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Abstract 

A challenge in engineering coupling design is the understanding of performance of 

contact geometry for a given application. “Wear” is one of a number of mechanical 

failures that can occur in mechanical coupling design. “Fretting wear” occurs where 

surfaces in contact are subjected to oscillating load and very small relative motion 

over a period of time. Fretting has been observed in many mechanical interactions 

and is known to be a reason for failure in many designs.  

Recent evidence suggests that fretting wear occurs at the taper junction of modular 

total hip replacements and leads to failure of the implants. Experimental testing to 

determine the wear behaviour that occurs in mechanical devices is time consuming, 

expensive and complicated. Computational wear modelling is an alternative method 

which is faster and cheaper than real testing and can be used in addition to testing to 

help improve component design and enhance wear characteristics. Developing an 

algorithm that can accurately predict fretting wear considering linear wear, 

volumetric wear and surface wear damage is the main focus of this thesis.  

The thesis proposes a new computational methodology incorporating published wear 

laws into commercial finite element code to predict fretting wear which could occur 

at the taper junction of total hip replacements. The assessment of wear in this study is 

solely based on mechanical wear (fretting) as being the primary mechanism causing 

surface damage. The method is novel in that it simulates the weakening of the initial 

taper ‘fixation’ (created at impaction of the head onto the stem in surgery) due to the 

wearing process. The taper fixation is modelled using a contact analysis with 

overlapped meshes at the taper junction. The reduction in fixation is modelled by 

progressive removal of the overlap between components based on calculated wear 

depth and material loss.  

The method has been used for three different studies to determine surface wear 

damage, linear and volumetric wear rates that could occur at taper junction of total 

hip replacements over time. The results obtained are consistent with those found 

from observation and measurement of retrieved prostheses. The fretting wear 

analysis approach has been shown to model the evolution of wear effectively; 

however, it has been shown that accurate, quantitative values for wear are critically 



 

iv 

 

dependant on mesh refinement, wear fraction and scaling factor, wear coefficient 

used and knowledge of the device loading history. The numerical method presented 

could be used to consider the effect of design changes and clinical technique on 

subsequent fretting wear in modular prosthetic devices or other mechanically 

coupled designs.   
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Chapter 1  

1 Introduction 

1.1 Background  

A complicated challenge in the design of coupled engineering components is the 

understanding of the performance of contact geometry within the design for a given 

application, including the loading and/or rotation that the mechanical design needs to 

undertake.  

From a tribological point of view, one of the characteristic of a material is that all 

engineering surfaces are more or less rough and uneven. When the engineering 

components are subjected to load and coupling together, surfaces are in contact over 

a very small area. Due to this very small contact area, contact stresses generated can 

be relatively high.  

“Wear” is one of a number of mechanical failures (see Figure 1-1) that occur due to 

this high contact stress at the surfaces. It is an inevitable phenomenon occurring 

when surfaces of mechanical components are mated together while subjected to load 
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and sliding or rolling. During the wear process, material is removed from the 

surfaces as particles. This removal of particles occurs in different ways and by 

varying mechanisms. In many practical situations high wear rate, and increased 

friction occurs, the reduction of which is the greatest aim.  

The surfaces of mechanical components in contact under oscillating load and relative 

motion will also become contaminated over time. This contamination may appear 

due to the chemical reaction of the material with the environment or due to debris 

released from worn surfaces. There is evidence that even for perfectly clean rubbing 

surfaces in contact with no lubrication, there would be a considerable wear damage 

that contaminates the surfaces.  

Considering the study of wear, both theoretical and experimental approaches are 

needed to answer one essential question, “how is the debris removed from the 

surfaces?”  

Wear can be associated in two forms, “macroscopic” and “microscopic”.  

 Macroscopic wear occurs when specific stress levels or the number of contact 

stresses (fatigue) reach the elastic limit of the material with a depth of 

material being removed depending on the shear stresses present.  

 Microscopic form of wear is similar to macroscopic wear but it is associated 

with individual asperity contacts compared to the single larger region of the 

contact area.  

“Fretting wear” is, generally, associated with very small relative movement 

(micromotion) of solid surfaces in contact under load. Fretting wear can be 

categorised by the micromotion and loading at the coupling causing adhesion of 
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surface asperities that are subsequently torn apart. This leads to transfer of material 

or the creation of metal particulate debris. This debris is then oxidised and becomes 

harder than the mating surfaces. If the debris remains in the contact zone abrasive 

wear can occur resulting in further surface damage (Archard, 1953).  

Fretting is observed in many mechanical assemblies such as shrink fitted coupling, 

keyway-shaft couplings and the specific example which has motivated this research, 

the taper junction of total hip prostheses.  

Currently, most joints in the human body can be replaced with mechanical artificial 

devices. This procedure is known as “arthroplasty” and is one of the most successful 

surgeries performed since 1960’s. The aim of the surgery is to accommodate an 

active life style for patients with joint disorders such as osteoarthritis. The 

fundamental principle of all arthroplasty is that the portion of affected joint is 

removed and replaced with an artificial one. Among all different type of arthroplasty, 

hip arthroplasty is the focus of this study. The procedure of hip arthroplasty is called 

“Total Hip Replacement” (THR) and the mechanical artificial joint is known as the 

“Prosthetic Device”.  

Typically an implanted THR will have a 10 to 15 years life (11
th

 Annual Report 

2014, NJR for England, Wales and Northern Ireland, 2014) (Aldinger et al., 2003, 

Teloken et al., 2002). There is evidence that the wear and fretting wear that occurs in 

THRs contributes significantly to the failure of these devices (Aldinger et al., 2003, 

Langton et al., 2012).  
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1.2 Aim and Objectives 

The aim of this work is to develop a computational methodology to predict “fretting 

wear” that could occur in THRs. The study proposes a methodology to predict the 

wear depth, volumetric wear loss and also the surface damage associated with wear 

which could occur in a hip prosthesis over time in service. The aim is to develop this 

method as a general tool that is independent of the model and can be used to predict 

fretting wear for other prosthetic designs or even other mechanical designs subjected 

to oscillating loads.  

In order to achieve this aim, a commercial model of a hip prosthesis is used, to 

illustrate the wider principles of wear process and wear modelling. Then, the study 

develops a new fretting wear model using the programming language (Python) and 

finite element (FE) analysis (ABAQUS) by investigating and considering parameters 

in the prediction of wear. One of these parameters, for instance, is the effect of initial 

assembly such as impaction that provides fixation between components on fretting 

wear prediction. Another parameter is the wear fraction that defines the percentage of 

the wear that needs to be applied on the components and the effect of change in 

geometry during wear analysis. The method, explained in Chapter 3, includes as 

many of these parameters as possible to provide an accurate prediction of fretting 

wear. 

A significant goal is to develop and generalize the algorithm with a graphical user 

interface for any FE analysis (axisymmetric or 3D) with the FE package (ABAQUS) 

as an add-in (user plug-in) in order to accurately predict linear and volumetric wear 

rate (material loss) in the form of contours of the wear damage occurring on the 

surfaces.  
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1.3 Scope of the thesis  

Figure 1-1 illustrates a simplified “bird’s eye view” of the important aspects causing 

mechanical failure in engineering designs. Each type of mechanical failures produces 

different forms of failure surfaces. The more vital, crucial and complex the 

mechanical design is, the more necessary a good understanding of its failure causes, 

to ensure success of their operations over time. Wear as a kind of mechanical failure 

occurs in different scales and in different forms, such as adhesive, abrasive, 

corrosive, erosive, surface fracture and fatigue wear (see Figure 1-1).  

 

Figure 1-1: Mechanical failures 

Fretting wear (and the surface damage occurring due to fretting) is known as a very 

complex phenomenon to investigate, measure and predict. Being able to predict the 

extent of wear that could occur in mechanical designs (specifically in THRs which is 

the focus of this study) over time in service is vital in order to improve current and 

future designs.  



 Chapter 1: Introduction 

27 

 

The work presented here focuses solely on mechanical wear (fretting) as being the 

primary mechanism causing damage on contacting surfaces. The method presented 

has been used to predict fretting wear in the taper junction of THRs and could be 

used for different applications in future. 

1.4 Outline of the thesis  

The whole structure of this thesis is presented in Figure 1-2. 

The main aim of this first chapter was to present an introduction to the thesis as a 

whole, the aim of the research and outline of the research.  Chapter 1 also contains a 

brief description of the motivation of this research.  

In Chapter 2, an extensive literature review was conducted to provide and establish a 

suitable background for the chapters which follow. This includes a suitable 

background on wear, wear characteristics, fretting wear, hip joint, hip arthroplasty, 

problems with current THRs, wear in total hip prosthesis and a review of the current 

wear modelling available in the literature.  

The method presented in this study involves the use of FE analyses and Python 

scripting to perform wear modelling. Chapter 3 details the whole methodology 

including FE implementation, wear laws and the development of the wear algorithm. 

A FE model of a commercial hip prosthesis was modelled both axisymmetrically and 

in 3D. A developed fretting wear algorithm was then applied to the FE model to 

investigate the likelihood of fretting damage occurring in the taper junction of THRs.  

Different studies were performed using the method illustrated in Chapter 3 and all 

the findings are detailed in Chapter 4, 5 and 6. The results have been discussed in 

separate discussion sections within these chapters.  
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Figure 1-2: The thesis structure and research track 

In Chapter 4 the axisymmetric model of the THR that has been used to develop the 

algorithm, and the results have been presented in detail.  

A full description of the 3D results based on the realistic loading conditions from the 

wear analysis is depicted in Chapter 5. In this chapter the results from the wear 

algorithm have been validated by observation of wear patterns of retrieved 
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prosthesis. The linear and volumetric wear rates obtained are also in the range of the 

experimental measurement of the retrieved prostheses. 

Chapter 6 illustrates the importance and effects of initial impact assembly on extent 

of fretting wear over time in service.  

Lastly, a complete conclusion to this research and possible future work are provided 

in chapter 7. 

1.5 Publications resulting from this thesis  

1. “A computational approach to fretting wear prediction at the head-stem taper 

junction of THRs” — Wear, 338, 210-220, (2015) (Appendix IV) 

2. “A computational assessment of taper junction fretting wear in a total hip 

replacement due to different assembly loads” — Submitted to Journal of 

Engineering in Medicine, August 2015 

3. “Effect of impaction force at assembly on fretting wear at the taper junction 

of total hip prosthesis” — American Society for Testing and Materials 

(ASTM) International, given the option to revise for acceptance, 2015, 

(Appendix IV) 

4. “A computational approach to fretting wear modelling in total hip 

replacements” – LJMU research conference, 2015, (Appendix IV)  

5. “Finite Element Models for quantitative analysis of wear damage in Metal-

on-Metal modular hip prosthesis” — GERI Annual Research Symposium, 

2013, (Appendix IV) 
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In-preparation journal papers 

1. “Effect of the different head sizes and taper lengths of total hip replacements 

on extent of fretting wear” — to be submitted to Wear, in August 2015 .  

2. “The effect of modular neck geometry on fretting wear potential at the neck-

stem taper interface of the Kinectiv total hip replacement” — to be submitted 

to Tribology International in 2015 
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Chapter 2 

2 Background - a review  

2.1 Introduction  

The purpose of this chapter is to present a complete review of current literature and a 

summary of the existing fundamental knowledge on wear as a suitable background 

for the chapters which follow. In this Chapter, firstly, a general explanation of wear 

and its characteristics in tribology is provided. This will be followed by a 

comprehensive review of fretting wear and its theoretical laws. A comprehensive 

review of literature is also performed relating to the application of THRs. Secondly, 

fretting wear and its associated damage that could occur in THRs are explained in 

detail and a review on the current state of the art in computational wear modelling is 

provided.   
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2.2 Wear and its characteristics  

In terms of tribology, all surfaces are rough. Where engineering surfaces nominally 

mate together, they contact at the tips of the higher asperities and the contact area is 

determined by the deformation of these tip asperities under applied pressure. The real 

area of contact is always smaller than the total area of the surfaces and consists of a 

number of small surfaces. Increasing the load increases the number and size of these 

areas based on the resistance of the material to deformation and consequently, 

increases the contact area. So that, finding a relationship between force, real contact 

area and the depicted pressure due to them is relatively complex (Archard, 1953). 

The asperities at the real contact area might either fracture or plastically deform. If 

fracture happened at asperities, particles of material are removed from the surface 

and if they are plastically deformed, this may lead to transfer of the material between 

the contacting surfaces. 

Wear is defined as the gradual removal of material from contacting surfaces under 

relative movement. Wear and friction are intimately linked together, wear is 

associated with timely and costly mechanical failure, whereas, friction results in 

energy loss due to shearing and ploughing.  

Wear can be expected only if surfaces in contact under relative motion are not 

separated. Generally, lubrication is used to separate contacting surfaces from each 

other resulting in reduced wear and friction forces. Lubricant is a fluid that either 

completely separates the surfaces in contact (fluid film lubrication) or acts as 

boundary lubrication.  

Material can be removed from surfaces in a tribological couple by different 

mechanisms (see Figure 2-1) such as (Archard, 1953): 
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 Adhesive wear: At the sliding asperity tips of the surfaces, material is 

welded and transferred to a harder state. It is then removed from the surface 

by fracture. 

 Abrasive wear: Occurs due to deforming or cutting of material by a harder 

material or particles (sometimes harder oxide particles of material) 

 Corrosion wear: A layer of film is formed due to environmental reaction and 

or lubrication which leads to material removal from the surface by sliding. 

 Surface fracture wear: When the normal applied stress exceeds the ultimate 

stress of the material the particle removes from the surface by fracture. 

 Erosive or percussive wear: Occurs due to impact of particles (solid or 

liquid) on a surface. 

 Fatigue wear: When a surface is elastically worked, micro-cracks can form, 

grow and propagate forming wear particles. 

 

Figure 2-1: Different mechanisms of wear and fretting wear 

Measurement of wear is generally performed using wear testing equipment. 

Tribologists measure the material loss from surfaces based on contact force, duration 

and extent of contact. A typical measurement of wear is the volume of worn material 
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per unit sliding distance over time. Therefore, “volumetric wear” is the specific 

volume of the material removed by wear in the specific distance over time (Archard, 

1953). The volume of worn material (𝑉) per unit sliding distance (𝐿) can be obtained 

using Equation (2-1): 

𝑉 = 𝑊𝑣 𝐿⁄  
(2-1) 

where  𝑊𝑣 is the total volume of the material removed. Therefore, the volume loss 

per unit distance (𝑉) has units of area and may be expressed per unit time. The real 

area (𝐴𝑟) of contact between two mating surfaces depends on the applied load (𝐹𝑛) 

and the hardness of the softer material (𝐻) in the friction coupling and can be 

calculated using Equation (2-2): 

𝐴𝑟 = 𝐹𝑛 𝐻⁄  
(2-2) 

The wear ratio, known as the wear coefficient (𝑘), is the unit of volume removed per 

unit sliding distance over the real interface area of the surfaces in contact. This is 

expressed as a dimensionless coefficient and can be calculated using Equation (2-3): 

𝑘 =
𝑉

𝐴𝑟
=

𝑊𝑣 𝐿⁄

𝐹𝑛 𝐻⁄
 

(2-3) 

Assuming the contact surfaces mate at 𝑁 asperities and 𝑛 of those form wear debris, 

the value of the wear coefficient can be considered as being the ratio of two areas, 

the worn area (𝐴𝑤) of the 𝑛 asperities and the real area (𝐴𝑟) of all contact asperities. 

As such, the wear coefficient (𝑘) can be obtained using Equation (2-4): 



Chapter 2: Background – a review 

35 

 

𝑘 =
𝐴𝑤

𝐴𝑟
=

𝑛

𝑁
 

(2-4) 

The interpretation of Equation (2-4), along with the finding of a very small value for 

𝑘 in practice, indicates that all the asperities in contact contribute to the friction 

phenomenon but very small numbers of them result in wear (Archard, 1953). 

Furthermore, some asperities are just plastically deformed on the surfaces and not 

removed from the component. The volume of asperities that belongs to the deformed 

zone (𝑉𝑝) is also represented in the 𝑘 value. The 𝑘 value is proportional to the 

removed volume of the component (𝑊𝑣) and to the plastically deformed volume (𝑉𝑝) 

(Equation (2-5)). 

𝑘 =
𝑊𝑣

𝑉𝑝
 

(2-5) 

2.2.1 Adhesive wear 

In adhesive wear theory, the asperities of surfaces mate with each other to form an 

adhesive junction. In this wear mechanism, it is assumed that the volumetric wear 

results only from adhesion between asperities and material is removed from the 

surface. A very first model of Adhesive wear states that the volumetric wear (𝑊𝑣) is 

proportional to the contact load (𝐹𝑛) and relative slip (𝑠). So that the wear in terms of 

Equation (2-3) can be represented as Equation (2-6): 

𝑊𝑣 =
𝑘

𝐻
𝐹𝑛𝐿 (2-6) 
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The expression of Equation (2-6) is known as Archard’s wear law. Although this 

form of equation was firstly proposed by Holm (1951) on electric contact, Archard 

(1953) used this equation for a simplified model of mechanical contact interaction. 

The Archard (Adhesive) wear coefficient correlates with the friction coefficient; 

however, unlike friction, wear rate varies over a very large range. The experimental 

measurement of 𝑘 indicates a frequently small value in the range of 10−3 to 10−9   

for metals which depends on several aspects such as lubrication regime, load applied, 

relative motion and range of motion (Yang, 2005).  

2.2.2 Abrasive wear  

Abrasive wear is where hard asperities or third bodies (particles trapped between 

surfaces) rub under pressured load. If wear occurs only between two surfaces it is 

known as two-body abrasive wear but where oxide particles are involved in the wear 

process it is named three-body wear (see Figure 2-2).  

 

Figure 2-2: Two (a) and three-body (b) abrasive wear 

There are three modes of abrasive wear, “Ploughing”, “Wedging” and “Cutting”. 

“Ploughing” is a ridge formed along the wear track side, “Wedging” is a short wedge 

(a) Two-body abrasive wear 

(b) Three-body abrasive wear 
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formed aside of the asperities and “Cutting” is a ribbon shaped chip formed aside of 

the asperities. In the all different forms of the abrasive wear, debris formed is 

removed from the underlying surfaces. The Adhesive wear theory seems to be useful 

to derive for abrasive wear as well.  

In “Ploughing” abrasive wear, assuming a surface profile containing conical shaped 

asperities with an angle (α) that ploughs through the surfaces in contact, the volume 

loss 𝑊𝑣 from the material is being removed from the ploughed groove over sliding 

distance and can be calculated using Equation (2-7) (Zum Gahr, 1988).  

𝑊𝑣 =
𝑘′

𝐻
(

2𝑡𝑎𝑛 (𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜋
) 𝐹𝑛L =

𝑘𝑎𝑏𝑟

𝐻
𝐹𝑛𝐿 

(2-7) 

where 𝑡𝑎𝑛 (𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅ is an average value of  𝑡𝑎𝑛(𝛼) of all asperities and 𝑘𝑎𝑏𝑟 is the 

abrasive wear coefficient which is dependent on profilometry geometry of surfaces 

(𝑘′ is a constant coefficent). 

In “Cutting” abrasive wear, material is removed as in a machining procedure by the 

forming of a chip. The chip (𝜁) is based on a hard wedge asperity of width 𝑏, shear 

plane angle (𝜑) which is perpendicular to the direction of motion and rake angle (𝛼) 

and can be determined from Equation (2-8) (Merchant et al., 2002), 

𝜁 =
𝑐𝑜𝑠 (𝜑 − α)

sin (𝜑)
𝑓 

(2-8) 

where, the thickness of under-formed chip 𝑓, is known as feed in machining 

applications. The feed parameter, 𝑓, is directly proportional to the applied normal 

force and inversely proportional to the hardness of the material, as Equation (2-9). 
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𝑓 =
𝑘′

𝐻
𝐹𝑛 (2-9) 

So that, the volume loss from the material by cutting is given by Equation (2-10): 

𝑊𝑣 = 𝑈𝐹𝑏𝑡 = 𝐿𝑓𝑏 =
𝑘𝑐𝑢𝑡

𝐻
𝐹𝑛𝐿 (2-10) 

where 𝑡 and 𝑈 are the cutting time and cutting speed respectively. 

2.2.3 Corrosion wear 

Materials embedded in a corrosive environment experience chemical reactions which 

may result in wear. Fretting wear that occurs under oscillatory load over a small 

relative motion, is usually subjected to this chemical attack. When an asperity slides 

over and past the surface of the counter-face, material at the counter-face could 

rapidly be oxidized. Depending on the material, the asperity might stay in place 

(producing a hard oxide layer) or be removed by fracture over subsequent sliding.  

A model of corrosive wear can be developed based on consideration of adhesive and 

abrasive wear occurring in a reactive environment. This leads to formation of a tribo-

film1 on the surfaces. In this condition, wear occurs where the tribo-film reaches a 

critical thickness (𝜆) and becomes weak enough to be removed by rubbing. 

Considering one single asperity covered with this film of thickness (𝜆) the volumetric 

wear loss is 𝜋𝑎2𝜆, where 𝑎 is the radius of a hemispherical asperity shape. Therefore 

                                                 

1
 Over sliding contact of surfaces, a thin solid film is generated and sticks fast on its worn surface with 

different tribological properties, chemical composition and structure.  
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the result for 𝑛 identical asperities can be obtained as Equation (2-11) (Stack and 

Jana, 2004): 

𝑊𝑣 =
𝜆

2𝑎
𝑛𝜋𝑎2L =

𝜆

2𝑎
𝐴𝑟L =

𝑘𝑐𝑜𝑟

𝐻
𝐹𝑛𝐿 (2-11) 

where 𝑘𝑐𝑜𝑟 is the corrosive wear coefficient. Note that the corrosive wear coefficient 

is directly proportional to the tribo-film thickness. This hypothesis is very dependent 

on aggressiveness of the environment and the temperature which increases the wear 

rate as both make the film grows faster. 

2.2.4 Surface fracture wear 

Brittle material is usually worn out under abrasive wear by subsurface lateral fracture 

crack propagation. The volume loss per unit distance over 𝑁 asperities rubbing on a 

surface of fracture toughness( 𝐾𝑐), Young’s modulus 𝐸 and material constant 𝑐 is 

given by Equation (2-12)  (Ajayi and Ludema, 1988): 

𝑊𝑣 = 𝑐𝑁 (
(𝐸 𝐻)𝐹𝑛

9 8⁄⁄

𝐾𝑐
1 2⁄ 𝐻5 8⁄

) 𝐹𝑛𝐿 
(2-12) 

2.2.5 Erosive or percussive wear 

Erosive wear is due to the repeated impact by wear particles (erosive) or hammering 

with a hard object (percussive), so that material is removed from the surfaces. The 

kinetic energy of the impaction is transformed into the plastic deformation on the 

asperities of the surface. Then, particles can be removed by cutting (for ductile 

material), fracture (for brittle material) or ploughing. 
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There are only a fraction of the total impacts (𝜍) which result in erosive wear. The 

erosion ratio (𝑒𝑟), over a total mass of 𝑚 with impaction velocity (𝑈), can be 

obtained using Equation (2-13) (ElTobgy et al., 2005),  

𝑒𝑟 = 𝜍 
ρU2

2𝐻
 (2-13) 

where 𝜌 is the density of the material. Again, similar to the adhesive wear law, the 

applied load (𝐹𝑛) is replaced with 𝜌𝑈2 and the term 𝐹𝑛𝐿 represents a sliding energy. 

By considering 𝑛 identical particles of mass 𝑚 and velocity 𝑣, the individual kinetic 

energy (𝐸𝑘) of the particles would be:  

𝐸𝑘 =
1

2
𝑚𝑣2  

(2-14) 

As explained the 𝜍 fraction of the total impacts results in wear, so that the impacting 

energy (𝐸𝑖) resulting in wear can be calculated as Equation (2-15): 

𝐸𝑖 = 𝜍𝑛𝐸𝑘 =  𝜍n
1

2
𝑚𝑣2  

(2-15) 

Therefore the volumetric wear can be obtained using Equation (2-16): 

𝑊𝑣 =
𝑘𝑒𝑟𝑜

𝐻
𝐸𝑘𝐿  

(2-16) 

where 𝑘𝑒𝑟𝑜 is the erosive wear coefficient and can be interpreted as the fraction of all 

the impacts that results in wear. 
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2.2.6 Fatigue wear 

If subsurface cracks occur on usually ductile material due to cyclic loading, fatigue 

wear may proceed on surfaces in contact. Where little adhesive and/or abrasive forms 

of wear occur prior to a fatigue event, extensive pitting may be observed once fatigue 

sets in. Again, by considering a large number of individual microscopic asperities 

mating in contact, where limitation of fatigue reaches at a particular asperity, a 

volume of material is removed from surfaces. An expression of volumetric fatigue 

wear can be obtained using Equation (2-17) (Karmakar et al., 1996): 

𝑊𝑣 = 𝑘𝑓𝑎𝑡𝐴𝑟L =
𝑘𝑓𝑎𝑡

𝐻
𝐹𝑛𝐿 (2-17) 

where the fatigue wear coefficient (𝑘𝑓𝑎𝑡) interprets the proportion of the contacts that 

produces wear debris by failing. It can also be associated with the number of load 

cycles (or stress cycles) to failure 𝑁𝑓 (Equation (2-18)). 

𝑁𝑓 =  
1

𝑘𝑓𝑎𝑡
 

(2-18) 

2.3 Fretting wear  

“Fretting” is a special type of wear process. It refers to a very small relative 

movement of solid surfaces in contact (Hutchings, 1992). It occurs where surfaces in 

contact are subjected to vibration, repeated oscillating load or varying stresses in any 

form, and very small relative motion over a period of time. Fretting causes surface 

damage by leading to material removal from one or both surfaces (with equal or 

unequal fractions) in contact. In fact, fretting could itself contain adhesive, abrasive 



Chapter 2: Background – a review 

42 

 

and/or corrosive forms of wear (see Figure 2-1) while a small relative displacement 

occurs between surfaces in contact. 

The mechanism of the fretting can be described based on the micromotion and 

loading at the coupling surfaces causing adhesion of surface asperities that are 

subsequently torn apart. This leads to creation of metal particulate debris. The debris 

is then oxidised and becomes harder than the mating surfaces. If the debris remains 

in the contact zone abrasive wear can occur resulting in further surface damage.  

The difference between fretting wear with the other types of wear is mainly the 

magnitude of movement. This movement is known as “slip” which is always 

tangential to the surfaces in contact. Fretting and its resulting damage causes failure 

in many types of mechanical devices such as pressure armour layers, keyway-shaft 

couplings and taper junction of total hip prosthesis.  

2.3.1 Fretting wear characteristics  

Although fretting occurs in different forms the damage is distinctive. The result of 

fretting is manifested on the surfaces in contact in different characteristic ways. One 

of these characteristics is the wear debris from fretting and its consequent 

oxidization. Typically, fretting wear of steel produces a deep red oxide debris known 

as “cocoa” (the size of particles is usually less than 0.2𝜇𝑚 (Varenberg et al., 2002)) 

while for aluminium the oxide is presented as a white powder.  

Due to the condition of fretting where contact surfaces are always under high contact 

stresses, debris cannot usually escape from the gap between the surfaces. This leads 

to a third-body damage (abrasive and/or corrosive wear) which increases the wear 

rate with further surface damage.   
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Another characteristic of fretting is the scar of wear that remains on the surfaces, 

generally known as a “fretting scar” or “fretting wear pattern”. The scars appear at 

contact surfaces undergoing fretting as grey staining (matt surface due to micro 

pitting), undulations (in parts metallically smooth), pitting (localised piling up of 

particles), compaction zones (plastic indentations within the material), roughening 

(plastic deformation in the form of uniform corrugations) and tower like growth 

(built up from pasty particles at a few strengthened contact points) (Stowers and 

Rabinowicz, 1973).  

Fretting can be assessed with three regimes, namely, “gross slip”, “partial slip” and 

“mixed slip”. Gross slip refers to where the displacement amplitude is higher than 

transition amplitude, partial slip occurs where the displacement is lower than the 

transition and for intermediate displacement amplitudes, the displacement may 

evolve from one sliding to another called mixed slip regime (Hannel et al., 2001). 

Vingsbo and Söderberg (1988) have shown that fretting is significantly dependent on 

the slip regime. 

Fretting may also lead to a change of surface hardness which is another characteristic 

of wear. The surface hardness often (not always) increases mainly because of work 

hardening and oxidation. 

2.3.2 Fretting wear theories  

There are different theories on fretting and its process over time while all are based 

on similar foundations. 

 A strong theory of fretting, proposed by Archard (1953),  is that where adhesive, 

corrosive and abrasive forms of the wear are all occurring, fretting takes place. Based 
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on this theory, fretting has three main stages. Initially, relative displacement between 

surfaces in contact causes adhesive wear between the asperities producing particles. 

Then, the released particles oxidize rapidly (because of their small size). The 

relatively hard oxide particles may further cause abrasive wear to the surfaces. The 

abrasive wear occurs because the debris has nowhere to escape from the contacting 

surfaces and is trapped between them. Finally, the wear progresses with further 

chemical reaction based on the environment causing corrosive wear.  

A theory proposed by Engel and Klingele (1981) is similar to Archard’s but not 

necessarily in the same order. Another theory stated by Wassef and Schmalzried 

(2013) is that, where the existing formed oxide layer on the surface is removed by 

physical fretting, adhesive wear due to micromotion, further oxidation and/or 

corrosion of the surface is possible.  

2.4  Wear laws 

As outlined earlier in section 2.2, the wear rate for contacting surfaces is proportional 

to the contact load and the relative displacement between them. Theoretical 

approaches to the assessment of wear are mainly based on “Archard’s Wear Law” or 

the “Dissipated Energy Wear Law”. 

2.4.1 Archard’s wear law 

The Archard-based wear law is the most common theory to model the wear process 

in tribology and is classically used in many studies. This approach relates the 

volumetric wear to the product of the normal load and relative sliding distance of the 

surfaces in contact. Then a wear coefficient is extrapolated to establish the wear 

resistance of the material. The dimensional Archard wear coefficient (𝐾) from 
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Equation (2-3) which contains the hardness of the material (𝐾 = 𝑘/𝐻) can usually be 

obtained using Equation (2-19). 

𝐾 =  
𝑊𝑣

𝐹𝑛𝑠
 

(2-19) 

where 𝑠 is relative sliding distance or “slip”. This wear coefficient, due to correlation 

of hardness, has units of 𝑃𝑎−1. Equation (2-19) was originally proposed by Archard 

for unidirectional sliding wearing process but it has been widely used for fretting 

wear modelling as well. 

The relative sliding in fretting occurs tangential to the surfaces with reciprocating 

action and Archard’s wear law needs a gradual approach to obtain the sliding 

distance. This can be represented as, 

𝑊𝑣 = 𝐾 ∑ 𝐹𝑛𝑠𝑖 (2-20) 

where 𝑠𝑖 is the relative slip per stroke and ∑ 𝐹𝑛𝑠𝑖 is the sum of  𝐹𝑛𝑠 products over the 

load cycles. 

Many studies have demonstrated that the Archard wear coefficient (𝐾) for the same 

material combination, is strongly dependant on wear mechanism, progression of 

wear, contact geometry, displacement amplitude, loading condition and other 

parameters. For instance the 𝐾 value for unidirectional sliding is completely different 

from reciprocating sliding (fretting for example) (Fridrici et al., 2001). Furthermore, 

other studies show that it is necessary for the wear rate of metals under fretting to 

consider the effect of elasto-plastic response of geometry (Johnson, 1995, Kapoor, 
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1997). The stress on the structure will be maintained within an elastic response up to 

the critical cyclic stress state where the material then undergoes cumulated plastic 

dissipation. This defines a shake-down boundary as a function of the “Hertzian” 

pressure. Such a theory has been confirmed with many other studies (Johnson, 1995, 

Van and Maitournam, 1994, Fouvry et al., 2001, Fouvry et al., 2003) and 

demonstrates that it is essential to integrate the change of friction coefficient for the 

assessment of wear rate under alternated sliding situations which is known as the 

greatest limitation of Archard’s wear law. Therefore, the Archard wear approach 

cannot accommodate the change of friction coefficient during the wearing process.  

2.4.2  Dissipated energy wear law 

The wear rate seems to be much more dependent on another significant parameter 

which is interfacial shear work (Fouvry et al., 2003, Fouvry et al., 2001, Teoh et al., 

2002). The wear resistance of the material can be evaluated by an Energy wear 

approach that relates the wear volume to the friction energy dissipated through the 

interface. This method gives the wear volume proportional to dissipated energy (∑ 𝐸) 

given by, 

W𝑣 = 𝛼 ∑ 𝐸 
(2-21) 

where 𝛼 is an energy wear coefficient. The dissipated energy (𝐸) is the product of 

tangential force (𝑄) and slip (𝑠) given by, 

𝐸 = 𝑄𝑠  (2-22) 
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The Energy wear law introduces the energy wear coefficient which allows 

rationalizing the quantification of wear and classifying the wear resistance. This 

method also interprets different wear mechanisms (such as abrasive, corrosive and 

fatigue wear) in a much more appropriate way. Similar to 𝐾 (the Archard wear 

coefficient) in the Archard wear law, the 𝛼 value (Energy wear coefficient) again 

depends on material combination, sliding condition and the contact geometry. In this 

law, a minor dissipated energy participates in plasticity with the majority part of the 

energy being consumed by debris flow through the interface. It can also 

accommodate the change of friction coefficient during the wear analysis. These 

advantages show the superiority of this law compared to Archard’s wear law.  
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2.5 Hip joint 

The Hip joint is fundamentally a ball and socket joint (Figure 2-3) with the large area 

of the ball (femur head) surrounded by the socket (acetabulum). It bears more weight 

with high stability but carries less range of motion in comparison with other ball-

socket joints such as the shoulder. A hip joint contains the head of the femur bone, 

the acetabulum, cartilage, joint capsule (ligaments) and tendons.  

The joint is supported with muscles, tendons and ligaments. The whole hip joint is 

covered by a joint capsule that helps to stabilize the motion of the hip. This capsule 

covers all femur head cartilages and the acetabulum. The fibrous and thick capsule 

contains three ligaments, “ilofemoral”, “ischiofemoral” and “pubofemoral” located 

beside the labrum and ligmentum teres (see Figure 2-3).   

The femur or thigh bone is known as the longest, heaviest and strongest bone in the 

human body. Its duty is to support and carry all the body weight during human 

activities. There is always extreme force applied on the femur which can be 

stabilized with the strength of the muscles attached to it.  

The acetabulum is basically a cup dented in the pelvis (the concave surface of the 

pelvis) shown in Figure 2-3. The femur head meets the pelvis at this concave surface 

to form the hip joint.   

The main duty of the cartilage on the acetabulum and head of the femur bone is to 

lubricate the joint and provides a smooth surface in order to facilitate a nearly 

frictionless and smooth motion. From a mechanical point of view it acts in a similar 

way to lubricant in machinery. Its performance in the joint is crucial as if it is 

damaged due to overuse, overweight and/or any specific diseases affecting the joint, 
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two hard bony surfaces act upon each other causing high stresses in the joint 

articulation with high friction making the joint stiff and painful. 

 

Figure 2-3: A human hip joint, model created in SolidWorks 

2.5.1  Hip joint disorders 

A hip joint can allow a wide range of movement and transmit high dynamic loads. Its 

ability to carry loads and provide this mobility is remarkable; however, it is 

vulnerable and can lose its functionality due to diseases such as:  
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 Osteoarthritis: When the joint cartilage is worn away, bones grind against 

each other causing stiffness, pain and immobility.  

 Rheumatoid arthritis: This arthritis is a chronic disease which while 

progressing leads to severe damage in joint ligaments and erosion of the 

bone. 

 Avascular Necrosis: This is defined as death of organ cells in the joint 

tissue due to lack of blood supply and mostly affects the top of the femur 

bone. Avascular necrosis may lead to change of the shape of the bone, joint 

stiffness, pain and loss of range of movement. 

 Trauma and bone fracture 

 Others, such as Tendonitis of the adductors of the hip, Trochantric bursitis, 

Snapping hip Syndrome.  

Drugs and physio-therapy can help to reduce pain for patients; however, in severe 

cases, to eliminate the pain, the effective treatment would be replacement of the 

affected joint. At the final stage of severe hip pathologies2, arthroplasty is a key 

solution for patients who wish to pursue an active lifestyle again.  

2.6  Hip arthroplasty  

THR is a common arthroplasty performed worldwide as a key and successful 

solution to improve a patient’s lifestyle who is suffering from painful hip joints, hip 

joint diseases or joint fracture.  Sir John Charnley (1911-1982) carried out the very 

first hip arthroplasty in November 1962. He developed a method to replace the whole 

                                                 

2
 Pathology is “The science of the causes and effects of diseases, especially the branch of medicine 

that deals with the laboratory examination of samples of body tissue for diagnostic or forensic 

purposes”. Oxford Dictionary 
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hip joint by an artificial one and established a surgical technique for implantation. 

Although, implants and surgical techniques have advanced since then, the same 

foundation proposed by Charnley is currently being used. The main aim of the 

surgery is to accommodate an active lifestyle for patients. 

A total hip prosthesis is a ball and socket joint normally comprising of three 

components, an acetabular cup, femoral head and stem (see Figure 2-4 and 

Figure 2-7).  

 

Figure 2-4: A THR, a Birmingham acetabular component, a Freeman 

uncemented stem and a Birmingham XL head (retrieved) 

Since the very first Charnley hip prosthetic design, this implant has been developed 

in terms of design, material, bearing surfaces and resurfacing techniques. The 
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success of the design is only based on the longevity of them in-vivo. Although the 

sizes of the components are different based on the anatomy of the patients, their basic 

geometry is similar. Currently, a wide range of Prosthetic devices are available 

commercially in terms of design, type and material. The main joint replacement 

manufactures are DePuy, Zimmer, Smith & Nephew, Stryker, Biomet and Link. 

Figure 2-5 shows just some of the many different implant designs. 

 

Figure 2-5: Different design of hip implants  

In early designs of THRs, the head and stem were manufactured as a single 

component (monolithic prosthesis). Using two separate components (modularity) in 

THRs allows flexibility intra-operatively to facilitate optimum prosthetic 

functionality and anatomical fit for individual patients. Modular connection involves 

a male and female junction. Interlocking ridges are machined to a certain roughness 

to connect a tapered shank and socket. This allows a surgeon to choose different 

prosthesis components dependent on a patients’ anatomy, age and level of activity 
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without a large inventory. The main advantages of modularity in total hip prosthesis 

can be listed as below: 

- Custom implants that attempts to enhance fit and fill of different hip 

geometry. 

- Better adjustment of head size, leg length offset, neck length, anteversion3  

- Decrease implant inventory  

- An ability to remove the femoral head at revision surgery to improve 

exposure or change head size without stem component removal. 

- Use of different materials for components (different material combination to 

provide good bearing properties mainly low friction and high wear resistance)  

- Self-lock with no screw   

Beside all the advantages of modularity, clinical experience has witnessed significant 

drawbacks associated with modularity, such as: 

- Introduction of one or two more interfaces which may lead to increased 

fretting wear  

- Dissociation of implant, possible loosening of the parts  

- Possible corrosion of mixed metals,  

- Possible fracture below the head and neck 

- Reduced range of motion 

                                                 

3
 Anteversion is an angle between an imaginary transverse line that runs medially to laterally through 

the knee joint and the imaginary transverse line passing through the centre of the femoral head and 

neck. 
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- Cost of modular implants is relatively higher than a monolithic prosthesis 

(McCarthy et al., 1997), however, Srinivasan et al. (2012) believed that the 

use of modularity results in cost savings. 

2.6.1  Procedure of total hip replacements 

THR is a surgical procedure. The surgery involves the replacement of the hip joint 

with an artificial mechanical one. During the surgery the whole hip joint is removed 

and replaced by a prosthetic device (see Figure 2-3and Figure 2-6).  

 

Figure 2-6: Schematic of the THR in service, model created in SolidWorks, JRI 

implant, AEON cemented hip system 
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On reaching the hip joint, the surgeon dislocates the femoral bone from the socket 

and cuts the head of the femur bone (the top of the thigh bone). The inside of the 

femur bone is cleaned (using various techniques) and the stem placed into the bone. 

The stem fixes into the femur canal using either a cement mantel (typically Plexiglas) 

or biological ingrowth that allows the bone to grow into and onto the metal stem 

surface coated with a porous or rough material. 

Then a perfect hemispherical bone socket, matched with the external shape of the 

acetabular cup, is made in the pelvis acetabulum (hip socket) by a reamer and the 

acetabular cup is placed into that.  

A trial head is placed on the top of the femoral stem in order check the size and 

adequacy of the hip motion. When the appropriate head size is found, the actual head 

is placed on the stem trunnion and usually fixed with impaction. Generally, one to 

three firm impactions are applied to the top of the head.  

2.6.2  Femoral head and stem assembly 

As discussed, the assembly of the femoral head onto the stem trunnion at surgery is 

achieved by impaction by the surgeon. In order to apply impaction on the head, 

surgeons use a polymer tipped impactor instrument and a mallet to avoid damaging 

the prosthesis (see Figure 6-1 in Chapter 6). 

It is known that the magnitude of this impaction force affects the initial taper strength 

for long-term and safe fixation. The strength of fixation is obviously dependent on 

the impaction force, design of the taper, the condition of the taper surfaces, mismatch 

angle, angle of impaction, environment (dry or wet) and number of impactions 

(Heiney et al., 2009, Pennock et al., 2002). It has been postulated that attaining 
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maximum fixation is crucial in minimizing problems associated with these tapers 

such as corrosion, fretting, micromotion and unintended disassembly.  

A number of experimental studies have investigated parameters that affect taper 

fixation (Heiney et al., 2009, Pennock et al., 2002, Rehmer et al., 2012, Lavernia et 

al., 2009)  with taper “pull-off” force being used as the measure to assess taper 

strength. All of these studies involved (at least) the simulation of the assembly and 

disassembly of cobalt chrome alloy heads with a titanium alloy stem.  

The magnitude of the impaction forces used were determined initially using tests in 

Heiney et al. (2009), Pennock et al. (2002), and Lavernia et al. (2009) where 

surgeons were required to apply an impact typical of that used intra-operatively to 

assemble the head to the stem. The average of the measured forces from the three 

studies were approximately 5000N (1 surgeon × 11 impacts) (Pennock et al., 2002); 

1633N, Standard Deviation 422N (8 surgeons × 5 impacts each) (Lavernia et al., 

2009); and 4409N (10 surgeons × 1 impact) (Heiney et al., 2009).  Rehmer et al. 

(2012) used impact forces of 2000N, 3000N and 4000N (to cover the typical range of 

force applied by surgeons) describing them as light, medium and firm hammer blows 

for seating the femoral head on to the stem. A linear relationship was found by 

Heiney et al. (2009), Pennock et al. (2002), and Rehmer et al. (2012) such that 

increased impaction resulted in increased pull-off forces (with the ratio between pull-

off and impaction being around 0.4 (Pennock et al., 2002) and 0.48 (Heiney et al., 

2009)). Lavernia et al. (2009) found much reduced pull-off forces where biological 

debris (blood, fat) existed on the taper during assembly.  

Pennock et al. (2002) and Rehmer et al. (2012) stated multiple impacts did not 

increase taper fixing strength, whereas Heiney et al. (2009) advised two firm blows 
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would attain maximum fixation. Pennock et al. (2002) suggested that surgeons 

should apply an in-line maximum impaction but Heiney et al. (2009) and Rehmer et 

al. (2012) recommended a firm blow (4000𝑁) so as not to risk damage to the femur. 

However, Mroczkowski et al. (2006) used an impact load of 6700𝑁 and hand 

assembly to represent the extremes of what may be seen “clinically” in an 

experimental study into the effect of impact assembly on fretting corrosion of hip 

tapers. 

These studies highlight the non-standard nature of the surgical assembly process for 

the prosthetic femoral head and stem with evidence of significant variation by 

surgeons with regard to impaction force and technique used. This variation occurs 

due to a surgeon’s differing experience; the type of head (metal or ceramic); and 

crucially, the quality of the bone stock of the patient.  

So, there is not only evidence that the magnitude of the impaction force affects taper 

fixation (Heiney et al., 2009, Pennock et al., 2002, Rehmer et al., 2012), but also,  

Mroczkowski et al. (2006) suggest that the extent of taper fixation may have an 

effect on corrosion, micromotion and fretting wear.  

Surgeons are provided with general guidelines and training by manufacturers on how 

to assemble a head to a particular stem; however, manufacturers’ guidelines are 

vague for the assembly of the head and stem with statements such as ‘slightly’ or 

‘firmly’ impacted the norm to describe the magnitude of any impaction force to be 

used. In reality, the magnitude of the impact used is based on a surgeons’ preference, 

experience, the type of prosthetic femoral head, and the quality of the patients’ bone 

stock.  
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2.6.3 Material and material combination of total hip replacements 

All materials used to manufacture THRs must be biocompatible in order to reduce 

the risk of rejection of the implants and possible toxicity. Increases in the number of 

young active patients using hip prostheses has led to an amplified use of alternative 

bearing materials. In the highly corrosive human body environment, the material 

properties of different components of implants play a significant role in their 

longevity.  

 Acetabular cup. The acetabular cup is fitted into the pelvis and the bearing 

surface is typically manufactured from Ultra-High-Molecular-Weight 

Polyethylene (UHMWPE) which has low friction and wear rate, high toughness, 

good impact resistance and good biocompatibility. In some designs it is 

manufactured from highly cross-linked polyethylene (HXLPE), ceramic (such as 

alumina or zirconia) or to a lesser extent recently a cobalt-chrome alloy (Jeffers 

et al., 2009). 

 Femoral head. Prosthetic femoral heads are normally made from a cobalt-

chrome alloy, but also either ceramic or high grade stainless steel. The main 

advantage of ceramic used for a femoral head is low friction which leads to a 

low wear rate and reduced wear debris; however, it is brittle. Cobalt-chrome 

alloy provides very good biocompatibility, corrosion resistance, high hardness, 

reduced inflammation and superior wear resistance for bearings especially where 

it is combined with itself or on a UHMWPE cup. It provides relatively 

successful performance and has been widely used in orthopaedic applications 

(Brown and Lemons, 1996).  

 Modular stem. The stem which needs to be fitted into the medullary cavity of 

the femur is usually made from titanium alloy (typically Ti-6Al-4V) which has 
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similar elasticity as bone, good tissue tolerance, high strength to weight ratio and 

lighter weight than other orthopaedic alloys. It is rarely made from a cobalt-

chrome alloy or stainless steel (Head et al., 1995).  

The combination of different materials for the components also creates different 

interfacial properties. When the term “material combination” arises, it means the 

material of the femoral head and acetabular cup (bearing material combination). 

There are several different material combinations for the articulating surfaces in 

THRs, such as Metal-on-Plastic (MoP), Ceramic-on-Plastic (CoP), Ceramic-on-

Ceramic (CoC) and Metal-on-Metal (MoM). 

 MoP and CoP. Plastic which is usually UHMWPE or high cross-linked 

polyethylene (see Figure 2-7) has high wear resistance compared to other types 

of plastics, however, compared to metal and ceramic it has a high wear rate. It 

allows the use of a larger femoral head. Further, UHMWPE allows the bearing 

to act as a good shock absorber and this helps to possibly allow greater activity 

levels. 

 CoC. This type of prosthesis reduces the possibility of scratches on the surfaces 

and therefore, makes the couples less vulnerable to wear. The wear rate is 10 

percent less than MoM. In this type of prosthesis, it is possible to use a thinner 

acetabular cup (because of its strength) and therefore, it is possible to choose a 

bigger femoral head fitted into a smaller acetabular shell. It provides a wider 

range of motion and higher stability and is a good bearing for young active 

patients. This type of prosthesis, however, is expensive, brittle and “squeaking” 

has been widely reported which is unpleasant for patients (Mai et al., 2010). 
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Figure 2-7: Metal-on-Plastic total hip replacement 

 MoM. The difference in hardness is the main advantage of this kind of 

prosthesis. The MoM prosthesis (see Figure 2-4) is fabricated from different 

metallic alloys such as cobalt-chromium alloy. One of their biggest advantages 

to ceramic is that they are hard but not brittle. Their advantage over plastic is 

that they are more resistant to wear and scratching. Another advantage of this 

coupling is that it can be made with a bigger femoral head diameter for the same 

sized acetabular shell. Therefore, it provides a wider range of motion for the hip. 

This combination is also supposed to provide less wear, less bone resorption, 

fewer offset problems, less risk of dislocation and make it easy for revision 

surgery. The MoM hip prosthesis has been developed to help the failure rate; 

however, it leads to other serious problems that increase the failure rate such as 

metallosis (Milošev et al., 2000) and infection. 
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The acetabular cup and femoral head need to provide a smooth articulating bearing 

surface to allow necessary hip movement and to minimize wear. There is evidence 

that cobalt-chrome femoral head with UHMWPE acetabular cup provide a good 

combination for bearing surfaces. Furthermore, the advantages of titanium and 

cobalt-chrome alloy brought these two materials in combination as a titanium 

modular stem and cobalt-chrome femoral head and these combinations have been 

widely used in orthopaedic devices.  

2.6.4 Surface characteristics of total hip replacements 

 Bearing  

British standard (BS ISO 7206-2:1987) suggested that for articulating surfaces 

(bearing) of implants the surface roughness finish should not exceed 70𝜇𝑚 and 

30𝜇𝑚 in average (𝑅𝑎) for metals and ceramic respectively. In fact, due to advanced 

manufacturing and polishing techniques, these surface finishes are much smoother 

than suggested. Recently, available femoral heads are manufactured from an average 

𝑅𝑎 of less than 0.03𝜇𝑚 to 0.1𝜇𝑚 (Hosseinzadeh et al., 2012). This has helped to 

reduce wear at bearing surfaces significantly (Smith et al., 2001). The material 

investigations and advanced manufacturing techniques on bearings have fairly well 

reduced the wear rate that could occur at bearings.  

 Modular stem 

The modular stem of earlier THRs was initially developed with stainless steel with a 

relatively smooth surface and developed further to a high degree of surface finish. 

This detrimentally effected fretting wear between stem and bone (Ohashi et al., 1998, 

DANIEL M ESTOK and Harris, 1994). In the 1970’s studies tried to change the 
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surface finish of the modular stem from what was highly polished to a rough surface 

with a matt appearance in order to have better fixation between the stem and bone. 

Coating has commonly been used on some modular stems to encourage bone 

ingrowth and better fixation.  

 Taper junction 

The focus of this study, however, is the taper junction or taper interface of THRs. 

The taper junction contains of female taper or head taper surface namely “taper” and 

male taper or stem taper surface namely “trunnion” (see Figure 2-4). Although the 

taper and trunnion are manufactured to produce a component geometry as a specific 

locking mechanism, micromotion between them is inevitable. Therefore, good 

fixation between them is of the greatest importance to reduce micromotion and 

subsequently reduce the wear rate.  

A change of friction coefficient at the surfaces will affect the relative micromotion 

which in turn affects the wear rate. Between the 1980s and 1990s, theoretical studies 

tried to decrease the contact pressure as a means of decreasing wear in the taper 

junction (Bartel et al., 1985, Fessler and Fricker, 1989, Jin et al., 1999). 

Subsequently, Wang et al. (2001) used a joint simulator to determine the effect of 

contact pressure on wear and friction coefficient. They showed that increasing the 

contact pressure reduces both the coefficient of friction and wear rate. They 

suggested that higher taper friction is a desirable condition in order to provide better 

fixation and reduce wear.  

Water and blood only reduce the magnitude of the friction coefficient slightly 

(Fessler and Fricker, 1989). Water has no effect (in comparison to a dry condition) 

on the friction coefficient at the taper junction; however, blood reduces the friction 
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coefficient slightly due to the protein complexes that enhance boundary lubrication 

(Fessler and Fricker, 1989).  

Ceramic and metal tapers are typically (but not always) manufactured relatively 

smooth and polished (see Figure 2-8); however, some prosthetic devices have 

threaded trunnion surfaces (see Figure 2-9) in order to increase friction and improve 

fixation of the components. Threaded tapers provide better fixation especially for a 

metal trunnion and ceramic taper. Hallab et al. (2004) performed an in-vitro fretting 

test comparing possible fretting corrosion between metal-stem/metal-head and metal-

stem/ceramic-head combination. They showed approximately 11-fold greater metal 

debris released from metal-stem/metal-head. This is due to the hard on soft 

mechanical interlocking of the harder ceramic and softer metal contact interface that 

could reduce the potential relative mictomotion. 

 

Figure 2-8: An example of head taper surface topography 

Figure 2-8 and Figure 2-9 show the surface topography on a commercial head taper 

and stem trunnion respectively using a contact profilometer (Talysurf PGI 840, 

Taylor Hobson, Leicester, UK). The arithmetic mean value (𝑅𝑎) of 0.4𝜇𝑚 on the 

head taper surface roughness and 2.1𝜇𝑚 on threaded stem trunnion are visually 

apparent. 
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Figure 2-9: An example of threaded stem trunnion surface topography 

2.6.5 Failure of total hip replacements  

Modern THRs are a major clinical success with expected lifetimes of 10 to 15 years 

(Aldinger et al., 2003, Teloken et al., 2002). Failure after this is known as a “fair 

success” of the implant and any failure below that called “premature failure”. 

Recent data from the National Joint Registry (NJR) indicates that around 89,000 hip 

operations were performed in the UK using arthroplasty in 2013 (11
th

 Annual Report, 

NJR for England, Wales and Northern Ireland, 2014). The American Academy of 

Orthopaedic Surgeons (AAOS) has indicated that more than 285,000 THRs are 

performed each year in the United States (National Hospital Discharge Survey, USA, 

2010) with this number expected to rise with an ageing population. The number of 

patients receiving THRs has increased over the past decade by 14% in the United 

Kingdom and 35% in the United States (Smith et al., 2012). In addition, as these 

devices are becoming more common place, younger patients are adopting this 

solution too and as such there is a need to improve existing designs further to 

accommodate their more active lifestyle and to extend the prostheses life.  

𝜇
𝑚
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Instances of premature failure of these implants (< 5 years) has been reported and 

attributed to aseptic loosening (Langton et al., 2011, Mattei et al., 2011). Aseptic 

loosening which is a loss of fixation of the implants is known as the main factor of 

failure of THRs. This loss of fixation may be a result of inadequate initial fixation, 

mechanical loss of fixation over time or biologic loss of fixation happening due to 

wearing process. It could occur at modular stem-bone (cemented or uncemented) or 

the head-taper interface (Abu-Amer et al., 2007).  The Sweetish Hip Arthroplasty 

Registry reported that 75% of premature mechanical failure is due to aseptic 

loosening and the rest is due to dislocation, infection and rarely fracture (see 

Figure 2-10) around the implant. Mostly, all the recalls are due to unexpected pain or 

pain due to Adverse Soft Tissue Reaction (ASTR) to debris released. Thus, one of 

the main mechanical requirements for an improved prosthetic design is to minimise 

wear to increase device longevity.  

 

Figure 2-10: Fracture occurred at Polyethylene cup of a total hip prosthesis 

When failure happens, revision surgery is needed to replace the failed implant. 

Revisions are less successful than primary due to the much more complex procedure 

and also the reduction of the bone quality. It is also much more costly than primary 

surgery with more discomfort and pain for patients. 

Fracture  
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The failure rate varies with the type, design and brand of the prosthesis. For instance, 

for MoM THRs, the failure rate at seven years is around 13.6%, compared with 

4.9% failure rate for those made of other materials (Smith et al., 2012, Cohen, 2012). 

For articular surface replacement (ASR; DePuy, United Kingdom) the NJR (2014) 

announced more than 29% failure in 2013. In general, the registry has shown the 

MoM THRs have not performed satisfactorily enough as bearing surfaces. Large 

numbers of recalls of MoM hip prostheses are due to the ASTR in patients (Pandit et 

al., 2008). Metal ions released into the body may enter the blood vessels or other 

organs of the body and increase the iron percentage in the blood (Smith et al., 2012). 

Another concern with MoM THRs is the possibility of metallic cancerous ions. 

Smith et al. (2012) investigated 40,576 patients with MoM and 248,995 with 

alternative bearings hip replacement. Based on the results, there is no evidence on the 

risk of cancer diagnosis in the first seven years after MoM implantation with no 

increase in the risk of malignant melanoma, Prostate or Renal cancer. Although all 

the data presented is reassuring, this kind of finding is observational with a short 

follow-up using hospital statistics. 

Consequently, an understanding of all clinical failure (mainly wear for this research) 

at all interfaces is needed to reduce the number of revisions, increase longevity and 

provide more comfort for patients. 

2.7 Wear and fretting wear in total hip prosthesis 

Wear is inevitable at each interface of a total hip prosthesis due to the cyclic load. As 

a matter of fact, wear occurs in all different types of prosthetic devices in varying 

amounts. Prosthetic wear produces different types of wear particles in terms of size 

and shape. The wear debris produced from these devices is created at:  
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 Head and acetabular cup interface. The wear occurring at this interface has 

been minimised significantly with the introduction of advanced materials with 

low wearing rate, improvement of manufacturing and polishing techniques, and 

optimisation of size and geometry.  

Although generation of wear at the head and acetabular cup has reduced 

significantly, the amount of debris released from this interface is generally 

inevitable and acceptable due to the nature of bearing and interaction between 

those components. 

 Stem and cemented stem interface. In cemented THRs the femoral stem is 

secured typically using Plexiglas (Poly-Methalmethacrylate PMMA). The wear 

occurring between stem and the bone cement is well documented in the literature 

(Brown et al., 2007, Zhang et al., 2008b, Buly et al., 1992, Zhang et al., 2008a, 

Hailer et al., 2010, Morshed et al., 2007). 

 Head taper and stem trunnion (taper junction) interface. The form of wear 

occurring at this interface is fretting wear. The main issue with fretting in 

arthroplasty is that the oxide debris released has no escape route, and is 

accumulated either on surrounding tissue within the body or trapped between 

contacting surfaces which has a damaging effect. It may lead to ASTR and 

trapped particles causing further abrasive and corrosive wear. Tissue reaction to 

metallic wear debris plays a major role in aseptic loosening of joint implants.  

As well as the benefits associated with modularity there are inherent difficulties 

associated with the release of wear debris at both the acetabular cup-head articulating 

surface and also the head taper-stem trunnion junction which have led to ASTR in 

recipients (Langton et al., 2011, Mattei et al., 2011).  
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2.7.1 Fretting wear at taper junction of total hip replacements 

Traditionally the debris released at the head stem interface has been assumed 

negligible compared to the wear occurring at bearing surfaces. The determination of 

wear in THRs up until recently has mainly focused on the articulating surfaces 

between the head and (plastic) acetabular cup (Fialho et al., 2007, Maxian et al., 

1996a, Maxian et al., 1996b, Maxian et al., 1997, Patil et al., 2003, Raimondi et al., 

2001, Teoh et al., 2002, Wu et al., 2003); however, fretting and its resulting damage 

at the taper junction causes failure in many types of prosthetic device. Corrosion 

occurs due to fretting which not only leads to implant failure but also causes serious 

problems such as ASTR.  

As discussed, MoM prostheses incorporate a metal femoral head and cup articulation 

and have a much reduced wear rate in comparison to MoP. Modern large diameter 

MoM prostheses (Figure 2-4) were introduced around 1997 (Cohen, 2012) as an 

option for young active patients to provide a device with reduced wear debris and 

risk of dislocation, greater strength and longer life than MoP types. However, under 

certain circumstances, metal debris can be generated at the articulating surfaces 

which can damage the surrounding soft tissues leading to “aseptic lymphocyte 

dominated vasculitis-associated lesions” (ALDVAL) and Metallosis and cause 

immobility in patients (Sporer and Chalmers, 2012).   

Importantly, evidence of metal wear debris has been reported in MoP (case-report 

level) and CoC THRs too, implicating taper wear and also neck-cup impingement 

(Langton et al., 2011, Mao et al., 2012). Langton et al. (2012) and Bolland et al. 

(2011) have shown damage at the taper junction in retrieved MoM prostheses where 

there is correspondingly minimal wear at the bearing surfaces but still serious soft 
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tissue damage. Langton et al. (2012) presented Scanning Electron Microscope (SEM) 

images of taper junction surface damage occurring in the femoral heads from 

retrieved large diameter MoM prostheses. The images show surface peaks (created 

by the impression of the machining grooves from the trunnion) having been sheared 

off leading to significant material loss, and evidence of the formation of pits with 

inclusions which it was hypothesised were primarily due to mechanical fretting wear. 

There was evidence of only small amounts of chlorides and oxides suggesting 

corrosion was not the primary mechanism of material loss, contrary to the opinion of 

Malviya et al. (2011), Goldberg et al. (2002), and Gilbert et al. (1993).  

As the junctions would have been subject to oscillatory loads and small relative 

displacements (micromotion), the type of mechanical wear taking place is likely to 

have been fretting wear. There is evidence in the literature of experimental 

investigations relating to fretting in THRs (Hallab et al., 2004, Duisabeau et al., 

2004) but only a limited number of studies on the numerical simulation of this type 

of wear (Zhang et al., 2013, Elkins et al., 2014). Due to this serious problem large 

diameter MoM prostheses are no longer used for arthroplasty.   

ASTR and Metallosis have been shown to not only be an issue for MoM prostheses, 

there have also been reports of them due to metallic wear debris produced from the 

taper-trunnion interface for both MoP (Mao et al., 2012) and CoC (Milošev et al., 

2000) prostheses. This indicates that damaging metal debris can also be created at the 

taper junction between a metal head and stem even in MoP or CoC prostheses.  

2.7.2 Fretting wear of cobalt-chrome and titanium 

As discussed, the advantages of titanium for the modular stem and cobalt-chrome for 

the femoral head brought this combination of materials in THRs together. Besides all 



Chapter 2: Background – a review 

70 

 

the material advantages of cobalt-chrome and titanium, recent studies show a 

different scenario for the cobalt-chrome and titanium taper junction combination of 

modular head and stem (Bishop et al., 2013, Bone et al., 2015, Moharrami et al., 

2013). This combination seems to lead to a risk of significant enhancement of 

potential wear and corrosion. Significant damage on the surface of the harder cobalt-

chrome has been reported (Cook et al., 1994, Mears, 1975) and a large number of 

failures have been reported due to the wear occurring between the cobalt-chrome 

head and titanium stem (Bolland et al., 2011).  

Unexpectedly, the harder cobalt-chrome shows more surface damage than the softer 

titanium alloy. This is due to fretting wear and the tribocorrosion mechanism 

between these materials (Moharrami et al., 2013). Moharrami et al. (2013) undertook 

an investigation on the Young’s Modulus and hardness of both materials considering 

in-vivo corrosive environment to determine how titanium with lower hardness can 

wear cobalt-chrome with higher hardness. Their investigation showed that in-vivo 

oxidation has a significant effect on the surface material properties of titanium alloy 

making it harder but makes no difference to the hardness of cobalt-chrome. The 

hardness of cobalt-chrome remains relatively constant as it is more resistant to 

oxidation.  

Therefore in fretting between these two materials, titanium significantly abrasively 

wears cobalt-chrome. Experimental measurement of fretting wear for this 

combination showed the wear rate on the cobalt-chrome head taper was almost 10 

times higher than on the titanium stem trunnion (Bone et al., 2015, Langton et al., 

2012). 
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2.7.3  Wear particles released from hip implant  

Wear particles release into the body from THRs can be found in different organs 

such as the blood, kidneys and bladder (Maloney et al., 1995). During revision 

surgery, debris accumulated around the joint and surrounding tissue has been clearly 

presented  (Kusaba and Kuroki, 1997). The debris contains metal and plastic 

particles dependant on the type of prosthesis. Even for MoP THRs, analysis of the 

debris has showed that particles are not only from UHMWPE (which come from the 

acetabular cup) but also from metallic particles generated mostly from the head-stem 

interface (Minakawa et al., 1998, Shahgaldi et al., 1995, Young et al., 1998).  

Observations of the failed implants show significant damage at the taper junction 

(visible with the naked eye). The metal debris released leads to serious problems and 

infection of the surrounding tissue. Bolland et al. (2011) has shown damage at the 

taper junction in retrieved prostheses. Although there is correspondingly minimal 

wear at the bearing surfaces, serious wear damage on the taper and trunnion surfaces 

was visible.  

2.8 Wear assessment 

As explained, theoretical and computational approaches to the assessment of wear 

are mainly based on ‘Archard’s Wear Law’ or the ‘Dissipated Energy Wear Law’. In 

both methods an experimentally determined wear coefficient is required which 

encompasses a variety of parameters affecting wear such as material combination 

and properties, geometry, surface roughness, friction coefficient, lubrication regime, 

temperature, and loading frequency.  
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2.8.1 Archard and Energy wear assessment  

In the gross slip regime it can be seen that there is a relationship between Archard 

and the Energy wear coefficient as follows, 

𝛼 =
𝜇𝑘

𝐻
 (2-23) 

where 𝜇 is the friction coefficient. However, in the partial slip regime where the 

traction force (𝑄) is lower than the product of the friction coefficient and normal load 

(𝑄 < 𝜇𝐹𝑛) the Archard and Energy approaches will not provide the same results 

(Zhang et al., 2011). 

The Energy wear approach considers the interfacial shear work as the main 

parameter controlling the wear modelling. This approach uses a single Energy wear 

coefficient that unifies prediction of wear across a wider range of stroke (from 50µ𝑚 

to 1.3𝑚𝑚) than Archard (Magaziner et al., 2008). Therefore, this approach has a 

greater range of application than Archard’s wear law (Fouvry et al., 2001, Fouvry et 

al., 2003, Liskiewicz and Fouvry, 2005).  

2.8.2 Wear coefficient  

For engineering application the quantity of dimensional wear coefficient (𝐾 = 𝑘/𝐻) 

is often more useful quoted by units of  𝑃𝑎−1 or 𝑀𝑃𝑎−1. Due to a lack of a standard 

test method, the value of wear coefficients obtained from different investigations 

available in the literature vary significantly by a deviation of 1000% or more (Yang, 

2005). The wear coefficient encompasses a variety of parameters affecting wear and 

in addition it is known to change during the wearing process.  
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The values of “taper-trunnion” (fretting) wear coefficients can only be obtained 

accurately by controlled in-vitro studies using hip simulators or specially designed 

fretting rigs, as basic techniques such as pin on disk do not provide the necessary 

geometries, in-vivo loading conditions or environment to facilitate this.  

The vast majority of research into wear modelling of hip prostheses has involved the 

analysis of wear occurring between the cup and head articulation of MoP types 

(Fialho et al., 2007, Maxian et al., 1996a, Maxian et al., 1996b, Maxian et al., 1997, 

Patil et al., 2003, Raimondi et al., 2001, Teoh et al., 2002, Wu et al., 2003). 

However, there has been a limited number of in-vitro studies considering metallic 

interactions for both cup and head wear (hip simulators/pin-on-disk) and to consider 

taper junction wear due to fretting (by means of fretting test rigs) (Chiba et al., 2007, 

Fridrici et al., 2001, Liu et al., 2008, Magaziner et al., 2008, Zhang et al., 2013).  

Liu et al. (2008) determined wear coefficients from wear volumes obtained from the 

cup and head of cobalt chrome (CoCr) MoM hip resurfacing implants after simulator 

tests by Leslie et al. (2008). The wear coefficients were obtained by a trial and error 

method using a computational wear simulation of the experimental tests and 

comparing the computed volumetric wear with the hip simulator values.  Archard 

wear coefficients of 1.13 × 10−11𝑀𝑃𝑎−1 and 0.12 × 10−11𝑀𝑃𝑎−1 were obtained 

for the bedding-in (0– 1 million cycles) and steady-state (1– 15 million cycles) wear 

phases respectively.  

Uddin and Zhang (2013) used wear coefficients of similar value to Liu et al. (2008) 

in a study to predict wear in hard-on-hard hip prostheses. For wear between a Co-Cr-

Mo alloy cup and head, Archard coefficients of 0.5 × 10−11𝑀𝑃𝑎−1 and 0.15 ×

10−11𝑀𝑃𝑎−1 for bedding-in (0-1million cycles) and steady state (1-3 million cycles) 
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were used by Uddin and Zhang (2013) following hip simulator tests undertaken by 

Chan et al. (1999).  

Chiba et al. (2007) used a traditional pin on disk unidirectional technique with 

Archards wear law to determine wear coefficients for cast CoCr/CoCr and forged 

CoCr/CoCr alloys. The volumetric wear was calculated from gravimetric 

measurement of mass loss producing overall values of 𝐾 = 3.8 × 10−9𝑀𝑃𝑎−1and 

2.0 × 10−9𝑀𝑃𝑎−1 respectively. 

Fridrici et al. (2001) investigated the effects of shot peening on the fretting wear 

behaviour of Ti–6Al–4V using a fretting wear rig with a cylinder on plane geometry. 

A number of tests were undertaken with different normal loading resulting in contact 

pressures of 525𝑀𝑃𝑎 and 830𝑀𝑃𝑎 respectively, and displacement amplitudes 

(±5𝜇𝑚 to ±50𝜇𝑚). The tests were carried out in dry conditions at a frequency of 

5𝐻𝑧 up to a maximum of 106 cycles. A coefficient of friction was determined as 

being around 0.8  to 1 after 106 cycles. Profilometry was used to determine the wear 

volume with similar wear occurring on both the cylinder and plane. Energy wear 

coefficients were calculated for the different experimental conditions showing 

differences dependant on changes in the contact pressure or relative displacement. 

For a contact pressure of 830𝑀𝑃𝑎 and a displacement amplitude of ±50𝜇𝑚 for a 

test of duration 250,000 cycles, the energy wear coefficient was determined as 

2.9 × 10−8𝑀𝑃𝑎−1.   

Magaziner et al. (2008)  used a modified servo-controlled MTS testing machine with 

two actuators and fretting fixture to study the fretting-reciprocating sliding of 

titanium alloy Ti-6Al-4V on itself as cylinder on flat contact. The relative 

displacement range was 872 − 1381𝜇𝑚 and the range of test cycles 1000 − 60000.  
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Profilometry determined the wear volume which was found to be nearly linearly 

proportional to the cumulative product of contact load and relative slip (Σ𝐹𝑛𝑠) and 

total dissipated energy (Σ𝐸) producing an Archard wear coefficient 𝐾 =  3.703 ×

10−7𝑀𝑃𝑎−1 and an energy wear coefficient 𝛼 =  7.121 × 10−7𝑀𝑃𝑎−1.  

Zhang et al. (2013) used pin on disk with linear reciprocating motion (±2𝑚𝑚) to 

determine the energy wear coefficients for two head-stem material combinations 

(Co-28Cr-6Mo / DMLS Ti-6Al-4V and Co-28Cr-6Mo / forged Ti-6Al-4V) with the 

dissipated energy wear law approach for application to fretting at THR taper 

junctions. The authors state that with this approach 𝛼 is fairly insensitive to the 

magnitude of the relative displacement and is constant over a comparatively wide 

range of motion (Liskiewicz and Fouvry, 2005, Magaziner et al., 2008). Contact 

stresses were generated of similar magnitude to those at a THR taper junction and the 

volumetric wear was measured using SEM and profilometry. For Co-28Cr-6Mo / 

forged Ti-6Al-4V average energy wear coefficients of 𝛼 = 9.9 × 10−8𝑀𝑃𝑎−1 and 

1.6 × 10−8𝑀𝑃𝑎−1 were determined using SEM and profilometry respectively (a 

difference in magnitude of 6.2 due to the measurement techniques used). For Co-

28Cr-6Mo / DMLS Ti-6Al-4V the values for 𝛼 were 4.16 × 10−8𝑀𝑃𝑎−1 and 

3.34 × 10−9𝑀𝑃𝑎−1 using SEM and profilometry respectively (a difference in 

magnitude of 12.46). 

The wear coefficient is of the fundamental importance. This value provides a 

valuable means of wear modelling in different systems. The wear coefficients 

obtained from the studies explained in this section should be treated with caution as 

their values are dependent on the specific test machines used, component design, test 

configurations and test conditions (Cawley et al., 2003). Furthermore, a direct 
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comparison of the wear performance of a particular material is difficult due to the 

reasons stated. The wear coefficients obtained in literature are summarized in 

Table 2-1 and Table 2-2. 

2.8.3 Wear fraction  

In the process of wear, material can be removed from both components in contact by 

different amounts. This depends on their surface material properties such as 

hardness, wear resistance and surface roughness.  The proportion of wear that is 

removed from each of the contacting components in this work is specified by a “wear 

fraction”. Simplistically, for example, a wear fraction of (1: 0) would remove all of 

the wear volume from one component, whereas a wear fraction of (0.5: 0.5) would 

remove the wear equally from both components.  

Typically, in studies that attempt to predict wear or fretting wear between a pair of 

components one part is modelled as a rigid body and wear is only considered to 

occur on the other. For instance, Zhang et al. (2014) in a recent study assumed that 

fretting wear, between titanium stem and cobalt-chrome alloy head, only occurs on 

the titanium stem trunnion. They stated that the cobalt-chrome head was a harder 

material and as such can be assumed as a rigid body. In the light of their study three 

main issues need to be considered. First, they have neglected the effect of geometry 

change during the wearing process. Second, there is a large limitation of applying 

accurate loading and boundary condition on an axisymmetric model. Finally and 

more importantly, as discussed in Section 2.7.2, recent studies show the softer 

titanium alloy abrasively wears the harder cobalt-chrome due to oxidation of titanium 

(Bishop et al., 2013, Bone et al., 2015, Langton et al., 2012, Moharrami et al., 2013).  
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In a 3D FE analysis of a MoM THR (femoral head-acetabular cup), Uddin and Zhang 

(2013) only updated the geometry of the cup stating that the femoral head surface 

normally wears equally to the cup surface and as such the wear analysis of the head 

would be repetitive. However, the change of geometry on both parts during wear 

modelling has a significant effect on the wear rate and the prediction of the final 

surface damage.  

To the author’s knowledge, the wear fraction is one of the main parameters in wear 

modelling and cannot be neglected by simplification of the model.  The wear method 

proposed in this study permits wear to occur on one component only, both 

components equally or by unequal amounts.  

2.8.4 Effect of frequency on the wear rate  

Regarding the experimental set-up for wear analysis, using a high frequency has an 

effect on assessment of wear rate. For instance, a high frequency of the pin-on-disk 

apparatus leads to vibrate the test samples. Chowdhury et al. (2010) indicate that 

increasing the frequency, vibrates the pin-on-disk experimental set-up that leads to 

increase the wear rate. 

Furthermore, accelerating the fretting wear test by using a high frequency has an 

effect on fretting wear tests (Schaaff et al., 2006). Schaaff et al. (2006) used a piezo-

electrically driven fretting test device and determined the volume loss using 

radiotracer technique to assess the effect of frequency on fretting wear rate of Co-

28Cr-6Mo on Ti-6Al-4V. Their results for different frequencies (1 to 8𝐻𝑧) show 

higher wear rate for lower frequencies. 
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Consequently, the examples above indicate that accelerating the fretting wear tests of 

materials must be considered extremely carefully. 

2.9 Computational wear modelling   

Experimental testing to determine the wear behaviour that occurs in mechanical 

devices is time consuming, expensive and complicated. Computational wear 

modelling is an alternative method which is faster and cheaper than real testing and 

can be used in addition to testing, to help improve the wear characteristics of 

mechanical designs (Elkins et al., 2014, Elkins et al., 2011, Liu et al., 2008, Uddin 

and Zhang, 2013, Zhang et al., 2013).  

A computational approach to wear prediction is a useful tool for use in design or 

improving an existing design. When validated experimentally or in-vivo, it could be 

used to assess different gait cycles, functional performance of prosthetic devices and 

refine critical points of a design. 

There is some evidence that work has been successful in the prediction of fretting 

wear experimentally and computationally to assess functional aspects of new and 

existing designs. All methods presented in the literature have been significantly 

simplified due to the complexity of the prediction. Some of these considerations are 

summarized in Table 2-3.  

Zhang et al. (2011) investigated the fretting performance of two 2D contrasting 

contact geometries transmitting a normal load and tangential displacement. They 

tried to investigate the effect of three different contact geometries on fretting to 

understand which geometry performs better in terms of fretting wear and fatigue. 

McColl et al. (2004) developed a 2D FE model to simulate fretting wear, validated 
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experimentally based on Archard equation. They highlighted the effect of slip 

amplitude on evolution of multiaxial contact stress and fretting parameters. Their 

work was followed by Madge et al. (Madge et al., 2007b, Madge et al., 2008) who 

used an Archard based wear simulation with FE based method to predict multiaxial 

fretting wear on fretting wear life validated experimentally with a rounded punch-on-

flat fretting test rig. The effect of incremental plasticity during fretting wear analysis 

has been investigated by Tobi et al. (2009). On the assessment of fretting wear 

fatigue, Ding et al. (2004) used a combined 2D numerical and experimental approach 

to predict fretting fatigue life using wear scars due to gross slip, partial slip and 

mixed slip. 

There are also some studies on the development of adhesive wear modelling. For 

instance, Abdelgaied et al. (2011) proposed a new computational wear model to 

predict wear in knee implants using the Archard wear law based on a non-

dimensional wear coefficient. They used a laboratory joint simulator to validate 

predicted wear volume. Fialho et al. (2007) developed a computational framework to 

simulate the wear and heat generation between the head and acetabular cup of THRs.  

Liu et al. (2008) presented a computational wear model based on the Archard wear 

equation and FE analysis to predict wear on MoM hip resurfacing prostheses. They 

performed short and long term tests using a hip simulator to investigate the wear 

coefficient up to 50 million load cycles. They obtained 6 to 8𝜇𝑚 wear depth with no 

edge contact at the cup and head. This result was obtained using average linear 

triangular interpolation of contact stresses rather than actual incremental contact 

stresses.  
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Different theories on wear modelling have also been presented to simplify the wear 

prediction. For instance, Elkins et al. (2014) tried to develop an investigation on the 

fretting wear behaviour using a “potential wear rate”. However, in their study the 

effect of changing geometry due to wear evolution was ignored. They used only two 

parameters of the Archard based wear law, contact pressure and slip to assess 

potential wear rate. The study tried to parametrically compare different head 

diameters on potential fretting wear rate.  

Donaldson et al. (2014) considered varying parameters (four hundred) to investigate 

a “fretting work done” on the head neck taper and trunnion junction. They defined 

fretting work done as (𝜇 × 𝑃 × 𝑠), where 𝜇 is the friction coefficient, 𝑃 is contact 

pressure and 𝑠 is micromotion.  Their investigation showed that fretting work was 

correlated with only three parameters, which are angular mismatch, centre offset and 

body weight. The “fretting work done” may be considered as a “potential wear rate” 

using the dissipated energy wear law and assuming an energy wear coefficient as 

unity. 
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Table 2-1: Values of wear coefficient for the same material combination of reviewed wear models 

Same material 

combination 
Wear law 

Wear 

model 
Experiment Wear measurement 

Wear coefficient 

(𝑀𝑃𝑎−1) 
Reference 

Cobalt-chrome 

on itself 
Archard Adhesive Hip simulator 

Computational wear 

simulation (trial and 

error) 

Bedding: 1.13 × 10−11 

Steady-state: 0.12 × 10−11 

(Liu et al., 2008) and 

(Leslie et al., 2008) 

Co-Cr-Mo alloy 

on itself 
Archard Adhesive Pin-on-disk 

Computational wear 

simulation (trial and 

error) 

Bedding: 0.5 × 10−11 

Steady-state: 0.15 × 10−11 

(Chan et al., 1999) 

(Uddin and Zhang, 2013) 

Co-Cr-Mo alloy 

on itself 
Archard Abrasive Hip simulator SEM 

Varying from  

0.95 × 10−6 to 

1.24 × 10−6 

(Cawley et al., 2003) 

Cast Cobalt-

chrome on itself 

Archard 

 
Adhesive Pin-on-disk 

Gravimetric measurement 

of mass loss 
3.8 × 10−9 

(Chiba et al., 2007) 
Forged CoCr on 

itself 
Archard Adhesive Pin-on-disk 

Gravimetric measurement 

of mass loss 
2.0 × 10−9 

Ti–6Al–4V 

on itself 
Archard Fretting 

Servo-controlled 

MTS testing 
Profilometry 3.703 × 10−7 (Magaziner et al., 2008) 

Ti–6Al–4V 

on itself 
Archard Fretting 

Cylinder-on-flat 

fretting test rig 
Profilometry / SEM 

Gross sliding: 8.5 × 10−9 

Partial slip: 4.5 × 10−9 
(Tobi et al., 2009) 
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Same material 

combination 
Wear law 

Wear 

model 
Experiment Wear measurement 

Wear coefficient 

(𝑀𝑃𝑎−1) 
Reference 

Ti–6Al–4V 

on itself 
Energy Fretting Fretting wear rig Profilometry 2.9 × 10−8 (Fridrici et al., 2001) 

Ti–6Al–4V 

on itself 
Energy Fretting 

Electrodynamic 

fretting rig 
SEM 1.12 × 10−8  (Fouvry et al., 2003) 

Ti–6Al–4V 

on itself 
Energy Fretting 

Servo-controlled 

MTS testing 
Profilometry 7.121 × 10−7 (Magaziner et al., 2008) 

High strength steel 

on itself 
Archard Fretting None  FEA 1.0 × 10−7 (Ding et al., 2004) 

High strength steel 

on itself 
Archard Fretting 

Cylinder-on-flat 

fretting test rig 

SURFCOM 200 scanning 

stylus Profilometry 

185𝑁: 2.8 × 10−8  

500𝑁: 5.1 × 10−8 

1670𝑁: 2.8 × 10−8 

(McColl et al., 2004) 

Aluminium alloy 

on itself 
Archard Adhesive Pin-on-disk Weight loss 

Varying from  

0.2 × 10−5 to 

25 × 10−5 

(Yang, 2003) 

Metal-matric 

composite on 

itself 

Archard Adhesive Pin-on-disk Weight loss 

Varying from  

2.7 × 10−5 to 

24.6 × 10−5 

(Yang, 2005) 
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Table 2-2: Values of wear coefficient for the different material combination of reviewed wear models 

Different material 

combination 

Wear 

law 
Wear model Experiment Wear measurement 

Wear coefficient 

(𝑀𝑃𝑎−1) 
Reference 

Co-28Cr-6Mo / 

DMLS Ti-6Al-4V 
Energy Fretting 

Pin-on-disk with 

linear 

reciprocating 

motion 

SEM  
5.35 × 10−8 and  

2.97 × 10−8 

(Zhang et al., 2013) 

Co-28Cr-6Mo / 

forged Ti-6Al-4V 
Energy Fretting SEM 

10.6 × 10−8 and 

9.18 × 10−8 

Co-28Cr-6Mo / 

DMLS Ti-6Al-4V 
Energy Fretting Profilometry 

3.91 × 10−9 and 

2.76 × 10−9 

Co-28Cr-6Mo / 

forged Ti-6Al-4V 
Energy Fretting Profilometry 

1.31 × 10−8 and 

1.88 × 10−8 

Ti–6Al–4V on 

High strength steel 
Archard Fretting 

From (McColl et 

al., 2004) 
Fretting fatigue test  2.75 × 10−8 

(Madge et al., 2007a) 

(Madge et al., 2008) 

(Madge et al., 2007b) 

Polyethylene / 

CoCr 
Archard Adhesive Hip simulator FEA 10.6 × 10−7 (Fialho et al., 2007) 
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Table 2-3: Different approach to wear prediction of reviewed wear modelling  

Auteurs  Method Application Loading Consideration 

Uddin and Zhang (2013) 

FEA(ANSYS) / 

WM
*
: Manually 

Archard 

Adhesive  

THR 

taper 

junction 

LC
**

: 2million  

SF
***

: 200,000 

WF
****

:1:0 

 

Nodal position updates in constant radial direction for all updates 

Manually updated the geometry 

Wear damage pattern presented in 2D 

Wear coefficient from Pin-on-disk 

 

Zhang et al. (2013) and 

Zhang et al. (2014) 

FEA (ABAQUS)  

WM: Adaptive meshing 

Eergy  

Fretting 

THR 

taper 

junction 

LC: 1million  

SF: 50,000 

WF: 1:0 

 

 

Not applicable for 3D models with realistic loading condition 

Sinusoidal load rather than hip loading 

Press fit rather than impaction 

Assumption of Titanium wears only, however as discussed softer 

Titanium wears Cobalt-Chrome   

 

Elkins et al. (2014) 

FEA (ABAQUS) 

WM: Mathcad  

Archard 

Fretting 

 

THR 

taper 

junction 

LC: 1 

SF: None 

WF:1:0 

No geometry update, Wear potential 

Non-converged FE analysis found in their work 

Fialho et al. (2007) 

FEA (ANSYS) 

WM: None 

Archard 

Adhesive  

THR  

head and cup 

LC: 1million 

SF: 1million 

WF: 1:0 

Wear damage pattern obtained based on one analysis 

Not applicable for MoM 

(Liu et al., 2008) 

 

FEA (ABAQUS) 

WM: Manually  

Archard 

Adhesive  

Hip 

resurfacing  

LC: 50million 

SF: 50million 

WF: 0.5/0.5 

Just superior-inferior hip loading applied on the model 

Average linear triangular interpolation to obtain contact stress  

Updated on radial direction and not normal direction  

 

*WM: wear modelling  

*LC: Number of Load Cycles,  

***SF: Scaling Factor, 

****WF, wear fraction ABAQUS 
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Auteurs  Method Application  Limitation 

Abdelgaied et al. (2011) 

FEA (ABAQUS) 

WM
*
: MATLAB 

Modified Archard 

Adhesive 

Artificial 

knee joint 

LC
**

: 5million 

SF
***

: 500,000 

WF
****

: 1:0 

The method allow to obtain volumetric wear only 

No presentation of wear damage pattern  

Tobi et al. (2009) 

FEA  

WM: Adaptive meshing 

Archard 

Fretting 

Fretting test 

LC: 300,000 

SF: 3,000 

WF:0.5:0.5 

Not applicable for 3D models with realistic loading condition 

Need of highly refined mesh: 10𝜇𝑚 element size 

Nodal adjustment assigned: 0.001𝜇𝑚 

Wear depth accuracy: 1𝜇𝑚 

High frequency, 20Hz 

Considered the last time increment only 

 

Madge et al. (2007a) 

Madge et al. (2008) 

Madge et al. (2007b) 

FEA /  

WM: MATLAB 

Adaptive meshing 

Archard 

fretting 

Fretting test 
LC and SF from 

(Ding et al., 2004) 

Not applicable for 3D models with realistic loading condition 

Need of highly refined mesh: 16𝜇𝑚 element size 

Missing of nodal coordinate, due to adaptive meshing 

procedure 

 

McColl et al. (2004) 

(Ding et al., 2004) 

 

ABAQUS/ 

WM: Fortran  

Adaptive meshing 

Archard 

Fretting 

Fretting test 

FWC: 18000 

SF: 30 

WF:0.5:0.5 

Not applicable for 3D models with realistic loading condition 

Need of highly refined mesh: 10𝜇𝑚 element size 

High frequency, 20Hz 

Assumption of displacement as a total local slip 

Assumption of constant nodal contact pressure and slip during 

the wear analysis 

Manually run the Fortran program after each analysis 

Wear depth accuracy: 5𝜇𝑚 

(Zhang et al., 2011) 

FEA / 

WM: Fortran  

Adaptive meshing 

Energy 

Fretting 

Pressure 

armour layer 

of a marine 

riser 

FWC: 100,000 

SF: 2,000 

WF:0.5:0.5 

Not applicable for 3D models with realistic loading condition 

Wear depth accuracy: 1𝜇𝑚 

Need of highly refined mesh 

*WM: wear programing  

**LC: Number of Load Cycles,  

***SF: Scaling Factor, 

****WF, wear fraction ABAQUS 
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2.10  Discussion and rationale  

Fretting is known as one of the most significant and complicated mechanical failures 

that occur (see Figure 1-1). There is evidence the wear that could occur in total hip 

implant is still an issue in orthopaedics. The wear debris produced from these devices 

occurs mainly from the acetabular cup and head articulating surface and the head-

stem taper connection. In the past, fretting wear occurring between the fixed parts of 

the modular prosthesis (head-stem) had been neglected in investigations claiming 

that debris released is mostly from the bearing surfaces; However, fretting wear can 

remove the effect of initial impaction assembly, which is used to fix these parts 

together and lead to aseptic loosening of the implant. Further, the fine wear debris 

released due to the fretting can lead to adverse side effects such as ASTR or 

metallosis. As demonstrated in this chapter there is evidence that more investigation 

is needed to determine why artificial joints are failing prematurely. Currently, 

fretting wear is known as one of the main reasons of failure in modular THRs. 

The review presented in this Chapter reveals possible gaps in research for prediction 

of fretting wear in THRs and wear modelling. These gaps are: 

 Long term effects of current and new design of THRs remain unknown. 

There is no specific statistics on the failure rate in THRs for the more recent 

designs as their long term behaviour in-vivo needs time in service before this 

can be established. Although experimental simulation (such as hip 

simulators) could provide insight into long term behaviour in service, these 

tests have many limitations such as applying accurate loading conditions, 

providing accurate corrosive environment and timing and costly procedure. 

Furthermore, a limited number of tests can be carried out using the 
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experimental simulations for a specific design and therefore it cannot be used 

for all the parameters that may affect the wear phenomenon.    

 Success of the prosthetic devices in service depends on variable factors, such 

as design, initial fixation, material combination, method of manufacture, 

surface roughness and manufacture tolerances. All of these parameters 

highlight the possible differences on their long term behaviour in service. 

Currently there is no accurate, standard and straightforward experimental and 

computational approach to incorporate all these aspects together to predict the 

exact behaviour of the prosthetic devices.  

 There is a lack of understanding and guidelines to provide adequate assembly 

of the prosthetic devices. For instance the effect of variability of impaction 

forces on fretting wear at the taper junction is still unclear (Wassef and 

Schmalzried, 2013). Manufacturing guidelines are vague and the THR 

procedure is very dependent on the surgeons’ experience. 

 There are a number of experimental research investigations to determine the 

extent of fretting wear in these devices; however, there is a lack of a fast, 

user-friendly and accurate computational approach reported in the literature 

(referenced in Table 2-3). Further, most studies that have tried to predict 

fretting wear computationally, in general, include many simplifications. For 

instance, the effect of changing the geometry due to material removal during 

the wear process has been commonly neglected. 

 Wear coefficients are known to change during the wearing process based on 

the change in material surface properties and surface geometry. Accurate 

wear coefficients occurring at prosthesis taper junctions during the wear 

analysis have yet to be determined. 
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The overall aim of the research in this field is to develop the prosthetic devices which 

will last the life of the patients. Further, patients with implanted total hip or knee 

replacement are mostly advised to minimise any activity outside walking which is 

not satisfying for young active patients who wish to pursue an active life. This aim is 

achievable by further research and investigation to develop the design of the 

prosthetic devices to increase the longevity of them up to the natural end of a 

patient’s life with better performance in service in terms of providing higher 

functionality.  

Increasing the longevity of joint implants is also an economic benefit as the revision 

surgery is more costly than the primary one, less successful and not in the comfort 

zone of the patients. Reducing the number of revisions also helps to minimise the 

input of resources from the health authorities in terms of equipment and finance. 

To increase the prosthetic devices life, being able to predict the extent of wear that 

could occur in the device over several years in service in the body is vital. This is the 

main aim of this study to introduce a new methodology to predict fretting wear 

between the head-stem of a modular hip prosthesis using FE analysis. In order to 

fulfil the requirements of minimal invasive surgery and for an attempt to bridge the 

above gaps, a comprehensive wear model is proposed in Chapter 3. This method is 

used in different studies in Chapter 4, 5 and 6 to investigate the long term 

performance of hip prosthetic implants in service considering different parameters 

affecting fretting wear. The following objectives are met in order to achieve this 

goal: 

 The method proposed in Chapter 3 could consider the initial locking effect of 

impaction at assembly for modelling fretting wear.  
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 The method is user-friendly in order to be used in different parametric 

studies. Automation of the method has been performed with a graphical user 

interface (Python scripting) that allows using the method for different studies. 

 The wear model is applicable to both axisymmetric and 3D FEA models. The 

FE analysis of axisymmetric models is much faster than 3D models with of 

course their limitations. This type of analysis would be useful for parametric 

studies such as the effect of mismatch angle.  

 The wear algorithm is capable of considering different wear fractions for each 

material. 

 The method is capable of considering varying wear coefficients during wear 

analysis, if this data is available from actual testing. 

2.11  Conclusion 

Firstly, this Chapter presented a comprehensive review of wear and its 

characteristics. Different wear mechanisms and theoretical approaches to calculate 

them were explained followed with an explanation on fretting wear which is the main 

focus of this study. Then the wear laws and their assessment using theoretical 

approaches were discussed. Secondly, the human hip joint and its possible disorders 

have been demonstrated followed by a detailed explanation on hip arthroplasty, the 

procedure of THRs, different designs and material combination of modular hip 

implants and reasons of failures in THRs. Thirdly, the fretting wear that could occur 

in THRs over time was discussed in detail. Fourthly, a review on the current 

experimental and computational methods to predict and investigate fretting wear 

proposed in literature was presented.  
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Finally, a discussion on the gaps in current research, overall aim of the present study 

and the considerations of the proposed methodology were presented. This study 

attempts to close these gaps by developing a wear model that is explained in Chapter 

3 with illustration of three different studies following in Chapter 4, 5 and 6. 
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Chapter 3  

3 Computational method of fretting wear 

prediction 

3.1 Introduction 

In this Chapter both Axisymmetric and 3D models of a commercial total hip 

prosthesis are used to demonstrate the method and to highlight key features of a 

bespoke wear algorithm. The models together with the wear algorithm can be used 

effectively to study certain aspects of taper junction design. The method presented in 

this chapter can subsequently be used to identify key factors leading to debris release 

at the taper junction so that appropriate prosthesis design and surgical procedural 

modifications can be made to mitigate against this damaging problem. The method 

proposed is also independent of model geometry and can be used for any FE models 

(not only prosthetic devices) to predict fretting wear. The method and the FE models 

that are to be explained in this Chapter will be, unless stated otherwise, the main 

analysis implementations for chapters that follow (4, 5 and 6).   
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3.2 Theoretical wear calculation  

In what follows, the general wear equations to calculate volumetric and linear wear 

will be explained. The methodology described in this study allows for the 

implementation of either the ‘Archard’ or the ‘Dissipated Energy’ wear law for the 

prediction of fretting wear.  

As discussed in section 2.8.1, the energy wear approach considers the interfacial 

shear work as the main parameter controlling wear modelling. There is evidence in 

literature that this approach is superior to the Archard’s wear law (Fouvry et al., 

2001, Fouvry et al., 2003, Liskiewicz and Fouvry, 2005). However, it is not 

necessary to use the energy wear law over Archard (both can be used in the 

methodology presented here), mainly the energy wear approach is used in this study 

to present all the results. The main reason for using the Energy wear law in this study 

is that the fretting wear coefficients are better defined in the literature for this 

approach. In this section, the theoretical approach and the implementation of both 

laws to the FE analysis are described. 

3.2.1  Dissipated Energy wear law 

The energy wear law, Equation (3-1), bases the calculation of volumetric wear on the 

interfacial shear work being the predominant parameter determining wear. It shows 

that the total volumetric wear (𝑊𝑣) is obtained from the product of the total local 

accumulated dissipated energy (𝐸) and an energy wear coefficient 𝛼: 

𝑊𝑣 = 𝛼𝐸  (3-1) 

where 
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𝐸 = 𝑄𝑠  (3-2) 

and 𝑄 is the shear traction and 𝑠 the relative displacement between the contacting 

surfaces, giving:  

𝑊𝑣 = 𝛼𝑄𝑠  (3-3) 

By dividing both sides of Equation (3-3) by a contact area, the linear wear depth 𝑊𝑑 

can be calculated using Equation (3-4), where 𝜏 is the contact surface shear stress: 

𝑊𝑑 = 𝛼𝜏𝑠  (3-4) 

For the numerical implementation of this wear law, the process used here is to first 

determine the wear depth at contacting surfaces generated by a single loading cycle 

on the components (such as the in-vivo loading applied on a hip for a single walking 

step); subsequently, as the components will typically be subject to millions of 

loading cycles during their lifetime, this single cycle wear depth is multiplied by a 

‘wear scaling factor 𝛽’ so as to make the execution of an analysis achievable in an 

acceptable period of time. The ‘wear scaling factor’ represents a specific number of 

loading cycles (e.g. 105) and its value depends on how accurately the evolution of 

wear is to be calculated, with a trade off against computer run time. After scaling the 

wear depth, the geometry of the contacting surfaces of the components is then 

modified to reflect the wear that would have occurred over the period of 𝛽 cycles. 

The calculated wear can be applied to one component only, or to both in either equal 

or unequal amounts. The process is then repeated using the updated geometry until a 

specified number of cycles of loading have been applied or a pre-specified wear 

depth has been reached. 
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In order to model accurately the effect on wear of a time-variant load distribution 

during a loading cycle (such as occurs during walking) it is necessary to discretise 

the loading cycle into a number of time intervals 𝑛. As such, the wear depth for a 

single cycle of loading (the cyclic wear depth 𝑊𝑐) can be calculated using Equation 

(3-5), where 𝜏𝑖 and 𝑠𝑖 are respectively the surface shear stress and relative 

displacement calculated at the end of a specific time interval 𝑖. 

𝑊𝑐 = ∑ 𝛼𝜏𝑖𝑠𝑖  

𝑛

𝑖=1

 (3-5) 

The cyclic wear depth 𝑊𝑐 will be very small and if unmodified will have negligible 

influence on the evolving taper junction surface geometry due to wear. As such, 

‘wear scaling factors 𝛽’ are employed to increase 𝑊𝑐  to a value which would have 

occurred over a much larger number of loading cycles. The total wear depth 𝑊𝑑 that 

is generated over a specified total number of loading cycles 𝑁 can be determined 

from Equation (3-6), where 𝑗 represents a specific ‘analysis stage’ reflecting the 

evolution of wear: 

𝑊𝑑 = ∑ 𝛽

(𝑁/𝛽)

𝑗=1

∑ 𝛼𝜏𝑖,𝑗𝑠𝑖,𝑗

𝑛

𝑖=1

 (3-6) 

The accuracy and efficiency of this approach is dependent on numerous factors, not 

least of which is the magnitude of the energy wear coefficient 𝛼 used. In addition, 

the number of intervals 𝑖 used to discretise the loading cycle, and the magnitude of 

the ‘wear scaling factor 𝛽’ need careful consideration in terms of their influence on 

accuracy and analysis run times.  
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3.2.2  Archard’s wear law 

As discussed in section 2.4.1, according to Archard’s wear model, volumetric wear 

𝑊𝑣 on the articulating surfaces can be described by, 

𝑊𝑣 = 𝐾𝐹𝑠 
(3-7) 

where 𝐾 is a dimensional Archard wear coefficient 𝑀𝑃𝑎−1, 𝐹 is the contact force 

and 𝑠 is the relative slip.  Linear wear depth can be calculated by dividing both sides 

of Equation (3-7) by an area, 

𝑊𝑑 = 𝐾𝑃𝑠 
(3-8) 

where 𝑃 represents the normal contact stress. Again similar to energy wear law, the 

cyclic wear depth  𝑊𝑑 at any point of the surfaces in contact can be derived by 

discretising the whole load cycle for the load gait, given by, 

𝑊𝑐 = ∑ 𝐾𝑃𝑖𝑠𝑖 

𝑛

𝑖=1

 
(3-9) 

where 𝑃𝑖 and 𝑠𝑖 are respectively the surface contact pressure and relative 

displacement calculated at the end of a specific time interval 𝑖 for the number of time 

intervals 𝑛.  

Then, the total wear depth 𝑊𝑑 that is generated over a specified total number of 

loading cycles 𝑁 can be determined (as described in section 3.2.1) by Equation 

(3-10) to calculate the evolution of wear.  

𝑊𝑑 = ∑ 𝛽

(𝑁/𝛽)

𝑗=1

∑ 𝐾𝑃𝑖,𝑗𝑠𝑖,𝑗 

𝑛

𝑖=1

 (3-10) 
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The Archard’s wear method is an option in the algorithm to be considered for the 

wear analysis by a graphical user interface (GUI) in ABAQUS which will be 

explained later in section 3.9. 

3.3  Wear implementation 

The energy or Archard wear law in the form of Equation (3-6) and (3-10) 

respectively can be used in conjunction with the FE analysis to calculate wear depth 

at the contacting surfaces of an FE model. The FE analysis can produce the nodal 

relative displacement and required nodal contact stresses to be used with an 

appropriate wear coefficient (Energy or Archard) to calculate wear depth. 

The calculation of relative displacement at the contact interface is facilitated by 

creating sets of ‘paired nodes’ at the contacting surfaces (Figure 3-1 for 

axisymmetric model and Figure 3-2 for 3D models). This ‘pairing’ is achieved by 

determining which nodes on opposite mating surfaces are closest to each other 

geometrically prior to loading (at the start of the analysis and following a geometry 

update).  

 

Figure 3-1: Nodal pairing and relative displacement of the paired node on 

axisymmetric models 
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Figure 3-2 Nodal pairing and calculation of relative displacement on 3D models 

The surface shear stress (or contact pressure) and displacements of all nodes which 

have been paired are extracted from the FE analysis at the end of each loading time 

interval 𝑖. These extracted values are then processed to provide values for use in the 

calculation of the wear depth.  

As the paired nodes may not be exactly coincident (before and after loading) an 

average value of shear stress 𝜏𝑖𝑝  or contact pressure is calculated for each nodal 

pairing as defined by Equation (3-11) and (3-12) , where 𝜏𝑚𝑎𝑠𝑡𝑒𝑟 , 𝜏𝑠𝑙𝑎𝑣𝑒 , 𝑃𝑚𝑎𝑠𝑡𝑒𝑟  

and 𝑃𝑠𝑙𝑎𝑣𝑒  are the surface shear stresses and contact pressures on the master and 

slave surface respectively for each set of paired nodes. 

𝜏𝑖𝑝 =
|𝜏𝑚𝑎𝑠𝑡𝑒𝑟| + |𝜏𝑠𝑙𝑎𝑣𝑒|

2
  (3-11) 

𝑃𝑖𝑝 =
𝑃𝑚𝑎𝑠𝑡𝑒𝑟 + 𝑃𝑠𝑙𝑎𝑣𝑒

2
  (3-12) 

For the FE models, the relative displacement between paired nodes which has 

occurred during a time interval 𝑠𝑖𝑝 is calculated from the displacements of both the 

master and slave nodes in a pair at the end of the time interval 𝑖 (see Figure 3-1 and 

Slave 

element 

Master 

element 

Paired node 

Surface interaction 

∆𝑤𝑖(𝑚) 

∆𝑤𝑖(𝑠) 

∆𝑣𝑖(𝑚) 

∆𝑣𝑖(𝑠) 

∆𝑢𝑖(𝑚) 

∆𝑢𝑖(𝑠) 



Chapter 3: Computational method to fretting wear prediction  

98 

 

Figure 3-2). Specifically, for each set of paired nodes, 𝑠𝑖𝑝 is calculated from 

Equation (3-13),  

𝑠𝑖𝑝 = √𝑠𝑖𝑥
2 + 𝑠𝑖𝑦

2 + 𝑠𝑖𝑧
2 (3-13) 

where 𝑠𝑖𝑥 , 𝑠𝑖𝑦 and 𝑠𝑖𝑧 are the Cartesian component relative displacements of the 

paired nodes in the 𝑥, 𝑦 and 𝑧 directions respectively (𝑠𝑖𝑧 is zero for axisymmetric 

models) and can be determined from Equation  (3-14), 

𝑠𝑖𝑥 = 𝛥𝑢𝑖(𝑚) − 𝛥𝑢𝑖(𝑠)

𝑠𝑖𝑦 = 𝛥𝑣𝑖(𝑚) − 𝛥𝑣𝑖(𝑠)

𝑠𝑖𝑧 = 𝛥𝑤𝑖(𝑚) − 𝛥𝑤𝑖(𝑠)

 (3-14) 

where 𝛥𝑢𝑖(𝑚), 𝛥𝑢𝑖(𝑠) are the nodal displacements that have occurred during time 

interval 𝑖 in the 𝑥-direction for the paired master and slave nodes respectively, with 

(𝛥𝑣𝑖(𝑚), 𝛥𝑣𝑖(𝑠)) and (𝛥𝑤𝑖(𝑚), 𝛥𝑤𝑖(𝑠)) being the corresponding displacements in the 𝑦 

and 𝑧-direction (see Figure 3-1 and Figure 3-2). The nodal displacements in an 

interval are calculated using Equation (3-15) and are the difference in the total nodal 

displacement values 𝑢, 𝑣 and 𝑤 at the end of a time interval 𝑖 + 1 and the start 𝑖 (𝑤 is 

zero for axisymmetric models).  

𝛥𝑢𝑖(𝑚) = 𝑢𝑖+1(𝑚) − 𝑢𝑖(𝑚) 

𝛥𝑢𝑖(𝑠)   = 𝑢𝑖+1(𝑠)  − 𝑢𝑖(𝑠) 

𝛥𝑣𝑖(𝑚) = 𝑣𝑖+1(𝑚) − 𝑣𝑖(𝑚) 

𝛥𝑣𝑖(𝑠)   = 𝑣𝑖+1(𝑠)  − 𝑣𝑖(𝑠) 

𝛥𝑤𝑖(𝑚) = 𝑤𝑖+1(𝑚) − 𝑤𝑖(𝑚) 
𝛥𝑤𝑖(𝑠) = 𝑤𝑖+1(𝑠) − 𝑤𝑖(𝑠) 

(3-15) 

Then, the total wear depth at the point locations of the paired nodes 𝑊𝑑𝑝 is found 

from Equation (3-16) and (3-17) respectively for Energy and Archard wear laws, 
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𝑊𝑑𝑝 = ∑ 𝛽

(𝑁/𝛽)

𝑗=1

∑ 𝛼𝜏𝑖𝑝,𝑗𝑠𝑖𝑝,𝑗  

𝑛

𝑖=1

 (3-16) 

𝑊𝑑𝑝 = ∑ 𝛽

(𝑁/𝛽)

𝑗=1

∑ 𝐾𝑃𝑖𝑝,𝑗𝑠𝑖𝑝,𝑗   

𝑛

𝑖=1

 (3-17) 

3.4 Finite Element implementation  

The geometry of a commercial THR (taper junction) was used in all studies 

illustrated in the chapters which follow to assess the algorithm’s ability to predict the 

extent of fretting wear that could occur at the head-stem interface over a period of 

time in-vivo and to apply this wear to one component only or to both in either equal 

or unequal amounts. This section describes and highlights key aspects and 

considerations regarding the FE models and analysis used in the simulations.  

3.4.1 Material properties and interaction behaviour 

In this study fretting wear is modelled in a commercial THR consisting of a cobalt-

chromium alloy femoral head and a titanium alloy stem. As discussed in section 2.6 

the most common and widely used material for the stem of THRs is titanium. The 

advantage of the material properties of cobalt-chrome used in the femoral head have 

brought this combination together and it is widely used in most of the hip prosthetic 

devices. Therefore, in this study the material properties of cobalt-chrome and 

titanium as shown in Table 3-1  were assigned on the FE models of head and stem 

respectively and used in all analysis in chapters following. Both components were 

modelled as deformable and linearly elastic in ABAQUS.  
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Table 3-1: Material properties 

Material 
Young’s Modulus 

(𝐺𝑃𝑎) 

Poisson's 

ratio 

Density 

(𝑘𝑔/𝑚3) 
Wear fraction 

Co-28Cr-6Mo 210 0.3 7800 
0.9 

Ti-6Al-4V 119 0.29 4400 
0.1 

The contact interaction between the head and stem trunnion was modelled as ‘finite 

sliding’ using the ‘penalty’ contact formulation in ABAQUS. The friction force 

generated at the contact interface fixes the femoral head onto the trunnion at 

assembly. The associated friction coefficient is dependent on several factors such as 

material combination, surface finish and surface cleanliness. Values for the 

coefficient of friction 𝜇 at different total hip prosthesis modular taper junctions have 

been documented by Fessler and Fricker (1989). For the purposes of this study a 

constant isotropic coefficient of friction is defined on the FE models as shown in 

Table 3-2. 

Table 3-2: Tribological material combination 

Material Combination Friction coefficient 

Co-28Cr-6Mo / Ti-6Al-4V 0.21 

The wear coefficient as discussed in detail in section 2.8.2 is experimentally 

determined and encompasses a variety of parameters affecting wear. The fretting 

wear coefficient used  was taken from Zhang et al. (2013) (see Table 2-2) who used a 

pin on disk reciprocating sliding test for Co-28Cr-6Mo fretting on forged Ti-6Al-4V.  

3.4.2 Wear fraction 

The wear methodology can facilitate wearing of different trunnion-taper material 

combinations whereby the proportion of wear that is removed from each of the 



Chapter 3: Computational method to fretting wear prediction  

101 

 

contacting parts is specified by a ‘wear fraction’ (explained in section 2.8.3). As 

such, the wear depth removed from each part at the end of each analysis “stage” is 

calculated as the product of the parts’ “wear fraction” and the total wear depth 

determined for that particular “stage”.  

The wear fractions associated with the cobalt chrome ‘head’ and titanium ‘stem’ in 

this work and the chapters that follow have been specified as 0.9 for the Co-28Cr-

6Mo  and 0.1 for the Ti-6Al-4V following work by Bone et al. (2015), Bishop et al. 

(2013), Moharrami et al. (2013) and Langton et al. (2012).  

Bone et al. (2015) found a median wear volume of 0.14𝑚𝑚3 from a retrieval study 

of 28 DePuy Corail titanium stem trunnions (23 of which were paired with metal 

femoral heads). Langton measured median wear volumes in excess of 2𝑚𝑚3 (from a 

sample of 111 retrieved cobalt-chrome MoM femoral heads (all mated with either 

DePuy Corail or Summit titanium stems). The findings from their work indicate that 

the cobalt chrome head taper wears by around a factor of 10 more than the titanium 

alloy stem trunnion surface. This significant finding is supported further by work by 

Bishop et al. (2013) and has been explained by Moharrami et al. (2013) as occurring 

due to the preferential oxidation of titanium alloy over cobalt chrome thus increasing 

the hardness of the titanium trunnion which subsequently wears the un-oxidised 

CoCr head taper surface.  

3.4.3 Finite element models 

Axisymmetric and 3D FE models of the commercial THRs were modelled with the 

head taper and trunnion stem assembled as a perfect fit with a zero taper mismatch 

angle (see Figure 3-3).  
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Figure 3-3: Mesh assigned on (a) axisymmetric model and (b) 3D model 

The head and stem were assembled independently and then meshed in preparation 

for dynamic analysis in ABAQUS (version 6.13-1 ABAQUS Inc, Providence, Rhode 

Island) using eight-node linear brick, reduced integration hourglass controlled 

elements (C3D8R) for 3D models and four-node bilinear axisymmetric quadrilateral 

reduced integration elements (CAX4R) for axisymmetric models.  

3.4.4 Impaction Load 

As discussed in section 2.6.2 the head and stem of the THRs are assembled during 

surgery using impaction. The loading applied on the model included an initial impact 

to simulate the assembly of the head onto the stem and then time variant loading 

cycles to approximate hip loading during walking. The magnitude of the initial 

impaction force applied intra-operatively affects both the contact pressure and 

micromotion at the taper junction and ultimately the extent of any subsequent fretting 

wear.  

In an attempt to simulate the impact event accurately a drop tower was used in this 

study to determine the impulse time associated with a particular impact (Figure 3-4). 
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Head 

diam
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Chapter 3: Computational method to fretting wear prediction  

103 

 

Test samples were manufactured based on the dimensions of the commercial THR 

and a peak impact force from 2 to 6𝑘𝑁 was applied by the drop mass to the test 

assembly (Heiney et al., 2009, Pennock et al., 2002, Rehmer et al., 2012, Lavernia et 

al., 2009).   

 

Figure 3-4: Drop rig to investigate impulse time and impact magnitude 

The measured impact duration for a polymer tipped impactor with a metal “test” 

head was measured as 0.7𝑚𝑠. The load amplitude-time history obtained from the 

tests and the modified history used for the head-stem assembly event are shown in 

Figure 3-5. During this impaction the base of the stem trunnion is fixed in all 

degrees-of-freedom for both 3D and axisymmetric model. 

 

Figure 3-5: Impaction assembly load amplitude 
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Figure 3-6: Boundary conditions and impaction loading assigned on (a) 

axisymmetric and (b) 3D model 

3.4.5 Walking load and boundary conditions 

For the most common activity of a human body, a physiological walking cycle, the 

in-vivo Superior-Inferior, Medial-Lateral and Anterior-Posterior hip loading (see 

Figure 3-7) with their respective Internal-External, Flexion-Extension and 

Adduction-Abduction rotations (see Figure 3-8) have been documented in literature 

(Bergmann et al., 2001, Bergmann et al., 1993, Elkins et al., 2014, Fialho et al., 

2007, Liu et al., 2008, Mattei et al., 2011, Maxian et al., 1997, Zhang et al., 2013). 

 

Figure 3-7: Hip loadings during a single walking cycle 
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Figure 3-8: Hip rotations during a single walking cycle 

The loading and boundary conditions prescribed to the 3D model during the walking 

cycle are shown in Figure 3-9. This includes both time variant rotations and loadings 

about the three global coordinate directions. The rotations are applied to a point 

located at the centre of the head, this point being coupled to the proximal end of the 

stem trunnion. In addition, the outer head surface is coupled with a second point 

located at the centre of the head which has all of its translational degrees of freedom 

restrained but is allowed to rotate. This constrains the outer head surface so that it 

can only rotate about this centre point and therefore locates the head virtually in the 

acetabular cup. The hip forces were applied to the model via a third remote point 

(located virtually in the femur) coupled to the distal end of the truncated stem 

component providing realistic load transfer to the prosthetic components. These 

loads and boundary conditions provide a realistic and efficient model with no 

requirement to model acetabular cup and femoral bone. The hip load history was 

applied to the model with a peak force of 2000𝑁 which is 2.5 times higher than body 

weight (assuming a patient has a weight of 800𝑁).  
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Figure 3-9: loading and boundary condition assigned on 3D FE model  

For the axisymmetric models, only the Superior-Inferior load cycle (shown in 

Figure 3-7) was applied on the head of the model with a peak force of 2000𝑁 and 

the base of the stem trunnion was fixed in the 𝑦 translational degree-of-freedom only 

(see Figure 3-6).   

A quantitative assessment of walking activity in patients with various types of hip or 

knee joint replacements was published by Schmalzried et al. (1998). Electronic 
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very dependent on age, activity and gender). In this study an average of 1 million 

walking steps per year has been assumed based on the work by Schmalzried et al. 

(1998).   

The walking cycle is discretised into 10 equal time intervals during the 1.2 second 

cycle time period. This number of time intervals is adequate to accurately simulate 

the load-history for this problem; other loading histories may require more or fewer 

intervals dependant on their detail and complexity. 

The loading applied on the models for each study in the chapters to follow included 

an initial impact to simulate the assembly of the head onto the stem trunnion and then 

time variant loading cycles to approximate hip loading during walking.  

3.5 Updating the geometry  

The wear determined at each time interval is summed to provide a ‘cyclic’ wear 

depth which itself is then scaled by  to provide a sensible wear depth for updating 

purposes as described in section 3.3.  

Then the contact surface normal directions at the positions of the paired nodes need 

to be obtained. The opposite direction of the normal direction for each paired node is 

extracted from its nodal contact normal force (CNORMF) which is available from 

the output database of ABAQUS. The CNORMF global Cartesian force components 

are divided by their magnitude to obtain the inner normal directions of the paired 

nodes (see Figure 3-10).  
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Figure 3-10: Opposite of nodal normals indicating the direction of wear evolution, 

(a) axisymmetric and (b) 3D model 

Wear is then applied to the paired nodes (by updating their coordinate positions) 

inward to their nodal normals in order to create the new geometry for execution in 

the next ‘stage’ of the analysis. The normal directions need to be calculated 

following each geometry update as they will change due to the wearing process. 

3.6 Computational framework 

The method to predict wear contains three main phases which are necessary in order 

to accurately simulate the effect of impaction of the head onto the stem and the 

subsequent walking cycles.  

In phase 1, a single dynamic impaction analysis is performed on the model with 

head and stem assembled just into contact. Then, as explained in section 3.8, the 

average displacement of the parts is extracted and imported into a new FE input file 

for use in phase 2 of the wear analysis method.  

In phase 2, the method consists of two steps; in the first step the parts are assembled 

overlapped based on the displacements obtained from phase 1 which create 

(a) (b) 
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interference between the components at the contact interface (a general static 

analysis); in the second step, an implicit dynamic analysis is defined and the walking 

loads with relative rotations (explained in section 3.4.5) are applied on the 3D model 

(just a single superior-inferior load for axisymmetric model).  

Using the results from the FE analysis, for nodal shear stress (or contact pressure) 

and displacement in the contact zone, and the wear law explained in section 2.4, the 

extent of fretting wear at the taper junction can be determined as a ‘wear depth’ for a 

single walking cycle. This ‘cyclic’ wear depth is then scaled up by 𝛽 to provide a 

wear depth for the specified number of loading cycles (defined by 𝛽) and the part 

geometry updated as explained in section 3.5. This updating of part geometry will 

partially remove the initial overlap of the parts therefore gradually removing the 

effect of impaction. The updating of part geometry continues in this manner until the 

overlap has been entirely removed at which point the method continues into phase 3.  

In phase 3, the static overlapped analysis step is removed and only a single implicit 

dynamic step (representing the walking loads) is maintained for the rest of the 

analysis until the specified number of cycles or wear depth for the study has been 

reached.  

This method is illustrated in a flowchart shown in Figure 3-11. 
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Figure 3-11: Quantitative procedure to predict fretting wear. 

3.7 Initial assembly of components  

The initial fixation (locking) of the femoral prosthetic head on the stem trunnion is 

generated by the surgeon impacting the head onto the stem intraoperatively. This is 

simulated here (in phase 1) by a single dynamic implicit analysis undertaken using 

the FE models described earlier and the load-time history shown in Figure 3-5. It has 

been postulated that the initial fixation of the prosthetic head on the stem trunnion is 
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reduced over time by fretting wear at their contacting surfaces. A key aspect of the 

wear methodology presented in this work is the use of an overlapped mesh at the 

taper interface with a static contact analysis step to model the weakening of this 

fixation (which is facilitated by the gradual removal of overlap with respect to time). 

As such, the contact conditions prevalent at the taper interface on completion of the 

dynamic analysis step (phase 1) need to be replicated at the start of step 2 in phase 2 

by use of the static contact analysis step incorporating mesh overlap (step 1, phase 

2).  

The dynamic analysis undertaken in phase 1 provides part displacements that are 

used at the start of phase 2 to position the head and stem relative to one another so as 

to provide the necessary overlap for the static contact analysis step. Figure 3-12 

shows contact pressure distributions along the stem trunnion interface at the 

completion of phase 1 and at the commencement of step 2 in phase 2 (following the 

static contact analysis step). The figures show that the contact pressures computed 

from the dynamic (phase 1) and static contact (phase 2 step 1) analyses are almost 

identical and that use of a static contact analysis step (with overlap) can facilitate 

accurate modelling of the effect of impaction on head-stem fixation. 

Figure 3-12 shows a comparison of the contact pressure obtained from the dynamic 

impaction analysis and the corresponding overlap analysis. The pressure distribution 

is symmetrical which is due to the axisymmetric geometry and impaction force 

applied. The distributions along the taper interface for both an axisymmetric and 3D 

model are approximately the same. These results validate the use of the overlap 

analysis rather than the impaction analysis. The error shown in Figure 3-12 is less 
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than 10% and is due to creating the overlap model based on the average displacement 

of the parts from the impaction analysis. 

 

 

Figure 3-12: Contact pressure distribution along stem trunnion surface at the end of 

phase 1 and at the commencement of step 2 of phase 2, (a) 3D model and (b) 

axisymmetric model (swept by 80°) 

3.8 Impaction and Overlapped analysis 

To predict wear accurately, the model must be capable of accounting for the initial 

effect of impaction of the femoral head onto the stem trunnion in surgery with the 

prosthesis then subject to time variant loading cycles to approximate hip loading 

during walking. 

The “locking” of the femoral head onto the stem trunnion intra-operatively is 

important regarding the stability of the assembly and the extent of any subsequent 

fretting wear occurring at the taper interface. This “locking” is achieved by the 

surgeon impacting the head onto the stem (a single event as already discussed). It has 

been postulated that the “locking effect” is diminished over time due to fretting wear 

at the taper interface. Consequently, the best approach to modelling this reduction in 
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the taper fixation over time was best facilitated by utilising a “static contact analysis 

incorporating mesh overlap in the contact zone”. The reasons why the initial 

impaction is handled in such a distinct manner (in comparison to the gait cycle) are 

best explained by considering other possible options/analyses for modelling this: 

- a dynamic explicit step for the initial ‘impaction’ (short duration) would have 

to be followed by a dynamic explicit step for the ‘walking cycle’ (1.2 second 

duration) which would result in an inefficient analysis computationally.  

- on completion of the walking cycle, a wear depth is calculated, scaled up and 

then removed from the taper interface surfaces (thus separating them using 

this approach). At this point therefore the ‘locking effect’ generated by the 

impaction will be removed completely. To rectify this, another impaction step 

would need to be undertaken, however, the required magnitude of this force 

will be unknown (it would need to be different to the initial impaction force 

to account for the wear that has taken place).  

- a dynamic implicit step (for impaction) would need to be followed by a 

dynamic implicit step for the walking cycle. However, this “implicit” 

approach also suffers from not being able to enforce a reduction in the 

“locking effect” due to wear (for the same reasons as the ‘explicit’ approach 

explained above). 

In this method, considering phase 1, a single, separate dynamic implicit analysis is 

used to model ‘impaction’. The displacement of the head onto the stem from this 

analysis is recorded and used to produce an initial “overlap” model for the 

subsequent wear analysis. This initial static contact analysis (phase 2, step 1) 

provides the same contact pressure distribution at the taper interface as the phase 1 
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dynamic implicit analysis (see Figure 3-12).  The subsequent wear analysis (phase 2) 

consists of “stages”, with each ‘stage’ of the analysis consisting of a “static” contact 

analysis step to model the effect of impaction, a dynamic implicit step to model the 

walking cycle, calculation of wear for a specific number of cycles β, and a geometry 

update of the contacting surfaces). By using a contact analysis (with overlap) it is 

possible to model the reduction in the “locking effect” due to wear by removing the 

calculated wear depth for a particular “analysis stage” from the “overlap” value at the 

commencement of that particular “stage” (i.e. the geometry update). 

It has been hypothesised therefore, the use of a static “contact” analysis (with 

overlap) to model the reduction in the locking effect of the head onto the stem seems 

to be the most efficient and plausible approach to adopt. The efficiency of the 

approaches is even more significant on extension to 3D and the multiple “stages” 

expected to return an accurate analysis.  
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3.9 Algorithms  

Calculating wear for the paired nodes at the contact interface and updating their 

coordinate positions manually to reflect this, is time consuming and difficult. 

Consequently, the wearing process explained has been automated using a Python 

script4 linked within ABAQUS as a user plug-in. This helps to develop a generalized 

fretting wear algorithm that could be used for different studies and models. 

The script is executed during phase 2 and 3 of the wear analysis. The script is 

runnable straight from ABAQUS CAE (as a plug-in) requesting initial input data 

from users. Figure 3-13 shows a graphical user interface of the algorithm written in 

the ABAQUS Python environment in order to request input data from a user. 

Different tabs of this window are shown in the appendix. 

After obtaining the input data from the user, the script initially submits the FE input 

file to ABAQUS at which point the head and stem are assembled into contact 

(overlapped). The programme then pairs nodes in the contact zone by identifying 

which nodes on the two parts are closest to one another prior to application of the hip 

loading. On completion of each time interval 𝑖 the script extracts the contact stress 

and displacements for all of the paired nodes. Using these values the script calculates 

the average contact stresses based on the requested wear law (𝜏𝑖𝑝 or 𝑃𝑖𝑝) and relative 

displacement 𝑠𝑖𝑝 between paired nodes and subsequently the associated wear depth 

for a time interval. The wear depth calculated is then scaled up by the requested 

value of scaling factor (𝛽). The script then obtains the contact surface normal 

directions at the positions of the paired nodes as described in section 3.5. Wear is 

                                                 

4
 Around 2000-line script installable on ABAQUS 
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then applied to the paired nodes by updating their coordinate positions in the 

opposite direction to their nodal normals in order to create the new geometry for 

execution in the next “stage” of the analysis. The normal directions need to be 

calculated following each geometry update as they will change due to the wearing 

process.  

 

Figure 3-13: Graphical user interface of the wear algorithm, other tabs of this 

window are presented in the Appendix I 
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The Python script contains a numbers of script functions which are called by the 

“Kernel” in a main script. In this section, these functions are described in detail.   

3.9.1 Input requested from user 

In order to run the wear algorithm in ABAQUS, the user needs to assign initial data 

for wear modelling. This data can be provided in the graphical user interface window 

shown in Figure 3-13. 

Algorithm 1: inputRequest 

 

 

 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Input: ABAQUS dialog box builder  

Output: Initial data from user 

 

Requested data: 

INP: Initial FE input file 

NS: Node set 

  NS1: Node set in contact for part1 

  NS2: Node set in contact for part2 

UN: Number of update required 

WM: Wear method 

  Arc: Archard 

  Enr: Energy 

SF: Starting scaling factor 

OR: wear depth, output request:  

  Off;  

 On: for specific spaced geometry update (SSGU)  

WC: Archard or Energy wear coefficient  

MT: Model type:  

Axi: Axisymmetric 

3D: Three dimension  

ET: Element type  

Lin: 4 or 8-node linear element 

Quad: 8 or 20-node quadratic element 

WF: Fraction of wear depth to be applied on parts 

WF1: Wear fraction for part 1 

WF2:  Wear fraction for part 2 

 

An ABAQUS input file (*.inp file) of the model at the commencement of phase 2 is 

required to be browsed from the GUI. This file can be generated in ABAQUS CAE. 

Nodes in contact can be selected from the ABAQUS viewport in the mesh module. 

The number of geometry updates, wear method, scaling factor, model type, type of 
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elements used and the fraction of wear to be applied on the parts must also be 

assigned.  

Furthermore, the user has an option to request the “nodal wear depth” results to be 

written in the output database (*.odb) of ABAQUS and/or as a report text file. These 

can be set for either all or specifically spaced geometry updates. Reducing the 

number of results requested can significantly reduce the computational time. There is 

also a recovery option embedded in the program that allows the user to restart from a 

crashed analysis. All the input data will be saved as variables shown in Algorithm 1. 

3.9.2  Initial coordinates of the nodes in contact  

From the node sets (NS) for both parts that have been assigned in section 3.9.1, node 

labels and initial coordinates are extracted from the model data bases (MDB) (see 

Algorithm 2).   

Algorithm 2: nodeCoordinates  

 

 

 

1. 

2. 

3. 

4. 

Input: NS 

Output: NC 

 

For each part:  

For all nodes in NS: 

nodeLabel, Extract node label  

nodeData, Extract node coordinate 

Save the date extracted to NC 

Where: 

NC is an array containing all nodes label and relative coordinates 

nodeLabel is a function that returns node label from MDB  

nodeDat is a function that returns node coordinate from MDB 

 

3.9.3 Extract data from input file 

In order to read results from the ODB, the name of the parts and the name of the 

dynamic step defined by the user are required to be extracted from the initial 

ABAQUS input file. This data can be obtained and saved in variables shown in 

Algorithm 3. 
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Algorithm 3: dataFromInputFile 

 

 

 
1. 

2. 

3. 

4. 

Input: INP 

Output: PN1, PN2 and SN 

 

Search in the whole INP file 

Extract part names, PN1 and PN2 

Extract step name, SN  

Extract number of Frames in Dynamic step, FN 

Where: 

PN1 and PN2 are the part names,  

SN is the dynamic step name  

FN is the number of frames in dynamic step 

 

3.9.4 Nodal normal direction 

The wear depth needs to be removed in the nodal normal direction of the paired 

nodes. This nodal normal direction is an average of the normal direction of the 

elements attached to that node. Therefore, in the function shown in Algorithm 4, the 

normal direction of the nodes is extracted from the nodal contact normal force 

divided by its magnitude. 

Algorithm 4: nodalNormalDirection  

 

 

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Input: NC 

Output: NND 

 

For each part:  

For all nodes in NC: 

Open ODB 

If contact stress is not zero: 

Read CNORMF from ODB for the relative node 

Read CNORMFmag from ODB for the relative node 

Divide the CNORMF components by CNORMFmag 

Save the division vector with its node label in NND 

Return NND 

Where:  

NND is an arrays contains node label and their nodal normal directions,  

CNORMF is the elements of nodal contact normal force in 3 direction  

CNORMFmag is the magnitude of CNORMF 

 

3.9.5 Node deformed coordinate  

The updated coordinates for the nodes at the last interval are required to pair the 

nodes at the contact interface. The relative displacement for the nodes in contact is 
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much smaller than the element size so that the paired nodes are not changing during 

the step time. Therefore, picking the updated coordinate at any time interval satisfies 

the pairing node function. The updated coordinates for nodes in contact can be 

obtained using the function shown in Algorithm 5. 

Algorithm 5: nodeDefCoordinate  

 

 

 

1. 

2. 

3. 

4. 

5 

6.. 

Input: NND  

Output: NDC 

 

Open ODB for the last frame  

For each part: 

For all nodes in NND: 

Extract updated coordinate, defCOORD from ODB 

Save the data with relative node label in NDC 

Return NDC 

Where:  

NDC is an array contains node label and their updated coordinate at the last intervals  

defCOORD is the deformed coordinate in ODB 

 

3.9.6  Pairing nodes in contact 

As explained in section 3.3 nodes in the contact area on one part need to be paired 

with the closest node on the other part. This is facilitated by calculating the distance 

between the nodes of the parts in contact.  The function illustrated in Algorithm 6 

returns an array which contains all pair nodes. 

Algorithm 6: pairNode 

 

 

 

1. 

2. 

3. 

4. 

5 

6. 

7. 

8. 

9. 

10. 

Input:  NDC for both parts 

Output: PN 

 

Open ODB for the last frame  

For i in NDC1: 

For j in NDC2: 

x = NDC1[i] 

y = NDC2[j] 

dis = ||𝑦 −  𝑥 || 
if dis is smallest: 

 Pair node x with b, pairNode[i] 

Add pairNode[i] to PN array  

Return PN 

Where: 

||𝑥 −  𝑦||is the Euclidean distance between 𝑥 and 𝑦,  

NDC1 and NDC2 are sets for node updated coordinate for part 1 and 2 respectively  

PN is an array contains arrays of paired nodes 
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3.9.7 Wear depth calculation 

The wear depth at paired nodes can be calculated based on either Archard or the 

Energy wear law. Algorithm 7 calculates the total wear depth for a set of paired 

nodes. 

Let: 

 < 𝑎𝑖, 𝑏𝑖>: paired nodes contained in PN 

 𝑈𝑗
𝑎 𝑜𝑟 𝑏: is the displacement vector for node a or b (e.g. for node a: 𝑈𝑗

𝑎 = (u1
a, 

u2
a, u3

a) at 𝑗𝑡ℎ time intervals) 

 Dδj
a or b

 is the displacement between (j+1)
th

 and j
th

 time intervals 

 𝑆𝛿𝑗
𝑎𝑏 is the relative displacement for node a and b between (j+1)

th
 and j

th
 time 

intervals 

 𝑃𝑗
𝑎 or b

, 𝜏𝑗
𝑎 or b are the contact pressure and shear stress for node a and b at j

th
 

time interval 

 𝑃𝛿𝑗
𝑎 𝑜𝑟 𝑏 , 𝜏𝛿𝑗

𝑎 𝑜𝑟 𝑏  is the average of the contact pressure and shear stress at 

consecutive time intervals for node a and b  

 wδj
ab

 is the wear depth calculated at consecutive time intervals 

 W(ai,bi) is the wear depth for the step time  

 Waibi is an array containing the scaled up wear depth  
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Algorithm 7. wearDepth 

 

 

 

1. 

2. 

3. 

4. 

5 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

Input: PN, SF, WM, WC  

Output: 𝑊(𝑎𝑖 ,𝑏𝑖) 

 

Open ODB  

Length (frame) = m 

For < 𝑎𝑖, 𝑏𝑖> in PN: 

For j=0:(m-1) 

𝑈𝑗
𝑎 = DisFromODB (𝑎𝑖 , j) 

𝑈𝑗+1
𝑎 =DisFromODB (𝑎𝑖 , j+1) 

𝑈𝑗
𝑏 = DisFromODB (𝑏𝑖 , j) 

𝑈𝑗+1
𝑏 = DisFromODB (𝑏𝑖 , j+1) 

𝐷𝛿𝑗
𝑎 = 𝑈𝑗+1

𝑎  – 𝑈𝑗
𝑎   

𝐷𝛿𝑗
𝑏  = 𝑈𝑗+1

𝑏  – 𝑈𝑗
𝑏  

𝑆𝛿𝑗
𝑎𝑏=||𝐷𝛿𝑗

𝑏 −  𝐷𝛿𝑗
𝑎 || 

if WM is Archard: 

𝑃𝑗
𝑎 = CPRESSfromODB(𝑎𝑖 , j) 

𝑃𝑗+1
𝑎  = CPRESSfromODB (𝑎𝑖 , j+1) 

𝑃𝑗
𝑏 = CPRESSfromODB (𝑏𝑖 , j) 

𝑃𝑗+1
𝑏  = CPRESSfromODB (𝑏𝑖 , j+1) 

𝑃𝛿𝑗
𝑎  = Avg(𝑃𝑗

𝑎, 𝑃𝑗+1
𝑎  ) 

𝑃𝛿𝑗
𝑏  = Avg(𝑃𝑗

𝑏, 𝑃𝑗+1
𝑏 ) 

𝑃𝛿𝑗
𝑎𝑏 = Avg(𝑃𝛿𝑗

𝑎 , 𝑃𝛿𝑗
𝑏 ) 

if WM is Energy: 

𝜏𝑗
𝑎 = CSHEARfromODB(𝑎𝑖 , j) 

𝜏𝑗+1
𝑎  = CSHEARfromODB (𝑎𝑖 , j+1) 

𝜏𝑗
𝑏 = CSHEARfromODB (𝑏𝑖 , j) 

𝜏𝑗+1
𝑏  = CSHEARfromODB (𝑏𝑖 , j+1) 

𝜏𝛿𝑗
𝑎   = Avg(𝜏𝑗

𝑎, 𝜏𝑗+1
𝑎  ) 

𝜏𝛿𝑗
𝑏   = Avg(𝜏𝑗

𝑏, 𝜏𝑗+1
𝑏 ) 

𝜏𝛿𝑗
𝑎𝑏 = Avg(𝜏𝛿𝑗

𝑎 , 𝜏𝛿𝑗
𝑏 ) 

if WM is Archard: 

𝑤𝛿𝑗
𝑎𝑏[𝑗] = 𝑊𝐶𝐴𝑟𝑐 × 𝑃𝛿𝑗

𝑎𝑏 × 𝑆𝛿𝑗
𝑎𝑏 

 if WM is Energy: 

𝑤𝛿𝑗
𝑎𝑏[𝑗]= 𝑊𝐶𝐸𝑛𝑔 × 𝜏𝛿𝑗

𝑎𝑏 × 𝑆𝛿𝑗
𝑎𝑏 

𝑊𝑎𝑖𝑏𝑖= sum (𝑤𝛿𝑗
𝑎𝑏[𝑗])× SF 

Return 𝑊𝑎𝑏 

Where: 

||𝑥 −  𝑦||is the Euclidean distance between 𝑥 and 𝑦, 

Avg(l, m) returns average of a and b, 

DisFromODB is a function that returns displacement from ODB, 

CPRESSfromODB is a function that returns contact pressure from ODB, 

CSHEARfromODB is a function that returns contact shear stresses, if model type is 3D, returns the 

resultant of contact shear stresses components, tangential to contact surface,  
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3.9.8 Geometry update  

Section 3.5 described how the geometry of the parts needs to be updated. This 

procedure is facilitated by a function illustrated in Algorithm 8. 

Algorithm 8: geoUpdate 

 

 

 

1. 

2. 

3. 

4. 

5. 

6. 

 
7. 

 

8. 

9. 

 

10. 

11. 

Input:  𝑊𝑎𝑏 , PN, NND, INP   

Output: newINP 

 

Create a new input file, newINP, based on the old INP 

For < 𝑎𝑖, 𝑏𝑖> in PN: 

Find 𝑵𝑵𝑫[𝒊]𝒂 and 𝑵𝑵𝑫[𝒊]𝒃 , normal directions for node 𝑎𝑖and 𝑏𝑖 in NND 

Find 𝑾𝒂𝒊𝒃𝒊 , the wear depth for pair node < 𝑎𝑖, 𝑏𝑖> in 𝑊𝑎𝑏  

In inputRequest find WF1 and WF2 for part 1 and 2 

Calculate wear Fraction, 𝑾(𝒂𝒊) and 𝑾(𝒃𝒊), by Multiplying 𝑊𝒂𝒊,𝒃𝒊  with WF1 and WF2 

for node 𝑎𝑖and 𝑏𝑖respectively  

Calculate wear Array, wArray1 and wArray2, by Multiplying 𝑊(𝑎𝑖) and 𝑊(𝑏𝑖) with 

𝑁𝑁𝐷[𝑖]𝑎and 𝑁𝑁𝐷[𝑖]𝑏  for node 𝑎𝑖and 𝑏𝑖 respectively 

Reverse wArray1 and wArray2 to opposite side of their normal direction 

Search for 𝑪𝑶𝑶𝑹[𝒊]𝒂 and 𝑪𝑶𝑶𝑹[𝒊]𝒃, initial coordinates of node 𝑎𝑖and 𝑏𝑖 for part 1 

and 2 in the newINP  

Subtract wArray1 and wArray2 from 𝐶𝑂𝑂𝑅[𝑖]𝑎 and 𝐶𝑂𝑂𝑅[𝑖]𝑏 and save in newINP 

Return newINP 

 

3.9.9 Results report (*.txt format) 

A report on the results and data extracted can be requested to be written to a text file. 

Data such as the total number of load cycles, input data, paired node set and results 

such as the wear depth calculated for each paired node at each update and also in 

total. Algorithm 9 produces this report (A sample of the results is shown in Appendix 

II). 

3.9.10  Writing results in output databases of ABAQUS (*.odb 

format) 

At the end of each wear analysis the total wear depth can be requested to be written 

in the ABAQUS output databases. Algorithm 10 writes the results into the ABAQUS 

output database (A sample of the results is shown in Appendix III). 
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Algorithm 9: resultsReport 

 

 

 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Input: inputRequest, PN, 𝑊𝑎𝑏 

Output: Results.txt 
 

If UN is “1”: 

Create an empty text file, Results.txt 

Write inputRequst in the Results.txt 

At each update: 

 Write update number in the Results.txt 

 Write the pair node array for the current update, PN in the Results.txt 

 For < 𝑎𝑖, 𝑏𝑖> in PN: 

 Write 𝑾𝒂𝒊𝒃𝒊  in the Results.txt 

 Write PN1, node 𝑎𝑖 and 𝑾(𝒂𝒊) for part 1 in the Results.txt 

 Write PN2, node 𝑏𝑖and  𝑾(𝒃𝒊) for part 2 in the Results.txt 

 … total wear depth …………. 

 Write the number of load cycle, SF×UN in the Results.txt 

 

 

 

Algorithm 10: resultsODB 

 

 

 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

Input: inputRequest, PN, 𝑊𝑎𝑏 

Output: Abaqus output database 
 

If OR is”on”: 

      Open ABAQUS *.ODB (not read only) 

      For < 𝑎𝑖, 𝑏𝑖> in PN: 

              Find the relative nodes in ODB 

Write PN1, node 𝑎𝑖 and 𝑾(𝒂𝒊) for part 1 in the ODB 

Write PN2, node 𝑏𝑖and  𝑾(𝒃𝒊) for part 2 in the ODB 

Close the ODB file 

 

3.9.11 Error detection  

The algorithm contains an error detection function to aid in the continual running of 

the program.  

During the wear analysis, due to the removal of material from the model, in phase 3 

of the analysis (when the overlap is removed completely), a gap is produced between 

parts on updating the geometry. If the gap is small, there is no difficulty to converge 

the FE analysis. Proceeding into phase 3, can lead to a relatively large gap between 

the parts and that creates either incorrect contact stresses or convergence problems. 

At this point the algorithm turns to the error detection section and firstly reassembles 
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the parts to remove the gap. The distance to reassemble the parts is calculated based 

on the last updated average wear depth. This brings the parts again into contact. If 

this does not help to converge the result for the next analysis, the script turns on the 

“contact stabilization” for the analysis in the input file.  

The “contact stabilization” is found helpful to converge the results. Reducing the 

scaling factor is also helpful to have the FE analysis converge. In all analyses 

executed in this study, the error detection function allows continuous wear analysis 

without an FE convergence problem (see Algorithm 11). 

Algorithm 11: errorDetection  

 

 

 
1. 

2. 

3. 

4. 

5 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Input: failedInputFile    

Output: Try to continue mainAlgorithm   

 

If jobMessage is Job-Aborted: 

   Open the failedInputFile which has not been converged  

   Calculate an average of sum of all wear depth, sumWear, for all pair nodes  

   Reassemble the new INP with the sumWearv         /*to have the parts into contact*/ 

   Resubmit the newINP 

   If jobMessage is Job-Aborted: 

Remove the over closure that might happen due to the reassembling the parts 

Resubmit the newINP 

              If jobMessage is Job-Aborted: 

Turn on the “contact stabilization” in ABAQUS input file  

Resubmit the newINP 

If jobMessage is Aborted: 

Reduce the SF by half 

Resubmit the newINP 

If jobMessage is Job-Aborted: 

    Write “The analysis cannot be converged further”  

    Break from mainAlgorithm   

  

3.9.12  Main algorithm  

All the functions explained in this section are called in a main algorithm in a “while” 

loop as shown in Algorithm 12. This main algorithm is called by the “Kernel” in 

ABAQUS. 
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Algorithm 12: mainAlgorithm  

 

 

 

1. 

2. 

3. 

4. 

5 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Input: inputRequest, nodeCoordinates, dataFromInputFile 

Output:  

 

inputRequest, request data from user 

nodeCoordinates, obtain node lables and their relative initial coordinates 

dataFromInputFile, extract initial data from first input file 

update = 1 

While update < UN: 

Create a FE job from INP[update], Job-[update] 

Submit the Job-[ update]in ABAQUS  

From the model data bases read the message for job situation 

Open jobMessage from ODB 

If jobMessage is Job-Completed: 

Open ODB[update] 

NodalNormalDirection, obtain nodal normal direction 

NodeDefCoordinate, obtain the deformed coordinate for nodes at last frame 

PairNode, pair nodes in contact 

WearDepth, calculate wear depth for all pair nodes 

geoUpdate, write a newINP[update+1] and update the geometry   

resultsReport, write results as a report 

resultsODB 

update+=1 

 

Else: 

Return the input file which has been failed to converged, failedInputFile    

Run errorDetection 
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3.10  Computer specification and computational time 

All analyses described in the chapters that follow were executed on a 64-bit 

Windows 7 professional operating system with twin dual six-core processor Intel 

Xeon central processing unit platforms at 2.60GHz configured with 128GB of 

random access memory.   

The FE analysis and wear algorithm running time for each axisymmetric model (first 

geometry update) is around 5 minutes but increasing to around 6 hours for each 

single 3D model update.  

3.11  Convergence  

3.11.1  Finite element mesh study 

Initially a uniform density mesh was generated and a mesh convergence study 

undertaken based on contact pressure in the model’s femoral head. For the FE model 

used in this study an element size of approximately 1𝑚𝑚 in the contact zone proved 

adequate in achieving converged results (Figure 3-14).  

 

Figure 3-14: Mesh study  
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3.11.2 Mesh study for wear modelling  

Wear depth is calculated at the paired nodes from the product of the Energy or 

Archard wear coefficient, relative displacement and average contact stress. As with 

any FE analysis model it is vital that a suitably refined mesh is generated in order to 

determine accurate results. It was found for both axisymmetric and 3D models when 

there is a large variation in contact stress across individual elements in the contact 

zone (due to a too coarse mesh) vastly different wear depths for adjacent paired 

nodes will be calculated (as 𝑊𝑑 = 𝛼𝜏𝑠 or 𝑊𝑑 = 𝐾𝜎𝑠). This generates an uneven 

worn surface and can lead to future solution convergence problems and the 

calculation of an inaccurate wear depth (see Figure 3-15).  

 

Figure 3-15: Wear evolution convergence. Interface distance is shown in 

Figure 3-12 

It is therefore important that the mesh is further refined in the contact zone so that 

variations in contact stress values across an individual element are kept to a 

minimum. To model the wearing process accurately and efficiently an element size 

of 0.2𝑚𝑚 (in the contact zone) was found appropriate which allowed a smooth wear 

pattern to develop on the model as the solution progressed. Figure 3-15 shows the 
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wear depth distribution for element sizes of 1𝑚𝑚 and 0.2𝑚𝑚 at the interface 

indicating a smooth wear pattern for the smaller element size. 

3.11.3  Scaling factor (𝜷) 

The scaling factor 𝛽 used in the analysis has a major impact on solution times, wear 

evolution and solution accuracy. A large scaling factor will facilitate a relatively 

quick analysis but may detrimentally affect the accuracy of the final calculated wear 

for a specified number of loading cycles. A comparatively small value for the scaling 

factor will increase solution times but should provide an accurate result and wear 

profile. This is demonstrated in Figure 3-16 which shows the average wear depth that 

has occurred on the stem trunnion surface over 2 million load cycles (2 years) when 

using scaling factors ranging from 50,000 to 2 million.  

 

Figure 3-16: Effect of different scaling factor values. 

A scaling factor of  𝛽 =  105 was seen as necessary to produce the accuracy 

required for the wear depth (a scaling factor of 1 million developing around a 30% 

error, see Figure 3-16). The scaling factor in the algorithm can be varied (increased 

or decreased if there is any convergence problem in wear analysis stage) throughout 
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the analysis in order to optimise solution accuracy and run times. This needs 

consideration of the contact stress distribution and wear depth calculated during each 

analysis stage and the wear progress during the analysis. In the following studies 

𝛽 = 105  has been used for the start of the wear analysis as it shows a smooth and 

relatively uniform wear profile created on the models, and if necessary, can be 

reduced throughout the wear analysis. 

3.12  Summary and Conclusion 

The wear modelling presented in this thesis could be important in different aspects of 

engineering. The method has been developed by considering as many parameters as 

possible that affect an accurate prediction of fretting wear damage in engineering 

designs over time in service. A computational method, presented to predict the extent 

of fretting wear can be used in addition to testing (Elkins et al., 2014, Elkins et al., 

2011, Liu et al., 2008, Uddin and Zhang, 2013, Zhang et al., 2013) to help reduce the 

wear damage in engineering designs.  

The method has been automated using a Python script to extract the required results 

from the FE analysis and update the geometry to reflect the extent of wear that has 

occurred during the period analysed. The quantitative analysis of wear attempts to 

express linear wear rate, volumetric wear rate and also material removal which are 

all associated with wear surface damage or “wear pattern”.  

The method has been applied to an axisymmetric and 3D FE model of a THR for a 

comprehensive illustration of the wear model. It has been successfully used to 

accurately predict the extent of fretting wear which can occur at the taper junction 

between the head and stem of a modular THR during its expected operational 

lifetime. The method could be used in design or applied to clinical practice to help 
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facilitate a reduction in wear. These models could be used to identify key factors 

leading to debris release at the taper junction so that appropriate prosthesis design 

and surgical procedural modifications can be made to mitigate against this damaging 

problem. 

The method presented here can contribute to research in this area with the following 

advantages over the current methods proposed so far in the literature: 

- The method is unique in that, it models the progressive weakening of the 

taper “fixation” due to the fretting wear process.  This “reduction” in fixation 

is modelled using a static contact analysis incorporating mesh overlap at the 

taper interface. As wear occurs at the interface over time the overlap is 

removed accordingly by updating the contacting nodes positional coordinates.  

Simulating the reduction in the initial fixation strength of the head-stem 

assembly is seen as important to the accurate assessment of wear.  

- As the wear coefficient changes during wear progression, assigning and 

changing the wear coefficient during the wear analysis is important. If the 

variation of the wear coefficient during the wear analysis is known by using 

controlled fretting wear tests, the method is capable of assigning this 

variation into the wear model.  

- The method is user-friendly and generalized for any FE analysis with a 

graphical user interface. There is no complicated preparation needed to run 

the wear analysis. 

- All the results can be requested (or results by specified spaced update) to be 

written to the output databases of ABAQUS. This helps to plot the predicted 

wear damage on the surfaces but also allows obtaining required results 
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straight from ABAQUS. Reducing the number of requested results (by 

requesting the results by a specified spaced update), though, will reduce the 

computational time. This part of the setting can be found on the graphical 

user interface window attached in appendix. 

- The main algorithm contains an error detection function (see Algorithm 11) 

that can detect possible errors that may occur in the FE analysis due to 

convergence problems and resolve these problems without any further 

requirement and effort from the user. 

- Due to the timing analysis, a recovery point has been considered in the 

algorithm. If the analysis fails due to any reason, the algorithm allows the 

users to recover the previous results and continue the analysis from that point. 

The recovery tab shown in the graphical user interface attached in the 

appendix.   

As with any proposed method and hypothesis, there are possible shortcomings. The 

limitations of the proposed method are as follows:  

- The assessment of wear in this study is solely based on mechanical wear 

(fretting) as being the primary mechanism causing damage.  

- The method is highly dependent on the value of the fretting wear coefficient. 

In addition, the significance of the wear coefficient needs to be considered 

due to its effect on resulting wear depth calculated. This coefficient can only 

be obtained from controlled experiments. 

- Accurate determination of wear of THR components in contact can only be 

realised by measurement from retrieved prostheses or from fretting wear tests 
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which may provide credible wear fractions for application in computational 

wear analysis. 

- At this stage the role of oxide and other naturally occurring surface films will 

be avoided and the study concentrated on physical unlubricated wear process 

only. 

- The boundary conditions used (although creating an efficient model by 

excluding the requirement to model the acetabular cup), create non-

physiologic resisting moments at the centre of the head which need to be 

acknowledged when interpreting any results from an analysis. Further, the 

boundary conditions provide a restriction to the analysis of certain design / 

operational considerations which may be related to fretting wear such as head 

size and frictional torque. The analysis of these aspects of prosthesis design 

will require a modified model to that described here which by necessity will 

require the inclusion of the acetabular cup and an additional contact region 

thus increasing computational effort considerably.  

In what follows in Chapter 4, 5 and 6, the results for different studies are presented 

with more detailed explanations of the aspects of present methodology. 
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Chapter 4  

4 Prediction of fretting wear damage using 

an axisymmetric model of a total hip 

replacement 

4.1 Introduction  

An axisymmetric model of a commercial total hip prosthesis, as described in 

section 3.4, has been primarily used to develop the algorithm. This model has helped 

to investigate the principal parameters, with a wider sight on the subject, that are 

critical for predicting fretting wear accurately. Due to the long computational time of 

3D FE analysis, this axisymmetric model could be useful for different parametric 

studies such as the effect of mismatch angle (manufacture tolerance) on fretting 

wear. This chapter describes key aspects and considerations regarding the 

axisymmetric model used in the simulations. The intention is to highlight the 

variation of contact stresses and relative micromotion with their relationship to 

fretting wear.  
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4.2 Wear analysis input  

The input data shown in Table 4-1 was assigned for the wear analysis. In phase 1, the 

impaction force creates the necessary overlap for the wear analysis in phase 2.  

Table 4-1: Input data for wear analysis of this study 

 Input data 

Model 
Axisymetric 

(Figure 3-6) 

Material combination 

Head: Cobalt-chrome 

Stem: Titanium 

(see Table 3-1) 

Impaction force 
4000𝑁 

(Figure 3-5) 

Walking load  

and boundary conditions 

Superior-inferior 

(see Figure 3-7) 

Wear law Dissipated Energy 

Wear coefficient 5.35 × 10−8 𝑀𝑃𝑎−1 

Wear fraction 
Cobalt-chrome: 0.9 

Titanium: 0.1 

Scaling factor 105 

Number of load cycles 107 

The time taken for each analysis “stage” was on average around 5 minutes on the 

system specification stated in section 3.10. Therefore, for an analysis of 10 million 

cycles (10 years), there would be 100 “stages” summing to a total run-time of 

around 8 hours.   

4.3 Results 

Although an energy wear law is used in this study which is based on shear traction, 

the results which follow are demonstrated based on contact pressure distribution for 
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clarity. For the axisymmetric model contact shear stress has a component tangential 

to the contact surface. This can be either positive or negative based on direction. As 

such, shear stress distributions are difficult to interpret in the context of wear and so 

contact pressure has been presented instead.  

Values for relative displacement and contact pressure will be equal and opposite on 

the head and stem taper surfaces. The change in relative displacement (or “slip”), 

contact pressure and the wear pattern damage, in this chapter, are only demonstrated 

on the head taper.  In this chapter, in order to enhance illustration of the results, the 

model is swept by 80 degrees. Therefore, although the results are shown in 3D, they 

are fundamentally axisymmetric. 

4.3.1 Initial contact stress and slip variation  

Figure 4-1 shows the variation of contact pressure and relative slip during the first 

analysis and for one walking cycle only. As discussed earlier, to predict wear 

accurately, the model must be capable of accounting for the initial effect of 

impaction of the femoral head onto the stem trunnion in surgery with the prosthesis 

then subject to time variant loading cycles to approximate hip loading during 

walking.  

The first image in Figure 4-1 (at zero interval) shows the contact pressure at the end 

of static overlap analysis (step 1). Then the walking cycle discretised into 10 time 

intervals is subsequently shown. As expected, a symmetrical contact pressure and 

relative micromotion are visible. 
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Figure 4-1: Contact pressure and slip distribution throughout a walking load discretised to 10 intervals during 1.2s 

 

Contact Pressure (MPa) 

Contact slip (mm) 
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The very small slip (between −0.7 to 0.7𝜇𝑚) is due to the high contact pressure 

along the interface with a peak value of around  270𝑀𝑃𝑎 at the edges of contact (see 

Figure 4-1). This indicates that a higher initial contact pressure results in very small 

relative micromotion between the mating surfaces. The majority of the contact 

surface, however, is subjected to a contact pressure of approximately 60𝑀𝑃𝑎. 

For each analysis stage and at each time interval, the product of the contact stress, 

simultaneous contact slip and the wear coefficient value are used to calculate the 

interval wear depth. The sum of these interval wear depths provides the cyclic wear 

depth. 

4.3.1 Variation in contact stress, slip and wear depth  

Figure 4-2 shows the variation of contact pressure, slip and wear depth during phase 

2 of the wear analysis at intervals of one million load cycles. It can be seen that 

during phase 2 of the analysis the value of contact pressure reduces resulting in an 

increase in micromotion. The value of contact pressure from the start of the analysis 

(approximately 65𝑀𝑃𝑎) reduces to around 30𝑀𝑃𝑎 (start of phase 3) for around half; 

however, the slip increases from around 0.7 to 1.7𝜇𝑚 i.e. around 2.4 times. This 

leads to a relatively constant wear rate in phase 2 of the analysis (see Figure 4-7). 

The associated wear depth as shown in Figure 4-2 starts increasing at the edges 

initially due to the high contact stress and slip. A relatively smooth wear depth at the 

end of phase 2 from 1𝜇𝑚 at centre to 2.4𝜇𝑚 at edges of contact is visible.  
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Figure 4-2: Contact pressure, slip and wear pattern evolution during phase 2 of the analysis (from 1 million to 6.8 million load cycles) 
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Figure 4-3: Contact pressure, slip and wear pattern evolution during phase 3 of the 

wear analysis (from 7 million to 10million load cycles) 

Figure 4-3 contains the variation of contact pressure, slip and wear depth during 

phase 3 of the analysis. The magnitude of the relative motion increases in phase 3 

due to removal of the overlap from around 1.7𝜇𝑚 (end of phase 2) to 0.2𝑚𝑚 (end of 

phase 3). This slip follows a varying contact pressure between 25 to 100𝑀𝑃𝑎. Due 

to the large increase in relative displacement, the magnitude of the wear rate jumps 

significantly in phase 3 of the analysis (see Figure 4-7).  

Figure 4-4 and Figure 4-5 details the wear depth at the interface of the mating 

surfaces at the end of phase 2 and 3 of the wear analysis respectively. In phase 3, a 
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be observed on the Titanium stem compared with 17𝜇𝑚 wear depth on the cobalt 

chromium head.  

 

Figure 4-4: Wear depth along contact interface after 6.8 million load cycles (when 

initial overlap is removed),(contact interface shown in Figure 3-12)  

 

Figure 4-5: Wear depth along contact interface after 10 million load cycles (contact 

interface shown in Figure 3-12) 

Figure 4-6 shows the evolution of the wear depth at specific times (millions of load 

cycles) during the wearing process. It can be seen that the wear is fairly uniform 

along the contacting surfaces throughout the analysis. In addition, the graphs show 
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that at the commencement of an analysis the wear rate is significantly less 

(demonstrated by the ‘closeness’ of the lines for the calculated wear depths) than that 

found for the rest of the analysis up until 10 million cycles of load (demonstrated by 

the “greater spacing” of wear depth lines).  

There is a clear indication of the transition in the analysis from phase 2 to phase 3 

and the anticipated increase in wear rate. The transition from phase 2 to phase 3 

occurs at 6.8million walking cycles for this particular axisymmetric model. The 

transition points are clearly dependant on the wear coefficients used in the studies. 

 

Figure 4-6: Wear depth evolution (from 1 to 10 million load cycles) along the head 

taper interface (contact interface shown in Figure 3-12) 
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phase 2 and phase 3 can be clearly identified as a jump in the bars demonstrating the 

increase in wear rate that occurs in phase 3. This is due to the removal of the overlap 

and subsequent increase in relative displacement of the paired nodes in contact.  

 

Figure 4-7: Variation in volumetric wear rate with respect to time 

Table 4-2 compares the linear and volumetric wear rate. It can be clearly seen here 

that the wear rate in phase 3 is significantly larger than phase 2. The linear and 

volumetric wear rate, from phase 2 to phase 3, increases by a factor of around 15.5. 

Table 4-2: Linear and volumetric wear rate of the head, stem and in total 

 Head Stem Total 

(range) Phase 2 Phase 3 Phase 2 Phase 3 

Average linear wear 

rate (µm/yr)  
0.237 3.650 0.026 0.405 

1.781 

(0.24-5.49) 

Average volumetric 

wear rate (mm
3
/yr)  

0.055 0.882 0.006 0.095 
0.428 

(0.050-1.311) 
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study is fundamentally axisymmetric and the shrink-fit analysis is axisymmetric too. 

Therefore the analytical solution can be calculated based on Burr (1981). As shown 

in Figure 4-8 a taper and trunnion are overlapped by distance 𝑥 to provide pre-

stresses on the given surfaces.  

 

Figure 4-8: Overlap analysis (theoretical approach) 

Contact pressure 𝑃 is generated at the inner surface for each cross section 𝑛 by 

shrink-fit procedure.  

Let: 

 𝑅: radius of head at cross section;  

 𝑟: radius of stem at cross section;  

 𝑥: total overlap;  

 𝑃: contact pressure 

 𝐸ℎ, 𝜗ℎ, 𝐸𝑠 and 𝜗𝑠 are the Young's modulus and Poisson's ratio of the head and 

stem respectively defined based on Table 3-1 

then, a relationship between total overlap (𝑥) and contact pressure (𝑃) can be 

expressed implicitly as: 
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𝑥

𝑃
= 𝑟 [

𝑟2

𝐸ℎ(𝑅2 − 𝑟2)
(1 − 𝜗ℎ +

𝑅2

𝑟2
(1 + 𝜗ℎ)) +

1

𝐸𝑠
(1 − 𝜗𝑠)] 4-1) 

Figure 4-9 shows a comparison of contact pressure between theoretical calculations 

(using Equation 4-1) and FE analysis. Differences are seen at the contact edges 

where the theoretical solution is not capable of calculating the singularity; otherwise 

a very good agreement is obtained for the random locations considered. 

 

Figure 4-9 A comparison between theoretical and FE results 
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applied to the femoral head is detailed in Figure 3-5.  

The analysis undertaken in phase 1 is important as it models the actual assembly 

event of the surgeon impacting the head on to the stem during an operation.  The 
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generate the same contact conditions, pressures and stresses as seen at the end of 
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At the start of phase 2 (prior to the application of the walking load cycle), the initial 

contact stresses generated by the overlap analysis create reaction forces on the parts 

that help to maintain the head on the stem trunnion without having to over constrain 

the model (see Figure 4-10). It is the initial normal contact forces at the taper 

junction (due to the static overlap analysis) and the specified coefficient of friction 

that provide the necessary friction forces tangential to the contacting surfaces that 

maintains the head on the stem. For this to occur, the magnitude of the friction force 

must be equal to or more than the resultant force created due to the stresses 

distributed on the head (see Figure 4-10). This fact is crucial for the wear analysis 

methodology as it can illustrate when the procedure needs to transfer to phase 3.  

 

Figure 4-10: Reaction forces generated by overlap analysis 

During phase 2 the progressive wear that occurs due to the application of the walking 

load cycles results in a reduction in the magnitude of the contact stresses at each 

geometry update. Eventually the wearing process reduces the overlap to such an 

extent that the associated normal contact forces produce lower friction forces than 

head reaction forces and at this point the head will lose its fixation to the stem. This 

loss of fixation generally occurs when the initial overlap is almost completely 

removed namely “limiting overlap” (although this is also dependant on the total 
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overlap and the value of the friction coefficient used). At this point it is necessary to 

move into phase 3 of the analysis.  

In phase 3 of the analysis the overlap has been completely removed and only the 

walking load cycle is applied to the model. It is seen here that due to the removal of 

the overlap (and therefore loss of the effect of initial fixation), in comparison to 

phase 2, the contact stresses are reduced in magnitude but the relative displacements 

of paired nodes have increased by a greater proportion leading to a rise in the wear 

rate. The significant increase in relative displacements in phase 3 for some sets of 

paired nodes leads to large differences in wear depth calculations at discrete points 

across the contact interface leading to an uneven wear pattern. To mitigate against 

this occurring, the scaling factor is reduced automatically within the algorithm which 

effectively reduces the wear depth applied for a particular update encouraging the 

development of a smooth wear pattern. The scaling factor is modified during the 

wear analysis based on changes in stress and displacement from the previous update. 

Furthermore, the script is able to reassemble the model automatically if any gap 

occurs during phase 3 due to the wearing progression. 

4.6 Conclusions 

It has been demonstrated that the total dissipated energy wear law incorporated into 

the method can predict linear wear depth and subsequent volumetric wear rate 

effectively over a period of time when compared to a simple controlled experiments. 

The comparisons undertaken here showed considerable promise but are clearly 

dependent on the use of an appropriate wear coefficient and knowledge of the 

retrieved prostheses’ loading history.  
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The accurate and smooth evolution of wear across the contact interface has been 

demonstrated with the guideline to refine the mesh in the contact zone to an element 

size of 0.2𝑚𝑚 to avoid local ‘spikes’ in the contact stresses due to too larger element 

size.  

The methodology and FE model incorporates the effect of initial head-stem assembly 

in surgery on the wearing process by modelling this effect as a static overlap analysis 

procedure. The work presented here shows that a static overlap analysis can model 

this effectively. The wear algorithm removes the effect of assembly impaction as the 

solution progresses by removing overlap in line with the calculated wear depth for a 

particular stage of the analysis. As the overlap is removed the contact pressure and 

shear stresses at the interface decrease, however, the relative displacements increase 

proportionally more, leading to a greatly increased wear rate. 

The advantage of this analysis is the axisymmetric nature of the model. Although this 

inhibits the application of more realistic loading and boundary conditions (as the 

loads necessarily needs to be applied in three directions following three rotations), it 

reduces the computational time and is useful for comparative and parametric studies. 

As such, the following Chapter will demonstrate a 3D version of this wear model 

with realistic loading conditions.  
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Chapter 5  

5 Fretting wear evaluation and evolution at 

taper junctions of total hip replacements  

5.1 Introduction  

In this chapter, the computational methodology presented in chapter 3 is used to 

predict fretting wear at the taper interface between the head and stem of THRs using 

a 3D FE model. The following sections are presented to demonstrate and discuss key 

features and functionality of the methodology and the findings from the THRs taper 

junction wear analysis on the 3D model with realistic loading conditions applied in 

three directions following three rotations.  
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5.2 Wear analysis input  

The input data shown in Table 5-1 is used for the 3D wear analysis. The realistic gait 

cycle loading and rotation (as shown in Figure 3-7 and Figure 3-8) applied to the FE 

model over 1.2 second duration. 

The wear analysis for this 3D model has been considered up to 5 million load cycles. 

This is because the instances of premature failure of these implants (<5 years) has 

been reported and attributed to aseptic loosening  (Langton et al., 2011, Mattei et al., 

2011).Based on the impaction analysis in phase 1, the overlapped model is prepared 

for the wear analysis in phase 2. 

Table 5-1: Input data for 3D wear analysis  

 Input data 

Model 
3D 

(see Figure 3-9) 

Material combination 

Head: Cobalt-chrome 

Stem: Titanium 

(see Table 3-1) 

Impaction force 
4000𝑁 

(Figure 3-5) 

Walking load  

and boundary conditions 

Loads with relative rotations 

(see Figure 3-7 and Figure 3-8) 

Wear law Dissipated Energy 

Wear coefficient 2.97 × 10−8 𝑀𝑃𝑎−1 

Wear fraction 
Cobalt-chrome: 0.9 

Titanium: 0.1 

Scaling factor 105 

Number of load cycles 5 × 106 
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The time taken for each 3D analysis “stage” was on average around 6 hours (slightly 

longer in phase 3) on the system specification mentioned in section 3.10. Therefore, 

for an analysis of 5 million cycles (5 years), there would be 50 “stages” summing to 

a total run-time of 300 hours.   

5.3 Results and discussion  

Similar to what has been explained in Chapter 4, in this Chapter instead of presenting 

shear traction that was used to calculate the wear depth, all the results shown are 

based on contact pressure distribution for clarity. This is because in 3D models, 

contact shear stress has two components tangential to the contact surface and can be 

either positive or negative based on direction. Due to this fact, this has been found 

difficult to interpret in the context of wear and so contact pressure has been presented 

instead. 

As values for relative displacement and contact pressure will be equal and opposite 

on the head and stem taper surfaces, the change in relative displacement (or ‘slip’) is 

shown on figures as distributed on the stem trunnion, whereas the variation in contact 

pressure is shown only on the head taper surface.  

5.3.1 Variation in contact pressure and relative displacement 

during the walking cycle 

In Figure 5-1 the distributions shown at time interval zero seconds are those 

determined from the initial static contact analysis (the contact conditions 

immediately after assembly of the head onto the stem). It can be seen that both the 

contact pressure and ‘slip’ distributions are symmetrical (as expected) and that 

maximum values occur at the edges of the taper contacts (both proximal and distal) 
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with values of around 350𝑀𝑃𝑎 and 9𝜇𝑚. The majority of the taper surface is subject 

to a contact pressure of around 120𝑀𝑃𝑎, whereas the relative displacements are seen 

to reduce in magnitude from the taper edges to the taper central contact.  

Figure 3-7 in section 3.4.5 indicates that the largest loading on the hip occurs in the 

“superior-inferior” direction with the load increasing to its largest magnitudes 

between time intervals of 0.3𝑠 and 0.7𝑠 of the gait cycle (the same could “loosely” 

be said about loading in the “medial-lateral” and “anterior-posterior” directions too). 

Without considering the edge contacts, it can be seen that during the gait cycle the 

distribution of contact pressure changes, such that the largest pressures occur at the 

centre of the taper “superior” surface (right hand side of taper plots), and the lowest 

values occur at the centre of the taper ‘inferior’ surface (left hand side).  

The maximum value for contact pressures occur between 0.3 and 0.7seconds 

(240𝑀𝑃𝑎 at 0.72𝑠) in parallel with the applied loading. The relative displacements 

are seen to vary throughout the gait cycle with the largest values due to edge contact 

(9𝜇𝑚) occurring also during the time intervals when the loading is maximum (0.3 to 

0.7𝑠) and reducing nearer to the end of the cycle. It can be observed that the 

micromotion values are very small as these distributions are those occurring 

immediately after impaction. 
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Figure 5-1: Variation in contact pressure and relative displacement during a walking cycle 

Contact Pressure (MPa) 

Contact slip (mm) 

0 0.24s 0.48s 0.72s 0.96s 1.2s 0.12s 0.36s 0.6s 0.84s 1.08s 
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5.3.2 Variation in taper wear over 5 year period 

Figure 5-2 shows the variation of contact pressure and relative displacement as well 

as the evolution of taper wear over a five year period of time. During the first 2.6 

million cycles of loading it can be seen that the contact pressure generally reduces 

from the initial uniform distribution of 120𝑀𝑃𝑎 following assembly (Figure 5-1) to 

a non-uniform distribution with the majority of the taper surface subject to contact 

pressure values of around 30𝑀𝑃𝑎 at the last time interval (Figure 5-2c). Conversely, 

the ‘bulk’ values of taper relative displacement (‘slip’) are seen to increase during the 

same time period from a value of around 2𝜇𝑚 (Figure 5-1) at assembly to around 

38𝜇𝑚 at 2.6million cycles (Figure 5-2b). This reduction in contact pressure and 

increase in ‘slip’ is due to the gradual weakening of the taper fixation (modelled by a 

reduction in mesh overlap due to wear) with respect to time. At 2.6million cycles the 

initial overlap has been completely removed and the analysis moves from phase 2 to 

phase 3 of the methodology. 

During the loading period 3 to 5million cycles the contact pressure distribution 

remains relatively constant with only a small reduction in contact pressure. During 

the same time period the relative displacements continue to increase on the inferior 

taper surface (left side) with values approaching 100𝜇𝑚 in localised areas ; on the 

superior taper surface (right side) the values of ‘slip’ tended to decrease with 

localised areas indicating values of between 0 and 30𝜇𝑚. The greater relative 

increase in ‘slip’ with minimal change to contact pressure in phase 3 creates an 

increase in wear rate in localised areas. 
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Figure 5-2: Evolution of 

contact pressure, slip and 

wear pattern during wear 

analysis, row (a) and (b) 

show the pattern of wear 

depth in mm and contact 

slip changes on the stem 

trunnion, row (c) and (d) 

show the contact pressure 

in MPa and the pattern of 

wear depth in mm on the 

head taper, results shown 

at the last time interval 
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It can be seen from Figure 5-2 that the wear depth on the titanium stem trunnion 

(Figure 5-2a) and in the cobalt chrome head taper (Figure 5-2d) at 5 million cycles 

are different by a factor of around 10 (as dictated by the ‘wear fractions’ associated 

with each part) at 2𝜇𝑚 and 18.6𝜇𝑚 respectively on the inferior surface taper edges 

(left hand side of plots). It is necessary in the wear analysis of metal head-stem taper 

junctions (and for MoM prostheses)  to update the contact surface geometry of both 

parts of the prosthesis as this has an effect on the wear rate and wear pattern 

following each analysis “stage”. The wear pattern develops from a uniform zero wear 

pattern at the outset of the study to a non-uniform pattern with maximum wear 

occurring at the taper edges and on the superior surface of the taper, and minimum 

wear on the inferior surface at 5million cycles (5 years). 

5.3.3 Volumetric and linear wear rate 

The volumetric wear rate was determined based on the reduction of element volume 

for all elements in the contact zone. The volumetric wear rate was calculated 

following each 1million cycles as the solution progressed (Figure 5-3). It can be seen 

that the lowest wear rates occurred during the first 2 years (2million cycles) with 

total values of 0.4 and 0.36𝑚𝑚3/𝑦𝑟. Subsequently it can be seen that the wear rate 

increases to a value of 0.66𝑚𝑚3/𝑦𝑟 at 4 years. This is around a 50% increase in the 

wear rate and can be attributed to the removal of the initial taper locking effect and 

the subsequent increase in relative displacement at around 2.6million cycles.  

The increase in wear rate can be linked to a “transition” point whereby the initial 

locking effect of the head-stem taper has been fully removed and increased 

micromotion occurs resulting in an increase in wear rate. 
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Figure 5-3: Variation in volumetric wear rate with respect to time 

Table 5-2 details the average linear and volumetric wear rates over the 5 year period 

of study. The wear rates for the head were 1.917𝜇𝑚/𝑦𝑟 and 0.467𝑚𝑚3/𝑦𝑟, 

whereas the stem wear rates were 0.213𝜇𝑚/𝑦𝑟 and 0.0459𝑚𝑚3/𝑦𝑟. 

Table 5-2: Average linear and volumetric wear rate on head taper and stem trunnion 

 Head (Co-Cr) Stem (Ti) Total 

Wear fraction 0.9 0.1 1 

Average linear wear rate 

(µm/yr) (range) 

1.917 

(0.8 – 18.5) 

0.213 

(0.01-0.4) 
N/A 

Average volumetric wear 

rate (mm
3
/yr) (range) 

0.467 

(0.329 – 0.603) 

0.0459 

(0.024 -0.065 ) 
0.513 

 

5.4 Validation 

The results for taper wear (Figure 5-2) determined from the numerical wear analysis 

can be compared favourably with images and measurements from retrieved 

prostheses (retrieval prior to 5 years service). Figure 5-4 shows a comparison of the 

wear patterns associated with the numerical analysis and images of wear occurring 

on the head taper of a retrieved Birmingham XL femoral head. Several retrieved 

prostheses were available for inspection, all of which demonstrated similar wear 

damage as that shown in Figure 5-4.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1st 2nd 3rd 4th 5th

V
o

lu
m

et
ri

c 
w

ea
r 

ra
te

 (
m

m
3
/y

r)
 

Million of load cycle 

Head

Stem

Total



Chapter 5: Fretting wear evaluation and evolution at taper junction of THRs 

158 

 

It can be seen in Figure 5-2 that the wear pattern at any stage of phase 3 of the 

numerical analysis tends to be fairly constant and can be effectively compared 

against the wear observed in retrieved prostheses where common wear patterns tend 

to prevail too (as walking is overwhelmingly the most common activity in patients 

with a hip implant).  Observation of Figure 5-4 shows that the extent of wear damage 

and patterns on the FE model are similar to the areas of wear shown on the images of 

the retrieved prosthesis.  

The wear damage seen on the surface of the retrieved prosthesis has been categorised 

as severe, moderate and minor. In the areas of severe wear it is likely that initial 

adhesive wear due to fretting has developed into abrasive wear due to retained wear 

particles which have subsequently promoted corrosion. In the areas shown as having 

moderate damage it is possible that any wear particles have been able to exit the 

contact zone so exhibiting a less damaged surface likely generated by adhesive wear 

and corrosion.  

The smooth surface highlighted as minor wear will be the result of adhesive wear 

only. It can be seen that the wear algorithm has identified accurately the areas of 

severe, moderate and minor wear damage based purely on the assumption of 

mechanical fretting wear. This is to be expected as any corrosion occurring on the 

taper surface will be due to Mechanically Assisted Crevice Corrosion (MACC) 

whereby fretting wear continually disrupts the protective surface oxide passivation 

layer of the taper junction materials exposing the metal and making it more 

susceptible to corrosion. 
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Figure 5-4: Validation against retrieved prostheses; figures are rotated anticlockwise based on a label shown as (*)  
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In addition to these observations, the wear pattern and wear rates determined in these 

studies are similar to those obtained by Langton et al. (2012) for  measurements 

obtained for retrieved Articular Surface Replacement XL THRs (ASR; DePuy, 

Leeds, United Kingdom). Langton et al. (2012) used a highly accurate CMM 

(accuracy 0.8µm) to measure linear and volumetric wear occurring at the head taper 

surface of retrieved large diameter MOM THRs (Articuleze (48 components) and 

ASR XL (63 components), Depuy). The median time in vivo for the Articuleze and 

ASR XL prostheses was approximately 1 to 5 years respectively with the mean 

volumetric wear rate for Articuleze being 0.127𝑚𝑚3/𝑦𝑟  (range 0.01 − 3.15) and 

the ASR XL measured at 0.44𝑚𝑚3/𝑦𝑟  (range 0.02 − 8.34). The small differences 

in volumetric wear rate determined in this study (see Table 5-2) in comparison to 

Langton et al. (2012) can be attributed to differences in the head-stem material 

combinations, wear coefficient, material loss due to corrosion and THR design. In 

addition, the effect of initial assembly of the head and stem is unclear and could be 

one of the reasons for the slight differences in wear rates too.  

Malviya et al. (2011) also used the same CMM as Langton et al. (2012) and 

presented the wear pattern on the 2-year follow up of a retrieved Birmingham hip 

replacement . The investigation showed no material loss or corrosion on the articular 

bearing surfaces, but a wear depth of 6𝜇𝑚 on the head taper. The wear pattern shown 

in Figure 5-2 at 2 million load cycles (2 years) on the head taper is within the same 

range of wear depth presented by Malviya et al. (2011). The results obtained are also 

comparable with the experimental results demonstrated by Hart et al. (2013) and 

Matthies et al. (2013). 
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Figure 5-5 shows a comparison between FE wear simulation and CMM measurement 

(after Langton et al. (2012)). The wear pattern damage obtained here compares 

favourably with the CMM measurement results. Figure 5-5a shows the FE fretting 

results after applying 3.9million walking load cycles. Figure 5-5b shows the CMM 

measurement on a retrieved prosthesis that had been in service for less than 5years5 

(the exact loading history is not available). 

 

Figure 5-5: (a) wear modelling and (b
5
) coordinate measuring analysis of the 

retrieved head taper  

The close similarities shown between the numerical analysis and the observed and 

measured wear damage of retrieved prostheses demonstrates the effectiveness of the 

3D FE model, loading, boundary conditions and wear algorithm used. 

                                                 

5
 Figure 5-5b was contributed by Prof Thomas Joyce and Mr David Langton, Newcastle University, 

Newcastle upon Tyne, UK, and it is reproduced here with permission. 

FE wear simulation 

Head taper, 

after 3.9million load cycle 

Measurement of head taper of 

retrieved prosthesis, CMM,  

in service less than 5 years
5
 

 

(b) (a) 
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5.5  Conclusions 

A 3D FE model of a commercial THR is used to demonstrate the method and to 

highlight key features of the wear algorithm. The wear damage, depth, rate and 

patterns of wear are shown to be comparable with those found in the literature and 

from observation from available retrieved prostheses.  

The methodology demonstrates that a static contact analysis incorporating mesh 

overlap can effectively model taper fixation (created during assembly of head and 

stem in surgery) and also the progressive weakening of this fixation due to the 

wearing process. This is achieved by removing overlap in line with calculated wear 

as the solution progresses and is seen as a novel aspect of the wear method described. 

The total dissipated energy wear law and the 3D FE model described can predict 

linear wear depth and damage patterns effectively when compared to typical 

observed wear patterns and measured wear depths from retrieved prostheses. The 

comparisons undertaken show considerable promise but are clearly dependent on the 

use of an appropriate wear coefficient and knowledge of the retrieved prostheses 

loading history. Accurate determination of wear of individual THR components can 

be realised by measurement from retrieved prostheses or from fretting wear tests. 

These measurements can then provide accurate wear fractions for application in 

computational wear analysis.  

In addition, it should be noted that the wear coefficient 𝛼 is related to the component 

pair in contact and is used in the calculation of total wear, it does not differentiate as 

to the extent of wear occurring on each surface, as such, the use of component “wear 

fractions’” is required. 
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The accurate and smooth evolution of wear across the contact interface has been 

demonstrated with the guideline to incorporate a highly refined mesh in the contact 

zone to avoid local “spikes” in the contact stresses due to a too large element size. 

Further, the wear scaling factor used in the analysis has a major effect on simulation 

run times and can affect the accuracy of the analysis results and the evolution of 

wear. A too large scaling factor can create an uneven wear profile across the contact 

interface due to cyclic wear “hot spots” being overtly increased. In contrast, a 

comparatively small scaling factor will facilitate an accurate and smooth 

development of wear but with the cost of a much increased run time. In this specific 

application, a scaling factor of 0.1million was appropriate. 
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Chapter 6  

6 Effect of different taper fixation of the 

head and stem on the extent of fretting 

wear  

6.1 Introduction  

Non-standard assembly of the prosthesis femoral head onto the stem taper during 

surgery is known to have an effect on the stability of the fixation. As discussed in 

Chapter 2, the effect of variability of impaction forces on fretting wear is unclear and 

could be one of the reasons for higher initial wear rates (Wassef and Schmalzried, 

2013). This chapter investigates and compares the effect of varying the initial head-

stem assembly from a hand press force up to a high impaction force (6𝑘𝑁) on the 

extent of subsequent fretting wear. This chapter also describes key aspects and 

considerations regarding the impaction tests, pull off tests and the results obtained 

from the computational impaction and wear analysis that is described in Chapter 3, 

with regard to the effect of magnitude of assembly force on fretting wear. The results 
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obtained have been compared with observation and also measurement of fretting 

wear damage of available retrieved prostheses. 

6.2 Experimental procedure 

Several impaction tests were performed to determine typical impact magnitudes that 

could be applied during the surgeries. After impaction tests, pull off tests were 

performed to determine the stability of the fixations. As discussed in Chapter 2, in 

order to assemble a head to a particular stem, manufactures usually provide general 

and vague guidelines for surgeons with statements such as “slightly” or “firmly” 

impacted being the norm to describe the magnitude of any impaction force to be 

used. In fact, the magnitude of the force used to assemble the components is based on 

a surgeons’ preference, experience, the type of prosthetic femoral head, and the 

quality of the patients’ bone stock.  

6.2.1 Impaction tests 

Figure 6-1 shows a schematic of an impaction applied on the head of a total hip 

prosthesis. In order to investigate and quantify typical impaction cases, several 

primary and revision surgeries have been attended at Broadgreen Hospital, 

Liverpool, UK (2014-2015) to explore what could be a realistic impaction force 

applied during surgery. After replacing the modular stem and acetabular cup, trial 

heads are placed on the top of the femoral stem in order to check the size and 

adequacy of the hip motion. When the appropriate head size is found, the trunnion is 

being carefully cleaned and dried and the actual head is placed on the stem trunnion. 

Most of the surgeons normally apply two firm impactions in order to fix the head 

into the stem trunnion. Some surgeons check the stability of the fixation by hand-

pulling the head slightly to be confident of the fixation condition. 
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Figure 6-1: Total hip replacement in situ, impaction of the modular head onto the 

stem trunnion 

In addition to the controlled drop test, explained in section 3.4.4, a more realistic 

experiment has been performed to further investigate the impaction of the head onto 

a THR stem. In this experiment, a simple model of a head and stem was assembled 

(just into contact) and placed and fixed on a single-pedestal load cell with a force and 

moment transducer. Four different scenarios were used to fix the components, 

namely “hand-press”, “low impaction”, “medium impaction” and “high impaction” 

(see Figure 6-2). The “low”, “medium” and “high” impactions have physically been 

assessed and applied based on the observation of the surgeon’s performance during 

the primary total hip replacements.  

For all of the impaction cases, a mallet and impactor was used as shown in 

Figure 6-2. A hand press, although it is rare in clinical practice, was also performed 

in this experiment. For each scenario, the experiments have been performed several 

times to determine the approximate magnitude of the different assembly forces. 

Mallet  

Impactor 

Modular head  

Modular stem 

Femur bone  
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Figure 6-2: Impaction experiment on single-pedestal load cell 

Considering the hand press assembly case, the loading duration was recorded for 

around 2 seconds. The amplitude of the force is shown in Figure 6-3 with the peak 

force being recorded as 160𝑁.  

 

Figure 6-3: hand press load (press-fit) amplitude  

For low impaction cases, peak forces between 1.6 to 2.2𝑘𝑁 were recorded giving an 

approximate load amplitude as shown in Figure 6-4 with a maximum value of  2𝑘𝑁 
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(the curve has been modified to remove noise). Impaction forces between 3.5 to 

4.4𝑘𝑁 and 5.9 to 6.7𝑘𝑁 were recorded for the medium and high impaction cases 

respectively. Therefore, impaction forces of 2, 3, 4 and 6𝑘𝑁 have been defined for 

“low impaction”, “medium impaction” and “high impaction” respectively (see 

Figure 6-4). 

On consideration of 6𝑘𝑁 impaction force, it would seem prudent to apply as large an 

impact force at assembly as possible within the limits of safety for the patient and 

structural integrity of the prosthesis design.  

 

Figure 6-4: Approximate average impaction force from tests 

6.2.2 Pull-off test 

The effect of varying the assembly forces has an effect on the stability of the taper 

trunnion connection and has typically been assessed and based on the pull-off force 

after assembly in the literature (Heiney et al., 2009, Pennock et al., 2002, Rehmer et 

al., 2012, Lavernia et al., 2009) (section 2.6.2).  
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A Tinius Olsen tensile testing machine (H50K-S UTM Benchtop Tester) was used to 

determine the magnitude of pull-off forces for the assembly described in 

section 6.2.1 (see Figure 6-5). An average pull-off force around 40% to 47% of the 

impaction force was recorded for all of the different test assemblies.  

 

Figure 6-5: Tinius Olsen, tensile testing machine 

Based on this experiment, the greater impaction forces have indicated the greater 

pull-off forces and as such better stability and fixation between the head and stem; 

however, the effect of different assembly forces on the extent of fretting wear at the 

taper-trunnion interface has not been reported in the literature. This study 

investigates how increasing the assembly force could have an effect on the extent of 

fretting wear damage, wear rate and total volume loss during the wear process. 

6.3 Finite element modelling of the initial forces (phase 1) 

In phase 1 of the wear analysis, a single separate dynamic implicit impaction analysis 

is executed with the head and stem initially assembled just into contact. The load 

histories obtained from the experiments (see Figure 6-3 and Figure 6-4) are used for 

this analysis. Figure 6-6 shows the variation of contact pressure along the trunnion 

surface obtained from phase 1 of the wear analysis.  
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Figure 6-6: Variation of contact pressure for different assembly load (MPa) 
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The effect of increasing the assembly force from “hand press” (160𝑁) to “high 

impaction” (6𝑘𝑁) increases the initial contact pressure at the taper-trunnion interface 

(see Figure 6-6). An increase in the impaction force also results in an increase in the 

axial displacement that is used to create the static overlap assembly model for phase 

2 of the wear analysis.  

Figure 6-7 shows the magnitude of the overlap used to start the wear analysis in 

phase 2. The contact pressures obtained from the impaction analysis are equivalent to 

those obtained at the end of step 1 (static overlap analysis) of phase 2 of the wear 

analysis for all specific cases (similar to Figure 3-12). 

 

Figure 6-7: Initial overlap created for phase 2 of the wear analysis based on 

different assembly loads 

6.4 Wear analysis input (phase 2 and 3) 

The input data shown in Table 6-1 was used for the four different wear analyses, 

(hand press, 2, 4 and 6𝑘𝑁 impaction force).  

Each wear analysis took around 300 to 500 hours to simulate fretting wear over 

5million load cycles using the computer specification specified in section 3.10.   
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Table 6-1: Input data for wear analysis  

 Input data 

Model 
3D 

(see Figure 3-9) 

Material combination 

Head: Cobalt-chrome 

Stem: Titanium 

(see Table 3-1) 

Assembly force 

Hand-press (160𝑁) 

(see Figure 6-3) 

2000𝑁, 4000𝑁 and 6000𝑁 

(see Figure 6-4) 

Walking load  

and boundary conditions 

Loads with relative rotations 

(see Figure 3-7 and Figure 3-8) 

Wear law Dissipated Energy 

Wear coefficient 1.31 × 10−8 𝑀𝑃𝑎−1 

Wear fraction 
Head, Cobalt-chrome: 0.9 

Stem, Titanium: 0.1 

Scaling factor 105 

Number of load cycles 5 × 106 

6.5 Results  

Similar to Chapter 4 and 5, contact pressure is used to demonstrate the results rather 

than shear stress. The contact pressure and relative displacement are symmetrical and 

opposite on the head taper and stem trunnion, as such the results can be presented on 

either. 

6.5.1 Transition point from phase 2 to 3 of the wear analysis 

The transition point is defined as the time at which the wear analysis transfers from 

phase 2 to 3. This is the time at which the overlap is completely removed from the 

model and there is no requirement for a static overlap analysis in the further analysis. 
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At the transition point, it can be hypothesised that the effect of initial assembly has 

been removed from the model. The transition point is therefore very important as far 

as the production of wear debris is concerned and its implications to ASTR following 

arthroplasty.  

Maintaining the locking effect due to impaction for as long as possible in phase 2 is 

the key to reduced wear rates. For assembly forces of “hand press” and impaction of 

2, 3, 4 and 6𝑘𝑁, the transition points occur after approximately 0.8, 1.4, 3.1, 4.1 and 

6.9 million load cycles respectively (see Figure 6-8). 

 

Figure 6-8: Transition point from phase 2 to 3 of the wear analysis  

Figure 6-8 shows an early transition into phase 3 for the models assembled using 

“hand press” force and 2𝑘𝑁 force. This subjects the prostheses to a much increased 

wear rate which could explain the early failure of some devices.  
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6.5.2 Evolution of wear pattern damage (phase 2 and 3) 

Figure 6-9 details the evolution of wear along the head taper over a period associated 

with 5million load cycles (approximately 5 years of walking activity) following the 

application of varying head-stem initial assembly forces.  

Figure 6-9a (“hand press”) shows that the evolution of wear along the head taper 

surface is of a fairly smooth wear pattern with a variation of around 1µ𝑚 at each 

million of load cycles. After 5million load cycles, the majority of the head taper 

surface shows a wear depth of around 8.5µ𝑚 (with a peak value of 16.3µ𝑚 at the 

proximal edge of the taper inferior surface).  

Figure 6-9b, c and d (2𝑘𝑁, 3𝑘𝑁 and 4𝑘𝑁 wear analyses) show a similar wear pattern 

distributed at the taper surface albeit with lower wear depths shown for the 4𝑘𝑁 

impaction analysis. The largest wear damage occurs at the proximal and distal edge 

of the taper inferior surface for both analyses; however, the edge wear is at its 

smallest at the distal edge of the taper superior surface for the 4𝑘𝑁 impaction 

analysis. 

Again, the largest wear depth is distributed at the distal and proximal edge of the 

taper inferior surface for the 6𝑘𝑁 analysis (Figure 6-9e). Almost no wear damage 

occurs at the distal edge of the taper superior surface. This is due to the high contact 

pressure and very small relative displacement at this area during the time intervals 

and at each “stage” of the wear analysis. 
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Figure 6-9: Evolution of wear pattern during wear analysis in mm; row (a) for hand 

press, (b), (c), (d) and (e) for different impaction force, results shown at the last time 

interval of cycle. 
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6.5.3 Variation of contact pressure and slip during the wear 

analysis (phase 2 and 3) 

The contact pressure and slip are the key factors to assess the wear depth and rate.  

 Contact pressure 

Figure 6-10 details the contact pressure distribution along the head taper surface 

during phase 2 and 3 of the analysis. The results are shown at the last time interval of 

the loading cycle. Figure 6-6 showed that the average contact pressure increases with 

increasing assembly force (phase 1). This is also the case shown here with the 

magnitude of the contact pressure increasing with increasing impact force 

(Figure 6-10 (a) to (e)). Also, it can be seen in Figure 6-10c, d and e that during 

phase 2 the initial contact pressure reduces continuously until the overlap is removed 

from the model. In phase 3, the contact pressure distribution remains relatively 

constant over the contact interface for the remainder of the analysis (see 

Figure 6-10). 

Figure 6-10a shows the variation of contact pressure for the hand press wear 

analysis. The model transfers to phase 3 at 0.8 million load cycles. The contact 

pressure, then, remains relatively constant over the taper surface.  

Considering the 2𝑘𝑁 impaction (Figure 6-10b), the average contact pressure reduces 

up to 1.4 million load cycles and then remains relatively constant throughout the 

remainder of the analysis. It can be seen that after 2 million load cycles the 

maximum contact pressure occurs at the distal and proximal edge of the taper 

superior surface with values around 91𝑀𝑃𝑎.The majority of the taper surface is 

subject to a contact pressure of around 42𝑀𝑃𝑎 at each analysis stage.  
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Figure 6-10: Variation of contact pressure during wear analysis in MPa, row (a) for 

hand press, (b), (c) and (d) for different impaction force, results shown at the last 

time interval of cycle. 
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In Figure 6-10 d and e, it can be seen that the average contact pressure reduces 

during the wear analysis. After applying one million load cycles, the majority of the 

taper surface is subject to contact pressure of 60𝑀𝑃𝑎 and 77𝑀𝑃𝑎 with maximum 

values of 115𝑀𝑃𝑎 and 124𝑀𝑃𝑎 at both proximal and distal edges for the 4𝑘𝑁 and 

6𝑘𝑁  analyses respectively. The contact pressures then reduce over the duration of 

the analysis to approximately 36𝑀𝑃𝑎 and 46𝑀𝑃𝑎 for 4𝑘𝑁 and 6𝑘𝑁 impaction 

analysis respectively.  

 Contact slip 

Figure 6-11 shows the variation of resultant contact slip which occurs simultaneously 

with the contact pressure shown in Figure 6-10 (results shown at the last time 

interval of the loading cycle). Comparing the contact pressure and the slip in 

Figure 6-10 and Figure 6-11 shows that when the contact pressure is highest the 

contact slip is correspondingly low.  

It can be seen here that as the impaction force increases, the “general” slip magnitude 

reduces (Figure 6-11 (a) to (e)). Furthermore, it can be seen in Figure 6-11 that, in 

general, for all cases, the slip increases during the wear analysis.  

Figure 6-11a shows that the contact slip increases significantly with a peak value 

of 0.151𝑚𝑚 localised at the distal and proximal edge of trunnion superior surface 

during the analysis.  

The magnitude of slip is reduced to peak values of around 0.136𝑚𝑚 at localised 

areas on the trunnion superior surface after 5 million load cycles for the 2𝑘𝑁 

impaction analysis. It is further significantly reduced to a fairly uniform value of 

8µ𝑚 for the 4𝑘𝑁 wear analysis (see Figure 6-11 (b) to (d)).  
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Figure 6-11: Variation of contact slip during wear analysis in mm, row (a) for hand 

press, (b), (c) and (d) for different impaction force, results shown at the last time 

interval of cycle. 
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Figure 6-11e again shows a lower and more uniform contact slip of around 3µ𝑚 at 

the trunnion surface for the 6𝑘𝑁 impaction analysis. This significant change is due to 

the early transition into phase 3 for the models assembled using “hand press” and 

2𝑘𝑁 impaction. 

In general, it can be said that the contact pressure reduces in phase 2 due to the 

reduction in initial overlap and then remains relatively constant in phase 3; however, 

the magnitude of slip is low in phase 2 and then increases significantly in phase 3. 

6.5.4 Volumetric wear rate for different impaction loads 

Figure 6-12 shows the variation in volumetric wear rate over the period of 5 million 

load cycles for the different assembly models. In general, it can be seen that in phase 

2 of the wear analysis the wear rate is relatively small in comparison to phase 3. 

Monitoring the results in phase 2 of the wear analyses shows that increasing the 

assembly force leads to an increase in the initial contact stresses but a significant 

reduction in the magnitude of the slip. Progressing through phase 2 of the wear 

analysis leads to a gradual reduction of the contact stresses (due to the reduction in 

the initial overlap) and a slight increase in the contact slip. The proportional increase 

in slip is slightly less than the proportional reduction of contact stresses. For instance, 

there is 59% reduction in contact pressure (approximately 77𝑀𝑃𝑎 to 46𝑀𝑃𝑎) and a 

50% increase in slip (2 to 4µ𝑚) for the 6𝑘𝑁 analysis over the duration of the 

analysis in phase 2. This leads to a continuous (small) reduction in volumetric wear 

rate in phase 2 of the analysis (see Figure 6-12 for 6𝑘𝑁 impaction force).  
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Figure 6-12: Total volumetric wear rate with respect to assembly load and over the 

wear analysis 

Where the overlap is removed completely from the model, the magnitude of slip is 

increased. Therefore, the wear rate increases at the transition point. This is because 

the slip increases but the contact pressure stays relatively constant.  

After transferring to phase 3 of the wear analysis, the magnitude of the contact 
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 million load cycles for hand press 
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in contact pressure leads to a reduction in the magnitude of the contact slip (see 

Figure 6-11). The proportional increase in contact stress is lower than the 

proportional reduction in the magnitude of contact slip. This leads to a reduction in 

wear rate from “hand press” to 4𝑘𝑁 impaction analysis. For instance, during the 3
rd

 

million load cycle the wear rate reduces from 0.2𝑚𝑚3/𝑦𝑟 to 0.11𝑚𝑚3/𝑦𝑟 from 

hand press to 4𝑘𝑁 impaction. Comparatively, from 4𝑘𝑁 to 6𝑘𝑁 impaction, the 

contact pressure increases with no significant change in contact slip. This leads to a 

slightly higher wear rate for the 6𝑘𝑁 model than for the 4𝑘𝑁 model (0.12𝑚𝑚3/𝑦𝑟 

during the 3
rd

 million load cycles for the 6𝑘𝑁 wear analysis, see Figure 6-12). 

Further, the total initial overlap is higher for the 6𝑘𝑁 analysis which causes the 

model to stay in phase 2 for a longer time. In phase 2 the wear rate keeps reducing 

and as such the model will take longer to transfer into phase 3 (the relationship for 

transferring to phase 3 is not linear as shown in Figure 6-8).  

Table 6-2 details the average volumetric wear rates for different initial assembly over 

a 5-year period. The wear rates were 0.353𝑚𝑚3/𝑦𝑟 and 0.213𝑚𝑚3/𝑦𝑟 for the hand 

press and 2𝑘𝑁 impaction. The average wear rate, though, is reduced to 0.170𝑚𝑚3/

𝑦𝑟, 0.128𝑚𝑚3/𝑦𝑟 and 0.132𝑚𝑚3/𝑦𝑟 for the 3, 4 and 6𝑘𝑁 impaction assembly 

respectively (slightly higher for 6𝑘𝑁 due to the larger overlap and higher initial 

contact pressure). 

   Table 6-2: Average of total volumetric wear rate  

 Hand press 2kN 3kN 4kN 6kN 

Wear rate (mm
3
/yr)  0.353 0.213 0.170 0.128 0.132 
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Figure 6-13: Total volume loss after 5million load cycles for different assembly 

forces 

Figure 6-13 details the total volume loss after application of 5million load cycles for 

the different assembly forces from the cobalt chrome taper, titanium trunnion surface 

and in total. The highest material loss occurs for “hand press”, the material loss then 

reduces as the assembly force increases up to 4𝑘𝑁. Similar volume loss can be seen 

for the 4𝑘𝑁 and 6𝑘𝑁 impaction analysis.  
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The results for taper wear obtained in this study from the numerical wear model can 

be compared with observation and measurements of retrieved prostheses.  
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shown similar fretting wear damage as seen in Chapter 5 (see Figure 5-4). The 

observation of these twelve retrieved prostheses have shown high fretting wear 

damage on the taper inferior surface and comparatively lower wear damage on the 

taper superior surface. Circumferential edge wearing has also been observed on all of 

these twelve prostheses. 

In this study, the fretting wear damage obtained from the 2𝑘𝑁 to 4𝑘𝑁 impaction 

wear analyses has shown fairly similar wear patterns to those observed on the 12 

retrieved prostheses (similar to what has been shown in Chapter 5, Figure 5-4).  

Nonetheless, the 2𝑘𝑁 impaction wear analysis shows higher circumferential edge 

wear damage than the 4𝑘𝑁 impaction analysis. Observation of five (out of 12) 

retrieved prostheses has shown similar edge wear which is higher on the taper 

inferior surface and slightly lower on the superior surface (see Figure 6-14).  

 

Figure 6-14: Comparison of fretting wear damage between FE wear model (2kN 

initial impaction) and a retrieved prosthesis; figures are rotated 180° based on a 

label shown as (*) 
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Figure 6-14 compares favourably the 2𝑘𝑁 wear model with one of the retrieved 

prostheses. The differences in wear damage distribution specifically at the centre of 

the taper surfaces in the wear modelling in comparison to the retrieved prosthesis, 

could possibly be attributed to differences in the head-stem taper mismatch angle, 

wear coefficient, material loss due to corrosion and THR design. In addition, the load 

history of the retrieved prosthesis is unclear and could be one of the reasons for the 

slight differences in wear damage distribution too.  

The wear analysis performed with the 6𝑘𝑁 initial impaction has shown a different 

wear pattern compared to the other analyses. In this analysis, a significantly high 

wear distribution has been obtained at the distal and proximal edge of the taper 

inferior surface and very low wear distribution at the taper superior proximal edge 

with almost no wear damage at the taper superior distal edge. Figure 6-15 compares 

the wear analysis that has been performed with the 6𝑘𝑁 initial impaction with a 

retrieved prosthesis. Similar wear damage has been observed in three more different 

retrieved prostheses.  

One of the retrieved prostheses (out of 16) has shown a relatively high and smooth 

wear damage which is circumferentially distributed at the taper interface. Figure 6-16 

shows high and smooth wear damage at the taper surface (both inferior and superior) 

of this prosthesis compared with the area which was not in contact. The extent of 

wear damage and pattern obtained from the wear analysis with the “hand press” 

assembly is similar to the areas of wear damage shown on the images of this 

particular retrieved prosthesis (see Figure 6-16). 
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Figure 6-15: Comparison of fretting wear damage between FE wear model (6kN 

initial impaction) and a retrieved prosthesis; figures are rotated 180° based on a 

label shown as (*) 

 

Figure 6-16: Comparison of fretting wear damage between FE wear model (hand 

press initial assembly) and a retrieved prosthesis; figures are rotated 180° based on 

a label shown as (*) 
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0.44𝑚𝑚3/𝑦𝑟 for DePuy ASR XL at around 1 to 5 years in vivo). Differences can be 

attributed to differences in material combinations, THR design, as well as the loading 

history and the wear coefficient used in the numerical study.    

It should be noted that although the wear distributions and wear rates for the different 

assembly models have been shown to be similar to that from retrieved prostheses, it 

has not been possible to prove how the retrieved prostheses were initially assembled 

or their loading history. As such, the retrieved prostheses used for the validation here 

have been assumed to have been assembled using a “light, medium and high” 

impaction based on their wear patterns and the comparison of the wear patterns from 

the wear models. 

6.7 Discussion  

The wear algorithm proposed calculates wear depth at the taper interface following a 

specified number of wearing cycles and then modifies the surface geometries 

gradually by removing the overlap based on the accumulated wear. Furthermore, the 

algorithm is able to consider the effect of initial fixation of the head-stem of the total 

hip replacements. The impaction force applied during assembly of the prosthetic 

femoral head to the stem intra-operatively is seen to have an effect on subsequent 

fretting wear at the taper junction of THRs. The gradual removal of overlap 

simulates the effect of wear on weakening the initial fixation which then has an 

effect on the magnitude of contact pressure and slip.   

The greater the magnitude of the impaction force the longer the period of time the 

beneficial effects of fixation remain with the taper junction only subject to low wear 

rates. A transition point exists where the beneficial effects of fixation are completely 

removed and a significant increase in wear rate occurs.  
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It was found that increasing the impaction loads led to an increase in contact stresses 

but a significant reduction in slip resulting in a decrease in the initial wear rate. As 

the taper locking effect diminishes during the wear analysis due to the fretting wear 

process, it was observed that the slip increases leading to a significant increase in 

wear rate. The results demonstrate the relevance of the impaction force used intra-

operatively by medical professionals to provide an optimum fixation to minimize 

wear due to fretting.  

When the model is still in phase 2 of the analysis it can be hypothesised that the wear 

debris may remain trapped at the contact interface and only a small portion of the 

debris may be released into the body. When the model transfers to phase 3, debris 

can potentially escape from the taper junction, be released into the body and 

accumulate at the surrounding tissue which may lead to ASTR. 

Design features such as taper angle and taper mismatch angle (see Figure 6-17) have 

been hypothesised to have a significant effect on the strength of the taper fixation 

and edge wearing (Hohman et al., 2011, Langton et al., 2012, Milošev et al., 2000, 

Pennock et al., 2002, Schmidt et al., 1997). In the opinion of Hohman et al. (2011) 

the head stem taper mismatch angle has a significant effect on the wear rate. Milošev 

et al. (2000) showed high edge wear damage in the taper junction of THRs and 

presumed that fretting wear accelerates due to the mismatch angle between the taper-

trunnion interfaces. Langton et al. (2012) have shown taper wear damage more 

pronounced on one side than the other. They postulated that this might be due to the 

taper mismatch angle but this needs to be investigated by further analysis.  

Although the taper mismatch angle is seen to have an effect on stability, strength and 

edge wearing of the taper-trunnion surfaces, this study has illustrated that even with a 
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zero mismatch angle there would be significant edge wearing and side wearing due 

to the initial assembly forces. 

 

Figure 6-17:Zero, positive and negative mismatch angle 

A study was performed using the same wear algorithm with an axisymmetric model 

of the same head and stem of THR used here. The results from this axisymmetric 

model with different impaction loads showed a linear relationship between the wear 

rate and increasing the impaction force. This wear analysis using the axisymmetric 

model indicated that increasing the initial impaction force reduces the wear rate 

significantly with a linear relationship. Furthermore, the impaction force and pull-off 

force has also showed to have a linear relationship where increasing the impaction 

force increases the pull off forces. These results were obtained due to the limitations 

of the axisymmetric models. This study showed that wear rate depends on many 

different factors. The initial contact stress, contact pressure distribution during a 

walking step and during the wear analysis and the contact slip variation under the 

accurate loading and boundary conditions all have an effect on the wear rate, depth 

and wear damage pattern. Therefore, it can be said that a simplified axisymmetric 

model cannot simulate this process accurately.   

It has been suggested in the literature (Heiney et al., 2009, Pennock et al., 2002, 

Rehmer et al., 2012) that impaction forces of between 4000–5000𝑁 will maximize 
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taper strength whilst mitigating against damage to the femur. In this study, the total 

volume loss for 4𝑘𝑁 and 6𝑘𝑁 impaction analysis was almost equal; however, the 

analysis with 4𝑘𝑁 impaction transferred to phase 3 after 4.1 million load cycles and 

from this transition point a higher wear rate can be expected (compared to 6kN 

impaction wear analysis). Furthermore, the wear analysis with 6𝑘𝑁 initial impaction 

showed significantly high edge and side wear on the taper inferior surface with very 

low wear damage on the taper superior surface and also limits of safety for the 

patient and structural integrity of the prosthesis design needs to be considered while 

applying very high impact.  

Maintaining “good fixation” for as long as possible is the key to reduced wear rates 

and as such the transition point should occur after the longest time in vivo as 

possible. As such, to minimize fretting wear, surgeons should apply a relatively large 

impaction force at assembly (ideally around 4𝑘𝑁 and not less than 3𝑘𝑁) whilst 

ensuring the integrity of the patient femur and prosthetic device.  

The limitation of this study is again due to the magnitude of the wear coefficient 

used. Increasing the wear coefficient increases the wear rate and the transition point 

may occur earlier than has been predicted. As such, further investigation is required 

to obtain accurate fretting wear coefficients by controlled experiment. Another 

parameter that could affect the results is the magnitude of the friction coefficient. 

The friction coefficient could change the magnitude of slip and consequently wear 

rate. Further study is required to investigate the effect of the friction coefficient on 

the fretting wear damage.  

Furthermore, as discussed in Chapter 2, some prosthetic devices have threaded 

trunnion surfaces (see Figure 2-9) in order to increase friction and improve fixation 
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of the components. The initial impaction assembly may plastically deform these 

threads. As such, further investigation is required to investigate the effect of threaded 

stems on the fixation of the components and also on the fretting wear occurred. 

6.8 Conclusion  

The wear algorithm and FE model presented here is able to model the effect the 

impaction forces (used to assemble the femoral prosthetic head to the stem trunnion) 

have on subsequent fretting wear at the taper junction in a THR.  This is achieved by 

modelling the effect of assembly as a static overlap analysis procedure then 

simulating the development of wear by removing overlap in line with the calculated 

wear depth for a particular stage of the analysis. 

Prior to the “transition” point, as the overlap is removed by wear, the contact 

pressure and contact stresses at the interface decrease whereas the relative 

displacements increase slightly. At the transition point (when the overlap is 

completely removed) a significant decrease in contact pressure occurs coinciding 

with a proportionally greater increase in relative displacement at the interface leading 

to a much increased wear rate. Subsequent to the transition point the contact pressure 

stays relatively constant with the magnitude of the relative displacement increasing 

gradually over several years resulting in increasing wear rates. It can be seen that in 

this application a reduction in the interface contact pressure results in an increase in 

relative displacement (slip);  whereas an increase in contact pressure (due to 

increased initial impaction) results in reduced slip and fretting wear. 
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Chapter 7  

7 Conclusion and future work 

7.1 Conclusion  

Research in tribology which is based on theories aided with computational capability 

and experiment can indeed complement each other in order to increase the longevity 

of mechanical devices in service. Furthermore, a theoretical approach with 

computational capability can be used to predict long term behaviour of these devices 

which otherwise require expensive and time consuming tests.  

Experimental testing to determine wear that occurs in a prosthesis is time consuming, 

expensive and complicated. Therefore, computational wear modelling is an 

alternative method to predict wear. A computational method to determine fretting 

wear is a useful tool. It will allow speedy assessment of designs and its performance 

in service to determine functionality of the prosthetic device and to validate existing 

and new designs. It could also provide guidelines for clinical practice so as to 

perform surgical procedures more efficiently.  
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The aim of this research was to develop a computational methodology to predict 

fretting wear accurately at the taper interface between the head and stem of a THR.  

Based on the wear model presented in this thesis, the main contributions of this 

research can be summarised as follows: 

 The fretting wear method presented has been developed based on an 

axisymmetric model of a commercial total hip replacement. The 

axisymmetric model reduces the computational time and is useful for 

comparative and parametric studies.    

 The uniqueness of the methodology is that the method is able to simulate the 

progressive weakening of the initial head-stem fixation due to the wearing 

process. Simulating the reduction in the initial fixation strength of the head-

stem assembly is seen as important to the accurate assessment of wear and 

has not been reported in the literature before. 

 The fretting wear method has been developed as a 3D model of the total hip 

prostheses with realistic loading and boundary conditions. 

 The results obtained using the 3D model have been compared against 

observation of retrieved prostheses and from fretting wear measurements 

found in literature. From these comparisons, the results computed show 

considerable promise but are clearly dependant on the use of an appropriate 

wear coefficient. 

 The fretting wear method presented has been generalized to be used for 

different design of THRs and also for other prosthetic devices such as knee 

and shoulder modular implants. 
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 The method has been used to investigate the effect of different taper fixation 

of the head and stem on the extent of fretting wear. 

 The computational results from the different initial assembly forces were 

compared with different wear damage occurring at the taper surface of 

several retrieved total hip prostheses. This comparison showed that the side 

wearing and edge wearing that occur at the taper surface could be due to the 

different assembly forces used to fix these components.   

 The method can consider different material combinations and specific wear 

fractions for different design of the THRs to predict fretting wear at the taper 

junction.  

 The method is able to vary the wear coefficient during the analysis. This 

variation of the value of the wear coefficient can be obtained from a 

controlled fretting test. 

 The method could be also used for any FE analysis subjected to oscillatory 

loads and micromotion.  

It is hoped that the method and algorithm developed in this study can be used for 

further investigations in the future. These investigations could indeed help designers, 

physicians and surgeons to minimise the effects of fretting wear, give a good 

indication of the fretting wear pattern, surface damage and increase the longevity of 

the designs in operation.  
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7.2 Future work 

Fretting wear is a very complex phenomenon to be predicted computationally. This 

research is a step to predict fretting wear between components that are in contact and 

under oscillatory loads. As discussed in Chapter 2, a review of literature has 

highlighted areas that need further investigations. The present study completed a 

computational approach to fretting wear prediction in total hip replacements which 

again warrants further investigations. Future research can be listed as below: 

 It is apparent that further research is required to help inhibit the effects of 

corrosion; however, the work presented here focuses solely on fretting wear 

as being the primary mechanism causing damage at the head-stem taper 

junction in THRs. 

 Accurate wear coefficients for this application have not yet been presented in 

the literature and as such this is an area for further investigation and testing. 

The wear coefficient will change during the wearing process and as such 

specific applications will benefit from knowledge of time dependant wear 

coefficients (in terms of loading cycles). A controlled fretting test could be 

carried out to obtain the variation of wear coefficient during the wear 

analysis.  

 Friction plays a critical role in the wear process mainly due to the change in 

the magnitude of the slip. The effect of increasing the friction coefficient on 

fretting wear at taper junction of THRs could be an area to be investigated. 

 The method can be developed for Adhesive, Abrasive wear with longer 

relative displacements, for instance, for the head-cup bearing.  
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Appendix I: Graphical user interface of the wear algorithm  
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Appendix II: An example of output request, text format (*.txt); Axisymetric model  

########################################################################## 

 

###    The following parameters have been submitted for the wear analysis: 

 

###    Input file and work directory: D: \ * \ Job-1.inp 

###    Total load cycles: 15000000 

###    Wear method chosen is Energy 

###    Scaling factor is: 100000 

###    Energy wear Coefficient is: 5.75e-08 

###    Model is Axisymmetric 

###    Elements are Linear 

###    Approximate element size: 0.08 

###    Wear fraction for the Stem: 0.1 

###    Wear fraction for the Head: 0.9 

########################################################################## 

 

Update Number: 1 

 

########################################################################## 

 

Paired Nodes: 

[[3, 4], [6, 1], [31, 140], [32, 139], [33, 138], [34, 137], [35, 136], [36, 135], [37, 134], [38, 133], [39, 

132], [40, 131], [41, 130], [42, 129], [43, 128], [44, 127], [45, 126], [46, 125], [47, 124], [48, 123], 

[49, 122], [50, 121], [51, 120], [52, 119], [53, 118], [54, 117], [55, 116], [56, 115], [57, 114], [58, 

113], [59, 112], [60, 111], [61, 110], [62, 109], [63, 108], [64, 107], [65, 106], [66, 105], [67, 104], 

[68, 103], [69, 102], [70, 101], [71, 100], [72, 99], [73, 98], [74, 97], [75, 96], [76, 95], [77, 94], [78, 

93], [79, 92]] 

 

########################################################################## 

 

Wear depth, for paired nodes:  

 

 Wear depth, paired node No: 3-4 = 0.000106920437805 

 Wear depth, paired node No: 6-1 = 0.000176679257303 

 Wear depth, paired node No: 31-140 = 8.95696756702e-05 

 Wear depth, paired node No: 32-139 = 5.34792177971e-05 

 Wear depth, paired node No: 33-138 = 4.9755629996e-05 

 Wear depth, paired node No: 34-137 = 4.37857901799e-05 

 Wear depth, paired node No: 35-136 = 4.3385366419e-05 

 Wear depth, paired node No: 36-135 = 4.09283949178e-05 

 Wear depth, paired node No: 37-134 = 4.1065003234e-05 

 Wear depth, paired node No: 38-133 = 3.98432674453e-05 

 Wear depth, paired node No: 39-132 = 3.97773780692e-05 

 Wear depth, paired node No: 40-131 = 3.71853742114e-05 

 Wear depth, paired node No: 41-130 = 3.44526546335e-05 

 Wear depth, paired node No: 42-129 = 3.13630973387e-05 

 Wear depth, paired node No: 43-128 = 2.88436992342e-05 

 Wear depth, paired node No: 44-127 = 2.62088672693e-05 

 Wear depth, paired node No: 45-126 = 2.38356877073e-05 

 Wear depth, paired node No: 46-125 = 2.1589010518e-05 

 Wear depth, paired node No: 47-124 = 1.95367795943e-05 

 Wear depth, paired node No: 48-123 = 1.76223446098e-05 
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 Wear depth, paired node No: 49-122 = 1.62769660811e-05 

 Wear depth, paired node No: 50-121 = 1.50753420008e-05 

 Wear depth, paired node No: 51-120 = 1.39930521899e-05 

 Wear depth, paired node No: 52-119 = 1.29137126909e-05 

 Wear depth, paired node No: 53-118 = 1.18814587366e-05 

 Wear depth, paired node No: 54-117 = 1.08690391276e-05 

 Wear depth, paired node No: 55-116 = 9.90218112351e-06 

 Wear depth, paired node No: 56-115 = 9.06097257701e-06 

 Wear depth, paired node No: 57-114 = 8.76553975768e-06 

 Wear depth, paired node No: 58-113 = 8.49008428891e-06 

 Wear depth, paired node No: 59-112 = 8.815645237e-06 

 Wear depth, paired node No: 60-111 = 9.20351089621e-06 

 Wear depth, paired node No: 61-110 = 9.59619393682e-06 

 Wear depth, paired node No: 62-109 = 1.01920402996e-05 

 Wear depth, paired node No: 63-108 = 1.12839941697e-05 

 Wear depth, paired node No: 64-107 = 1.28152137132e-05 

 Wear depth, paired node No: 65-106 = 1.43456794671e-05 

 Wear depth, paired node No: 66-105 = 1.59070948136e-05 

 Wear depth, paired node No: 67-104 = 1.74704407685e-05 

 Wear depth, paired node No: 68-103 = 1.92595597966e-05 

 Wear depth, paired node No: 69-102 = 2.10927866895e-05 

 Wear depth, paired node No: 70-101 = 2.29729495003e-05 

 Wear depth, paired node No: 71-100 = 2.49099994721e-05 

 Wear depth, paired node No: 72-99 = 2.68367734789e-05 

 Wear depth, paired node No: 73-98 = 2.91264146577e-05 

 Wear depth, paired node No: 74-97 = 3.11607899686e-05 

 Wear depth, paired node No: 75-96 = 3.41929586369e-05 

 Wear depth, paired node No: 76-95 = 3.66605432559e-05 

 Wear depth, paired node No: 77-94 = 4.20367861935e-05 

 Wear depth, paired node No: 78-93 = 4.66107638941e-05 

 Wear depth, paired node No: 79-92 = 7.06182494067e-05 

 

########################################################################## 

 

Total Wear, Stem 

 

 Total wear depth after 1st updates on Stem node No 3: 1.069e-05 

 Total wear depth after 1st updates on Stem node No 6: 1.767e-05 

 Total wear depth after 1st updates on Stem node No 31: 8.96e-06 

 Total wear depth after 1st updates on Stem node No 32: 5.35e-06 

 Total wear depth after 1st updates on Stem node No 33: 4.98e-06 

 Total wear depth after 1st updates on Stem node No 34: 4.38e-06 

 Total wear depth after 1st updates on Stem node No 35: 4.34e-06 

 Total wear depth after 1st updates on Stem node No 36: 4.09e-06 

 Total wear depth after 1st updates on Stem node No 37: 4.11e-06 

 Total wear depth after 1st updates on Stem node No 38: 3.98e-06 

 Total wear depth after 1st updates on Stem node No 39: 3.98e-06 

 Total wear depth after 1st updates on Stem node No 40: 3.72e-06 

 Total wear depth after 1st updates on Stem node No 41: 3.45e-06 

 Total wear depth after 1st updates on Stem node No 42: 3.14e-06 

 Total wear depth after 1st updates on Stem node No 43: 2.88e-06 

 Total wear depth after 1st updates on Stem node No 44: 2.62e-06  

 Total wear depth after 1st updates on Stem node No 45: 2.38e-06 

 Total wear depth after 1st updates on Stem node No 46: 2.16e-06 

 Total wear depth after 1st updates on Stem node No 47: 1.95e-06 
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 Total wear depth after 1st updates on Stem node No 48: 1.76e-06 

 Total wear depth after 1st updates on Stem node No 49: 1.63e-06 

 Total wear depth after 1st updates on Stem node No 50: 1.51e-06 

 Total wear depth after 1st updates on Stem node No 51: 1.4e-06 

 Total wear depth after 1st updates on Stem node No 52: 1.29e-06 

 Total wear depth after 1st updates on Stem node No 53: 1.19e-06 

 Total wear depth after 1st updates on Stem node No 54: 1.09e-06 

 Total wear depth after 1st updates on Stem node No 55: 9.9e-07 

 Total wear depth after 1st updates on Stem node No 56: 9.1e-07 

 Total wear depth after 1st updates on Stem node No 57: 8.8e-07 

 Total wear depth after 1st updates on Stem node No 58: 8.5e-07 

 Total wear depth after 1st updates on Stem node No 59: 8.8e-07 

 Total wear depth after 1st updates on Stem node No 60: 9.2e-07 

 Total wear depth after 1st updates on Stem node No 61: 9.6e-07 

 Total wear depth after 1st updates on Stem node No 62: 1.02e-06 

 Total wear depth after 1st updates on Stem node No 63: 1.13e-06 

 Total wear depth after 1st updates on Stem node No 64: 1.28e-06 

 Total wear depth after 1st updates on Stem node No 65: 1.43e-06 

 Total wear depth after 1st updates on Stem node No 66: 1.59e-06 

 Total wear depth after 1st updates on Stem node No 67: 1.75e-06 

 Total wear depth after 1st updates on Stem node No 68: 1.93e-06 

 Total wear depth after 1st updates on Stem node No 69: 2.11e-06 

 Total wear depth after 1st updates on Stem node No 70: 2.3e-06 

 Total wear depth after 1st updates on Stem node No 71: 2.49e-06 

 Total wear depth after 1st updates on Stem node No 72: 2.68e-06 

 Total wear depth after 1st updates on Stem node No 73: 2.91e-06 

 Total wear depth after 1st updates on Stem node No 74: 3.12e-06 

 Total wear depth after 1st updates on Stem node No 75: 3.42e-06 

 Total wear depth after 1st updates on Stem node No 76: 3.67e-06 

 Total wear depth after 1st updates on Stem node No 77: 4.2e-06 

 Total wear depth after 1st updates on Stem node No 78: 4.66e-06 

 Total wear depth after 1st updates on Stem node No 79: 7.06e-06 

 

########################################################################## 

 

Total Wear, Head 

 

 Total wear depth after 1st updates on Head node No 4: 9.623e-05 

 Total wear depth after 1st updates on Head node No 1: 0.00015901 

 Total wear depth after 1st updates on Head node No 140: 8.061e-05 

 Total wear depth after 1st updates on Head node No 139: 4.813e-05 

 Total wear depth after 1st updates on Head node No 138: 4.478e-05 

 Total wear depth after 1st updates on Head node No 137: 3.941e-05 

 Total wear depth after 1st updates on Head node No 136: 3.905e-05 

 Total wear depth after 1st updates on Head node No 135: 3.684e-05 

 Total wear depth after 1st updates on Head node No 134: 3.696e-05 

 Total wear depth after 1st updates on Head node No 133: 3.586e-05 

 Total wear depth after 1st updates on Head node No 132: 3.58e-05 

 Total wear depth after 1st updates on Head node No 131: 3.347e-05 

 Total wear depth after 1st updates on Head node No 130: 3.101e-05 

 Total wear depth after 1st updates on Head node No 129: 2.823e-05 

 Total wear depth after 1st updates on Head node No 128: 2.596e-05 

 Total wear depth after 1st updates on Head node No 127: 2.359e-05 

 Total wear depth after 1st updates on Head node No 126: 2.145e-05 

 Total wear depth after 1st updates on Head node No 125: 1.943e-05 
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 Total wear depth after 1st updates on Head node No 124: 1.758e-05 

 Total wear depth after 1st updates on Head node No 123: 1.586e-05 

 Total wear depth after 1st updates on Head node No 122: 1.465e-05 

 Total wear depth after 1st updates on Head node No 121: 1.357e-05 

 Total wear depth after 1st updates on Head node No 120: 1.259e-05 

 Total wear depth after 1st updates on Head node No 119: 1.162e-05 

 Total wear depth after 1st updates on Head node No 118: 1.069e-05 

 Total wear depth after 1st updates on Head node No 117: 9.78e-06 

 Total wear depth after 1st updates on Head node No 116: 8.91e-06 

 Total wear depth after 1st updates on Head node No 115: 8.15e-06 

 Total wear depth after 1st updates on Head node No 114: 7.89e-06 

 Total wear depth after 1st updates on Head node No 113: 7.64e-06 

 Total wear depth after 1st updates on Head node No 112: 7.93e-06 

 Total wear depth after 1st updates on Head node No 111: 8.28e-06 

 Total wear depth after 1st updates on Head node No 110: 8.64e-06 

 Total wear depth after 1st updates on Head node No 109: 9.17e-06 

 Total wear depth after 1st updates on Head node No 108: 1.016e-05 

 Total wear depth after 1st updates on Head node No 107: 1.153e-05 

 Total wear depth after 1st updates on Head node No 106: 1.291e-05 

 Total wear depth after 1st updates on Head node No 105: 1.432e-05 

 Total wear depth after 1st updates on Head node No 104: 1.572e-05 

 Total wear depth after 1st updates on Head node No 103: 1.733e-05 

 Total wear depth after 1st updates on Head node No 102: 1.898e-05 

 Total wear depth after 1st updates on Head node No 101: 2.068e-05 

 Total wear depth after 1st updates on Head node No 100: 2.242e-05 

 Total wear depth after 1st updates on Head node No 99: 2.415e-05 

 Total wear depth after 1st updates on Head node No 98: 2.621e-05 

 Total wear depth after 1st updates on Head node No 97: 2.804e-05 

 Total wear depth after 1st updates on Head node No 96: 3.077e-05 

 Total wear depth after 1st updates on Head node No 95: 3.299e-05 

 Total wear depth after 1st updates on Head node No 94: 3.783e-05 

 Total wear depth after 1st updates on Head node No 93: 4.195e-05 

 Total wear depth after 1st updates on Head node No 92: 6.356e-05 

########################################################################## 

 

Total No of load cycle is 100000  

 

########################################################################## 

########################################################################## 

########################################################################## 

 

########################################################################## 

 

Update Number: 2 

 

########################################################################## 

 

Paired Nodes 

[[3, 4], [6, 1], [31, 140], [32, 139], [33, 138], [34, 137], [35, 136], [36, 135], [37, 134], [38, 133], [39, 

132], [40, 131], [41, 130], [42, 129], [43, 128], [44, 127], [45, 126], [46, 125], [47, 124], [48, 123], 

[49, 122], [50, 121], [51, 120], [52, 119], [53, 118], [54, 117], [55, 116], [56, 115], [57, 114], [58, 

113], [59, 112], [60, 111], [61, 110], [62, 109], [63, 108], [64, 107], [65, 106], [66, 105], [67, 104], 

[68, 103], [69, 102], [70, 101], [71, 100], [72, 99], [73, 98], [74, 97], [75, 96], [76, 95], [77, 94], [78, 

93], [79, 92]] 
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########################################################################## 

 

Wear depth, for paired nodes:  

 

Wear depth, paired node No: 3-4 = 0.000102829952488 

Wear depth, paired node No: 6-1 = 0.000157613616695 

Wear depth, paired node No: 31-140 = 8.62276321532e-05 

Wear depth, paired node No: 32-139 = 5.6820338098e-05 

 

… and so on up to: 

 

########################################################################## 

 

Update Number: 153 

 

########################################################################## 

 

Paired Nodes 

[[3, 175], [6, 137], [31, 136], [32, 135], [33, 134], [34, 133], [35, 132], [36, 131], [37, 130], [38, 129], 

[39, 128], [40, 127], [41, 126], [42, 125], [43, 124], [44, 123], [45, 122], [47, 120], [48, 119], [49, 

118], [50, 117], [54, 113], [55, 112], [56, 111], [57, 110], [58, 109], [59, 108], [79, 176], [199, 1], 

[200, 140]] 

 

########################################################################## 

 

Wear depth, for paired nodes:  

 

  Wear depth, paired node No:  3-175=0.00037085212738 

  Wear depth, paired node No:  6-137=0.00058901912849 

  Wear depth, paired node No:  31-136=1.10227527029e-05 

  Wear depth, paired node No:  32-135=0.000113908290225 

  Wear depth, paired node No:  33-134=9.3301333299e-05 

  Wear depth, paired node No:  34-133=0.000285674751725 

  Wear depth, paired node No:  35-132=0.000207459581091 

  Wear depth, paired node No:  36-131=5.07588150853e-05 

  Wear depth, paired node No:  37-130=0.00010663823987 

  Wear depth, paired node No:  38-129=7.35394502589e-05 

  Wear depth, paired node No:  39-128=9.04853831394e-05 

  Wear depth, paired node No:  40-127=3.98880606902e-05 

  Wear depth, paired node No:  41-126=9.37404410961e-05 

  Wear depth, paired node No:  42-125=6.66798222269e-05 

  Wear depth, paired node No:  43-124=0.000328204563419 

  Wear depth, paired node No:  44-123=0.00029646901692 

  Wear depth, paired node No:  45-122=6.67196957019e-05 

  Wear depth, paired node No:  47-120=7.06586537356e-05 

  Wear depth, paired node No:  48-119=0.000731150787109 

  Wear depth, paired node No:  49-118=0.000447425021158 

  Wear depth, paired node No:  50-117=5.30217862197e-05 

  Wear depth, paired node No:  54-113=0.000122520909333 

  Wear depth, paired node No:  55-112=0.00135313136862 

  Wear depth, paired node No:  56-111=0.00192006356796 

  Wear depth, paired node No:  57-110=0.000858041218831 

  Wear depth, paired node No:  58-109=0.000371850426631 
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  Wear depth, paired node No:  59-108=0.00131849908208 

  Wear depth, paired node No:  79-176=4.96583022221e-05 

  Wear depth, paired node No:  199-1=5.83227863443e-05 

  Wear depth, paired node No:  200-140=0.000338778904776 

 

########################################################################## 

 

Total Wear, Stem 

 

 Total wear depth after 153 updates on Stem node No3: 0.01062128 

 Total wear depth after 153 updates on Stem node No 6: 0.0037176 

 Total wear depth after 153 updates on Stem node No 31: 0.00330802 

 Total wear depth after 153 updates on Stem node No 32: 0.00337916 

 Total wear depth after 153 updates on Stem node No 33: 0.00340185 

 Total wear depth after 153 updates on Stem node No 34: 0.00335303 

 Total wear depth after 153 updates on Stem node No 35: 0.00330533 

 Total wear depth after 153 updates on Stem node No 36: 0.00342166 

 Total wear depth after 153 updates on Stem node No 37: 0.00351946 

 Total wear depth after 153 updates on Stem node No 38: 0.00330615 

 Total wear depth after 153 updates on Stem node No 39: 0.00328778 

 Total wear depth after 153 updates on Stem node No 40: 0.00353012 

 Total wear depth after 153 updates on Stem node No 41: 0.00335119 

 Total wear depth after 153 updates on Stem node No 42: 0.00329491 

 Total wear depth after 153 updates on Stem node No 43: 0.00338817 

 Total wear depth after 153 updates on Stem node No 44: 0.00340746 

 Total wear depth after 153 updates on Stem node No 45: 0.00339765 

 Total wear depth after 153 updates on Stem node No 46: 0.00349141 

 Total wear depth after 153 updates on Stem node No 47: 0.00336716 

 Total wear depth after 153 updates on Stem node No 48: 0.00340137 

 Total wear depth after 153 updates on Stem node No 49: 0.00340226 

 Total wear depth after 153 updates on Stem node No 50: 0.00326029 

 Total wear depth after 153 updates on Stem node No 51: 0.00334663 

 Total wear depth after 153 updates on Stem node No 52: 0.00342553 

 Total wear depth after 153 updates on Stem node No 53: 0.00340296 

 Total wear depth after 153 updates on Stem node No 54: 0.00334831 

 Total wear depth after 153 updates on Stem node No 55: 0.00343209 

 Total wear depth after 153 updates on Stem node No 56: 0.00336561 

 Total wear depth after 153 updates on Stem node No 57: 0.0033625 

 Total wear depth after 153 updates on Stem node No 58: 0.00327721 

 Total wear depth after 153 updates on Stem node No 59: 0.00339932 

 Total wear depth after 153 updates on Stem node No 60: 0.0034075 

 Total wear depth after 153 updates on Stem node No 61: 0.00322452 

 Total wear depth after 153 updates on Stem node No 62: 0.00324147 

 Total wear depth after 153 updates on Stem node No 63: 0.00328411 

 Total wear depth after 153 updates on Stem node No 64: 0.00317278 

 Total wear depth after 153 updates on Stem node No 65: 0.00329568 

 Total wear depth after 153 updates on Stem node No 66: 0.00340147 

 Total wear depth after 153 updates on Stem node No 67: 0.0032128 

 Total wear depth after 153 updates on Stem node No 68: 0.00322062 

 Total wear depth after 153 updates on Stem node No 69: 0.00339012 

 Total wear depth after 153 updates on Stem node No 70: 0.00318755 

 Total wear depth after 153 updates on Stem node No 71: 0.00328931 

 Total wear depth after 153 updates on Stem node No 72: 0.00326759 

 Total wear depth after 153 updates on Stem node No 73: 0.00330292 

 Total wear depth after 153 updates on Stem node No 74: 0.00328102 
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 Total wear depth after 153 updates on Stem node No 75: 0.0034053 

 Total wear depth after 153 updates on Stem node No 76: 0.0031567 

 Total wear depth after 153 updates on Stem node No 77: 0.00362169 

 Total wear depth after 153 updates on Stem node No 78: 0.0035986 

 Total wear depth after 153 updates on Stem node No 79: 0.00314197 

 Total wear depth after 153 updates on Stem node No 201: 0.00328025 

 Total wear depth after 153 updates on Stem node No 200: 0.00201367 

 Total wear depth after 153 updates on Stem node No 199: 0.00084378 

 

Total Wear, Head 

 

 Total wear depth after 153 updates on Head node No 4: 0.03108249 

 Total wear depth after 153 updates on Head node No 1: 0.03327276 

 Total wear depth after 153 updates on Head node No 140: 0.03259467 

 Total wear depth after 153 updates on Head node No 139: 0.0305635 

 Total wear depth after 153 updates on Head node No 138: 0.02923528 

 Total wear depth after 153 updates on Head node No 137: 0.03307427 

 Total wear depth after 153 updates on Head node No 136: 0.03033169 

 Total wear depth after 153 updates on Head node No 135: 0.03045535 

 Total wear depth after 153 updates on Head node No 134: 0.03042903 

 Total wear depth after 153 updates on Head node No 133: 0.03065642 

 Total wear depth after 153 updates on Head node No 132: 0.03055048 

 Total wear depth after 153 updates on Head node No 131: 0.03036886 

 Total wear depth after 153 updates on Head node No 130: 0.03037759 

 Total wear depth after 153 updates on Head node No 129: 0.03061305 

 Total wear depth after 153 updates on Head node No 128: 0.03045112 

 Total wear depth after 153 updates on Head node No 127: 0.0304696 

 Total wear depth after 153 updates on Head node No 126: 0.03047995 

 Total wear depth after 153 updates on Head node No 125: 0.03048722 

 Total wear depth after 153 updates on Head node No 124: 0.0305234 

 Total wear depth after 153 updates on Head node No 123: 0.03044921 

 Total wear depth after 153 updates on Head node No 122: 0.03057558 

 Total wear depth after 153 updates on Head node No 121: 0.03124722 

 Total wear depth after 153 updates on Head node No 120: 0.03056599 

 Total wear depth after 153 updates on Head node No 119: 0.03059766 

 Total wear depth after 153 updates on Head node No 118: 0.03050126 

 Total wear depth after 153 updates on Head node No 117: 0.03034412 

 Total wear depth after 153 updates on Head node No 116: 0.03033095 

 Total wear depth after 153 updates on Head node No 115: 0.03049722 

 Total wear depth after 153 updates on Head node No 114: 0.03041046 

 Total wear depth after 153 updates on Head node No 113: 0.03023158 

 Total wear depth after 153 updates on Head node No 112: 0.03066356 

 Total wear depth after 153 updates on Head node No 111: 0.03121623 

 Total wear depth after 153 updates on Head node No 110: 0.03027695 

 Total wear depth after 153 updates on Head node No 109: 0.02989742 

 Total wear depth after 153 updates on Head node No 108: 0.03045828 

 Total wear depth after 153 updates on Head node No 107: 0.02936342 

 Total wear depth after 153 updates on Head node No 106: 0.02939366 

 Total wear depth after 153 updates on Head node No 105: 0.0294623 

 Total wear depth after 153 updates on Head node No 104: 0.02938912 

 Total wear depth after 153 updates on Head node No 103: 0.02989556 

 Total wear depth after 153 updates on Head node No 102: 0.0294816 

 Total wear depth after 153 updates on Head node No 101: 0.02941148 

 Total wear depth after 153 updates on Head node No 100: 0.02960983 

 Total wear depth after 153 updates on Head node No 99: 0.02962093 
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 Total wear depth after 153 updates on Head node No 98: 0.02939543 

 Total wear depth after 153 updates on Head node No 97: 0.02955586 

 Total wear depth after 153 updates on Head node No 96: 0.02957698 

 Total wear depth after 153 updates on Head node No 95: 0.02960646 

 Total wear depth after 153 updates on Head node No 94: 0.0297007 

 Total wear depth after 153 updates on Head node No 93: 0.02955171 

 Total wear depth after 153 updates on Head node No 92: 0.02938088 

 Total wear depth after 153 updates on Head node No 178: 0.02934043 

 Total wear depth after 153 updates on Head node No 177: 0.0333092 

 Total wear depth after 153 updates on Head node No 176: 0.02960112 

 Total wear depth after 153 updates on Head node No 175: 0.02170698 

########################################################################## 

 

Total No of load cycle is 15,000,000  

 

########################################################################## 

########################################################################## 

########################################################################## 

 

The wear analysis reaches to 15,000,000 load cycles  

 

End of the wear analysis 
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Appendix III: An example of output request, from ABAQUS Field Output database 

(*.ODB); Axisymetric model 

************************************************************************** 

First update 
************************************************************************** 

 

Field Output Report,  

 

Source 1 

--------- 

 

   ODB: D:/ * /Job-1.odb 

   Step: Step-2-DI 

   Frame: Increment     10: Step Time =    1.250 

 

Loc 1 : Nodal values from source 1 

 

Output sorted by column "Node Label". 

 

Field Output reported at nodes for part: HEAD-1 

 

            Node       WearDepth 

           Label          @Loc 1 

--------------------------------- 

               1     159.011E-06 

               4     96.2284E-06 

              92     63.5564E-06 

              93     41.9497E-06 

              94     37.8331E-06 

              95     32.9945E-06 

              96     30.7737E-06 

              97     28.0447E-06 

              98     26.2138E-06 

              99     24.1531E-06 

             100     22.4190E-06 

             101     20.6757E-06 

             102     18.9835E-06 

             103     17.3336E-06 

             104     15.7234E-06 

             105     14.3164E-06 

             106     12.9111E-06 

             107     11.5337E-06 

             108     10.1556E-06 

             109     9.17284E-06 

             110     8.63657E-06 

             111     8.28316E-06 

             112     7.93408E-06 

             113     7.64108E-06 

             114     7.88899E-06 

             115     8.15488E-06 

             116     8.91196E-06 
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             117     9.78213E-06 

             118     10.6933E-06 

             119     11.6223E-06 

             120     12.5937E-06 

             121     13.5678E-06 

             122     14.6493E-06 

             123     15.8601E-06 

             124     17.5831E-06 

             125     19.4301E-06 

             126     21.4521E-06 

             127     23.5880E-06 

             128     25.9593E-06 

             129     28.2268E-06 

             130     31.0074E-06 

             131     33.4668E-06 

             132     35.7996E-06 

             133     35.8589E-06 

             134     36.9585E-06 

             135     36.8356E-06 

             136     39.0468E-06 

             137     39.4072E-06 

             138     44.7801E-06 

             139     48.1313E-06 

             140     80.6127E-06 

 

 

  Minimum            7.64108E-06 

         At Node             113 

 

  Maximum            159.011E-06 

         At Node               1 

 

           Total     1.43835E-03 

 

 

Field Output reported at nodes for part: STEM-1 

 

            Node       WearDepth 

           Label          @Loc 1 

--------------------------------- 

               3     10.6920E-06 

               6     17.6679E-06 

              31     8.95697E-06 

              32     5.34792E-06 

              33     4.97556E-06 

              34     4.37858E-06 

              35     4.33854E-06 

              36     4.09284E-06 

              37     4.10650E-06 

              38     3.98433E-06 

              39     3.97774E-06 

              40     3.71854E-06 

              41     3.44527E-06 

              42     3.13631E-06 

              43     2.88437E-06 
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              44     2.62089E-06 

              45     2.38357E-06 

              46     2.15890E-06 

              47     1.95368E-06 

              48     1.76223E-06 

              49     1.62770E-06 

              50     1.50753E-06 

              51     1.39931E-06 

              52     1.29137E-06 

              53     1.18815E-06 

              54     1.08690E-06 

              55     990.218E-09 

              56     906.097E-09 

              57     876.554E-09 

              58     849.008E-09 

              59     881.565E-09 

              60     920.351E-09 

              61     959.619E-09 

              62     1.01920E-06 

              63     1.12840E-06 

              64     1.28152E-06 

              65     1.43457E-06 

              66     1.59071E-06 

              67     1.74704E-06 

              68     1.92596E-06 

              69     2.10928E-06 

              70     2.29729E-06 

              71     2.49100E-06 

              72     2.68368E-06 

              73     2.91264E-06 

              74     3.11608E-06 

              75     3.41930E-06 

              76     3.66605E-06 

              77     4.20368E-06 

              78     4.66108E-06 

              79     7.06182E-06 

 

 

  Minimum            849.008E-09 

         At Node              58 

 

  Maximum            17.6679E-06 

         At Node               6 

 

           Total     159.816E-06 
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************************************************************************** 

After 15000000 load cycles  
************************************************************************** 

 

Field Output Report,  

 

Source 1 

--------- 

 

   ODB: D:/ * /Job-153.odb 

   Step: Step-2-DI 

   Frame: Increment     21: Step Time =    1.250 

 

Loc 1 : Nodal values from source 1 

 

Output sorted by column "Node Label". 

 

Field Output reported at nodes for part: HEAD-1 

 

            Node       WearDepth 

           Label          @Loc 1 

--------------------------------- 

               1     33.2728E-03 

               4     31.0825E-03 

              92     29.3809E-03 

              93     29.5517E-03 

              94     29.7007E-03 

              95     29.6065E-03 

              96     29.5770E-03 

              97     29.5559E-03 

              98     29.3954E-03 

              99     29.6209E-03 

             100     29.6098E-03 

             101     29.4115E-03 

             102     29.4816E-03 

             103     29.8956E-03 

             104     29.3891E-03 

             105     29.4623E-03 

             106     29.3937E-03 

             107     29.3634E-03 

             108     30.4583E-03 

             109     29.8974E-03 

             110     30.2769E-03 

             111     31.2162E-03 

             112     30.6636E-03 

             113     30.2316E-03 

             114     30.4105E-03 

             115     30.4972E-03 

             116     30.3309E-03 

             117     30.3441E-03 

             118     30.5013E-03 

             119     30.5977E-03 

             120     30.5660E-03 

             121     31.2472E-03 

             122     30.5756E-03 
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             123     30.4492E-03 

             124     30.5234E-03 

             125     30.4872E-03 

             126     30.4799E-03 

             127     30.4696E-03 

             128     30.4511E-03 

             129     30.6130E-03 

             130     30.3776E-03 

             131     30.3689E-03 

             132     30.5505E-03 

             133     30.6564E-03 

             134     30.4290E-03 

             135     30.4553E-03 

             136     30.3317E-03 

             137     33.0743E-03 

             138     29.2353E-03 

             139     30.5635E-03 

             140     32.5947E-03 

             175     21.7070E-03 

             176     29.6011E-03 

             177     33.3092E-03 

             178     29.3404E-03 

 

 

  Minimum            21.7070E-03 

         At Node             175 

 

  Maximum            33.3092E-03 

         At Node             177 

 

           Total         1.66063 

 

 

Field Output reported at nodes for part: STEM-1 

 

            Node       WearDepth 

           Label          @Loc 1 

--------------------------------- 

               3     10.6213E-03 

               6     3.71760E-03 

              31     3.30802E-03 

              32     3.37916E-03 

              33     3.40185E-03 

              34     3.35303E-03 

              35     3.30533E-03 

              36     3.42166E-03 

              37     3.51946E-03 

              38     3.30615E-03 

              39     3.28778E-03 

              40     3.53012E-03 

              41     3.35119E-03 

              42     3.29491E-03 

              43     3.38818E-03 

              44     3.40746E-03 

              45     3.39765E-03 
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              46     3.49141E-03 

              47     3.36716E-03 

              48     3.40137E-03 

              49     3.40226E-03 

              50     3.26029E-03 

              51     3.34663E-03 

              52     3.42553E-03 

              53     3.40296E-03 

              54     3.34831E-03 

              55     3.43209E-03 

              56     3.36561E-03 

              57     3.36250E-03 

              58     3.27721E-03 

              59     3.39932E-03 

              60     3.40750E-03 

              61     3.22452E-03 

              62     3.24147E-03 

              63     3.28411E-03 

              64     3.17278E-03 

              65     3.29568E-03 

              66     3.40147E-03 

              67     3.21280E-03 

              68     3.22062E-03 

              69     3.39012E-03 

              70     3.18755E-03 

              71     3.28931E-03 

              72     3.26759E-03 

              73     3.30292E-03 

              74     3.28102E-03 

              75     3.40530E-03 

              76     3.15670E-03 

              77     3.62169E-03 

              78     3.59860E-03 

              79     3.14197E-03 

             199     843.781E-06 

             200     2.01367E-03 

             201     3.28025E-03 

 

 

  Minimum            843.781E-06 

         At Node             199 

 

  Maximum            10.6213E-03 

         At Node               3 

 

           Total     184.515E-03 

 

 

  



Appendixes 

223 

 

Appendix IV: Publications  

Journal of Wear, 2015 

 

Available online: http://www.sciencedirect.com/science/article/pii/S0043164815003488 

 

 

 

 

 

 

  

http://www.sciencedirect.com/science/article/pii/S0043164815003488
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LJMU research conference, 2015 

Awarded the best research impact 

 
 

 

 



Appendixes 

225 
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Symposium on Modularity and Tapers in Total Joint Replacement Devices, New Orleans, 

USA, 2014 
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GERI Annual Research Symposium, 2013 
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Appendix V: Poster presentations 

 
Poster presented, LJMU Research conference, Liverpool, UK, 2015; Awarded the best 

research impact  
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Poster presented in American Society for Testing Material (ASTM) conference, New Orleans USA 2014 
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Poster presented in Simulia conference Crew UK 2013; Awarded the best poster presentation 



 

256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


