Figure 2-1: Manifestation of pathology and its progression in AD  
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Figure 2-1, shows the process of retrogenesis where the darker areas depict the affected parts 

of the brain.  Similarly, this process of retrogenesis has been elaborated in Table 2-1, which 

shows the process of normal human brain development compared to the deterioration of brain 

cells due to neurodegenerative diseases. Here, the upward arrow indicates the development 

process and the downward arrow shows the destruction of brain parts. 

Table 2-1: Brain Development vs. Brain Deterioration 

Human Development Stages Vs. Alzheimer’s Stages 

Developmental Stages Acquired Abilities Alzheimer’s Stages Lost  Abilities 

 

 

Adolescence-to- 

Puberty 

Work nicely without help 

Develop working skills 

Manage routine works 

accurately 

 

Preclinical-to- 

Early Stage 

Work with less confidence 

Losing focus on skills 

Minor mistakes in work 

 

Mid Childhood –to- 

adolescence 

Get good memory 

Try to learn complex tasks 

Managing with clothing 

and food 

Good understanding 

 

Early Stage-to- 

Mild Stage 

Forgetting little things 

Cannot handle complex 

tasks 

Difficulty in managing 

food and getting dressed 

 

 

Early Childhood-to- 

Mid Childhood 

Walk steadily  

Try to do small tasks 

Manage to put on cloths 

Taking shower on their 

own 

 

 

 

Mild Stage-to- 

Moderate Stage 

Disturbance in walking 

Cannot perform small tasks 

Cannot take shower on 

their own 

 

Infancy-to- 

Early Childhood 

Holding up head 

Trying to sit 

Smile 

Shaky walk 

Try to speak 

 

 

Moderate Stage-to- 

Severe Stage 

Speaking problems 

Cannot walk 

Loss of memory 

Cannot hold-up their head 

Cognitive Impairment: There is a very close relationship between neuro-degeneration and 

toxic proteins. This stage is accompanied with the accumulation of pathological 
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neurofibrillary plaques and tangles in the entorhinal cortex (EC), hippocampus, caudate, 

substantia nigra parts of the brain. These proteins play a pathogenic role in the progression of 

NDDs which results in the form of neurons degeneration and memory impairments. The 

Entorhinal Cortex (EC) is that part of the brain which gets affected due to Alzheimer’s. 

Neuroscientists have reported that in order to keep memory alive the communication between 

the Entorhinal Cortex (EC) and the Hippocampus is very essential and any hurdle between 

these two regions breaks the circuit and leads towards memory disturbance and memory loss. 

It is concluded that EC is the main hub which is more vulnerable to NDDs and these diseases 

propagate with the network of neurons [3]. 

Our research work shows that accumulation of these pathological proteins is another factor, 

which could help with the early prediction of Alzheimer’s and other neurodegenerative 

diseases. 

Gait Abnormality: Predicting a disturbance in gait activity indicates a disturbance in 

cognitive functions.  Scherdera et al [45] have proposed a term “Last-in-First-out” which 

refers to the phenomenon that the neural circuits that mature late in the developmental life 

cycle are more vulnerable to neuro-degeneration and this concept helps in early prediction of  

any kind of dementia (Neurodegenerative diseases). Zhu et al [46] stated that a healthy gait 

pattern requires input not only from the neurological system associated with motor and 

sensory neurons but also from cortical processes such as judgment, planning and a spatial 

awareness. Higher level gait disturbances are under consideration these days, which are 

closely related to disturbances in cortico-cortical and cortico-subcortical connections, e.g., the 

frontal connection with parietal lobes and frontal lobes with basal ganglia, respectively [4].  

Disturbances in cognitive function have a direct link with higher level gait disturbances and it 

is one of the main symptoms of brain disease. Figure 2-2 elaborates the relationship between 

neurological diseases and their effects on body movements.  
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Figure 2-2: Relationship between cerebral pathology and gait disorder [47] 

2.4 Bio-Signal Processing 

Signal processing is the process of modelling, detection, identification and utilization of 

patterns and structures in a signal. Random signals are processed through statistical models of 

signal processing, which are used for decision making systems, extracting the relevant 

information from noisy, distorted and incomplete signals. A signal describes the information 

through variation of quantity which reflects the properties, characteristics, state, the course of 

action and the information about a source and that information may be processed directly by 

humans or machines for the purpose of decision, forecasting, control, investigation, research 

and further exploration of an object [48].  

Biomedical signal processing centres on the acquisition of vital signals extracted from 

biological and physiological systems. These signals help us to obtain information about the 

current state of living systems, and therefore, their monitoring and interpretation have 

significant diagnostic value for clinicians as well for researchers to extract information 

related to human health and diseases. 

Biomedical signal processing depends on the knowledge of their origin, nature of the signals, 

their properties and their complexities which come along signals. They have to be clearly 

examined to be processed non-invasively and indirectly due to their underling complex 

biological structure. In addition, the extracted signals are not always ready to be used because 

of noise. These unwanted signals are sometimes due to malfunctioning of the equipment or 

sometimes due to other body signals that create a hindrance in obtaining the required results. 
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Consequently, pre-processing of the signals is required to get the required set of data for 

further experiments. 

This section briefly introduces the signals we have used for our research work, i.e., gait and 

EEG signals. It also provides information about feature extraction and feature selection 

techniques and also explains feature classification. 

2.4.1 Gait and EEG Signals 

A cyclic movement of the feet in which one or the other alternate strikes to ground is called 

gait [49], and the measures obtained by the stride-to-stride movements of the feet are called 

gait signals [50]. Hausdorff et al in [50] suggested that the understanding of the relationship 

between loss of motor neurons and the perturbation in the stability of stride-to-stride 

dynamics can help us to monitor neurodegenerative diseases progression and in assessing 

potential therapeutic interventions. Gait cycle duration is also referred as the stride time, i.e., 

fluctuation from one stride to the next in a complex manner. Due to intact neuronal control 

the fluctuation magnitude of the strides in control subjects is relatively small (~2%).  

A variation of the surface potential on the scalp reflects the functional activity of the brain. 

This surface potential of the brain is collected by electrodes, attached on the scalp. The 

voltage between the electrodes is measured and ultimately this is filtered, amplified and the 

recorded data is collected, which commonly is known as EEG.  EEGs are used as a method of 

investigating mental processes to investigate any perturbation in the brain activity. The EEG 

is roughly defined as the mean electrical activity in the brain at different sites of the head 

[51]. More specifically, it can be defined as the extracellular current flows of a large number 

of neurons.  

2.4.2 Feature Extraction and Feature Selection 

The pattern recognition process consists of two steps; feature extraction and feature 

classification. A feature is one particular aspect of an instance that can assist in grouping it to 

a particular class. In other words, features are synonymous of input variables or the attributes 

of a dataset that provide good representation of a specific domain, related to the available 
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measurements [52]. In the case of medical diagnosis, these features can be the symptoms of a 

disease. The features can be qualitative or quantitative as shown in the Figure 2-3. 

 

Figure 2-3: Types of Features [53] 

 Feature extraction consists of finding a set of measurements or block of information to 

present the properties of the signal [54]. These features are the basic index of detection, 

classification and regression in the field of biomedical signal processing and also in data 

analysis.   

The expression of the features can be binary, categorical or continuous. For instance, they can 

be the physical condition of the patient (age, health status, family history), position of the 

electrode on the scalp to get EEG signals, or may be EEG signal descriptor (frequency, 

voltage, amplitude, phase, etc.) [54]. The performance of the pattern recognition system 

depends on the features we select and also on the classification algorithms. 

This process also removes erroneously recorded signals caused by sensor malfunctioning and 

noise that can have a negative effect on signal classification. This process can be defined 

using the following mathematical formula and the process is illustrated in Figure 2-4. 

                                               {
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                                                               (   ) 
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Where I(t) is the data retrieved from the data source, that is mapped to some signal S(t) and 

the inherited noise found in the signal is defined as N(t). Consequently, the filtered value can 

be defined as the signal S(t) -  the noise value N(t). 
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Figure 2-4: Feature Extraction and Noise Reduction Process 

Feature selection, on the other hand, is the process of identification and removal of irrelevant 

as well as redundant features from the datasets [55]. The existing datasets may have hundreds 

and thousands of features. Some of them could be totally irrelevant or some others may have 

redundant information. This can lead to more complications and also to the increased 

processing time of classification. This is also effective in handle multi-dimensional data, 

which ultimately enables data mining algorithms to work more efficiently and effectively. 

Different methods are available to handle this issue. More details are available in [55].   

2.5 Pattern Recognition  

The two major types of learning are supervised learning and unsupervised learning. The main 

problem with unsupervised learning is the recognition of structure of the data, that is, to know 

whether there are groups in the data or not. Also, what characteristics make the object similar 

within the group and different across the groups. Clustering is the best option for 

unsupervised learning. In clustering, there is no labelling of the data. 
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Figure 2-5: The pattern recognition cycle [53] 

On the other hand, in supervised learning which is also known as classification, each object 

in the dataset has pre-assigned labels. The label for each object is provided at the learning 

stage while the testing stage recognises the particular class of an object.  
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Figure 2-5, presents a basic cycle of pattern recognition technique where a user comes with a 

problem and a set of data. The data is visualized and a possible technique is investigated to 

analyse the problem and finally the user is provided with a possible solution.  

2.5.1 Pattern Classification/ Feature Classification 

Feature classification, generally known as machine learning, is the automatic assignment of a 

class to the feature vector that has been previously extracted from the signals. The algorithms 

used for this classification are known as “classifiers”. Classifiers are able to learn how to 

identify the class of a feature vector by providing it a training dataset. The training set 

constitutes the feature vectors already labelled with the exact class label. An important thing 

about the classifiers is that the learner does not know which action is to be taken to get better 

results rather it has to be discovered which algorithm is best, by trying out different 

classifiers. The reason is that almost every dataset comes with different specifications. The 

advantage and disadvantage of this technique is that there is no ground truth against which 

the results are to be compared. The users have to do some subjective estimation of the results 

to conclude their effectiveness. 

The remainder of this section provides an overview of well-known classification algorithms. 

These classifiers are divided into four categories; logic or rule based classifiers, rule learners 

classifiers, perceptrons and statistical learning classifiers. 

2.5.1.1 Logic Based (Symbolic) Classifiers 

The decision tree and rule based classifiers are the main logic based classifiers. 

Decision Trees 

Decision trees classify the instances by sorting them based on their feature values. The node 

of tree is called a feature of an instance that has to be classified, while each branch represents 

a value that the node assumes. The classification of the instances starts from the root node 

and sorted based on their feature values. The branches then lead either to other features or 

end in leaf nodes, which are the classes. The root node divides the training data into possible 

branches. There are numerous methods that help to find out the root node such as information 
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gain and gini index. However Murthy has narrated that there is no single criterion which 

should be used to divide the dataset [1].  

To avoid the overfitting of training data, two common approaches are usually considered:  

1) Training of the classifier should stop before it reaches the point where it perfectly fits the 

training data; 

 2) Pruning of the induced decision tree. The most effective way is to pre-prune the decision 

tree before it grows to its full size. This can be accomplished by a threshold test for the 

feature quality matric. Else, in the post-pruning method, a check of the tree’s performance is 

made if necessary, pruned.   

Decisions trees are usually univariate because at each internal node they split the dataset 

based on a single feature. However, there are a few other methods that are constructed on 

multivariate features [56] to improve the classification accuracy by creating new binary 

features with logical operators such as conjunction, negation, and disjunction. 

The main advantage of using decision trees is their comprehensibility. The classification of 

an instance to a particular class is easily understandable. Also, another aspect is that the 

decision tree works better for discrete/categorical features. 

Rule Learner 

Rules can be derived from decision trees by creating a separate rule for each path taken from 

the root to each leaf node [57]. A training dataset can also be used to generate rules using a 

variety of rule-based algorithms. Algorithms that are used to construct a rule are called 

“separate-and-conquer” algorithms or “covering” algorithms. The only difference between 

rule learner and the decision tree is the former evaluates the quality of the set of instances 

while the decision tree evaluates the value of each feature that is to be tested. Further 

advancements in the rule learner added additional features (characteristics) to avoid “over-

fitting” by stopping the specialization process with the use of quality measures or by 

generalizing overly specialized rules in a separate pruning phase [58]. 

For a rule induction system, it is very important to generate decision rules with high 

probability or reliability. A “Rule quality” function is mostly used to measure these qualities 
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such as the J-measure. In case of a conflict when multiple rules are agreed by the example to 

be classified, a rule quality measure is associated which each rule for a final decision. These 

rules can be statistical or empirical. RIPPER is a rule-based learner which works with the 

process of growing and repeating. The growing phase is more restrictive as compare to the 

repeating phase in order to fit the training data as well as to avoid over-fitting.   

Rules are normally more comprehensive than decision trees for learning a binary problem, 

since with rule learners, only the rules for the positive class needed to be learnt. If a multi-

class dataset is to be classified then the rule based learner must be run separately for each 

class. One disadvantage of this is that for each class a separate rule is needed and that could 

be inconsistent or incomplete but these problems are not common with the decision tree 

algorithms. Moreover decision tree algorithms work more efficiently as compared to rule 

based learners. Rule based learners work on the principle of separate and conquers while 

decision tree works on divide and conquer rules. Flach and Lavrac [59] suggested that the 

classification accuracy of rule based learners can be improved by combining features of users 

from their background knowledge as well as by automatic feature construction algorithms. 

2.5.1.2 Artificial Neural Network (Perceptron based technique) 

An artificial neural network (ANN) is a machine learning technique based on the connections 

of neurons in our brain that mimic the learning capabilities from experience. Neurons are 

simple processing unit cells and exist in millions in the brain. Each neuron is connected to 

many thousands of other neurons.  

As a neural network is trained from past data, they are trained to generate output based on the 

information extracted from the previous training dataset [60]. The common way of learning 

in the perceptron algorithms is they go through the training dataset again and again until they 

find an output vector which is correct for all training sets. Later on, the learned weight matrix 

is used to classify the test data [1]. 

There are several advantages of using ANNs: 1) without making prior assumption of the 

function, they can easily adjust with the datasets, 2) being a universal function approximator, 

they can easily approximate any function with arbitrary accuracy, 3) they are a non-linear 

model, hence can be used for most complex real world application, 4) there are used in many 
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critical infrastructures like industry, business, fault detection, science, bankruptcy prediction, 

hand writing recognition, and bio informatics [60]. 

Some commonly used neural networks based on single layer or multi-layer perceptron are 

discussed below. 

Back propagation neural network (BPNN) 

This is a simple and effective model, which is also known as the feed forward back 

propagation neural network. It is based on three layers, input, hidden, and output layers. 

During training, the data is fed into the input layer, which is then propagated to the hidden 

and finally the output layer, called forward pass. The weight is calculated and adjusted on 

these layers on input, output and hidden layer to generate output value of the resulting sum. 

The actual and target values are compared and the calculated error is then propagated back to 

the hidden layer. This is used to update the weight of each node again. This is called 

backward pass or learning. This cycle keeps working until the error is acceptable. This model 

can be used for the test data which does not need any modification in the weight matrices. 

The input layer receives the test data and the feed forward network then generates the results 

based on the trained network [41].  Figure 2-6 shows the learning process of a neural 

network.  

 

Figure 2-6: Learning process of BNNP [61] referred by [1] 

BNNP is a robust neural network and widely used in many applications but it still has many 

limitations like; training time of the classifier is very high due to the number of input and 

target pairs. Also the internal mapping of the trained classifier on the test data work as a black 

box which is difficult to understand and does not provide any confirmation if it can provide 

all acceptable solutions [62]. Determining the size of the hidden layer is also a problem; the 
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exact number of neurons should be known to make a perfect approximation as well as for 

better generalization capabilities. On the other hand a large number of nodes can lead to the 

overfitting problem [1].  

Radial Basis Function Neural Network (RBFNN) 

It is a multi-layer neural network based on an input layer, a kernel (hidden layer), and an 

output layer. Kernel basis functions in the kernel layer are called radial basis functions. It is 

different from the BPNN in its training algorithms. Also the kernel units calculate the output 

of RBFNN as a linear combination of radial basis functions. It is considered as a Multi-Layer 

Perceptron (MLP) because the parametric statistical distribution model and non-parametric 

statistical distribution are combined in a serial sequence [60]. 

Some advantages of using RBFNN over BNNP are that can be trained the classifier quickly 

because a single hidden layer can be used for modelling any non-linear function. They have 

better mapping capabilities due to their simpler architecture. Due to these characteristics 

RBFNN is considered an interesting alternative for pattern classification.    

General Regression Neural Network (GRNN) 

GRNN is a feed-forward neural network, which uses non-linear regression functions for 

approximation of supervised data. It also constitutes three layers; input layer, hidden layer, 

and output layer. The input layer is linked with the output layer by direct mapping. Instead of 

using learning rate or momentum as a transfer function, GRNN for learning phase, uses 

smoothing parameters. The computation time for GRNN is remarkably less because of two 

reasons, mentioned in [60], 1) there is a one pass training of the data through the network, 2) 

a single smoothing factor is selected to optimize the transfer function for all nodes.  

Due to above mentioned characteristics, the GRNN improves the learning process as well 

reduces the computational complexity. It uses the non-parametric estimator density function 

like the probabilistic neural network but the difference is that they are suitable for continuous 

values while PNN works better to find boundaries between categories of pattern.   

There are other kinds of neural networks like the Probabilistic neural network (PNN) and the 

Complementary Neural Network (CMTNN). PNN is a type of radial basis networks, related 
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to the Bayesian decision rule and Parzen while CMTNN uses a pair of opposite feed forward 

back propagation neural network for classification. More details are available in [63]. 

2.5.1.3 Statistical Learning Algorithms 

In contrast to the previously described learning algorithms, statistical algorithms assume that 

the process of learning task itself is riddled with uncertainty. Therefore, instead of assigning 

an instance definitely to one class or another, they are given a probability that they belong to 

a particular class. For instance, linear discriminant classifier (LDA) and also Fisher’s 

discriminant classifier are used to find the linear combination of features that best describe 

the assignment of an object to a specific class [1]. It is considered that Bayesian networks are 

the most powerful and well-known representatives of statistical learning technique.  

Bayesian Networks 

A Bayesian network provides a graphical representation of presenting the probability 

relationships among a set of features/variables. It is a directed acyclic graph (DAG), where 

the nodes are random variables connected by directed arcs. An arc denotes a direction of 

casual influence. Any nodes that do not have an arc directed towards them are called “root 

nodes”. These root nodes must be given a prior probability. All other nodes have an 

associated probability table. This table is filled with conditional probabilities, which state the 

probability of that random variable appearing, given observable evidence of other random 

variables. The evidence must be obtained from a node that is an immediate neighbour only, 

from another node directed towards the node. 

The Bayesian network provides a simple and flexible method to solve a problem. In 

theoretical format it can be represented as [64]: 

                                                              ( | )  
 ( | )  ( )

 ( )
                                                     (   ) 

 Here  ( ) is the prior probability of the proposed hypothesis;   ( ) is the prior probability 

of evidence e;  ( | ) is the probability of e given h, while  ( | ) is the probability of h 

given e.  
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Naïve Bayes Classifiers 

A Naïve Bayesian (NB) network is a basic and simple example of Bayesian network. It is 

composed of a cyclic graph in which the class variable is always the parent node, while the 

observable variables are its children. The model dictates that there are strong assumptions of 

independence between the children nodes, which means that there are no arcs between the 

children [1]. Although NB is considered a very simple and efficient classifier as it does not 

take much time for training, yet this simplicity comes with lower predictive accuracy. 

One other advantage of NB is the handling of missing attributes in the datasets, while other 

Bayesian networks simple ignore the missing attributes of the data. Other classifiers use more 

sophisticated techniques such as model imputation or sample deletion, or else a more 

computational expensive technique such as expectation maximization [65]. 

Other advantages of using NB include its short computational time as less time is required for 

the training of the classifier. The authors in [1] also suggested that if the product form is 

converted into the sum model using some algorithms then significant computational 

advantages could be achieved. They also mentioned that numerical features are discretized 

during data pre-processing although numerical distributions can also be used to calculate the 

probabilities.   

 There are some disadvantages of using Bayesians network. For instance, BN handle discrete 

variables better than continuous variables. Also, BN are not suitable for datasets with a large 

set of features as for this kind of data a very large network is needed to be constructed which 

is simply not feasible in terms of time and space [1]. Another problem is the discretization of 

the numerical features before induction, in most of the cases. 

Linear discriminant classifier (LDC) 

This is a simple classifier, which works effectively even when the classes are not distributed 

normally [53]. A discriminant function which is obtained by monotonic transformation of 

posterior probabilities p(wi|x) consists of: 

                                ( )     [ (  ) ( |  )]                                                        (   ) 
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Where  (  ) is the prior probability of the class    and  ( |  ) is the class conditional 

probability density function.  

 

Figure 2-7: A hyperplane which separates two classes: the “Circles” and the “Crosses” 

The separating hyperplane (as shown in Figure 2-7) works on the projection that maximizes 

the distance between the two classes means and minimizes the interclass variance [66]. In our 

case where we are using LDC for a multiclass classification, which means N>2 several 

hyperlanes will be used to separate the feature vector in four classes. The strategy, generally 

used in multiclass datasets is “One Versus the Rest” (OVR) strategy, which works by 

separating one class from the rest of the classes. The computational requirements for this 

technique are not very high. Also, it is a stable classifier because the results usually do not 

vary much by varying the training dataset.  

Quadratic Discriminant Classifier (QDC-Bayes Normal) 

This classifier produces non-linear decision boundaries between datasets of different classes. 

The Bayes rule is used to compute the posterior probabilities of a feature vector to decide 

which class it belongs to. It associates the feature vector to the class with the highest 

probability. QDC works by assuming a different normal distribution of data, providing 

quadratic decision boundaries, as the name of the classifier depicts [66]. 
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Uncorrelated Normal Density based Classifier (UDC- Bayes Normal)    

It works similarly like the quadratic classifier but the computation of a quadratic classifier 

between the classes in the dataset is done by assuming normal densities with uncorrelated 

features. The Quadric Bayes classifier takes decisions by assuming different normal 

distributions of data. It leads to quadratic decision boundaries, as the name of the classifier 

reveals. 

A linear classifier predicts the class labels based on a weighted, linear combination of 

features or the variables of the objects [67]. Logistic, Fisher’s, nearest means and polynomial 

are a few linear classifiers, available in PRTools [68]. 

Logistic Linear Classifier (loglc) 

The logistic linear classifier computes the classification of a dataset by maximizing the 

likelihood criterion using the logistic (sigmoid) function [69]:  

                                                               
 

     
                                                                (   ) 

The only drawback with this function is that it does not perform well when the values of 

features exceed 1000. 

Fisher’s Discriminant (Minimum Least Square-fisherc) 

By minimizing the errors in the least squares sense, this function finds a linear discriminant 

function between the classes in the dataset. This “one-against-all” strategy applies on all 

multi-class implementations, which also works for soft and target labels. Pseudo-Fisher 

procedures, based on pseudo-inverse, are used for high dimensional datasets or small sample 

sizes. This classifier does not use the prior probabilities stored in the datasets [70].  

Nearest Mean Classifier (nmc) 

The nearest mean classifier (nmc) is a plain nearest mean classifier which is sensitive to 

feature scaling but does not use any prior class probabilities, i.e., it is insensitive to class 

priors. In the nearest neighbor classifier the test data is classified according to the Euclidean 

distance between the test sample and the nearest trained sample and here again in the nearest 
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mean classifier the mean of the Euclidian distance of nearest trained class is computed to 

classify the sample data. 

                                                           (   )  √∑(     ) 
 

   

                         (   ) 

Polynomial Classifier (polyc) 

Polynomial classifier adds polynomial features to the datasets in order to run the untrained 

classifier. In this classifier, the combination of 2nd order terms may also be constructed but 

for higher orders no combinations are generated. This is also known as higher order neural 

network (HONN) [71]. 

Some non-linear classifiers that are selected from Prtools to manipulate our datasets are 

parzen, decision tree, support vector machine and k-nearest neighbor. A brief explanation of 

these classifiers is given below. 

Parzen Classifier (parzenc) 

It computes the optimum smoothing parameter between the classes in the datasets. The leave-

one-out estimate classification errors and final classification is stored as mapping. Parazenc is 

unable to calculate the density estimate. Discrimination is produced for smoothing parameters 

without any learning process. Smoothing parameters may be scalar, vector or a matrix with 

objects and their features [67]. 

Binary Decision Tree Classifier (treec) 

The Computation of a decision tree classifier is done out of a dataset using binary splitting. 

Classification of large datasets may cause some problems but the decision tree solves this 

problem. In this type of classification, the subjects’ classes are decided on the basis of 

sequence of decision rules. A decision tree is constructed in two phases; the ‘growth phase’ 

(initial tree) and the ‘prune phase’ (sub tree) [72]. 
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Support Vector Classifier (SVC) 

Support Vector classifier (SVC) is optimized for a dataset by quadratic programming in 

which the non-linearity is determined by the kernel. If SVM models use sigmoid kernel then 

it behaves more or less like two-layer, perceptron neural network. There are four basic 

kernels; linear, polynomial, radial basis function (RBF) and sigmoid. In this type of 

classification training set is mapped by the function Ø into a higher dimension space. It finds 

a linear separating hyperplane with the maximum margin in higher dimension space [73]. 

There are two particularly attractive properties of SVMs: 

1. A decision boundary, called a maximum margin separator is built so that the distance 

between points of different instances on either side is it is as large as possible. This 

helps in generalization. 

2. The decision boundary is a linear separating hyperplane, but SVMs embed the data 

into a higher dimensional space, with a kernel trick. This allows data that is not 

separable in the original space, to be more easily separated in a higher-dimensional 

space.  

 

Figure 2-8: An example of Support Vector Machine [1]  

Figure 2-8 above shows an example of a group of instances, with the optimal hyperplane 

separating them, and the maximum margin on either side of the hyperplane. The hyperplane 

lies midway between the two margins. 
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K-nearest Neighbor Classifier (knnc) 

knnc and parzenc are similar in the sense that their build-up classifiers still use the training 

dataset and their parameters, while knnc classifies the object in a feature space with the 

nearest training parameters. It is also called instance based learning, where all commutations 

are postponed until the end of classification. Classification of the object is based on the 

neighbor’s selection which is correctly classified at the time of training and that neighbor’s 

class is assigned to the object [74]. 

2.6 Summary 

This chapter has elaborated the neurodegenerative diseases along with their developmental 

stages, their symptoms and their effects on patients. Different kinds of neurodegenerative 

diseases and their causes have also been explained in this chapter. 

It has provided a brief introduction of bio-signal processing with a further explanation of 

supervised and unsupervised machine learning. We have reviewed the process of machine 

learning, i.e., data preprocessing, feature extraction, feature extraction and feature 

classification. Then we have reviewed different classification algorithms, their advantages 

and disadvantages. We have divided the classifiers into different categories, 1) rule based, 2) 

neural networks, and 3) statistical learning algorithms. Statistical learning algorithms are 

further divided into, 1) linear algorithms, 2) non-linear algorithms and 3) density based 

(Bayes rule) algorithms. 

This chapter has highlighted that there is a large number of classification algorithms available 

for the classification of data. Despite this large number of studies, the most appropriate 

algorithms, if any, have not been identified yet. Moreover, it explains the need to explore 

and/design more efficient algorithms, in terms of accuracy and efficiency for the early 

detection of neurological diseases.  
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Chapter 3  A strategic Framework 

for the Early Detection of NDDs 

3.1 Introduction 

This chapter provides an overview of the whole research work step by step.  More precisely, 

this chapter focuses on the framework that we follow for the early detection of 

neurodegenerative diseases. It describes the different phases of the framework to analyse gait 

and EEG signals. A brief justification of the tools and techniques that we use for our research 

work is also provided in this chapter.  

3.2 Approach Overview 

The design goals provide the system requirements for a suitable scheme as described in this 

section. The principal goals are as follows: 

 Access industry recognized gait and EEG datasets (this research work considers gait 

and impaired neuron symptoms or indicators as a biomarker to detect the occurrence 

of neurodegenerative diseases) for classification; 

 A classification fusion strategy that combines state-of-the-art classifiers to improve 

early detection (details provided in Chapter 5); 
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 A system for medical practitioners that provides real-time symptomatic data and 

analysis of neurodegenerative diseases to support diagnosis and treatment strategies. 

Our proposed framework portrays the methodology for developing a model for the early 

detection of neurodegenerative diseases using statistical pattern recognition techniques. 

Figure 3-1 demonstrates the proposed framework which incorporates several distinct 

processes; Data Gathering, Feature Extraction, Feature Classification, and Decision 

Making. This whole framework is divided into four main phases that are elaborated below. 
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Figure 3-1: Proposed Framework for the Early Detection of Neurodegenerative Diseases 

3.2.1 Phase 1: Data Collection and Data Integration 

Data Gathering is the initial and the most challenging stage, where we get relevant data for 

both healthy persons and unhealthy persons. Data should be related to the appropriate 

domain, making sure that it provides the relevant information/ data patterns that are required 

for decision making. The most appropriate data that can provide a clue about 

neurodegenerative diseases is gait and brain data. These two are the most vulnerable parts of 

the body that get affected by neurological diseases. 
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Data integration is the process of merging data from multiple heterogeneous sources into one 

coherent database. This helps in providing each dataset, the same physical storage structure, 

naming convention, same unit of measurements, encoding structure, and also identical data 

type formats of attributes. This avoids any redundancy and inconsistency of the datasets thus 

ultimately improving the accuracy and efficiency of the mining process. 

3.2.2 Phase 2: Signal Processing 

This phase constitutes dimensionality reduction, feature extraction and feature selection. 

Noisy data come either due to faulty apparatus or due to variance in the datasets. This should 

be eliminated to get accurate results. Furthermore, once the data is cleaned and the required 

features are extracted from the datasets, the next step is the selection of appropriate features 

that best describe a particular disease.  

3.2.3 Phase 3: Signal classification 

This step is further divided into four steps; selection of a classifier according to datasets and 

their features, training is associated with assigning a “class label” to an object, entity, or to an 

event which is based on the measurements extracted from that particular object through any 

sensory system, testing a classifier on “test data” and finally checking the result if it is 

classified correctly or not. The plain, dashed and dotted lines in Figure 3-1, indicate that if the 

results are not according to expectation then the problem may be with the training of 

classifier, selection of the classifier or selection of relevant features, respectively. 

3.2.4 Phase 4: Decision Making 

Once the data is classified and evaluated, the next step is the interpretation of the patterns. 

This includes the interpretation of discovered patterns and also the visualisation. These 

results are then incorporated into a performance system so that appropriate action should be 

taken based on that knowledge. 

Specifically speaking for neurodegenerative diseases, the decision cannot be taken simply by 

processing one kind of signals. As neurological diseases impair different parts of the body, 
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especially gait of the person and brain functions. So, the final decision can only be taken 

based on gait and EEG signals computation. Based on this critical situation, we divide our 

research work into two segments. First, the gait signals of different neurodegenerative 

patients like Parkinson’s, Huntington’s, and Amyotrophic Lateral Sclerosis (ALS) are 

analysed and compared with the gait patterns of healthy persons. The results are then 

evaluated using different evaluation techniques. Later, EEG signals of Alzheimer’s patients 

are processed to find the difference in neural synchronization of different functional areas of 

the brain from healthy persons.  

3.3 Statistical Tool Selection 

Pattern recognition, these days, is gaining a tremendous attention in the medical field as it has 

proven more reliable in the prediction of clinical outcomes as compared to common clinical 

statistical tools [75]. For instance, Lin [76] designed a framework for the treatment of liver 

infection using classification and regression trees, Lee et al. [77] designed a system for the 

pulmonary nodules using feature selection and LDC. Similarly, Shao et al. [78], have 

successfully classified electromyography (EMG) signals (with 100% accuracy) using 

artificial neural networks (ANNs) for the identification of term and preterm labour of rats. 

Defending pattern recognition techniques, they claimed that several techniques like 

monitoring contraction by examiner, cervical state, intrauterine pressure (IUP), and 

tocodynamometry are subjective and do not provide accurate diagnosis or prediction of 

delivery time. Further arguing, they said, although few methods can assist to identify the 

oncoming signs yet none of the current method offers objective data processing that 

accurately predicts labour over a broad range of patients. They also highlighted the limitation 

of available technologies (multiple preterm labour symptoms, contraction >4 per hour, 

cervical ultrasonography, or fetal fibronection) in terms of less sensitivity and low positive 

prediction values. Similarly, Dan et al. [79] successfully classified Parkinson’s disease by 

SVM classifiers using functional magnetic resonance imaging (fMRI) and structural images, 

as features. They obtained remarkable results with accuracy of 86.96%, sensitivity of 

78.95%, and specificity of 92.59%. 
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Within supervised machine learning techniques data patterns can be classified using template 

matching, neural networks and statistical techniques [80]. One limitation with template 

matching is its inability to recognize patterns when they come from classes with large 

interclass variations. In our case, data is more sequential hence new datasets can be adjusted 

between the classes of the existing training sets. With neural networks, they behave like 

“black box” with excessively complex nonlinear input-output relationships, thus visual 

interpretation of the data itself becomes a challenge. In our case, the intension is to detect the 

anomalies in gait and EEG data patterns that need to retain maximum relation back to the 

actual physical measurements. On the other hand, in statistical analysis, presentation of each 

data pattern is held (in the form of a single point) in a multi-dimensional space, disjointing 

the regions for each class. Also, this approach retains the physical interpretation of the 

feature. 

3.3.1 Selection of Matlab Tools 

The literature survey has given us significant confidence to further explore pattern 

recognition techniques for the early detection of neurodegenerative diseases. However, the 

next challenge we face is the selection of classifiers that can be used for gait and EEG pattern 

identification. We intend to carry out computation on our dataset using PRTools, a Matlab 

toolbox used for pattern recognition [81]. We already evidence the classification of clinical 

data using PRTools  in previous research findings [7], [82]. Complex bio-structured data 

patterns are analyzed using PRTools like tyrosine phosphoproteomic data from lung cancer 

[83] and also Gastric carcinoma and primary gastric lymphoma (PGL) in the stomach [84]. 

Other Matlab tool boxes that we have selected are the statistical toolbox to compute Principal 

Component Analysis (PCA). The signal processing toolbox is used to compute the coherence 

and correlation between EEG signals. Also, the communication toolbox is used to compute 

the phase synchronization of the signals.  
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3.4 Summary 

This chapter has explained the framework; we have followed for the early detection of 

neurodegenerative diseases, in detail. It has highlighted the end-to-end process of data 

discovery, which incorporates several distinct processes; Data Gathering, Feature 

Extraction, and Feature Evaluation. Furthermore, it has stated the significant advantages of 

using statistical pattern recognition techniques. At the end, we have justified the use of 

PRTool for gait pattern recognition in neurodegenerative patients and healthy persons. We 

have mentioned other Matlab toolbox (communication, statistical, and signal processing) that 

have been considered to accomplish this research work.  
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Chapter 4 Assessment of Gait 

Dynamics  

4.1 Introduction 

In the previous chapters, the potential of machine learning technique is presented to 

overcome the problems of biomedical sciences. Understanding the importance of data mining 

that helps in the early detection of a disease, this chapter focuses on the early diagnoses of 

different NDDs using statistical pattern recognition techniques. 

Following are the main challenges, which we intend to investigate in this chapter: 

 Addressing the issues with imbalanced datasets;  

 Handling missing observations—missing entries; 

 Classification of multiclass datasets (4-classes—multiclass pattern recognition); 

 Diagnosing movement disorders with similar symptoms but of different root causes. 

We already have published our results, based on the findings of this chapter in [85]. 

Furthermore, the same techniques are then applied to develop a pattern of behaviour for the 

detection and identification of patterns, which are the results of an attack on a critical 

infrastructure [86]. Later on, working on the same line, these techniques are then further 

verified on the early detection of preterm births, results are published in [87].  
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4.2 Gait Signals 

The analysis of walking pattern in humans, in order to check the abnormalities in the body, is 

called gait analysis. Gait pattern analysis plays a vital role in the identification of any 

neurodegenerative disease. As we already have explained, in Chapter 2, a healthy gait pattern 

requires a direct input from the neurological system of the brain. Hence, any perturbation in 

the brain has direct impact on the gait patterns of a person. To find out this disturbance and 

the difference from the gait patterns of control subjects, we analyse gait data (motion vectors 

in milliseconds) of different kinds of patients with neurodegenerative diseases; Parkinson’s 

disease (PD), Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS).  

Figure 4-1, demonstrates the stride time in CO, PD, HD and ALS. The Y-axis, in all four 

subjects, shows the mean value of the stride time, calculated by taking the average over five 

minute walk. It shows that the coefficient of variation (CV), a measure of stride-to-stride 

variability, is highest in PD and HD subjects, while smallest in CO subjects and higher in 

ALS subjects comparatively.  

 

Figure 4-1: Gait cycle duration in CO, PD, HD and ALS [5] 

4.2.1 Discrimination of different NDDs with Gait Pattern Analysis 

Diagnosis time is of vital importance in the treatment of a disease especially for chronic 

diseases. The main challenge with NDDs is that they all pose the same symptoms at the final 
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stage—gait disorder. At this stage, it is very difficult to discriminate a specific 

neurodegenerative disease with a non-invasive method. Furthermore, each NDD has different 

root causes irrespective of their similar symptoms at the final stage. This has been elucidated 

in Figure 4-2, which demonstrates that each NDD shows symptoms’ similarity at its final 

stage but the root cause of each disease is different. Different parts of the brain get affected 

due to different degenerative diseases; HD causes damage in caudate, PD in substantia nigra 

[88], ALS damages the lower motor and pyramidal neurons [42], while AD attacks the cortex 

and hippocampus part of the brain [89]. Moreover, the pathological proteins that are 

responsible for these diseases are also of different kinds; Amyloid Beta Protein (Aβ protein) 

for Alzheimer’s, α-synuclein for Parkinson’s, polyQ mutant Huntington protein for HD and 

SOD1 (superoxide dismutase1 gene) toxicity for ALS [90]. 

 

Figure 4-2: Association of Gait disorders with different NDDs. 

Automatic classification of gait patterns by statistical pattern recognition techniques will help 

to solve this problem by discriminating different NDDs according to their data patterns. This 
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will save the time of doctors/practitioners not only for diagnosing exact NDDs but also their 

timely treatment of the disease. 

4.3 Data Collection and Data Description 

The data collection is the first step towards data pre-processing and data classification. 

Sotiris suggests the “brute force method”, if an expert’s analysis is not available for the 

selection of specific attributes or features [1]. This method encourages the “trial and error” 

process, where we test everything in the hope that the right information (attributes, features) 

can be isolated.  

For the analysis of gait patterns, we have collected gait signals from Physionet
1
 for NDDs 

patients and CO subjects. There are 16 healthy control subjects (14 Females, 2 Males) and 20 

Huntington’s (14 Females, 6 Males), 13 ALS (3 Females, 10 Males) and 15 Parkinson’s 

patients (5 Females, 10 Males) with movement problems. All of them are at their final stage 

of the disease.  We have collected data for left and right foot stride signals with time in 

milliseconds (total time 10 sec). Temporal parameters of the gait are measured by using force 

sensitive insoles that were placed in the subject’s shoe. The raw data were obtained using 

force-sensitive resistors, with the output roughly proportional to the force under the foot. 

Stride-to-stride measures of footfall contact times were derived from these signals. The data 

were then sampled at 300 Hz by an analog-to-digital converter and stored into an ankle-worn 

recorder.  

For the subjects with Parkinson's disease, the severity of the disease is calculated with the 

Hohn and Yahr score (1.5≤Severity≤4); a higher score indicates more advanced disease. For 

the subjects with Huntington's disease, the severity of the disease is calculated with the 

Functional Capacity Measure (1≤Severity≤12); a lower score indicates more advanced 

functional impairment. For the subjects with Amyotrophic Lateral Sclerosis, the measure here 

is the time since the onset of the disease (1≤Severity≤54). For the control subjects, an 

arbitrary “0” is used. 

                                                 

1
 www.physionet.org 
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Table 4-1, demonstrates the comparison of average values, fluctuation magnitude, and 

fluctuation dynamics of gait rhythms of control, PD, HD and ALS subjects.  

Table 4-1: Gait Rhythm Dynamics [5] 

Parameters Control PD HD ALS 

Age (Range,yr) 20–74 44–80 29–71 36–70 

Stride time, ms 1,091 ± 23 1,18 ± 30 1,138 ± 38 1,370 ± 61 

Speed, ms 1.35± 0.04 1.00 ± 0.05 1.15 ± 0.008 1.02 ± 0.07 

Stride time CV, (%) 2.3±0.1 4.4±0.6 7.6 ±1.2 4.5±0.6 

Stride time 

SDdetrended, ms 

27±2 52±6 120±25 65±10 

α (Wilcoxon Test) 0.91±0.05 0.82±0.06 0.60±0.04 0.74±0.07 

Autocorrelation 5.9±0.4 7.2±1.6 3.2±0.5 4.2±0.6 

Nonstationarity 

index 

0.67±0.02 0.64±0.03 0.54±0.03 0.69±0.05 

 

4.4 Previous Findings in Early Detection and Signal Classifications 

Scientists have proposed different methods for early detection of neurodegenerative diseases 

such as examining cognitive decline, using biomarkers, or through the presence of 

metabolites or genes [91]. However, in recent years, early detection and neuroimaging 

techniques, including genetic analysis, are techniques that are commonly used to detect 

potentially life-threatening diseases like cancer, cystic fibrosis, and neurological diseases 

[92]. Mini-Mental Score Evaluation (MMSE) and symptom’s quantification are other well-

known techniques commonly used to diagnose neurodegenerative diseases [93].  
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Nonetheless, the use of computer algorithms and visualization techniques are considered 

fundamental to support the early detection process.  One example of this is the Common 

Spatial Patterns (CSP) algorithm proposed by Woon et al. [91]  that has been successfully 

used to study Alzheimer’s. CSP, which belongs to an adverse class of algorithms known as 

Blind Source Separation (BSS), incorporates significant properties of class labeling and 

dimensionality reduction. Moreover, this classification algorithm performs signal separation 

to rank and order the relevant separated components found within the data. This technique 

has already been practiced in the diagnosis of cognitive disorders like schizophrenia and 

depression [94]. The only problem with CSP is that while ranking and ordering the separated 

components, it also separates the relevant and interesting components of the signal. 

Classification efficiency has been addressed by Mantzaris [95] for osteoporosis risk factor 

prediction with the multi-layer perceptron (MLP) and the Probabilistic Neural Networks 

(PNNs). MLPs are feed forward networks and work with the back-propagation learning rules 

and widely used in medical data processing. PNN is another type of feed forward networks 

consists of three layers; input layer, radial basis and a competitive layer and it works on 

Parzen’s Probabilistic Density Function (PDF) [96]. In terms of overall performance, PNN 

networks perform slightly better than MLP networks. However, in his research work, the 

author could not address the overfitting issue of MLP with normal and pathological data 

patterns—some of the relationships that seem statistically significant might be due to noise. 

Due to high inter-subject variability between neurodegenerative patients, from mild-to-

moderate and from moderate-to-severe, it is difficult to determine the appropriate features to 

classify data accurately. This problem is further exacerbated when a large number of patients 

are used. However, Latchoumane et al., have addressed this issue by analyzing EEG 

(electroencephalogram) signals using Multi-way Array Decomposition (MAD), which is a 

supervised learning process for evaluating multidimensional and multivariate data like EEG 

[97]. The MAD approach analyses time, frequency, and electrode signal domains 

simultaneously. This technique has also been used by Acar et al., in studies on epileptic 

seizures [98].  

The Parallel Factor Analysis (PARFAC) model has also been used to extract the multilinear 

interaction between groups, frequency, and space in EEG signals [97]. The PARAFAC model 
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is associated with the multilinear version of the bilinear factor models [99]. This technique is 

useful for analyzing spatial-frequency characteristics for correct classification of subjects. 

The primary goal of such algorithms is to extract meaning from potentially huge amounts of 

data. In other words, to characterise features associated with particular neurodegenerative 

diseases. This has led to a great deal of work in feature extraction within medical datasets. 

One example of this is the Discrete Cosine Transform (DCT) algorithm that decreases the 

number of features and the computation time when processing signals [7]. DCT is used to 

calculate the trapped zone, under the curve, in special bands. These are described as features 

and used to evaluate different classifiers for neurodegenerative diseases, like Huntington’s 

disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis. The results show that the 

Quadratic Bayes Normal Classifier is better at identifying different neurodegenerative 

diseases compared to others. However, they have only evaluated this approach using two 

feature datasets.  

Similar algorithms have been used to predict heart disease using Decision Trees, Naïve Bayes 

and neural networks [100]. The results show that using the lift chart for prediction and non-

prediction, the Naïve Bayes algorithm predicted more heart disease patients than both the 

Neural Network and Decision Tree approaches. While these are interesting results, only three 

data mining techniques were compared. A much wider study is required to determine whether 

other techniques work better. 

Joshi et al., have performed such a study where different data mining techniques are 

compared for the early detection of Alzheimer’s [101]. Using data, collected from patients 

suffering with Alzheimer’s, Joshi et al., were able to identify the various stages of 

Alzheimer’s using machine learning, neural networks, multilayer perceptrons, including the 

coactive neuro-fuzzy inference system (CANFIS) and Genetic Algorithms. The results 

showed that CANFIS produced the best classification accuracy result (99.55%) as compared 

to C4.5 (a decision tree algorithm). 

Other algorithms, such as dissimilarity based classification techniques, have proven to be 

very useful for analyzing medical data sets. For example, algorithms, such as the k-nearest 

neighbour classifier (k-NN), and Linear and Quadratic normal density based classifiers, have 

been extensively used to classify seismic signals [102]. Nonetheless, the results have shown 
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that Bayesian (normal density based) classifiers outperform the k-NN classifier, when a large 

number of prototypes are provided. 

While these approaches provide obvious benefits, current applications for classifying medical 

data are still lacking consistency in terms of revealing hidden significant information, 

especially from real-time clinical data. The main limitation with the approaches described is 

that they only consider a small number of classifiers. Furthermore, many of them fail to 

include relevant and important features, such as age and gender that can have a significant 

impact on results. Moreover, overall accuracy depends on a single set of variables while other 

variables could potentially have more impact on the performance evaluation [103].  

The approach posited in this paper considers all renowned classification algorithms and uses 

a large-scale feature set. Each variable in the array has its own significant relationship with 

the progression of specific diseases. Moreover, rather than relying on base-level classifiers, a 

new strategy is described based on the fusion of classifiers in Chapter 5. In this way, it is 

possible to explore any new dimensions that may emerge from the results. 

4.5 Data Pre-processing 

Once the data is collected, the next step is “data preprocessing”, before analysing and 

evaluating the data. Incomplete, inaccurate and contaminated data analysis can lead to 

inappropriate and below quality results. Therefore, a crucial and primary task is to identify 

the limitations and insufficiencies of the datasets.  

Although, Physionet is a NIH (National Institute of Health Sciences, USA) funded, reliable 

online data repository that researchers and medical doctors are using since 1999, yet aimed at 

confirming the quality of the data before starting our project. We have contacted the 

administration of Physionet and got a positive reply from George B. Moody (Harvard-MIT 

Division of Health Sciences and Technology, Cambridge, USA). He claimed that particular 

precautionary measures are considered before collecting the data to make it noise free but 

some datasets (especially for ambulatory subjects) need some preprocessing steps to clean 

them further.  
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Our concern is with a database containing gait data for different neurodegenerative diseases 

(PD, HD, and ALS) and also for control subjects. Carefully visualizing the datasets, we find 

the following limitations that needed to be considered before applying classification 

algorithms: 

 Number of subjects are different in each group—Imbalanced Datasets  

 Missing observations in the datasets for few subjects—Handling Missing Entries 

 Extracting meaningful and relevant features that can act as a biomarker for the early 

detection of NDDs— Feature Extraction 

4.5.1   Imbalanced Datasets 

The following section helps us to understand the issues related to imbalanced datasets and 

their possible solutions. It also highlights the importance of using re-sampling techniques in 

the field of medicine. 

 Issues with Imbalanced Datasets 

Learning from imbalanced datasets is an important and controversial topic that is addressed 

in our research work. These kinds of datasets usually generate biased results [104]. For 

instance, imagine a medical dataset with 50 true negative values (majority class) and 20 true 

positive values (minority class). If half is selected for training and the remainder for testing 

(25 healthy and 10 sick persons), we find that the accuracy is 90%. The result suggests that 

the classifier performs reasonably well. However, what happens, when all the negative values 

are accurately identified (healthy persons) and only 5 out of the 10 positive values (sick 

persons) are classified correctly. In this situation, the classifier is more sensitive to detecting 

the majority class patterns but less sensitive to detecting the minority class patterns. This is 

caused because the training data is imbalanced. In other words, the classifier concludes that 5 

out of the 10 unhealthy people are healthy when this is not the case. These kinds of results 

ultimately cause more destruction if data comes from real time environments, such as 

biomedical, genetics, radar signals, intrusion detection, risk management and credit card 

scoring [18]. 
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 Previous Findings in Imbalanced Datasets 

Advocating the resampling technique, Xiong at al., [105] narrated that training a classifier 

with an imbalanced positive and negative dataset in machine learning results in poor 

classification performance. To classify the horizontal gene transfer (HGT) for the detection of 

microbial genome diversification, they selected Synthetic Minority Over-sampling Technique 

(SMOTE) to generate more patterns for HGT in genome. They get remarkably less mean 

error rate using SVM classifier as compared to the previous findings. Working on the same 

line, using SMOTE for oversampling and SVC for classification, Tao et al., [106] 

regenerated Curvelet-transformation textural features together with morphological features to 

classify the patients with lung cancer. Results revealed that accuracy based on cross-

evaluation for the original unbalanced data and balanced data was 80% and 97%, 

respectively.  

Majid and Andreas [107] used Synthetic Protein Sequence Oversampling (SPSO) method to 

create protein sequences of the minor class and get better accuracy and Matthew’s correlation 

coefficient than imbalanced datasets. Chia-Yun et al., in their paper [108], claimed that the 

ability of the predictive modeling methods is adversely affected if the datasets are 

imbalanced. They recommend the oversampling method to overcome the overfitting of the 

classifier (Support Vector Machine) to classify the compounds for cytotoxicity with respect 

to the Jurkat cell line. Compared to previous results in the literature, the SVM models built 

from oversampled data sets exhibited better predictive abilities for the training and external 

test sets. 

Similarly, Xuan et al., [109] suggested a novel method of over-sampling the imbalanced 

datasets called safe-SMOTE, for the classification of two gene expression datasets of cancer, 

i.e., colon-cancer and leukemia. They showed that the sensitivity with the oversampling 

technique increased from 81.82% to 90.50%. Also, the G-mean value of the control increased 

from 85.45% to 86.04%. 

 Possible Solutions of skewed datasets 

In order to solve the imbalanced dataset problem it is necessary to resample datasets. 

Different resampling techniques are available to achieve this, that include under sampling 
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and over sampling [110]. Under sampling is a technique where we reduce the number of 

patterns within the majority class dataset to make it equivalent to other classes. In over 

sampling, more data is generated within the minority class. 

 Re-Sampling of NDDs Datasets 

As already mentioned that the dataset, we analyse in this research work, has 16 CO, 15 PD, 

20 HD, and 13 ALS subjects. Given the number of data subjects, there is already a small 

number of subjects in each database; hence under sampling is not a good idea for such 

datasets.  

To go for the over sampling technique, we note the upper and lower limit of the foot stride 

intervals for all subjects in a dataset, for left and right feet gait data. First, the mean is taken 

for the right and left feet gait rhythm in term of stride interval (time from initial contact of 

one foot to the subsequent contact of the same foot), of each subject in one dataset. Then the 

maximum and minimum rage of right and left feet motion values are calculated to find the 

upper and lower limit. We generate random values of motion vectors between those 

minimum and maximum values for each database (CO, PD, and ALS) in order to get equal 

data patterns in each class, i.e., 20 per class (equal to HD—maximum number of subjects in 

this database). Now we have 20 subjects in each class of neurodegenerative diseases.  

4.5.2 Feature Extraction 

To avoid the ambiguity of noisy data and also to remove the missing observations from the 

datasets, it is crucial to extract the relevant and appropriate information from the datasets. We 

take the mean of all 3000 stride intervals of 10 sec. for left and right feet strides of each 

subject in one dataset for all four databases. The other features that we extract from the 

datasets are age, height, weight, speed, time, and BMI factor. 

Figure 4-3, demonstrates a collection of prior knowledge (age, gender, height, weight, BMI, 

walking speed and time) with empirical knowledge (sensory measurements for right and left 

feet signals) to get a posterior knowledge to recognize gait patterns of a diseased and healthy 

person.  
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Figure 4-3: Extraction of Posterior Knowledge from Prior and Empirical Knowledge 

A set of eight features that are used to classify the gait data of neurodegenerative diseases and 

healthy persons is given in Table 4-2. It shows the mean of maximum and minimum vales of 

all features in 4 datasets.  

Table 4-2: A Set of Eight Feature used for Classification 

Right Feet Signals Left Feet Signals Age Height Weight Time Walking 

Speed 

BMI 

 

Motion Vector 

Stride time in ms 

(-0.6739-0.5411) 

 

Motion Vector 

Stride time in ms 

(-0.5421-0.2069) 

 

20-80 

(Years) 

 

 

1.57-2.13 

(Meters) 

 

 

40.82-117.5 

(Kg) 

 

 

10 Sec 

 

0.5-1.82 

(m/sec) 

 

 

 

14.4-37.1 

(weight(kg) / 

height²(m²)) 

 

Similarly, Table 4-3, Table 4-4, Table 4-5, and Table 4-6, provides detail information of 

datasets for CO, HD, PD and ALS subjects respectively.  

Table 4-3: Dataset for CO Subjects with Extracted Features 

Right Feet Signals Left Feet Signals Age Height Weight Time Walking 

Speed 

BMI 

 

Motion Vector 

Stride time in ms 

(-0.6739-0.5411) 

 

Motion Vector 

Stride time in ms 

(-0.5421-0.2069) 

 

20-74 

(Years) 

 

 

1.67-1.94 

(Meters) 

 

 

50-95 (Kg) 

 

 

10 Sec 

 

0.91-1.54 

(m/sec) 

 

 

 

14.9-25.2 

(weight(kg) / 

height²(m²)) 
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Table 4-4: Dataset for HD Subjects with Extracted Features 

Right Feet Signals Left Feet Signals Age Height Weight Time Walking 

Speed 

BMI 

 

Motion Vector 

Stride time in ms 

(-0.5576-0.6634) 

 

Motion Vector 

Stride time in ms 

(-0.1.750-0.5834) 

 

29-71 

(Years) 

 

 

1.57-2 

(Meters) 

 

 

45-102(Kg) 

 

 

10 Sec 

 

0.56-1.82 

(m/sec) 

 

 

 

16.2-32.2 

(weight(kg) / 

height²(m²)) 

 

 

Table 4-5: Dataset for PD Subjects with Extracted Features 

Right Feet Signals Left Feet Signals Age Height Weight Time Walking 

Speed 

BMI 

 

Motion Vector 

Stride time in ms 

(-0.9942-0.3693) 

 

Motion Vector 

Stride time in ms 

(-0.8065-0.78) 

 

 

44-80 

(Years) 

 

 

1.67-2.13 

(Meters) 

 

 

43-100 

(Kg) 

 

 

10 Sec 

 

0.5-1.33 

(m/sec) 

 

 

 

14.5-26.6 

(weight(kg) / 

height²(m²)) 

 

 

Table 4-6: Dataset for ALS Subjects with Extracted Features 

Right Feet Signals Left Feet Signals Age Height Weight Time Walking 

Speed 

BMI 

 

Motion Vector 

Stride time in ms 

(-0.9958-0.1645) 

 

Motion Vector 

Stride time in ms 

(-1.1159-0.2155) 

 

 

36-70 

(Years) 

 

 

1.57-1.88 

(Meters) 

 

 

40.82-117.5 

(Kg) 

 

 

10 Sec 

 

0.77-1.302 

(m/sec) 

 

 

 

16.6-37.1 

(weight(kg) / 

height²(m²)) 

 

 

Before features classification, we have analysed the gait signals, to find out any relation of 

gait of a person with neurological disturbances. Neurophysiological changes that are 

associated with aging, affect the locomotor system’s ability to generate stride-intervals 

correlations. To test the hypothesis, stride intervals correlation with neurological functions 

that altered with aging, we have analyzed the gait signals of control healthy persons and 

persons with neurological diseases.  Computation of left and right foot stride signals revealed 

that the duration of gait cycle fluctuates from one stride to the next in a complex fashion. 

Figure 4-4, shows some “noisy” variations with the stride signals of diseased person that 

present some fractal property while this variability is not attributed with the normal gait of 
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the person, Figure 4-5. Nonetheless, these fluctuations in movement signals may also appear 

with normal aging which indicates neurological changes in the brain of healthy persons as 

well, but not due to degeneration process. 

 

 

Figure 4-4: Signal Analysis for a Neurodegenerative Person 

 

Figure 4-5: Signal Analysis for a Healthy Person 
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4.6 Signal Classification 

The dataset containing the eight features described in the previous section provides the 

feature set required to diagnose neurodegenerative diseases accurately. More specifically this 

dataset is used to select a classifier, train it, test it and finally evaluate the result to determine 

if the correct classification is performed.  

The computation is directly proportional to the number of features considered in the dataset. 

Figure 4-6, demonstrates a scatter plot using only three selected features and shows the 

complexity of classification of gait patterns for each subject. In this instance, Feature 1 and 

Feature 2 are associated with “right and left foot movement signals” while Feature 3 

represents “age” which is considered an important factor in disease progression. 

 

Figure 4-6: 3-Dimensional Scatter Plot of Selected Features  

Using the defined feature set, several classifiers have been evaluated for consideration in the 

final classifier fusion strategy. The principle goal is to use classifiers that perform the best. 

Each class is labelled with a specific label before classification. In this particular case, class 
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of healthy subjects is labelled with “Class 1”, similarly HD, PD and ALS classes are labelled 

with “Class 2”, “Class 3” and “Class 4” respectively.  

The classifiers considered are the, Linear Discriminant Classifier (ldc), Quadratic 

Discriminant Classifier (qdc) and the Quadratic Bayes Normal Classifier (udc) for density 

based classification. For Linear Classification, an additional four classifiers are selected, 

which are the Logistic linear (loglc), Fisher’s (fisherc), Nearest Means (nmc) and the 

Polynomial (polyc). A linear classifier predicts the class labels based on a weighted linear 

combination of features or the pre-defined variables. The Parzen (parzenc), Decision Tree 

(treec), Support Vector Machine (svc) and k-Nearest Neighbour (knnc) classifiers have been 

selected for non-linear classification of our datasets. 

 

Figure 4-7: List of 11 Classifiers used from PRTools [68] 

First, we apply all the Bayes classifiers on our dataset. Figure 4-8, shows the mapping of all 

these mentioned classifiers on scattered plot of 2-features’ dataset. The black line indicated 

the linear discriminant classifier (LDC) which is denoted by Bayes Normal-1 in the figure. 

The red line indicates the Bayes Normal-2, which is quadratic discriminant classifier (QDC). 
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Similarly, the Bayes Normal-3 which represents quadratic classifier for uncorrelated densities 

(UDC) is denoted in by blue line. 

 

Figure 4-8: Class Mapping for Bayes Normal Classifiers 

Table 4-7, shows the mapping results of each individual classifier (LDC, QDC,UDC) that 

belong to Bayes classifiers separately on a dataset of gait signals for neurodegenerative 

patients and healthy persons.  

Table 4-7: Class Mappings of Individual Bayes Normal Classifier  
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A set of linear classifiers which consists of Logistic linear (loglc), Fisher’s (fisherc), Nearest 

Means (nmc) and the Polynomial (polyc) is applied on the data set. Figure 4-9, shows the 

mapping of all these mentioned classifiers on a scattered plot of 2-features dataset. In the 

figure the black line shows the logistic linear classifier, the red line indicates the fisher 

classifier, the blue line to nearest mean classifier while the pink line to polynomial classifier. 

 

Figure 4-9: Class Mapping for Linear Classifiers 
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Table 4-8: Class Mappings of Individual Linear Classifier 

  

  

Table 4-8, shows the mapping results of each linear classifier (LOGLC, FISHERC, NMC, 

POLYC) separately on a dataset of gait signals for neurodegenerative patients and healthy 

persons. 

Similarly, a set of nonlinear classifiers, Parzen (parzenc), Decision Tree (treec), Support 

Vector Machine (svc) and k-Nearest Neighbour (knnc), is applied on the dataset.  Figure 

4-10, shows the mapping of non-linear classifiers on a scattered plot of 2-feature’s dataset. 
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Figure 4-10: Class Mappings for Non-linear Classifiers 

Table 4-9, shows the mapping results of each nonlinear classifier (PARZENC, TREEC, SVC, 

KNNC) separately on a dataset of gait signals for neurodegenerative patients and healthy 

persons. 

Table 4-9: Class Mappings of Individual Nonlinear Classifiers 
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4.7 Performance Evaluation and Results 

Performance evaluation of a classifier is mostly done by a parameter called decision 

threshold t (0 ≤ t ≤ 1), which decides the final class membership of a given object [111]. A 

class with higher posterior probability of this threshold is assigned to a particular object. This 

threshold value may vary for imbalanced datasets or multiclass datasets.  

State-of-the-art study reveals that one particular performance measure may evaluate a 

classifier on a single perspective while fails to measure on another [112]. Although 

researchers have been evaluating classification algorithms by various techniques, yet there is 

no single authorized criterion that outperforms others. 

More specifically, we are presenting two different kinds of measures to demonstrate and then 

to compare the performance evaluation results: 

A. Visualization: representing the possible outcome of true and false values of a 

classifier in the form of graphs; Reject and ROC curves; 

B. Statistical Analysis:  to compare the evaluation results by mathematical formulas such 

as classification accuracy (Confusion Matrix), Precision, Recall, Sensitivity, 

Specificity and F-Measure. 
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Confusion Matrix: determines the distribution of errors across all classes [113]. The estimate 

of the classifier is calculated as the trace of the matrix divided by the total number of entries. 

The formula is given below: 

                 
     

           
 

Precision: is a function of true positive and the objects that are misclassified as positive i.e. 

false positive. 

          
  

     
 

Recall/Sensitivity and Specificity: Recall presents a function of correctly classified object i.e. 

true positive and the objects that are classified incorrectly i.e. false negative. Specificity 

describes the results in term of true negative values. 

Both Recall and Precision are relevant to each other. Precision is the fraction of retrieved 

information relevant to the search while Recall is the fraction of the information related to 

search query that is retrieved successfully [114]. The formulas are given below: 

                   
  

     
 

            
  

     
 

F-Measure: is another common evaluation metrics that combines precision and recall into a 

single value. The formula is as: 

            
                

                
 

ROC and Reject Curve: Here, we have visualized Receiver Operating Curve (ROC) for Error 

Type I and Error Type II [115]. The curve is drawn for “False Positive” and “False Negative” 

values. Another common approach is the Reject curve which works on reducing the error cost 

by turning them into a rejection [116]. In this case, the objects close to the decision 

boundaries are not classified. 
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The confusion matrix results (in terms of accuracy) are described in Table 4-10, Table 4-11, 

Table 4-12, for Bayes Normal, linear and nonlinear classifiers respectively. They present the 

screen shorts of the confusion matrix along with truly classified subjects and their accuracy 

percentage. 

Table 4-10: Results of Confusion Matrix for Bayes Normal Classifiers 

Bayesian Normal Density Based Classification 

Classifiers Confusion Matrix Truly Classified Accuracy (%) 

Linear Discriminant 

Analysis (ldc) 

 

Healthy=7 

Huntington=4 

Parkinson=8 

ALS=6 

 

7+4+8+6=25 

25/40=62.5% 

Quadratic Discriminant 

Analysis (qdc) 

 

  Healthy=2 

Huntington=5 

Parkinson=9 

ALS=7 

 

2+5+9+7=23 

23/40=57.5% 

Quadratic Bayes Normal 

Classifier (udc) 

 

Healthy=7 

Huntington=5 

Parkinson=9 

ALS=5 

 

7+5+9+5=26 

26/40=65% 

 

Table 4-11: Results of Confusion Matrix for Linear Classifiers 

Linear Classification 

Classifiers Confusion Matrix Truly Classified Accuracy (%) 

Logistic Linear Classifier 

(loglc) 

 

Healthy=4 

Huntington=3 

Parkinson=7 

ALS=7 

 

4+3+7+7=21 

21/40=52.5% 

 

 

Fisher’s Discriminant 

(Minimum Least Square-

fisherc) 

 

Healthy=6 

Huntington=4 

Parkinson=5 

ALS=8 

 

 

6+4+5+8=23 

23/40=57.5% 
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Nearest Mean Classifier 

(nmc) 

 

Healthy=4 

Huntington=3 

Parkinson=7 

ALS=3 

 

4+3+7+3=17 

17/40=42.5% 

Polynomial Classifier 

(polyc) 

 

Healthy=6 

Huntington=3 

Parkinson=6 

ALS=8 

 

2+3+6+8=23 

23/40=57.5% 

 

Table 4-12: Results of Confusion Matrix for Nonlinear Classifiers 

Nonlinear Classification 

Classifiers Confusion Matrix Truly Classified Accuracy (%) 

Parzen Classifier 

(parzenc) 

 

Healthy=4 

Huntington=3 

Parkinson=7 

ALS=7 

 

7+5+8+4=24 

24/40=60% 

 

Binary Decision Tree 

Classifier (treec) 

 

Healthy=6 

Huntington=4 

Parkinson=5 

ALS=8 

 

 

5+2+1+4=12 

12/40=30% 

Support Vector Classifier 

(SVC) 

 

Healthy=4 

Huntington=3 

Parkinson=7 

ALS=3 

 

5+1+8+6=20 

20/40=50% 

k-nearest Neighbor 

Classifier (knnc) 

 

Healthy=6 

Huntington=3 

Parkinson=6 

ALS=8 

 

7+1+4+1=13 

13/40=32.5% 

The results reveal that some of the classifiers have shown comparatively lower error rate 

especially the Quadratic Classifier for uncorrelated variables (UDC), which belongs to the 

group of normal density based classification techniques (Bayes Normal Classifiers). UDC has 

classified 7/10 healthy, 5/10 Huntington, 9/10 Parkinson and 5/10 ALS correctly. Three 

classifiers that have given comparatively better results are LDC, UDC and PARZEN with 

62.5%, 65%, and 60% accurate results, respectively. The accuracy of each classifier is 

represented as a percentage and is illustrated in Figure 4-11.  
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Figure 4-11: Classification Accuracy of Classifiers Tested 

Furthermore, other evaluations measures are computed to analyse results from multiple 

perspectives. From now onwards, more focus will be on those classifiers that have given us 

better results i.e., LDC, UDC and PARZEN.  

Table 4-13: Results of Various Evaluation Techniques 
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Figure 4-12, shows the results of the ROC analysis for the base-level classifiers, where the 

“Quadratic Normal Bayes Classifier” shows the least error rate compared to all other 

classifiers. In this case Error I, represents the “False Positive” values, while Error II presents 

the “False Negative” Values that show the system’s failure to predict any disease and label 

the objects as healthy persons. As it can be noticed from Figure 4-12, the uncorrelated 

Quadratic Bayes Normal classifier generated less errors and produced better classification 

when benchmarked with the Bayes Normal-1 and Parzen Classifiers. This is because the 

Quadratic Bayes Normal classifier (Bayes Normal-U) uses uncorrelated variables. 

Similarly in Figure 4-13, Reject Curve shows the least error rate for Quadratic Bayes Normal 

classifier (Bayes Normal-U), i.e., 0.3 while the error rate for Bayes Normal-1 and Parzen 

Classifiers is 0.45 and 0.5 respectively. 

 

Figure 4-12: Receiver Operating Curve for Classifier’s Evaluation 
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Figure 4-13: Reject Curve for Classifier’s Evaluation 

4.8 Results Discussion 

As already mentioned, a set of 11 classifiers is tested that belong to different categories of 

classifiers. Three classifiers have given better results. Two of them belong to Bayes Normal 

classifiers; UDC and LDC while one belongs to nonlinear classifiers; PARZEN. Linear 

classifiers, surprisingly, could not provide better results. There might be two reasons behind it 

1) linear classification is not a good option for multiclass datasets, 2) our datasets have a lot 

of inter subject variations. This leads to overlapping class distributions with in a feature space 

and ultimately gives a higher misclassification rate as with the case of LOGLC, FISHERC, 

NMC and the POLYC. 

Given the nature of our database (multiclass datasets), it is very hard to compare the results 

with the previous findings, where most of the time, the analysis is for 2-class datasets. 

However, we elaborate our results from different perspectives. The accuracy rate (calculated 

from confusion matrix) is 65%, 62.5% and 60% for UDC, LDC and PARZEN classifiers.  

Specifically speaking in term of sensitivity and specificity, it is actually quite tricky to 

calculate true positive and false positive values because of three different neurodegenerative 
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diseases. The sensitivity of UDC in term of (CO-HD), (CO-PD), and (CO-ALS) is 90%, 50% 

and 50% respectively. While the overall sensitivity for all 4-class datasets is 63%. Similarly, 

for LDC it is 40%, 80% and 60 for (CO-HD), (CO-PD), and (CO-ALS) respectively. 

Nonetheless, the overall percentage is 60%. In case of PARZEN, the overall sensitivity is 

56%. Working on the same line, the specificity of PARZEN for individual disease can be 

calculated. However, the overall percentage is 70%, 70% and 40% for UDC, LDC, and 

PARZEN separately.  

Similarly, precision of UDC, LDC, and PARZEN is 86.36%, 85.71%, and 85% respectively. 

F-measure is calculated through sensitivity and specificity, which is 72.72%, 70% and 67% 

for UDC, LDC, and PARZEN respectively. Furthermore, Table 4-13, also reveals the false 

negative and false positive values of all these classifiers. 

Most of the literature surveyed only considers skewed datasets, where the number of healthy 

and diseased persons is not equal. This ultimately generates a biased result due to the 

dominating effect of the majority class. Even the ROC curves are hard to compare using 

different classifiers for different misclassification costs and class distribution. We have 

analyzed an equal number of objects for each class to avoid misclassification. 

Secondly, some of the findings in the literature show higher accuracy in the classification of 

neurodegenerative diseases, particularly Masood et al. in [7] have used several alternative 

techniques and showed 86% accuracy rate. However, the feature set is much smaller as 

compared to the feature set used in this study. Also, they did not provide any solution of 

imbalanced datasets and used the skewed datasets for classification. Our research work has 

focused on eight variables (features) as input for our classifiers unlike previous work where 

only left and right feet signals are considered. Neurodegenerative diseases are more common 

in males as compared to females and they are closely linked to the age of the person. 

Therefore, we have also considered gender and age variables to produce results that are more 

reliable. Moreover, we have also considered the stage of the disease, patients walking speed 

and time that are other important input variables. 
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4.9 Comparison with SMOTE 

A new oversampling method has been proposed and implemented in this research work and 

results have demonstrated that this method works comparatively better as compare to the 

SMOTE (Synthetic Minority Over-Sampling Technique) that is used in the previous 

literature. A comparison of the results is shown in Table 4-14.   

Table 4-14: Oversampling Comparison with SMOTE Results 

Classifiers SMOTE Results Average Oversampling 

Linear Discriminant Analysis (ldc) 50% 62.5% 

Quadratic Discriminant Analysis (qdc) 35% 57.5% 

Quadratic Bayes Normal Classifier (udc) 53% 65% 

Logistic Linear Classifier (loglc) 39% 52.5% 

Fisher’s Discriminant (Minimum Least 

Square-fisherc) 

50% 57.5% 

Nearest Mean Classifier (nmc) 32% 42.5% 

Polynomial Classifier (polyc) 28% 57.5% 

Parzen Classifier (parzenc) 46% 60% 

Binary Decision Tree Classifier (treec) 42% 30% 

Support Vector Classifier (SVC) 39% 50% 

k-nearest Neighbor Classifier (knnc) 39% 32.5% 
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Due to the complexities of multi-class dataset (4-Dimensional), it is not easy to compare the 

results with the other oversampling techniques presented in the previous findings of literature 

survey (where binary class datasets are used in classification). I have computed SMOTE 

method for the same feature set and compared the results with Average Oversampling 

technique. Results have shown that in both cases the UDC classifier provides us better results 

but in case of SMOTE the accuracy rate for classification is 53% while in case of proposed 

oversampling method the accuracy rate is 65%. The same is the case with other classifiers 

where I get better results with proposed novel oversampling method as compare to SMOTE. 

4.10 Summary 

This chapter has presented the classification of gait signals of different neurodegenerative 

diseases using statistical pattern recognition techniques. It has addressed the main issue of 

data preprocessing i.e. skewed datasets, multiclass datasets, and missing entries. It focused 

on the detection of different neurodegenerative diseases from a database of 4-class datasets. 

A set of 11 base-level classifiers are tested on a feature set of 8 variables. Various evaluation 

techniques are used to find and compare the results. Results revealed that Bayes Normal 

classifiers (UDC and LDC) and a non-linear classifier PARZEN outperform others. 

A novel idea of combining classifiers, from the base-level classifiers is presented in the next 

chapter. The main focus is to check if combining classifiers can increase the percentage of 

accuracy. 



 

72 

Chapter 5 Classifier Fusion 

Strategy  

5.1 Introduction 

In the previous chapter, we have tested various base-level classifiers on a feature set of 8 

variables. From the pool of the classifiers those which provide complementary information, 

operating with high accuracy rate and lower error rate, are selected for our further research 

work. This chapter aims at presenting a novel approach for combining classifiers based on an 

evaluation methodology. This chapter also presents six different combining rules (product, 

maximum, minimum, mean, median and voting) and their importance in the combining of 

classifiers. The main purpose is to check if the new approach shows superior performance 

compared to the stand-alone classifiers. Instead of looking for better classifier and more 

appropriate set of features, this chapter provides an insight of looking at best set of classifiers 

and the best combination method. 

5.2 Classifier Fusion Strategy 

In the field of pattern recognition, the main focus is the successful classification of the 

features with maximum possible accuracy rate. Ahmed and Mohamed in their paper [22] 

narrates that a classifier with a specific set of features may or may not be an appropriate 

option for another set of features. Further augmenting their statement, they say that different 

classification algorithms achieve different degree of success for different kinds of 
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applications. Giving the reference of  [117], they claim that combining classifiers, in an 

efficient way, can offer better complimentary information about the patterns to be classified 

than any single classifier. Combining classifiers provide more accurate decisions but at the 

expense of complexity. 

Dietterich [118] suggested three reasons in favour of assembling the classifiers than choosing 

a single classifier. 

1. Statistical Reason 

Picking a single classifier increases the risk of making a bad choice to solve a problem. For 

instance, two classifiers at the same time are giving zero error rates. Nonetheless, the 

generalization performance of these two classifiers can be different even if the error rate is 

same. Hence, a safer option is, instead of picking one classifier, uses two of them and takes 

average of the output. This will decrease the risk of picking an inadequate classifier. 

2. Computational Reason 

An assembled classifier starts a searching process by running the local search from many 

different starting points. This solves the problem of local search of an individual classifier 

that may get stuck in local optima.  

3. Representational Reason 

The classifier space that is considered for pattern recognition does not always contain the 

optimal classifier. For instance, a set of linear classifiers is chosen for a dataset that can best 

recognize by nonlinear classifier. This way an optimal classifier can never be obtained. On 

the contrary, an ensemble of linear classifiers can approximate a decision boundary with any 

predefined accuracy.  

Anil et al. [119] narrates some more benefits of combing classifiers for pattern recognition: 

 By combining different classifiers together, an opportunity is provided to the designer 

to have an access of different classifiers that belong to different context and are 

developed for entirely different representation. For instance, face, voice as well as 

hand writing recognition. 
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 An ensemble classifier can also handle the multivariate training sets that are collected 

at different times and also in different environment. The training set may also have 

different features. 

 Global as well as the local performance of each classifier is different from each other 

on the same set of training data. Each classifier occupies its own space in the feature 

space where it performs the best. 

 By selecting a single network, as in case of neural networks where results vary by 

varying the initialization process due to the randomness inherent in the training 

procedures. Instead of discarding a single network all the networks take advantage to 

learn from training dataset, effectively.  

Fusing classifiers together to seek better accuracy rate is a new approach in classification 

research that has not been fully explored yet. In many cases, improved classification results 

can be obtained by combining the output of single classifiers. Estimates of posterior class 

probabilities are improved when multiple classifiers are considered in parallel [120]. 

However, combining classifiers in a treelike structure, using weighted averages [121] is 

useful for analyzing real-time datasets. Fusing classifiers together in this way has already 

been successfully used within other domains, such as the identification and classification of 

remotely sensed images [122]. Clearly, these studies show that the accuracy and 

computational time of individual classifiers can potentially be improved when classifiers are 

combined [123]. 

In summary, even in the presence of different feature sets, different training sets, different 

training sessions or different classification methods, the final result depends on the output of 

combined classifiers hoping an improvement in the classification accuracy. If a fixed set of 

classifier (detail in Section 5.3) is selected then the main focus is on the combination 

function. Fixed combining rules can also be used by optimizing the input classifiers [119].  

5.3 Classifiers Combining Rules—Combiners 

After the selection of particular base-level classifiers, the next step is a search for a module 

that is needed to assemble the classifiers together, which is called the combiner. Combiners 

can be differentiated on the base of different characteristics— trainability, adaptivity, and 
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requirement of the output of individual classifier.  Some combining techniques are adaptive 

in their nature. They work by evaluating the decisions of the individual classifiers depending 

on the input of individual classifier such as adaptive weighting [124], associative switch, 

mixture of local experts (MLE) [125], and hierarchical MLE.  

Depending on the type of output from individual classifier, Xh et al. [126] grouped the 

expectation level in to three states: 1) measurement (or confidence), 2) rank, 3) abstract. At 

the measurement level the output of the classifier is a numerical number which indicates the 

chances of given output belongs to a particular class. At the rank level, the choice of the class 

depends on the highest rank assigns by the classifier. However, it is not necessary that a 

highest rank is also the highest confidence level. At the abstract level, the decision is 

normally made on the base of unique class label or class labels. Further to his explanation, he 

added that the confidence level provides the highest information about the decision of a class 

while abstract level provides the least information.  

A combination process consists of a set of individual classifiers (base-level classifiers) and a 

combining rule which combines the results of individual classifiers for a final decision. When 

and how the base-level classifiers will work together depends upon the combination scheme. 

According to Anil et al. [119] the combination schemes could be differentiated on the basis 

of their architecture, the characteristics of the combiner, and the selection of the individual 

classifies.  

On the basis of the architecture, the combining schemes are divided into three categories, that 

are addressed in [119]; 1) parallel, 2) cascading (or serial combination), 3) hierarchical (tree 

like). In the parallel scheme, all the base-level classifiers are invoked separately and 

independently and later the results are combined by a combiner. In the cascading style, the 

individual classifiers are invoked in a linear sequence. For the sake of efficiency the cheap 

classifiers in term of computational time and measurement demands, are invoked first 

followed by the most accurate and the expensive one. In the hierarchical architecture, the 

base-level classifiers are combines into a decision tree like structure. 

In our implementation of classifier Fusion strategy, parallel architecture is selected due to its 

simplicity, less computational time and also higher confidence level.  



Classifier Fusion Strategy 76 

 

Once the posterior probability of all the classifier is computed, the next step is to combine 

them into a new set that can be used for maximum selection, for final classification. Robert 

and David in their paper [127] mention two sets of combining rules; 1) fixed combining rules, 

2) trained combining rules. 

5.3.1 Fixed Combining Rule 

The fixed combing rules make sure that the classifier output is not just a number rather it 

should have a clear interpretation— class labels, distance and confidence level. The posterior 

probabilities are also considered the confidence. Following are the main fixed combining 

rules: 

Maximum: the maximum rule selects the outcome of the classifier producing the highest 

estimated confidence, which seems to noise sensitive. This apparently seems quite simple to 

select a classifier that is more confident on its output. However, this fails if the classifiers are 

overtrained. In that case the final decision is based on overconfidence, hence dominating the 

confidence without providing a better performance [128].  In addition, maximum rule fails 

for simple classifiers that are not sensitive for nuances hence better classifiers are required for 

detection. 

Median and Mean: they both average the posterior probability estimates thereby reducing 

the estimation error. This works well if all the base-level classifiers estimate more or less the 

same quantity. 

Minimum: the minimum rule selects the outcome of the classifier that has the least objection 

against a certain class. Likewise the maximum rule, it is hard to find the adequate situation 

where this rule performs the best. 

Product: it works by taking the product of posterior probabilities of each classifier. 

Majority/Voting: it counts the vote for each class over the input classifiers and selects the 

majority class. It simply coincides with the simple majority, normally (50% of the vote+1) in 

case of 2-class dataset. 
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5.3.2 Trained Combining Rule 

Trained combining rules, on the other hand, train an arbitrary classifier using all the trained 

data in the intermediate space. The classifiers are usually trained as an output classifier, using 

the same training data set. The posterior probabilities are directly used for the building of the 

intermediate space. If the classes are not normally distributed then it is more advantageous to 

use the nonlinear rescaling. 

5.3.3 Fixed vs. Trained combining Rules 

This section provides a brief description about the advantages and disadvantages of fixed as 

well as trained combining rules: 

 Fixed rules are simple to use and can be used without training of the classifier.  

 Fixed rules require low memory space and less computational time while trained 

combining rules require more time as well as more memory space. 

 Fixed rules are suitable for independent/ low correlated errors and exhibit similar 

performance. On the contrary, trained rules are suitable for classifiers that are 

correlated or exhibiting different performance.  

 Flexibility of trained rules is better than fixed rules and also most of the time they 

perform better than fixed rules. 

5.4 Implementation 

Building on the previous set of results described previously, this section considers the three 

best performing classifiers for inclusion in the fusion classifier strategy. From the eleven 

classifiers tested, the Linear Discriminant Classifier (ldc), Quadratic Bayes Normal Classifier 

(udc) and the Parzen Classifier (parzenc) provide the best results with their accuracy in 

percentage being 62.5%, 65% and 60%, respectively. These base classifiers are selected and 

are included in the fusion strategy.   
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Figure 5-1: A Classifier Fusion Strategy 

Figure 5-1, depicts a general framework of combining classifiers using combining rules. A 

feature set, related to most related attributes of the data, is provided to the classifiers. 

Resulting output are used to combine the classifiers using some combining rules. 

The base classifier evaluation and fusion classifier strategy was implemented using Matlab. 

The code in Figure 5-2, begins by dividing the dataset into four classes (Huntington’s, 

Parkinson’s, Amyotrophic Lateral Sclerosis and healthy persons). Each class is assigned a 

label (1 for healthy, 2 for Huntington’s, 3 for Parkinson’s and 4 for Amyotrophic Lateral 

Sclerosis). Following the division of the dataset, it is randomly split into two equal parts; 

50% for training the classifier and the rest are used for testing. Three untrained classifiers (w1 

= ldc, w2 = udc and w3 = parzenc) are combined without rules into an array (w) were w = 

[w1,w2,w3]. The simultaneous training of a set of untrained classifiers is done using the 

training dataset and this results in a cell array (v) containing the trained classifiers. 

 

Figure 5-2: Simultaneous Training of a Set of Three Base-Level Classifiers 

The results for each of the classifiers are illustrated in Figure 5-3 below. 

1:  a = dataset((data),genlab([20 20 20 20],[1;2;3;4]));
2:  [trainset,testset] = gendat(a,0.50); %Divide dataset into two equal halves
3:  w1 = ldc; % Untrained classifiers w1, w2 and w3

4:  w2 = udc;
5:  w3 = parzenc;

6:  w = {w1,w2,w3}; % Combining Classifiers 
7:  v = trainset * w; %  % Training of Classifiers
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Figure 5-3: Test Results Summary 

Figure 5-4, shows how the base-level classifiers are combined into a cell array using a set of 

fixed combining rules. Six different rules were analyzed; minimum selection (minc), 

maximum selection (maxc), median selection (medianc), mean selection (meanc), product 

combiner (prodc) and voting selection (votec). The evaluation of a cell array of trained 

classifiers (v) and the untrained classifiers combined with rules (vc) is done by testing the 

(testset) set. 

 

Figure 5-4: Combing Base-Level Classifiers 

The results for the classifier fusion strategy with combining rules are illustrated in below. 

 

Figure 5-5: Test Results Summary 

Figure 5-6, describes the scenario and illustrates the simulated results obtained during the 

evaluation of gait signals using the eleven base-level classifiers. The results obtained from the 

three best performing classifiers are stored in a single array, and their error rates are 

computed. The mean error rate for the three classifiers is 0.42. The same three classifiers are 

8: disp([newline 'Errors for individual classifiers'])
9: testc(testset,v); % Display errors

Errors for individual classifiers

Test results result for:

clsf_1 : Bayes-Normal-1

clsf_2 : Bayes-Normal-U
clsf_3 : Parzen Classifier

clsf_1      clsf_2      clsf_3

0.425       0.350      0.475

10: comb_base = [v{:}]; %Combining Classifiers into Cell array
11:  wc = {prodc,meanc,medianc,maxc,minc,votec}; % Combining Rules into Cell array
12: vc = comb_base * wc; % Base Level classifiers combined by rules

13:  testc(testset,vc); % Testing on 50% test data

Test results result for:

clsf_1 : Product combiner

clsf_2 : Mean combiner
clsf_3 : Median combiner

clsf_4 : Maximum combiner
clsf_5 : Minimum combiner
clsf_6 : Voting combiner

clsf_1  clsf_2    clsf_3    clsf_4    clsf_5    clsf_6

0.375   0.375     0.450    0.375     0.475    0.350
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then combined into a cell array using six different rules. The mean error rate for the 

combined classifiers is 0.40, which is slightly less than the mean of the base-level classifiers. 

 

Figure 5-6: Summary of Feature Classification by Base-Level Classifiers and Fusion 

Strategy 

Table 5-1, shows the mapping of each individual  combining rule (minimum selection (minc), 

maximum selection (maxc), median selection (medianc), mean selection (meanc), product 

combiner (prodc) and voting selection (votec)) on a scattered plot of 2-features’ dataset of 

gait signals of neurodegenerative patients and healthy persons. 
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Table 5-1: Class Mapping of Individual Combining Rule 
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5.5 The Evaluation and Discussion 

This section presents the results of experiments performed on the classifier fusion strategy. 

For the evaluation of fusion strategy, the multiclass ROC (Receiver Operating Characteristic) 

analysis [115] technique and Reject Curve are used. This technique is useful for analyzing 

several different classes, four different classes here. First, the classifiers are evaluated in 

Matlab using the “testc” routine, which provides several performance estimates for a trained 

classifier on a test dataset. The mean value produced by the test results for individual 

classifiers is 0.42, which is an error rate. In comparison, the mean value for combined 

classifiers is 0.40, which is obtained by combining different classification rules. This has 

clearly shown that the combined classification technique (using combining rules) works 

better than the individual use of classifiers. Moreover, the results depict that the voting 

combination rule works more efficiently than other combining rules used. Using the voting 

combination rule, the prediction of the base-level classifiers is combined according to a static 

voting scheme, which does not change when changes to the training set are made [129].  

Figure 5-7, presents the ROC analysis for fusion strategy. It shows the results when classifiers 

are combined using various combining rule algorithms that include  product, mean, median, 

maximum, minimum and voting combining rules. As shown in Figure 5-7, the best result that 

produces the least error is the “Voting Combiner” with a value of 35.0% error rate. This is 

closely followed by the “Product Combiner,” “Mean Combiner” and “Maximum Combiner.” 

While other rules like “Median Combiner” and “Minimum Combiner” are showing 45.0% 

and 47.5% error respectively. 

Similarly, Figure 5-8, shows the Reject curve for fusion strategy which indicates that the least 

error rate is for voting combining rule i.e. 0.35. On the other hand product, mean and 

maximum shows the same error rate which is 0.375.  Median and the minimum have shown 

comparatively bad results i.e. 0.45 and 0.47 respectively.   
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Figure 5-7: ROC Analysis to Compare Combining Techniques  

 

Figure 5-8: Reject Curve for Classifier Evaluation 
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5.6 Summary 

In this chapter a novel idea of classifiers fusion is presented, implemented and then evaluated. 

From the literature, it has been revealed that combining base-level classifiers provide a better 

chance of getting accurate results. It also helps of avoiding those classifiers that are not 

suitable for a particular type of dataset; linear or nonlinear datasets. Total 6 combining rules 

are selected to implement the fusion strategy. They are minimum selection (minc), maximum 

selection (maxc), median selection (medianc), mean selection (meanc), product combiner 

(prodc) and voting selection (votec)). Total mean error rate for combining rule is 0.40 while 

that of base-level classifiers is 0.42. It has also been noted that voting combing rule has 

provided the highest accuracy rate as compare to other combining rules. Results revealed that 

the accuracy rate of combining classifiers with combining rule is greater than combining the 

base-level classifiers without any rule. Results are also shown in the form of ROC and Reject 

curves. 
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Chapter 6 Neural Synchrony 

Measurement  

6.1 Introduction 

An emergent research line arises from the integration between clinical neuroscience and 

computer science is called neuroengineering. It constitutes engineering, computational 

simulation, mathematical analysis, imaging techniques, and hardware based modelling to 

solve problems in clinical neuroscience. The goal is to apply engineering approach to further 

explore the research areas in neural functions and to use that knowledge in the diagnostic and 

therapeutic systems.  

This chapter provides an importance of integrating computer science in clinical neuroscience 

for the early detection of neurological diseases. It presents the concept of neural 

synchronization to distinguish the neuronal activities in healthy persons as well as in mild 

Alzheimer’s disease patients (MiAD). Electroencephalogram (EEG) is used as an important 

tool for the diagnosis of Alzheimer’s disease. To detect perturbation in the EEG signals of 

MiAD patients, three neural synchrony measurement techniques; phase synchrony, 

magnitude squared coherence and cross correlation are applied on three different databases of 

MiAD patients and healthy subjects. At the end, all the aforementioned techniques are 

assessed by a statistical test (Mann-Whitney U test) to compare the results. 
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6.2 Neural Activities and Cerebral Cortex 

Nervous system consists of neurons and non-neural cells. Neurons or nerve cells are used to 

transfer information to and from the brain and consequently a complex network is formed to 

perform the functions of nervous system. The classification of the neurons can be done on the 

basis of their morphology or functionality. On the basis of functionality, there are three types 

of neurons; sensory neurons, motor neurons, and interneurons. Sensory neurons are used to 

connect with the sensory receptors; motor neurons are connected to the muscles while 

interneurons are connected to the other neurons [130]. Neurons do not work in splendid 

isolation; they are interconnected to each other to form a network which is called neural 

network. Each part of the circuit is assigned a specific task. 

 

Figure 6-1: Cerebral Cortex and its Four Lobes [130] 

The outermost layer of the cerebrum is called cerebral cortex which lies inside the brain. It 

plays an important role in language, consciousness, thought, attention, awareness, and 

memory. Cerebral hemisphere is divided into four lobes; frontal lobe, temporal lobe, parietal 

lobe/central lobe and occipital lobe, as shown in the Figure 6-1. Frontal lobe is associated 

with decision making, planning, problem solving, and motor speech. Temporal lobe is 

involved in language, hearing, emotion, sensory speech and memory. The parietal lobe which 

may also be called central lobe is involved in processing the sensory information of the body, 

reading comprehension and reception while occipital lobe responsible of vision [130].   
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6.3 EEG, Electrodes Placement, Data Collection 

As we already have explained in Chapter 2 that EEG can be defined as the mean electrical 

activity in the brain at different sites of the head [51]. More specifically, it can be defined as 

the extracellular current flows of a large number of neurons. These electrical communications 

between the neurons are measured as a function of time. The change of potential in the 

neurons is measured when various neurons synchronously de- or hyperpolarized. The sum of 

the electrical potential, when cortical neurons simultaneously active is between 10µV to 

150µV on the human scalp. The signal measured between two electrodes constitutes the EEG 

as shown in the Figure 6-2, this is discovered by Hans Berger in Jena in 1924 [8]. 

 

Figure 6-2: Collection of EEG from two electrodes [130] 

This bioelectric phenomenon that is stimulated from the cerebral cortex by auditory and 

somatosensory stimuli is further investigated, explored and interpreted to understand the 

brain functionality and to identify different pathologies. This process particularly helps to 

find out those diseases that are impossible to be cured by medication, for instance, the 

neurodegenerative diseases. This phenomenon also helps for the early detection of life 

threatening diseases and widely used in the clinical studies. 

Figure 6-3, shows the EEG signal in time and frequency domain. Time and frequency domain 

and the adoptive methods are the popular methods in EEG signal analysis for the early 

detection of neurodegenerative diseases [130].  
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Figure 6-3: EEG signals in time and frequency domain [130] 

For our early experiments to understand the structure and hidden patterns of EEG signals, we 

have collected EEG data from various healthy subjects at ESPCI PaisTech SIGMA 

laboratory, France. The age of the subjects was between 25 to 40 years. 

 
(a) Gel injection on the scalp to increase 

conductivity 

 
(b) Inserting the electrodes into the cap 

to receive EEG 

Figure 6-4: Electrodes placement to Collect EEG from Healthy Subjects 

Figure 6-4 (a), demonstrates the placement of electrodes cap on the scalp of our subject. The 

electrodes are placed according to international 10-20 system [131]. A gel is injected within 

these electrodes holes on the scalp to increase the conductivity between the scalp and the 

electrodes. After inserting the gel, the electrodes are placed on the cap to collect the EEG data 

as shown in Figure 6-4 (b). The EEG system, we use in SIGMA lab is actiCap EEG system 

with 16 electrodes, amplified by a V-Amp 16 amplifier, both from Brain Products. The 
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electrodes are active electrodes and the data is filtered using the Vision Recorder software 

from Brain Products. The data is afterwards analysed using Matlab. 

 

Figure 6-5: The 21 channels used for EEG recordings [132] 

Figure 6-5, shows the position of the electrodes on the cap to receive EEG signals from the 

brain of the subjects. Different parts of the brain are differentiated with different colours, 

dotted lines and also with integers. For instance, integer ‘1’ which is written on the orange 

part denotes to frontal part of the brain. This part includes five (5) channels—FP1, FP2, FPz, 

F3, and F4.  Left temporal is denoted by integer ‘2’ and it is highlighted with blue colour. This 

part includes three (3) channels— F7, T3 and T5. Similarly, central part of the brain is denoted 

by integer ‘3’ and it is highlighted with green colour. This part has 5 channels—Fz, C3, Cz, 

C4, Pz. The 4
th

 part is right temporal which is denoted by integer ‘4’ and is highlighted by 

pink colour. This part constitutes of three (3) channels—F8, T4, T6. Similarly, the last part 

which is denoted by integer ‘5’ is called occipital. This part is highlighted with yellow colour 

and it consists of five (5) channels—P3, P4, O1, O2, Oz.  
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6.4 Neural Synchronization 

Synchronization, precisely speaking, is a coordination of “rhythmic oscillators” for a 

repetitive functional activity [133]. Whereas, neural synchronization is putatively considered 

a mechanism where brain regions simultaneously communicate each other to complete a 

specific task such as perception, cognition, and action [134, 135]. Any disturbance in the 

brain, caused by a disease or any other infection, can highly effect the synchronization of 

brain. Quantitative analysis of EEG signals provides a better insight of synchronization 

between different parts of brain. For instance, a less synchrony has been detected in the EEG 

signals of AD patients as compare to healthy persons [132]. 

Mild Cognitive Impairment (MCI) is characterized by impaired memory state of brain 

probably leading towards mild Alzheimer’s disease (MiAD) or Alzheimer’s disease (AD). 

This prodromal stage of AD is under a great influence of research since long time [2, 136, 

137]. Statistics report that 6-25% of MCI are transformed to AD annually and 0.2-4% from 

healthy person to AD, [136, 138] revealing the fact that MCI is a transition state of MiAD 

and AD. 

Loss of functional connectivity between cortical and hippocampus has long been an 

important focus of research to examine the cause of cognitive dysfunction in AD [139, 140]. 

Statistical analysis of interdependence among times series recorded from different brain 

areas, to study the functional interaction, is called “functional connectivity” [141]. Due to 

destructive characteristics of AD, it has also been characterized as a neocortical 

“disconnection syndrome”  [142]. Brain’s visualization, as a complex network of subsystems, 

has led us to find out the factors that can best identify functional disorders in brain [143]. 

There is now ample evidence that formation of dynamic links in term of synchronization 

constitutes the functional integration of brain [144-146]. 

Various synchrony measurement techniques have already been discussed to detect any 

perturbation in the EEG signals of AD patients [147]. For instance, both linear such as 

coherence and nonlinear such as phase synchronization methods are widely used to quantify 

synchronization in electroencephalographic signals [140, 148, 149]. A comparison of 

occipital inter-hemispheric coherence (IHCoh) for normal older adults and AD patients 

reveals a reduced occipital IHCoh both for lower and higher bands of alpha [150]. Almost 
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similar findings reported by Locatelli et al. [151] where a significant increase in delta 

coherence is noticed between frontal and posterior regions in AD patients while a decrease in 

alpha coherence  is shown in temporo-parieto-occipital areas. Spontaneous phase 

synchronization of different brain regions is calculated by Kuramoto’s parameter (ρ), which 

is particularly useful to measure multi-channel dataset [140]. 

Despite the considerable success of above mentioned techniques to analyze disruption in the 

EEG signals of Alzheimer’s patients, further investigations are still required to fulfil the 

clinical requirements. For instance, in order to detect Alzheimer’s at its earlier stage we need 

to focus on those areas where Alzheimer attacks at first and then we need to check its 

synchronization with rest of the brain regions. Furthermore, additional novel and 

comprehensive methods are still required to check the validity of aforementioned techniques 

on EEG signals to detect any perturbation in the brain signals of Alzheimer’s patients.    

6.5 Spatial-Spectral Analysis of EEG 

Electroencephalogram (EEG) signals are considered a functional exam to evaluate cognitive 

disturbances and used as a diagnostic tool, especially when a diagnostic doubt exists even 

after the initial clinical procedures [147, 152]. A great deal of research has already been 

conducted to detect the fluctuations in (EEG) signals [132, 136, 139]. Alteration in the 

regional cerebral blood flow (rCBF) has been considered one of the causes of abnormality in 

EEG signals of AD [153, 154]. Studies on MCI have shown a decrease of alpha power [155, 

156] and an increase of theta (4-8 Hz) power [157, 158] in cortio-cortical and subcortical 

parts of brain. Similarly, Babiloni et al. in [136] have claimed the reduction of the 

synchronization likelihood both at inter-hemispherical (delta-beta2) and fronto-parietal 

(delta-gamma) electrodes. 

Topographically analyzing the EEG signals, Micheal et al. [159] reported a less 

synchronization of upper alpha band between central and temporal cortex. In line, a 

correlation between higher low-frequency amplitude and alpha-beta activity at frontal region 

may reflect an early sign of cortical atrophy during the course of AD [160]. Similarly, 

perturbation in cholinergic inputs from basal forebrain to cortex and hippocampus indicates a 

decrease in cortical EEG coherence [161] that can be considered a biomarker for the early 
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detection of AD [136]. Moreover, a combination of multi-linear interaction within the tensor 

formed by (subject x frequency x regions) also provides a simple set of features for the 

interpretation and classification of AD at its early stage [97]. The concept of local and global 

methods is used to analyze synchronization between pairs of signals and entire EEG channels 

at the same time, respectively [132]. 

However, the studies so far, have provided a very limited regional comparison of brain. For 

instance, less synchronization has been reported between temporal and central regions [159] 

and also in fronto-parietal region [136]. Similarly, functional coupling of EEG rhythms by 

sensorimotor events is presented only in centro-parietal regions of brain [162]. A wider range 

of study is still required to analyze synchronization likelihood in all parts of brain (right 

temporal, left temporal, frontal, central and occipital) at the same time, on different sets of 

data to fully explore the progression of Alzheimer’s disease in a patient. 

6.6 Research Challenges  

The above review suggests, firstly, that Spatial-Spectral Analysis of EEG signals can provide 

a measure of memory visualization. Secondly, neural synchrony measurement techniques 

have a potential to discriminate between AD patients and healthy subjects. What is still 

missing or ambiguous in the literature survey is the simultaneous comparison of all parts of 

brain with the right and left temporal (the most affected parts of brain) to analyze 

synchronization and also the implementation of new comprehensive methods to apply 

synchrony measurement techniques. Following paragraph highlights the importance and 

some novel contributions of our research work to analyse EEG signals: 

 The amplitude range for the EEG signals vary from 29µV to 100µV while the 

frequency of EEG signals usually ranges from less than 1 Hz to 60 Hz [140]. Previous 

studies focus on the analysis of compact EEG signals without filtering them into 

narrow frequency bands. This lacks providing optimal information about the 

frequency band which is more important in detecting the Alzheimer’s at its earlier 

stage. To detect the synchrony loss of EEG signals in Alzheimer’s patients, we have 

filtered dataset of MiAD and control subjects into five narrow frequency bands (delta 

(δ: 1 ≤ f ≤ 4 Hz), theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz), beta (β: 12 ≤ f ≤ 25 
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Hz) and gamma (γ: 25 ≤ f ≤ 30 Hz)). For each frequency band we have computed 

neural synchronization to compare all parts of brain (frontal, occipital and central) 

with left and right temporal. 

 A high inter-subject variability has been seen in the EEG signals of AD patients, 

especially with different levels of severity and comorbidities [163-165]. In this 

situation the findings are not more reliable on a single set of data. Most of the existing 

studies focus on a single synchrony measure with a single set of data [166]. In this 

case it is hard to compare the results to conclude a single hypothesis. To extract a 

general set of feature we have analysed three different databases, each from one 

hospital at a time (detail in section 6.8). This will not only increase the validity of our 

research but will also provide more reliable findings that can later be used in clinical 

applications. 

 Reducing features vector dimension, commonly known as feature reduction, will not 

only help us to get better results accuracy and a better speed of signal processing but 

will also avoid the classifiers to be over-fitted [167]. Analysing results without 

removing the redundant information or without eliminating the noise leads to non-

reliable results. To remove the ambiguity of biased results due to “features 

redundancy” we have applied PCA (Principal Component Analysis) technique before 

applying synchrony measurement techniques. 

 In this research work, we have proposed two novel methodologies to compute neural 

synchronization. One is named as Average synchrony measure.  We have compared 

this technique to another proposed methodology named PCA based synchrony 

measure. Later, the results are compared using a statistical method called Wilcoxon–

Mann–Whitney test. 

Before this, Besthorn et al. [168] applied PCA technique in the quantitative analysis of EEG 

signals to compress a group of predictor variables to a small set of factors or principle 

components. Later they applied linear discriminant classifier on these variables to 

discriminate AD patients from healthy subjects. Similarly, Peter et al. [169] applied PCA to 

remove the artifacts from EEG signals that were generated by eye-blink. To the best of our 

knowledge and the literature we have surveyed so far, we could not find the application of 

PCA to remove the redundant features from the data that can generate a biased result to 

compute the synchronization of brain areas. 
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6.7 Neural Synchrony Measurement Technique 

In this section, we briefly review the synchrony measurement techniques that we have 

implemented on our datasets which include phase synchrony, cross correlation, and 

coherence. 

6.7.1 Phase Synchrony (Hilbert Transform) 

Synchronization of the two periodic non-identical oscillators refers to the adjustment of their 

rhythmicity i.e. the phase locking between the two signals [170, 171]. It refers to the 

interdependence between the instantaneous phases   ( ) and   ( ) of the two signals   ( ) 

and   ( ) respectively. It is usually written as: 

                                                      ( )    ( )                                                 (6.1) 

Where n and m are integers indicating the ratio of possible frequency locking, and       is 

their relative phase or phase difference. To compute the phase synchronization, the 

instantaneous phase of the two signals should be known. This can be detected using 

analytical signals based on Hilbert Transform [143]. 

                                          ( )   ( )    ̃( )                                                                    (6.2) 

Here z(t) is a complex value with x(t) is a real time series and  ̃(t) is its Hilbert transform. 

6.7.2 Cross Correlation  

Cross correlation is a mathematical operation used to measure the extent of similarity 

between two signals. If a signal is correlated to itself it is called auto-correlated. If we 

suppose that x(n) and y(n) are two time series then the correlation between them can be  

calculated as [172]: 

         ̂  ( )  

{
 

 ∑                

     

   

 ̂  (  )                   

                                                 (   ) 
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Cross correlation returns a sequence of length 2*M−1 vector, where x and y are of length N 

vectors (N>1). If x and y are not of the same length then the shorter vector is zero-padded. 

Cross correlation returns value between −1 and +1. If both signals are identical to each other 

the value will be 1, otherwise it would be zero [132]. A high negative correlation indicates a 

high correlation but of the inverse of one of the series. 

6.7.3 Magnitude Squared Coherence 

The coherence functions estimates the linear correlation of signals in frequency domain 

[132].  The magnitude squared coherence is defined as the square of the modulus of the mean 

cross power spectral density (PSD) normalized to the product of the mean auto PSDs [173]. 

The coherence    ( ) between two channel time series is computed as: 

                                                 ( )  
|    ( )|

 

   ( )   ( )
                                                                (   ) 

   ( ) is the cross PSD estimate of x and y.    ( ) and    ( ) are the PSD estimates of x 

and y respectively. For computation, each signal is divided into a section of 650ms and 

default value of 50% is used. Coherence returns the values between 0 and 1, showing how 

well the input x corresponds to the output y at each frequency. 

6.8 Data Description 

The datasets, we are analysing, have been recorded from three different countries of 

European Union. Specialist at memory clinic referred all patients to the EEG department of 

the hospital. All patients passed through a number of recommended tests; Mini Mental State 

Examination (MMSE) [174], The Rey Auditory Verbal Learning Test [175], Benton Visual 

Retention test  [176] and memory recall tests [177]. The results are scored and interpreted by 

psychologists and a multidisciplinary team in the clinic. After that, each patient is referred to 

hospital for EEG assessment to diagnose the symptoms of AD. Patients were advised to be in 

a resting state with their eyes closed. The sampling frequency and number of electrodes for 

three datasets are all different. Detailed information is as follows: 



Neural Synchrony Measurement 96 

 

6.8.1 Database A 

The EEG dataset A contains 17 MiAD patients (10 males; aged 69.4 ± 11.5 years) while 24 

healthy subjects (9 males; aged 77.6 ± 10 years). They all are of British nationality. This data 

is obtained using a strict protocol from Derriford Hospital, Plymouth, U.K. and had been 

collected using normal hospital practices. EEG signals were obtained using the modified 

Maudsley system which is similar to the traditional 10-20 international system [131]. EEGs 

were recorded for 20 sec at a sampling frequency of 256 Hz (later on sampled down to 128 

Hz) using 21 electrodes. 

6.8.2 Database B 

This EEG dataset composed of 5 MiAD patients (2 males; aged 78.8 ± 5.6 years) as well as 5 

healthy subjects (3 males; aged 76.6 ± 10.0 years). They all are of Italian nationality. Several 

tests, for instance; MMSE, the clinical dementia rating scale (CDRS) and the geriatric 

depression scale (GDS) were conducted to evaluate the cognitive state of the patients. The 

MMSE result for healthy subjects is (29.3 ± 0.7) while for MiAD patients is (22.3 ± 3.1). 

EEGs were recorded for 20 sec at a sampling frequency of 128 Hz using 19 electrodes at the 

University of Malta, Msida MSD06, Malta. 

6.8.3 Database C 

This dataset consists of 8 MiAD patients (6 males; aged 75 ± 3.4 years) and 3 healthy 

subjects (3 males; aged 73.5 ± 2.2 years). They all are of Romanian Nationality. The AD 

patients have been referred by a neurologist for EEG recordings. All subjects are diagnosed 

with AD by means of psychometric tests (MMSE, CDR, OTS), neuroimaging (CT) and 

clinical examination (gender, age, disease, duration, education and medication). The MMSE 

result for healthy subjects is (28-30) while for MiAD patients is (20-25).  EEG data is 

recorded using a large equidistant 22-channel arrangement conforming to the international 

federation of clinical neurophysiology (IFCN) standards [178] for digital recording of clinical 

EEG from the Ecological University of Bucharest. The time series are recorded for 10 to 20 

min at a sampling frequency of 512 Hz using 22 electrodes. The signals are notch filtered at 

50 Hz. 
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6.9 Data filtering 

The oscillatory, repetitive behaviour of the recorded EEG signals which represents the 

electrical activity of the cerebral cortex is called rhythm. This enormous diversity in the EEG 

signals usually depends on the mental state of the subject e.g. degree of attentiveness, 

walking and sleeping modes. Theses rhythms of the signals are attributed by relative 

amplitude and the frequency ranges.  

Depending on the frequency ranges, the EEG signals are divided into five (5) narrow 

frequency bands. These frequency ranges are delta (δ), theta (θ), alpha (α), beta (β) and 

gamma (γ). Alpha and beta waves were introduced by Berger in 1929. Later in 1936 Walter 

introduced the delta waves and also informed about the theta waves that range between 4-8 

HZ. Two years later, in 1938 Jasper and Andrew came to know about the waves above 25 HZ 

and called them gamma waves [179]. 

 Each frequency band has its own physiological significance [140] [51]: 

 Delta (δ: 1 ≤ f ≤ 4 Hz): these are characterized for deep sleep and are correlated with 

different pathologies. They usually have high amplitude. They do not encounter in the 

awake and normal adults but are considered as an indication of cerebral damage or 

brain damage. 

 Theta (θ: 4 ≤ f ≤ 8 Hz): they play important role during childhood. They might have 

got their name because of their origin from thalamic region. High theta activities in 

adults are considered abnormal and associated with brain disorders. The theta range 

appears in drowsiness and in certain stages of sleep. They are somewhat related in 

unconsciousness, inspirations and deep mediations.  

 Alpha (α: 8 ≤ f ≤ 12 Hz): they usually appear during mental inactive conditions and 

under relaxation. They are best seen during eye closed and mostly pronounced in 

occipital location. They are over the occipital region of the brain and appear in the 

posterior half of the head. They are of sinusoidal shaped signal but could be found in 

a sharp shape.  

 Beta (β: 12 ≤ f ≤ 25 Hz): they are visible in central and frontal locations. Their 

amplitude is less than alpha waves and they mostly enhance during tension. They are 

associated with an activated cortex and are observed during certain sleep stages.  
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 Gamma (γ: 25 ≤ f ≤ 30 Hz): sometimes they are also called fast beta waves. They are 

related to a state of active information processing of the cortex. They are best 

characterized for cognitive and motor functions. Figure Figure 6-6, represents the 

EEG signals in narrow frequency bands. 

 

Figure 6-6: Typical normal brain waves in the EEG 

A bandpass filter is applied to each EEG channel to extract the EEG data in specific 

frequency band [F:(F+W)] Hz. Butterworth filters of 2
nd

 order were used as they offer good 

transition band characteristics at low coefficient orders; thus, they can be implemented 

efficiently [180]. 

6.10 Different Approaches to Compute EEG Synchrony 

Different approaches have already been implemented to measure the synchrony between 

different parts of the brain for Alzheimer’s patients, MCI patients and healthy subjects. 

Dauwels et al. in their paper [132] have proposed two unique methods to compute synchrony 

which they named Local and Global synchrony measures. In Local synchrony they have 

computed the synchrony of different regions (left and right temporal, frontal, central, and 

occipital) separately and then compare the results of one region with the other. While in 

Global approach, synchrony measures are applied to all 21 channels simultaneously. They 
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named this computation ‘large-scale synchrony measure’ since each region spans several tens 

of millimetre.  

Taking inspirations from these concepts, we have presented advance and novel approaches to 

compute EEG synchrony for Alzheimer’s patients, for all parts of the brain in optimized and 

narrow frequency bands. In this research work we are presenting Average and PCA based 

EEG synchrony measure for Alzheimer’s and healthy subjects. A detail description of these 

methods is provided in the next sections. 

6.10.1 Average Synchrony Measure 

Average EEG synchrony takes its name because the likelihood of synchronization between 

two parts of the brain is calculated by computing average of synchrony measures for all 

channel pairs between two respective parts. This means that, first we apply neural synchrony 

measurement technique on each channel pair (time series of two channels) of two different 

regions for all frequency bands and then we take the average of those results.  

For instance, we apply phase synchrony measure on each channel pair of left and right 

temporal ((F7-F8), (F7-T4), (F7-T6), (T3-F8), (T3-T4), (T3-T6), (T5-F8), (T5-T4), (T5-T6)) and 

then we take the average result of right temporal-left temporal. Similarly, we compare the left 

temporal with frontal ((F7- FP1), (F7- FP2), (F7- FPz), (F7- F3), (F7- F4),(T3- FP1), (T3- FP2), 

(T3- FPz), (T3- F3), (T3- F4), (T5- FP1), (T5- FP2), (T5- FPz), (T5- F3), (T5- F4)), left temporal-

central ((F7- Fz), (F7- C3), (F7- Cz), (F7- Pz), (T3- Fz), (T3- C3), (T3- Cz), (T3- C4), (T3- Pz), (T5- 

Fz), (T5- C3), (T5- Cz), (T5- C4), (T5- Pz)), and left temporal-occipital ((F7- P3), (F7- P4), (F7- 

O1), (F7- O2), (F7- Oz),(T3- P3), (T3- P4), (T3- O1), (T3- O2), (T3- Oz), (T5- P3), (T5- P4), (T5- 

O1), (T5- O2), (T5- Oz)).  

Working on the same line, we compare the right temporal (F8, T4, T6) to rest of the brain area.  

For instance, we apply phase synchrony measure on each channel pair of right and left 

temporal ((F8-F7), (T4-F7), (T6-F7), (F8-T3), (T4-T3), (T6-T3), (F8-T5), (T4-T5), (T6-T5)) and 

then we take the average result of right temporal-left temporal. Similarly, we compare the 

right temporal with frontal ((F8- FP1), (F8- FP2), (F8- FPz), (F8- F3), (F8- F4),( T4- FP1), (T4- 

FP2), (T4- FPz), (T4- F3), (T4- F4), (T6- FP1), (T6- FP2), (T6- FPz), (T6- F3), (T6- F4)), right 
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temporal-central ((F8- Fz), (F8- C3), (F8- Cz), (F8- Pz), (T3- Fz), (T4- C3), (T4- Cz), (T4- C4), 

(T4- Pz), (T6- Fz), (T6- C3), (T6- Cz), (T6- C4), (T6- Pz)), and right temporal-occipital ((F8- P3), 

(F8- P4), (F8- O1), (F8- O2), (F8- Oz),( T4- P3), (T4- P4), (T4- O1), (T4- O2), (T4- Oz), (T6- P3), 

(T6- P4), (T6- O1), (T6- O2), (T6- Oz)).  

The same procedure has been repeated for rest of the synchrony measures i.e. cross 

correlation and coherence. After getting the results, we compare the neural synchronization of 

AD patients and healthy subjects, for all three measurement techniques (phase 

synchronization, cross correlation and coherence), by Mann-Whitney U test.  

6.10.2 PCA Based Synchrony Measure 

The basic purpose of Principal Component Analysis (PCA) is to reduce the dimensionality of 

a dataset to convert it to uncorrelated variables providing maximum information about a data 

eliminating interrelated variables. In other words it transforms highly dimensional dataset (of 

m dimensions) into low dimensional orthogonal features (of n dimension) where n<m [181]. 

In our case we apply PCA on all channels in one particular region, for instance, application of 

PCA for the left temporal is shown in the Table 6-1, where the signals from channel (F7, T3, 

T5) are converted into a single variable. It contains almost all information from the left 

temporal, eliminating any redundant information. 

Table 6-1: Application of PCA on left temporal channels 

Left Temporal Signals (Channel (F7, T3, T5)) Left Temporal Signal (After Applying PCA) 
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In this method, instead of applying synchrony measurement techniques directly on the 

filtered data, first we apply Principal Component Analysis (PCA) technique on all channels 

of one region. This eliminates any redundant information that a region could provide. For 

instance, we apply PCA on all three channels of left temporal (F7, T3, T5) and consequently it 

provides a single signal without any redundant information. It is noteworthy here that still we 

have a signal into five narrow frequency bands (δ, θ, α, β, γ) for each part. This means that 

for left temporal after the application of PCA on three channels (F7, T3, T5), we have a single 

signal (say LT) for all these frequency bands (LTδ, LTθ, LTα, LTβ, LTγ). Similarly, after 

applying PCA to right temporal (RT) we have the following signals (RTδ, RTθ, RTα, RTβ, 

RTγ). For frontal, central and occipital the signals are as (Fδ, Fθ, Fα, Fβ, Fγ), (Cδ, Cθ, Cα, Cβ, 

Cγ), (Oδ, Oθ, Oα, Oβ, Oγ) respectively.  

After the application of PCA, now we have a single comprehensive signal in five frequency 

bands in each part. Proceeding towards the findings of neural synchronization, we apply 

neural synchrony measure, say phase synchrony, on EEG time series of two regions. We 

calculated phase synchrony between left and right temporal ((LTδ-RTδ), (LTθ-RTθ)-, (LTα-

RTα), (LTβ-RTβ), (LTγ-RTγ)), left temporal-frontal ((LTδ-Fδ), (LTθ-Fθ)-, (LTα-Fα), (LTβ-Fβ), 

(LTγ-Fγ)), left temporal-central ((LTδ-Cδ), (LTθ-Cθ)-, (LTα-Cα), (LTβ-Cβ), (LTγ-Cγ)), and left 

temporal-occipital ((LTδ-Oδ), (LTθ-Oθ)-, (LTα-Oα), (LTβ-Oβ), (LTγ-Oγ)). 

Similarly, we have compared right temporal with the rest of the brain areas; right temporal-

left temporal ((RTδ- LTδ), (RTθ-LTθ)-, (RTα-LTα), (RTβ-LTβ), (RTγ-LTγ)), right temporal-

frontal ((RTδ- Fδ), (RTθ-Fθ)-, (RTα-Fα), (RTβ-Fβ), (RTγ-Fγ)), Right temporal-central ((RTδ- 

Cδ), (RTθ-Cθ)-, (RTα-Cα), (RTβ-Cβ), (RTγ-Cγ)), and right temporal-occipital ((RTδ- Oδ), (RTθ-

Oθ)-, (RTα-Oα), (RTβ-Oβ), (RTγ-Oγ)). 

The same procedure has been repeated for rest of the synchrony measures i.e. cross 

correlation and coherence. After getting the results, we compare the neural synchronization of 

MiAD patients and healthy subjects, for all three measurement techniques (phase 

synchronization, cross correlation and coherence) by Mann-Whitney U test.  
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Figure 6-7, shows the entire, step wise, procedure of Average as well as PCA based 

synchrony measurement to calculated neural synchronization for MiAD patients and its 

comparison with healthy subjects. 

 

Figure 6-7: Average vs. PCA based Synchrony Measure 

6.11 Statistical Analysis 

To investigate whether there is a significant difference between the EEG signals of MiAD 

patients and control subject and also to prove the probable significance of our proposed 

methodology, we apply Wilcoxon ranksum (Mann-Whitney) test on our datasets. Ranksum 

function is a non-parametric test which allows us to check whether the statistics at hand, in 

our case synchrony results, take different values from two different populations. Lower p-

values indicate higher significance in term of large difference in medians of two populations 

[132].   

Since we are applying three different synchrony measures on three different sets of data, first 

we consider our one method (Taking average of synchrony values) to compute the synchrony 

measure. We apply all three measures for all 7 different comparisons of brain for all 

frequency bands and compute the results by Mann-Whitney test. Then we apply the same 

techniques on all, above mentioned, three datasets for 2
nd

 method (PCA based synchrony 

measures). Now we are able to compare our results in two different perspectives: 
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i. Investigating three different synchrony measures at a time will help us to compare 

which measure works better for EEG signals.  

ii. Secondly, we are able to compare two different methods for three synchrony 

measures and for three different datasets. 

In addition to evaluate the statistical significance of our proposed methods, this will also help 

us to differentiate the MiAD patients from healthy subjects. 

6.12 Results and Discussions 

The aim of the present study is to find the relationship of EEG synchronization with AD, thus 

to explore further dimensions in disconnection theorem of cognitive dysfunction in AD. And 

also, to propose a better method to detect any change in EEG synchrony that can be 

considered as a biomarker for the early detection of AD. Here we investigate and discuss 

results in two different angles. First, we are discussing the role of synchrony measures to 

examine a change in EEG synchrony in MiAD patients and later we are conferring the 

significance of applying PCA before synchrony measures.  

6.12.1 Functional disconnection of brain regions due to lower synchronization  

We have observed that all of the synchrony measures, tested in this paper, show a decrease in 

EEG synchrony for MiAD patients as compare to healthy subjects. However, cross 

correlation shows a higher number of significant results at p=0.01 level as compare to phase 

synchrony and coherence. We have examined that mostly the areas that have shown less 

functional connectivity for all three synchrony measures are right temporal- central (RT-C) 

for delta, theta and alpha bands and also left temporal-occipital (LT-O) for delta and alpha 

bands. Rest of the paper discusses these two regions where we find highly significant results 

as compare to the rest of the regions.  

First we discuss Dataset A for all three synchrony measures with PCA based method. The p-

values for cross correlation in RT-C region are 2.47x10
-4

, 1.46x10
-4

, 0.009 for delta, theta and 

alpha bands respectively. In LT-O region the smallest p-vales for delta and theta bands are 

8.50x10
-5

 and 6.8x10
-5

 respectively. The 2nd best measure which has given us remarkable 
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results is phase synchrony, where we get 0.0067, 0.0403, and 0.0585 p-values for delta, theta 

and alpha bands respectively in RT-C region. We get 0.0041 and 0.0271p-values for delta 

and alpha bands in LT-O region. Lastly, the coherence function shows significant results in 

RT-C region for delta band, p-vale=0.0378 and in LT-O region with p-values 9.8x10
-4

 and 

0.05 for delta and alpha bands respectively. Coherence function does not provide significant 

results and hence contradicts Bahar theory [182] where control group showed higher values 

of evoked coherence in delta, theta and alpha bands in the left fronto-parietal electrode pairs 

as compare to AD patients. 

Lower p values at delta and alpha bands are shown by Babiloni et al. [136] at fronto-parietal 

coupling of electrodes which indicates a lower synchronization in MCI and AD subjects. 

Further to the previous findings, our results show higher difference of synchronization for 

temporal, occipital and central areas in MiAD patients at delta, theta and alpha level. They 

show the lower magnitude of delta, theta and alpha bands in temporal, central and occipital 

areas in MiAD patients as compare to healthy subjects.  Temporal regions are characterized 

for short term and long term memory and any neuronal change in these regions is a clear 

indication of progression of AD. 

Interestingly, we find a decrease in alpha band synchronization for all three synchrony 

measures in almost all regions. For instance, for cross correlation p-value<0.01 in almost all 

parts of the brain, for phase synchrony the p-values are 0.058, 0.0038, 0.011, and 0.027 in 

RT-C, RT-O, RT-F and LT-O respectively. This shows the importance of alpha rhythm for 

the early detection of AD which is in accordance with the phenomena that alpha rhythms are 

mainly modulated by thalamo-cortical and cortio-cortical systems [183, 184]. Alpha band is 

mainly related to a subject’s global attentional readiness and engagement of specific neural 

channels for the elaboration of sensorimotor or semantic information [136]. 

As aforementioned, mostly the areas that show lower dysfunctional connectivity are right 

temporal-central and left temporal-occipital. A lower synchronization in these connections, 

especially in RT-C region, for alpha band indicates a disturbance in the perception and 

integration of somatosensory information, visuospatial processing, and cognitive disorder. 

This information is in line with clinical findings presented in [185] for increasing visual and 
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spatial deficits in MCI and MiAD patients. Table 6-2, shows the significant p-values in 

different parts of the brain in different frequency bands for Dataset A. 

 

Table 6-2: P-values for dataset A, different frequency bands in different brain 

connections 

Synchrony Measure Brain-Connections Frequency regions P-values 

Cross Correlation RT-C  Delta (δ) 2.47x10
-4

 

Theta(θ) 1.46x10
-4

 

Alpha(α) 0.009 

RT-O Delta (δ) 6.9 x10
-5

 

Theta(θ) 2.7 x10
-5

 

Alpha(α) 0.0029 

RT-F Delta (δ) 5.01x10
-4

 

Theta(θ) 6.8 x10
-5

 

Alpha(α) 0.0062 

LT-C Delta (δ) 4.3 x10
-5

 

Theta(θ) 3.8 x10
-5

 

Alpha(α) 0.0192 

LT-O Delta (δ) 8.5 x10
-5

 

Theta(θ) 6.8 x10
-5

 

Alpha(α) 0.0052 

LT-F Delta (δ) 2.2 x10
-4

 

Theta(θ) 5.4 x10
-5

 

Alpha(α) 0.0091 

LT-RT Delta (δ) 3.3 x10
-4

 

Theta(θ) 6 x10
-5

 

Alpha(α) 0.0253 

Phase Synchrony RT-C Delta (δ) 0.0067 

Theta(θ) 0.0403 

Alpha(α) 0.05 

RT-O Delta (δ) 0.0041 
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Alpha(α) 0.0271 

Coherence RT-C Delta (δ) 0.0378 

RT-O Delta (δ) 0.0378 

Alpha(α) 0.0192 

Similarly, for Dataset B and Dataset C we found low p-values in the same regions for same 

frequency bands but not as much significant as for the Dataset A. Nonetheless, one thing is 

common in all three datasets that they show lower p-values in alpha frequency bands in RT-C 

region. 

6.12.2 Significance of PCA approach over Average approach 

Our second hypothesis was to show the significance of using PCA method where we apply 

PCA algorithm on EEG signals before applying synchrony measures to eliminate the 

redundant information from the data to avoid biased results. As expected, we found a big 

difference in results with and without PCA method. We have found that more than 90% of 

the values are better in case of PCA method as compare to Average method for all of three 

datasets. 

For instance, for Dataset A, in case of PCA method, we have found 8 significant values 

below 0.01 (p<0.01) and 11 significant values below 0.05 (p<0.05) while only 2 values below 

0.01 (p<0.01) and 8 values below 0.05 (p<0.05) in case of Average method for phase 

synchrony measure. Similarly, for cross correlation measure, although the difference is not 

very high yet PCA method has shown more significant values. For example, the number of p-

values below 0.01(P<0.01) are 26 while almost all 35 values below 0.05 (p<0.05) while for 

Average method 22 values are below 0.01 while 30 values below 0.05 (p<0.05). As 

aforementioned, coherence function doesn’t perform better as compare to other two 

synchrony measures but again we found more significant results in case of PCA method (2 

values below 0.01 and 7 values below 0.05) as compare to Average method where we found 

only one significant value below 0.01 and 7 significant values below 0.05. 
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Table 6-3: Total number of Significant Values in case of PCA and Average method 

Synchrony Measure Method P<0.01 (Total Values) P<0.05 (Total Values) 

Cross correlation PCA 26 35 

Average 22 30 

Phase Synchrony PCA 8 11 

Average 2 8 

MS Coherence PCA 2 7 

Average 1 4 

Figure 6-8 and Figure 6-9, shows the comparison of results for phase synchrony measure for 

Dataset A.  

 

Figure 6-8: PCA based Phase Synchrony for Dataset A 
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Figure 6-9: Average Phase Synchrony for Dataset A 

The x-axis represents the seven (7) comparisons of brain region (LT-RT, LT-F, LT-C, LT-O, 

RT-F, RT-C, and RT-O) into five (5) different frequency bands (δ, θ, α, β, γ) while y-axis 

represents the p-values. Similarly, Figure 6-10 and Figure 6-11, represents the results of MS 

coherence for Dataset A. 

 

Figure 6-10: PCA based Ms Coherence for Dataset A 
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Figure 6-11: Average Ms Coherence for Dataset A 

The bar chart results for cross correlation are demonstrated in Figure 6-12 and Figure 6-13. 

 

Figure 6-12: PCA based Cross Correlation for Dataset A 
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Figure 6-13: Average Cross Correlation for Dataset A 

 

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Average XCorr for 5 Frequency Bands

P
-V

a
lu

e
s

 

 

LT-RT

LT-F

LT-C

LT-O

RT-F

RT-C

RT-O



 

111 

The results are also shown by boxplot in Figure 6-14 that demonstrate the difference of p-values for all three synchrony measures in all seven (7) 

brain comparison for dataset A. They compare the results of synchrony measures for PCA and Average methods. 

 

Figure 6-14: Boxplots show the results of three synchrony measures for PCA and Average methods 
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6.12.3 Challenges with Large Number of Features 

Further to the previous section, after the completion of signal processing part, the next 

challenging step is the classification of the features. As we have seen that, after the 

implementation of a single synchrony measure, we receive 35 features. For instance, as a 

result of successful implementation of phase synchrony measure we obtain 35 significant 

features that can help us to distinguish between MiAD and healthy subjects. Going into more 

detail, there were total seven (7) comparisons of brain regions (LT-RT, LT-F, LT-C, LT-O, 

RT-F, RT-C, and RT-O) into five (5) different frequency bands (δ, θ, α, β, γ) which give us 

7x5=35 number of features for a single measurement. Similarly, as a result of MS coherence 

and cross correlation, we receive 35 features each. Hence, total number of features we receive 

at the end are (35+35+35) =105. 

The problem here is if we classify our data with the same set of features (105 features) then 

the possibility of getting biased results is very high. This would ultimately raise the question 

about the reliability of the results. The ambiguity of the results might be due to these reasons; 

1) some of the features might be providing the same information as others 2) some of the 

feature included might not have any relation with the early diagnosis of Alzheimer’s. 3) 

Obviously, the computation time of the classifiers will be very high if we process all 105 

features at once and also it will occupy more memory space.  

To incorporate these issues, we consider applying Gram Schmidt Orthogonalization 

algorithm. This algorithm works by ranking the most relevant features to the top from a huge 

set of features that best describe the output— MiAD and healthy subjects. Later, we apply “n-

probe” function to select the most relevant features. A detail description is provided in the 

next section. 

6.13 Gram-Schmidt Orthogonalization 

Gram Schmidt orthogonalization is first implemented to rank the features according to their 

significance in term of the provided output—in our case output is Alzheimer’s patients and 

healthy subjects. This means that all the 105 features are ranked according to the most 

relevant features at the top of the list. After that, the next step is setting the boundary between 
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the “top” and the “bottom” features—those which should be selected and those which should 

be discarded. Ranking of the features is demonstrated in a screen short, Figure 6-15. 

 

Figure 6-15 : Feature Ranking by Gram-Schmidt Orthogonalization  

 

 

Figure 6-16: Feature Selection by n-Probe 
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Once all the features are ranked in order of decreasing relevance of the output, an “n-Probe” 

function is used to select the most relevant features, as shown in Figure 6-16. Since the 

amount of available data is finite, the probe feature will appear somewhere in the ranked 

feature list; all features that are ranked below the probe should be discarded. Since the probe 

is a random variable, its rank in the list is a random variable too. Therefore decision of 

keeping or discarding a given feature is based on the probability that this feature be ranked 

higher or lower than the probe. In our case the value of the probe is varied from 500 to 1000 

to check if there is any variation in the results. 

Table 6-4: Set of Resulting Features 

Synchrony Measure Regions Frequency Band P-Values 

XCorr Right Temporal-Occipital Theta Range 2.7 x10
-5

 

XCorr Right Temporal-Occipital Alpha Range 0.0029 

XCorr Left Temporal-Right 

Temporal 

Theta Range 6 x10
-5

 

Phase Synchrony Left Temporal- Frontal Gamma Range 0.00741 

XCorr Right Temporal-Occipital Beta Range 6.9 x10
-5

 

Phase Synchrony Left Temporal-Right 

Temporal 

Beta Range 0.0115 

Table 6-4, provides a set of resulting features after the application of Gram-Schmidt 

Orthogonalization and “n-Probe” function. According to these results, the best synchrony 
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measure that can differentiate between healthy and MiAD subjects is cross correlation and 

the 2
nd

 best is phase synchrony. Moreover, these results reveal that cross correlation (xcorr) 

synchrony in Right temporal-Occipital (RT-O) for theta (θ), alpha (α) and beta (β) ranges 

provides an optimal information for the early diagnosis of Alzheimer’s patients. Also, phase 

synchrony measure in Left Temporal-Frontal (LT-F) and Left Temporal-Right Temporal 

(LT-RT) regions provides significant information for theta (θ) and beta (β) ranges which can 

help the clinicians to early diagnose the Alzheimer’s patients. As we can see from the results 

that mostly the temporal zones are involved to provide us significant information about 

neural synchronization in MiAD. This is exactly in accordance with the clinical findings that 

the temporal zones are responsible for the visual processing of objects and pattern 

recognition. Also, the medial and anterior parts of the temporal zones are involved in high 

level memory. So, any disturbance in these regions could have a direct link with AD [185]. 

6.14 Summary 

In this chapter we have shown the importance of neural synchronization for the early 

detection of Alzheimer’s disease. It has been shown from previous findings that neural 

synchronization is considered one of the important biomarkers for the early detection of 

neurological diseases. EEG has been used to detect the neural synchrony in different parts of 

MiAD and healthy subjects. Three different neural synchrony measurement techniques 

named phase synchrony, cross correlation and magnitude squared coherence has been 

implemented on three different EEG datasets of real MiAD and healthy subjects. 

Two novel methods are proposed to calculate the neural synchronization of MiAD and 

healthy subjects with the above mentioned synchrony techniques—Average Synchrony 

Measure and PCA based Synchrony Measure. Results are compared using Wilcoxon ranksum 

(Mann-Whitney) test which reveals that PCA based synchrony measure outperforms the 

Average synchrony measure. Which means that we have obtained more significant p-values 

with PCA based method. Moreover, results are more reliable because PCA based synchrony 

methods works by eliminating any redundant information from the datasets. 

Finally, we have implemented Gram Schmidt orthogonalization algorithm with “n-probe” 

function to get the most important features that can help for the classification and early 
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diagnosis of AD. Results revealed that cross correlation (xcorr) synchrony in Right temporal-

Occipital (RT-O) for theta (θ), alpha (α) and beta (β) ranges provides an optimal information 

for the early diagnosis of Alzheimer’s patients. Also, phase synchrony measure in Left 

Temporal-Frontal (LT-F) and Left Temporal-Right Temporal (LT-RT) regions provides 

significant information for theta (θ) and beta (β) ranges. The provided results have given a 

support to our hypothesis where we have claimed that a decrease in synchronization between 

temporal regions have a direct link with the progression of Alzheimer’s disease. These 

findings will help clinicians for the early diagnosis of AD patients. 
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Chapter 7 Conclusions and Future 

Work 

7.1 Introduction 

This chapter presents the summary of the whole thesis along with the conclusions that have 

been derived from the results. It provides the novel contributions of the project from IT and 

clinical perspectives. This chapter also highlights the importance of the results from clinical 

point of view and their practical implementations in the hospitals with the help of computer 

engineers. Limitations and the possible future research directions are also provided in this 

chapter to get the maximum benefits from this research work.  

7.2 Thesis Summary  

This thesis has presented a framework for the early detection of neurodegenerative diseases 

using signal processing and signal classification techniques. As we have previously discussed 

that a NDD starts with the deterioration of short and long term memory of the subjects due to 

abnormal brain functionality.  This kind of perturbation in the brain is considered an initial 

symptom for the progression of a neurodegenerative disease. Moreover, a healthy gait pattern 

requires a direct input from neurological system of the brain. Any disturbance in the brain has 

direct impact on the gait patterns of a person. So an abnormal gait pattern in these patients is 

considered a final symptom of any neurological disease.  
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To keep things in a normal sequence and to make them easily understandable, we have 

divided our project into two main parts—classification of gait signals to discriminate between 

different NDDs (Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral 

Sclerosis) and analysis of EEG signals to compute neural synchronization of MiAD patients. 

The first part of the project is completed using an online database repository called 

“Physionet” while the processing and analysis of EEG of MiAD and healthy subjects has 

been done in France at “SIGMA Laboratory”.  

Machine learning approach has been selected to complete this project. A set of eleven 

classification algorithms is implemented and evaluated using PRTools in Matlab for the gait 

pattern recognition. A comparison of various evaluation techniques is provided, based on 

visualization and statistical analysis, which helps us to understand the difference and 

importance of different performance evaluation techniques. In the second half of the thesis 

we have presented a novel idea of combining base-level classifiers to increase the percentage 

of classification accuracy. Lastly, we have presented the computation of neural 

synchronization of the EEG signals for MiAD and control subjects to determine the 

significant features that can help the clinicians to diagnose Alzheimer’s at its earlier stage.   

The chapter wise summaries of the whole thesis with their derived conclusions are provided 

below: 

Chapter 1 outlined the potential issues of NDDs along with the challenges related to 

machine learning. We argued here, the potential of machine learning approaches to provide 

significant improvements in the early diagnosis of NDDs.  It provided a brief introduction of 

the methods we have proposed in this research work. Finally, it outlined research aims and 

novel contributions of the thesis. 

Chapter 2 presented detail information about neurodegenerative diseases and a description 

about their development stages with their probable symptoms. It provided background and 

preliminary information about signal processing and signal classification. Matters like feature 

extraction, feature selection and feature classification are discussed in this chapter. In 

addition to NDDs and signal processing, we have discussed supervised machine learning 

approach in detail. We have discussed logic based classifiers, artificial neural networks, and 

statistical learning algorithms.   
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Chapter 3 presented our proposed strategic framework for the early detection of 

neurodegenerative diseases and discussed each of its components, i.e. the data collection, data 

preprocessing and data classification and decision making. It provided information about the 

tools (PRTools, Statistical, Communication and Signal Processing tool) that are selected for 

this particular project and the reasons behind their selection.  

In Chapter 4, we demonstrated the assessment of gait signals. In this chapter we have 

discussed the problems with imbalanced datasets, missing data entries, multiclass pattern 

recognition, and discrimination among similar diseases along with their possible solutions. A 

set of eleven statistical learning algorithms has been selected to process the gait signals of 16 

CO, 15 PD, 20 HD, and 13 ALS subjects. They belonged to normal density based classifiers, 

linear and nonlinear classifiers. At first, the classification accuracy results are presented using 

confusion matrix. Later, the results are also presented using other visualization and statistical 

analysis techniques. Two Bayes classifiers (LDC and UDC) and one linear classifier (Parzen) 

have outperformed other.  

Chapter 5 highlighted our novel idea for combining the base-level classifiers to check if we 

can obtain higher classification accuracy. Three base-level classifiers (LDC, UDC, Parzen) 

are combined together by six fixed combining rules. We observed that total mean error rate in 

case of combined classifier is less than base-level classifiers. Moreover, it has also been noted 

that voting combing rule has provided the highest accuracy rate as compare to other 

combining rules.   

Chapter 6 presented the second half of our project that we have completed in France in 

SIGMA laboratory. Here we have analysed three different sets of MiAD and healthy subjects 

to compute the neural synchronization of EEG signals. Two novel methods are proposed to 

apply three neural synchrony measure techniques (phase synchrony, cross correlation and MS 

coherence) on three datasets. One of the methods is named PCA based synchrony while the 

second method is called Average synchrony. Results revealed that PCA based synchrony has 

given us more significant results that can help us to diagnose Alzheimer’s at its earlier stage 

than Average synchrony. Moreover, cross correlation measure has proved to be the best one 

among others to provide better results. Results have been compared using Wilcoxon ranksum 

(Mann-Whitney) test. Later, Gram Schmidt orthogonalization algorithm is applied with “n-
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probe” function to get the most important features that can help clinicians for the 

classification and early diagnosis of AD.     

7.3 Research Contributions 

The importance and the novel contributions of this research work can be assessed from two 

different perspectives—medical and IT fields. It has not only provided a very narrow research 

work on the causes and symptoms of the NDDs but has also highlighted those crucial 

moments where IT could play its significant role to diagnose the progression of these diseases 

from their onset to acute stages.  Furthermore, it has explored more directions and 

innovations in the field of machine learning, signal processing and signal classification to get 

maximum benefits from this filed. Adding to the solutions, it has also discovered those 

hidden significant features that can be used as biomarkers from the early diagnosis of these 

life threatening diseases. 

Following are the main contributions of the thesis: 

 Solutions for Skewed Datasets: In Chapter 4, we have highlighted the limitations of 

imbalanced datasets in term of getting biased results for majority class patterns. 

Possible solutions in term of under sampling and over-sampling are also provided. 

Later, over-sampling method has been demonstrated using gait dynamics of different 

neurodegenerative diseases and control subjects.   

 Extended set of gait features: Previous findings are based on a very limited set of 

features that are used to classify the neurodegenerative diseases. In our research work, 

we have selected all significant features that have direct or indirect impact on the 

progression of NDDs. For instance, age and gender have significant relation with 

NDDs. The likelihood of developing Alzheimer’s increases in advance age. Also, we 

have calculated BMI of each person to notice if weight of the person has any link with 

the progression of neurological diseases. We have observed and demonstrated that all 

these factors are equally important in the early diagnosis of NDDs.   

 Different sets of classifiers: As we already have mentioned that the classifier space 

that is considered for pattern recognition does not always contain the optimal 

classifier. For instance, a set of linear classifiers is chosen for a dataset that can best 
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recognize by nonlinear classifier can never help us to find an optimal classifier. 

Instead of focusing on a single classifier we have selected a number of different 

classifiers that belong to different categories—linear, nonlinear and Bayes classifiers. 

 Performance Evaluation Matrices: It has already been demonstrated through 

literature survey that one particular performance measure may evaluate a classifier on 

a single perspective while fails to measure on another [112]. Although researchers 

have been evaluating classification algorithms by various techniques, yet there is no 

single authorized criterion that outperforms others. To overcome this complication, in 

our research work (Chapter 4), we have presented the results both by statistical and 

visualizing techniques. This has helped us to compare the results from different 

perspectives and eventually to select one of the classifiers that best suits to our 

dataset. 

 Classifiers Fusion Strategy: In Chapter 5, we have proposed a novel idea to combine 

all those base-level classifiers that has given us comparatively better results. By 

combining different classifiers together, an opportunity is provided to the designer to 

have an access of different classifiers that belong to different context and are 

developed for entirely different representation. Moreover, an ensemble classifier can 

also handle the multivariate training sets that are collected at different times and also 

in different environment. The training set may also have different features. Results 

revealed that combining classifiers is good idea especially in a case where data 

belongs to multidimensional (different NDDs such as AD, PD, HD and ALS) as well 

as multivariate (a large set of features) datasets. 

 Dividing EEG Signals into Narrow frequency bands: In Chapter 6, for the early 

diagnosis of Alzheimer’s disease, we have filtered EEG signals into five (5) different 

frequency bands. These frequency ranges are delta (δ), theta (θ), alpha (α), beta (β) 

and gamma (γ). These narrow frequency bands helped us to find all those hidden 

patterns that can be used as biomarkers for the early diagnosis of Alzheimer’s.   

 Different sets of EEG data: A high inter-subject variability has been seen in the 

EEG signals of AD patients, especially with different levels of severity and 

comorbidities. In this situation the findings are not more reliable on a single set of 

data. Most of the existing studies focus on a single synchrony measure with a single 

set of data. In this case it’s hard to compare the results to conclude a single 
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hypothesis. To extract a general set of feature we have analysed three different 

databases, each from one hospital at a time. This has not only increased the validity of 

our research but has also provided more reliable findings that can later be used in 

clinical applications. 

 PCA technique: Literature survey does not provide us any obvious solution for 

removing the redundant information or noise from EEG dataset before applying 

synchrony measurement techniques. Analysing results without removing the 

redundant information or without eliminating the noise leads to non-reliable results. 

To remove the ambiguity of biased results due to “features redundancy” we have 

applied PCA (Principal Component Analysis) technique before applying synchrony 

measurement techniques (Chapter 6). This helped us finding more reliable results that 

can be used for clinical practices.  

 Average Method vs. PCA Method: In Chapter 6, we have compared our proposed 

method PCA based synchrony measure with another proposed method called Average 

synchrony measure. Results revealed that although Average method provides us some 

useful information for the early diagnosis of Alzheimer’s yet PCA method provides us 

more significant and authentic information that can be used as a biomarker for the 

early diagnosis of Alzheimer’s.  

 Gait Signals Vs. EEG Signals: Two different kinds of signals are computed in this 

research work—Gait and EEG signals. Gait signals are computed to discriminate 

different NDDs for an accurate and exact diagnosis of a disease and also to provide in 

time treatment of the patient. On the other hand, EEG signals are computed to detect 

any perturbation in the brain. Any change in the synchronization of EEG signals is an 

indication of onset of an abnormality/pathology in the brain. 

7.4 Future Work 

Beside the main contributions that have been presented for gait and EEG signals analysis, we 

hereby, present several extensions and possible changes that might help to improve the 

shortcomings. This section also highlights the possible extensions of our research work to 

clinical applications. 
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 Possible extension of feature set for gait data analysis: In this research work only 

the left and right feet signals are used with other set of possible variables. However, 

future work may enhance this feature set to advance level. For instance, calculating 

correlation and synchrony between two feet signals can provide some more 

significant information in the classification and later in the analysis of a normal and 

abnormal gait pattern.  

 Classification of EEG features and further implementation on other NDDs: 

During the EEG signal processing, this research work has concentrated on exploring 

the significant features that can later be used as biomarkers in the early detection or 

early diagnosis of neurodegenerative diseases (here Alzheimer’s). Significant features 

are extracted using Wilcoxon ranksum (Mann-Whitney) test. Future work may 

involve this feature set to discriminate the healthier and Alzheimer’s patients using all 

those classifiers that have been implemented for gait signal analysis.  

Furthermore, in this research work, the analysis of EEG signals is confined to the 

early diagnosis of Alzheimer’s. Same techniques and procedures can further be 

applied in the early diagnosis of Parkinson’s, Huntington’s, ALS and other NDDs for 

clinical practices. 

 Extension of the work to Brain-Computer Interface (BCI): A future augmentation 

of this research work is a complete BCI system which measures the brain activity and 

delivers a feedback after the processing of data.  

 

Figure 7-1: Activities of Brain Computer Interface 
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 Integration of EEG with other techniques: Combining EEG with other imaging 

modalities can provide us further remarkable results. For instance, Francois and his 

team have claimed in [186] that EEG with magnetic resonance imaging (MRI), 

diffusion tensor imaging (DTI), Doppler technique, transactional magnetic stimulation 

(TMS), and single photon emission computed tomography (SPECT) can provide 

useful information about the anatomy of the brain that can help in the early 

diagnosing of Alzheimer’s. Further adding to this argument they emphasise that 

multi-model approaches seem to have strong potential to diagnose all kinds of 

dementias. Theses interesting areas are yet to be explored and can add to this project 

to get maximum benefits from it. 

The principal drawback with EEG is its low spatial resolution due to its dependence 

on the number of electrodes that are used for extracting the EEG signals. However, 

fMRI resolves this issue by providing better spatial resolution on an order of 

millimetres. The integration of these techniques will help to implement this project in 

neuroscience studies and better solutions can be provided for other neurological 

diseases such as epilepsy, Seizure, depression and dementia.  

7.5 Concluding Remarks  

The problem with the NDDs is thet they are incurable, hard to detect at earlier stage due to 

non-obvious symptoms and also hard to discriminate at latter stage due to pattern similarities 

of different NDDs. Since, there is no single authentic remedy available for such diseases; 

scientists find a lot of interest in finding those hidden patterns that can help us in the early 

diagnosis of NDDs. This research work has highlighted the importance of machine learning 

and signal processing in the early diagnosis of life threatening diseases such as Alzheimer’s 

Parkinson’s, Huntington’s and ALS. In this thesis, we have presented the issues with the 

early diagnosis of NDDs and also with their possible solutions. The analysis and 

classification of gait signals is presented using a set of well-known classifiers—linear, non-

linear and Bayes classifiers. Results are presented and elaborated from various dimensions 

using more than one performance evaluation techniques. In addition, we have proposed and 

demonstrated a novel idea of combining classifiers to improve the classification accuracy. 
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The latter half of the thesis presented the implementation of neural synchrony measurement 

techniques using EEG signals to calculate synchronization in different parts of the brain for 

Alzheimer’s and non-Alzheimer’s. The research work has presented novel and significant 

findings that can be used in clinical practices for the early diagnosis of ND. 
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Appendix A  Ranking of Features  

The ranking of all 105 features by Gram-Schmidt Orthogonalization is presented in this table. 

Here the value in the first column “62” represents the index number of the feature with value 

“0.61532” that has highest importance in the early diagnosis of Alzheimer’s. Similarly, the 

other features are ranked accordingly.  

 

    

 

62 0.61532 25 0.671679 17 0.466411 67 0.409222

63 0.616709 73 0.732044 45 0.46705 56 0.44928

37 0.346602 77 0.781445 105 0.437859 94 0.380699

10 0.328678 88 0.883991 97 0.355384 78 0.554023

64 0.346054 58 0.760874 102 0.383395 39 0.667188

4 0.391557 92 0.966538 32 0.385404 71 0.408724

74 0.532659 26 0.998456 101 0.482414 49 0.42052

7 0.433891 8 0.945611 91 0.436949 2 0.26958

3 0.369268 34 0.999767 19 0.459629 60 0.273432

23 0.385343 42 1 15 0.542015 21 0.381708

57 0.402352 16 0.837752 79 0.459497 103 0.359936

44 0.44419 27 0.672242 35 0.449874 84 0.238438

69 0.510834 61 0.55518 65 0.590408 11 0.173543

20 0.37626 18 0.632625 99 0.464793 14 0.015892

72 0.394932 86 0.441174 70 0.398272 12 0.000888

6 0.30568 50 0.348897 89 0.689701

66 0.325174 90 0.339989 33 0.82886

48 0.431468 82 0.539476 80 0.809667

9 0.461903 22 0.575493 5 0.887011

53 0.425815 24 0.479011 29 0.99994

13 0.394697 96 0.519094 30 1

46 0.388942 40 0.362037 75 0.940345

1 0.39193 59 0.403948 98 0.745889

93 0.488403 100 0.44972 41 0.595915

68 0.531995 87 0.337776 31 0.605216

76 0.580376 95 0.439673 47 0.655826

51 0.593223 43 0.36418 28 0.624386

55 0.555383 52 0.385324 54 0.29426

85 0.475436 83 0.389958 36 0.435756

104 0.658481 81 0.411989 38 0.445491
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Appendix B  Plotbox results 

 

Previous Results without applying filter to the data  

(Sampling frequency 128 Hz) 

The 7 digits on X-axis represents the comparison of left temporal-right temporal, , left 

temporal and frontal, left temporal and occipital , left temporal and central, right temporal 

and frontal, right temporal and occipital and finally right temporal and central respectively . 

while Y-axis represents the median of phase synchrony (0-1). 

For Alzheimer’s Patients For Control Subjects 

AssA_AD_Boxplot (Dataset A) 

 

AssA_Ctr_Ctr (Dataset A) 

 

Comparison of Alzheimer’s and Control (Dataset A) 
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AssB_AD_boxplot (Dataset B) 

 

AssB_Ctr_boxplot (Dataset B) 

 

 

Comparison of Alzheimer’s and Control (Dataset B) 

 

AssC_AD_boxplot (Dataset C) 

 

AssC_Ctr_boxplot (Dataset C) 
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Results of P-Values by using Ranksum function for Dataset B: 

The P-Values of Dataset B and Dataset C are not as significant as of Dataset A. However, we 

observed that PCA based synchrony measure provides us relatively more significant values as 

compare to Average synchrony measures. This can be visualized in the results of Dataset B 

provided below.   

Average Phase Synchrony: 

0.54332 0.84127 0.8763 0.690476 0.6372 0.222222 0.690476 

0.84127 0.309524 0.420635 0.150794 0.690476 0.309524 0.309524 

0.84127 0.54332 0.690476 0.54333 0.84127 0.309524 0.547619 

0.547619 0.420635 0.420635 0.309524 0.690476 0.150794 0.309524 

0.84127 0.309524 0.420635 0.309524 0.690476 0.420635 0.309524 

PCA based Phase Synchrony 

0.547619 0.690476 0.84127 0.84127 0.690476 0.309524 0.045 
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0.84127 0.069048 0.042063 0.420635 0.420635 0.309524 0.0532 

0.7544 0.547619 0.054762 0.084127 0.690476 0.420635 0.344 

0.6788 0.690476 0.4367 0.4522 0.309524 0.309524 0.690476 

0.84127 0.150794 0.4566 0.309524 0.150794 0.309524 0.2342 

 Average Cross Correlation 

0.055556 0.031746 0.095238 0.055556 0.095238 0.055556 0.055556 

0.015873 0.007937 0.007937 0.007937 0.007937 0.015873 0.007937 

0.222222 0.150794 0.222222 0.095238 0.095238 0.095238 0.150794 

0.9867 0.8755 0.84127 0.8677 0.7653 0.84127 0.9873 

0.095238 0.095238 0.095238 0.095238 0.015873 0.095238 0.095238 

PCA based Cross Correlation 

0.73224 0.7003 0.797479 0.04003 0.764651 0.73224 0.764651 

0.7003 0.638031 0.7003 0.607796 0.668881 0.668881 0.638031 

0.931835 0.864166 0.931835 0.864166 0.73224 0.5344 0.02355 

0.05433 0.931835 0.965886 0.965886 0.06543 0.965886 0.04533 
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0.73224 0.764651 0.73224 0.83067 0.764651 0.73224 0.0668881 

Average MS Coherence 

0.63455 0.84127 0.84127 0.690476 0.7866 0.420635 0.84127 

0.690476 0.84127 0.84127 0.420635 0.8677 0.309524 0.420635 

0.8325 0.84127 0.420635 0.690476 0.9667 0.309524 0.690476 

0.420635 0.309524 0.309524 0.309524 0.8433 0.547619 0.222222 

0.420635 0.547619 0.690476 0.309524 0.84127 0.84127 0.3542 

PCA based MS Coherence 

0.690476 0.690476 0.690476 0.26788 0.3827 0.309524 0.84127 

0.690476 0.690476 0.547619 0.309524 0.690476 0.420635 0.84127 

0.53662 0.84127 0.690476 0.6756 0.547619 0.84127 0.5342 

0.547619 0.690476 0.420635 0.690476 0.420635 0.095238 0.690476 

0.420635 0.547619 0.4533 0.309524 0.309524 0.222222 0.84127 
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