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Abstract

Classical novae (CNe) are interacting binary systems whose outbursts are powered by

a thermonuclear runaway in accreted material on the surface of a white dwarf (WD).

The secondary stars in such systems fill their Roche lobe and material is transferred

onto the WD primary star via an accretion disk.

Recurrent novae (RNe) show many similarities to CNe, but have had more than one

recorded outburst. They play an important role as one of the suspected progenitor

systems of Type Ia supernovae (SNe) which are used as primary distance indicators

in cosmology. Thus, it is important to investigate the nature of their central binary

systems to determine the relation between the parameters of the central system and

outburst type, and finally ascertain the population of novae that might be available to

give rise to the progenitors of Type Ia SNe. The investigation looking for character-

istics that may distinguish RNe from CNe systems, the selection of initial targets for

detailed study, and results of the investigation are presented in this thesis.

The proposal that RNe occupy a region separated from CNe in an outburst amplitude

versus speed class diagram was adopted. Since the low amplitude results from the ex-

istence of an evolved secondary and/or high mass transfer rate in the quiescent system,

RNe candidates should accordingly have low amplitude. The 93 novae with observed

V amplitudes given in the literature and 43 novae with photographic amplitudes have

been combined and plotted on an outburst amplitude versus rate of decline diagram

from which 16 target novae suspected to be RNe candidates were selected for photo-

metric and spectroscopic follow-up.

Quiescent photometric magnitudes and spectra were obtained using RATCam on LT,
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FRODOSpec on LT, and RSS on SALT. Spectral type and luminosity class determined

from the near-IR colour-magnitude diagrams were compared to those derived from

the spectra. Determination of spectral types was accomplished by identifying specific

lines and calculating indices from TiO bands, VO bands, and the Na atomic line for

giants (finding 4 stars) and sub-giants/giants (3 stars). A spectral library template was

used instead of the indices in cases of main-sequence stars (2 stars).

Our investigation also confirmed the positions of AR Cir, V794 Oph and EU Sct where

there had been some ambiguity previously. Ultimately, we suggest four prime RNe

candidates (2 novae with giant secondaries - V3964 Sgr and EU Sct, and 2 novae with

sub-giant secondaries - V794 Oph and V368 Aql) which are currently classified as

CNe, to look for more than one outburst in archival plates or large sample sky surveys

such as SMEI (see below).

By introducing the high cadence full-sky space-based observational archive of the So-

lar Mass Ejection Imager (SMEI) which operated on the Coriolis satellite from 2003-

2011, we derived light curves of one Mira (O Cet) as a general example and two novae

with known outbursts during 2003-2011 (V2467 Cyg and V1187 Sco). The SMEI light

curves potentially reveal more details than those given by ground-based observations.

The pre-maximum halt was found in V2467 Cyg as well as oscillations in light curves

found earlier than those found in previous studies. The precise date of maximum of

each nova was provided.

Four bright novae that are potentially RNe candidates (V4074 Sgr, V3964 Sgr, DK Lac

and V368 Aql) were searched for second outbursts in the SMEI data, but none were

found. Among the nova outbursts detected by SMEI, we found however unprecedented

detail in first class data of the Recurrent Nova T Pyx in its 2011 outburst.

We investigated the optical light curve of T Pyx during its 2011 outburst through

compiling a database of SMEI and American Association of Variable Star Observers

(AAVSO) observations. The SMEI light curve, covering t=1.5-49 days post-discovery,

was divided into four phases based on the idealised nova optical light curve; the ini-

tial rise (1.5-3.3 days), the pre-maximum halt (3.3-13.3 days), the final rise (14.7-27.9
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days), and the early decline (27.9 days, until the end of SMEI observations on day 49).

The SMEI light curve contains a strongly detected period of 1.44±0.05 days during

the pre-maximum halt phase. These oscillations resemble those found in recent TNR

models arising from instabilities in the expanding envelope. No spectral variations that

mirror the light curve periodicity were found however. The marked dip at t∼22-24

days just before light curve maximum at t=27.9 days may represent the same (shorter

duration) phenomenon seen in other novae observed by SMEI and present in some

TNR model light curves.

The spectra of T Pyx from the 2m the Liverpool Telescope and the Small and Mod-

erate Aperture Research Telescope System (SMARTS) 1.5m telescope were obtained

from t=0.8-80.7 and 155.1-249.9 days, covering the major phases of development. The

nova was observed very early in its rise where a distinct high velocity ejection phase

was evident with derived Ve j∼4000 km s−1 initially. A marked drop at t=5.7 days, and

then a gradual increase occurred in derived Ve j to stabilise at ∼1500 km s−1 at the pre-

maximum halt. Here we propose two different stages of mass loss, a short-lived phase

occurring immediately after outburst and lasting ∼6 days followed by a more steadily

evolving and higher mass loss phase. The overall spectral development follows that

typical of a Classical Nova and comparison with the photometric behaviour reveals

consistencies with the simple evolving pseudo-photosphere model of the nova out-

burst. Comparing optical spectra to X-ray and radio light curves, weak [Fe X] 6375Å

emission was marginally detected before the X-ray rise and was clearly present during

the brightest phase of X-ray emission. If the onset of the X-ray phase and the start of

the final decline in the optical are related to the cessation of significant mass loss, then

this occurred at t∼90-110 days.

Farung Surina March 3, 2014

v



Publications

In the course of completing the work presented in this thesis, the following papers have

been published.

Surina, F., Bode, M. F., & Darnley, M. J., 2013, ‘Investigation of the Progenitors

of Nova Explosions’, The 11th Asian-Pacific Regional IAU Meeting 2011, NARIT

Conference Series, Vol. 1, p161-164

Surina, F., Hounsell, R. A., Bode, M. F., Darnley, M. J., Harman, D. J., Walter, & F.

M., 2013 , ‘Spectroscopic and Photometric Development of T Pyxidis (2011) from 0.8

to 250 Days After Discovery’, Stella Novae: Future and Past Decades, ASP Confer-

ence Series, P. A. Woudt and V. A. R. M. Ribeiro, eds, arXiv-eprint 1303.6592

Darnley, M. J., Bode, M. F. and Harman, D. J., Hounsell, R. A., Munari, U., Ribeiro,

V. A. R. M., Surina, F., Williams, R. P., & Williams, S. C., 2014, Stella Novae: Future

and Past Decades, ASP Conference Series, P. A. Woudt and V. A. R. M. Ribeiro, eds,

arXiv-eprint 1303.2711

Surina, F., Hounsell, R. A., Bode, M. F., Darnley, M. J., Harman, D. J., & Walter,

F. M., 2014 , ‘The Detailed Photometric and Spectroscopic Study of the Recurrent

Nova T Pyxidis (2011) from 0.8 to 250 Days After Discovery’, Astronomical Journal

(accepted)

Farung Surina January 2014

vi



Acknowledgements

First and foremost, I would like to thank my supervisors Professor Mike Bode and

Dr. Matt Darnley for all their guidance, help and support throughout my PhD. I am

so grateful for their patience and encouragement for keeping me going when the end

seemed unreachable. Their hard work is very much appreciated.

I would also like to express my gratitude to Professor Fred Walter and Professor Sum-

ner Starrfield for reading manuscripts, additional help and many useful discussions.
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Chapter 1

Introduction

1.1 Historical Perspective of Nova Explosions

Nova from stella nova, first mentioned around AD 75 by Hipparchus, means a new

star. This new star of Hipparchus was later considered to be a meteor or a comet, but

the term ‘nova’ continues to be used with a different meaning as a star that suddenly

increases its light output tremendously and fades away to its former obscurity in a

few months or years. Until the 1920s, novae and supernovae were classed together.

However some novae in spiral galaxies appeared to be as bright as their host galaxies

such as S And in M31 and Z Cen in NGC 5253, and supernovae were subsequently

designated as the more luminous stellar explosions (Duerbeck, 2008).

Lundmark (1935), for the first time, classified novae into three groups according to the

absolute magnitude and the frequency of the outburst as follows: supernovae with Mmax

at -15 and frequency of 1 per 50 years in the Milky Way, ordinary novae with Mmax at

-7 and frequency of 50 per year, and finally those that are designated as dwarf novae

with Mmax at +3 or +4. Ordinary novae, which might be defined as classical novae

(CNe) including the Recurrent Novae (RNe) subtype, and the up-to-date frequency of

novae will be explained in Sections 1.2 and 1.3, respectively.

Unlike ordinary novae (CNe and RNe), dwarf novae (DNe) explode due to the increas-

1
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ing mass flow through accretion disks. As a result, their outburst amplitudes of order

a few magnitudes, are much smaller than those of CNe and RNe. The relationship

between CNe, RNe and DNe has long been established (Warner, 1995). The debate

over the relationship of RNe to SNe Ia continues (Bode, 2010) and will be explained

in Section 1.7.

1.2 Outbursts of Classical Novae and Recurrent Novae

1.2.1 Classical Novae

Classical novae (CNe) are interacting binary systems whose outbursts are powered by a

thermonuclear runaway (TNR) on the surface of a white dwarf (WD). Meanwhile their

secondary stars are filling their Roche lobe and transferring material onto the white

dwarf primary stars via accretion disks (Starrfield, 2008a) as shown in Figures 1.1 and

1.2.

Figure 1.1: The equipotential surfaces in a binary system. The lines represent the effective
gravity in the co-rotating frame of a binary system with a mass ratio (M1/M2) of 2. The points
of zero effective gravity are the Lagrangian points (L1,2,3,4,5). The Roche lobes are the equipo-
tential surfaces that only intersect at L1. In this Figure, the secondary star has filled its Roche
lobe and is transferring material to the primary (Picture modified from Baraffe et al. (1998)).
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Figure 1.2: Schematic illustration of the initial formation of a ring and its evolution into a disk.
Image from Verbunt (1982).

Thermonuclear Runaway

The cause of the nova explosion is the runaway effect of a nuclear chain reaction on

the surface of a WD (Hellier, 2001; Starrfield, 2008b). This can be explained step by

step as follows:

1. The WD is the remnant core of a star once nuclear burning has ceased. That

is, most of the hydrogen in the core has burnt into helium, carbon, and other

heavier elements. Thus, fresh hydrogen must be supplied to the WD from a

donor secondary star in order to ignite the nuclear reactions again.

2. When material, mainly hydrogen, from the secondary star is transferred to the

WD via an accretion disk, the material builds up on the WD surface, and the

lowest layers are degenerate.
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3. Pressure from degenerate electrons is very high and exceeds the thermal pressure

of electrons at the WD surface.

4. As material is accreting, temperature and density are increasing. The main nu-

clear reactions finally ignite. Helium can be produced in two processes either

pp-chain or CNO cycle. The pp-chain (the nuclear energy generation rate per

unit volume, εnuc, ∝ T 4) which is important during the accretion phase becomes

efficient at T∼106 K while the CNO cycle (εnuc ∝ T 18) which is important during

TNR and explosion becomes efficient at T∼107 K.

5. Unlike in non-degenerate matter where pressure depends on temperature and

matter will expand to cool down when temperature is high to moderate a system,

degeneracy pressure is solely dependent on density. As a result, matter does not

expand to moderate the burning rate. Thus as the temperature increases, εnuc

increases but with no expansion, temperature rises again, hence TNR.

6. When the CNO cycle becomes dominant, in the early stage, energy is transferred

by convection due to the temperature gradient between the hot inner layer and

the cooler outer layer.

7. Then the runaway effect speeds up as the temperature reaches 108 K producing

energy at a rapidly increasing rate that heats up the entire envelope and finally

stops the convection.

8. Finally, the energy must be released by β-decay particles, the output of both

pp-chain reactions and CNO cycle reactions, to help eject material off the WD.

Since their half-lives of ∼100 s are longer than hydrodynamic expansion time in the

outer layer, these β-decay nuclei decay when the temperature in the envelope declines

to values that are too low for a proton capture to occur. This yields the isotopic ratios

of C, N, O, Ne, and Mg in the ejected material which are different from the predicted

values of equilibrium (Starrfield, 2008b).
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Initial Conditions for the Outburst

The critical parameter which determines the strength of the outburst is the pressure at

the base of the accreted envelope. Starrfield (2008b) provides the initial condition of

the outburst

Pcrit ≈
GMWDMcrit

4πR4
WD

(1.1)

where Pcrit is the critical pressure at the bottom of accreted layer, Mcrit is is the critical

ignition mass of accreted envelope and can be estimated from the mass-radius relation

of WDs, and MWD and RWD are mass and radius of the WD. If Pcrit is assumed to

be ∼1020 dyne cm−2, then Mcrit can range from less than 10−5M� for WDs near the

Chandrasekhar limit (i.e. MWD∼1.4M�) to values exceeding 10−2M� for MWD=0.5M�.

In order to make the TNR occur on a short time scale, the WD has to be massive

and luminous and the mass accretion rate (Ṁacc) needs to be high (Starrfield, 2008a)

implying that the secondary star has to be evolved. First, a massive WD is required

because the large amount of mass is necessary for TNR ignition. Second, the more

luminous or higher temperature at the surface of the WD initiates a larger nuclear

burning rate and energy release in the accreting material. This allows a TNR to occur

more easily. Finally, the more evolved secondary star loses mass at the larger rate than

the less evolved one. The Ṁacc is higher as a result. Moreover, the strength of the

outburst is also a function of WD composition and accretion rate.

The one basic problem in obtaining very short recurrence periods is the fact that at very

high Ṁacc (Ṁacc&10−8M� yr−1 for MWD.1M�), ignition has generally been thought to

occur under only mildly degenerate conditions and then only a weak flash will be

obtained as a consequence. The only way to avoid the fact that the high accretion rates

would suppress the strength of the outburst would then be to accrete materials onto a

WD with a mass close to the Chandrasekhar limit (Webbink et al., 1987).

Hillman et al. (2013) have recently produced model UV, visible and X-ray light curves

for a range of system parameters. They show that the evolutionary timescales of nova
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features, from before eruption to the decline stage, depend on the basic nova parame-

ters which are mass of WD, luminosity and accretion rate.

Speed Class

Novae have characteristics in their light curves leading to a classification based on the

light curve decay times t2 and t3 which represent the time a nova takes to decay by

2 and 3 magnitudes, respectively. This speed class was introduced by McLaughlin

(1939) and redefined by Payne-Gaposchkin (1964). Warner (2008) compiled a set of

light curves from a catalogue and derived the relations t3 =2.10t2 for fast/very fast

novae and t3 =1.75t2 for moderate fast/slow/very slow novae. Table 1.1 taken from

Warner (2008) presents the definition of speed class of CNe which are given by Payne-

Gaposchkin (1964) in the first two columns and the calculated t3 in the last column.

More details of novae light curves and the relation of maximum magnitude and rate of

decline (MMRD) will be described in Section 1.4 and Chapter 2, respectively.

Table 1.1: Definition of speed class of CNe given by Payne-Gaposchkin (1964).

Class t2 (days) t3 (days)
very fast <10 <20

fast 11-25 21-49
moderate fast 26-80 50-140

slow 81-150 141-264
very slow 151-250 265-440

1.2.2 Recurrent Novae

Recurrent novae (RNe) are, by definition, CNe with multiple recorded outbursts and

may contain evolved secondaries (Anupama, 2008). There are 10 known Galactic RNe

and they group themselves into three distinct subtypes:

1. RS Oph type (T CrB, RS Oph, V745 Sco and V3890 Sgr) have long orbital pe-

riods (∼102 d). Their red giant secondary stars make them similar to symbiotic



1.2. Outbursts of Classical Novae and Recurrent Novae 7

systems. The mass transfer rate and outburst ejection velocities are high (&4,000

km s−1). Light curves decline rapidly after outbursts (∼0.3 mag/day). This sub-

type of RNe has strong evidence for interaction between ejecta (∼3-4×10−6M�.)

and a pre-existing circumstellar wind from the red giant.

2. U Sco type (U Sco, V394 CrA and V2487 Oph) have short orbital periods (∼1

d). The secondaries are main-sequence stars or sub-giants. Outburst ejection

velocities are extremely high (∼10,000 km s−1) with ejected mass ∼ 10−7M�.

They decline very rapidly, especially U Sco which is the fastest nova observed.

The quiescent spectra are dominated by He lines unlike those in typical novae.

3. T Pyx type (T Pyx, CI Aql and IM Nor) have very short orbital periods (∼hours)

similar to typical CNe and show relatively slow light curve decay with oscilla-

tions in the transition region of the light curves; ejected mass ∼10−5M�. Anu-

pama (2008) and Darnley et al. (2011) grouped CI Aql as a T Pyx type RN due

to their similarity in the light curves and outburst spectra which resemble Fe II

CNe, but sometimes it is grouped as a U Sco type RN due to its orbital period of

0.6 day.

According to the orbital period, the U Sco and T Pyx type are classified as cataclysmic

variables: short period close binary systems consisting of late type main-sequence

secondary stars filling their Roche lobes and WD primary stars, similar to CNe. Mean-

while the T CrB type fall into the class of symbiotic variables: long period close binary

systems with late type giant secondary stars, because their orbital periods are much

longer than typical CNe or cataclysmic variables in general (Starrfield, 2008a).

RNe have been proposed as one of the primary candidates for the progenitors of Type

Ia Supernovae through the single degenerate scenario believing that a WD can grow

in mass up to the Chandrasekhar limit (1.4M�) if accreted mass is larger than ejected

mass after eruption during each outburst cycle (see e.g. Kotak, 2008 and Section 1.6

below).
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1.3 Frequency and Distribution of Galactic Novae

The frequency of Galactic classical novae over the past century is presented in Table

1.2 showing that the fainter novae tend to be found more frequently than the brighter

ones. Many bright novae may be undetected because they fade faster. The total mean

detected Galactic novae rate calculated from Table 1.2 is ∼3 yr−1.

However, Figure 1.3 showing the distribution of classical novae in Galactic coordinates

using data from Downes et al. (2005) implies that fast novae are clustered around the

Galactic disk while slow novae are more prevalent in the bulge. Therefore it is also

possible to conclude that the data in Table 1.2 has underestimated the number of fast

novae due to the difficulty of observation along the Galactic plane (Warner, 2008).

Figure 1.3: The distribution in Galactic coordinates of Classical Novae (from Warner, 2008).
Closed circles are 132 fast novae, open circles are 40 slow novae, and crosses are 58 uncate-
gorised novae.

When taking the effect from interstellar extinction into account, a total Galactic nova

rate of 34 yr−1 is proposed by Darnley et al. (2006). However in recent years, ∼800

yr−1 are now discovered for M31 (Pietsch, 2010).
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Table 1.2: Average rate of nova discovery in Warner (2008)

mV (max) Discovery rate mV (max) Discovery rate
(mag) (yr−1) (mag) (yr−1)

<1 0.04 4-5 0.05
1-2 0.02 5-6 0.14
2-3 0.04 6-7 0.47
3-4 0.03 7-8 0.58

1.4 Light Curves of Novae

The idealized nova optical light curve is shown in Figure 1.4. This comprises nine

distinct phases (Warner, 2008).

1. Pre-nova: The base line of a nova’s brightness at quiescence.

2. Initial rise: The nova rises in brightness very rapidly so it is rarely caught in this

phase.

3. Pre-maximum halt: In many novae, there is a pause at about 2 magnitude below

maximum for a few hours for fast novae to a few days for slow novae.

4. Final rise: The nova then carries on to its maximum brightness taking a couple

of days for fast novae to several weeks for slow novae.

5. Maximum: When an outburst occurs, it will stay at the maximum for a few hours

for fast novae to a few days for slow novae.

6. Early decline: It then begins to decrease in brightness down to approximately

3.5 magnitudes from maximum.

7. Transition: Between 3.5 to 6 magnitudes below maximum, the light curve can

be smooth, show ∼1.5 magnitude oscillation with period ∼ 5-15 days, or a deep

drop down for months due to the formation of dust which is evident in infrared

observations.
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8. Final decline: After the novae recover from the transition phase, they continue

to be fainter by 6 magnitudes from maximum.

9. Post nova: Finally the brightness should meet the base line again.

Figure 1.4: The Morphology of a nova light curve (from Darnley, 2005).

In the 1970s, it was revealed that at outburst the sum of optical and infrared ener-

gies remains approximately constant at ∼1.5×104L�. The bolometric luminosity was

also proved to be constant since the drop in visual flux and the rise in ultraviolet were

shown to balance in the early decline phase. The changes in brightness at different

wavelengths are largely due to the decrease in optical depth of the ejected shell (Gal-

lagher & Code, 1974). This was investigated in more detail by Bath & Harkness (1989)

in terms of evolution of the mass loss rate from the surface of the WD and the subse-

quent effect on the effective radius and temperature of the pseudo-photosphere in the

ejected material (see Chapter 6 for more details).

Most novae in immediate pre-eruption and eventual post-eruption stages have similar

brightness, except few a novae (i.e. GQ Mus, CP Pup, V1500 Cyg, V2214 Oph, V1874

Cyg, and RN UMi) which are very faint at pre-eruption but significantly brighter at

post-eruption (Warner, 2008).
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Novae at post-eruption quiescence are powered by accretion luminosity which arises

largely in a roughly two-dimensional disk. This implies that their observed magnitude

depends extremely on the inclination. Thus the effect of the inclination on MV is one of

the most direct ways the prove the existence of an optically thin disk in such systems

(Warner, 1987).

1.5 Spectra of Novae

Many studies reveal that the spectra of novae change dramatically through the outburst

until quiescence. These spectral changes are related to different phases of the nova

light curve.

1.5.1 During Eruption

Payne-Gaposchkin (1964) proposed that novae during eruption usually have sequences

of absorption lines and overlapping sequences of emission lines as follows.

1. Pre-maximum spectrum: Few spectra have been obtained during the pre-nova

and initial rise phase. Spectra dominated by broad blue-shifted absorption lines,

usually resembling stars in the range from B5-F5, have been obtained. Widths

of absorption lines are indicative of the expansion velocities which range from

1300 km s−1 for fast novae to 100 km s−1 for slow novae (Warner, 2008).

2. Principal spectrum: This spectrum appears around visual maximum. Therefore,

at this phase, absorption lines show more blue-shifted components and contain

multiple structure and more enhancement of C, N, or O than in previous phases.

At maximum, or immediately after that, absorption lines develop P Cyg profiles

which are strongest in H I, Ca II and Fe II. The relation between velocities of ab-

sorption lines and speed class given by McLaughlin (1960) is shown in Equation

1.2.

log Ve j(kms−1) = 3.70 − 0.5 log t3(d) = 3.75 − 0.5 log t2(d) (1.2)
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A few days after maximum, emission lines of [O I], [N II], and [O III] appear

respectively.

3. Diffuse enhanced spectrum: This pattern is similar to the principal spectrum but

twice as broad and blue-shifted and appears very shortly after maximum. The

relation between velocities of absorption lines and speed class in this spectral

region given by McLaughlin (1960) is shown in Equation 1.3.

log Ve j(kms−1) = 3.81 − 0.41 log t3(d) = 3.71 − 0.41 log t2(d) (1.3)

4. Orion spectrum: This name was assigned since it is similar to the spectra arising

from the stellar wind of OB stars in the Orion nebula. Absorption lines are

usually single, diffuse, and blue-shifted. The velocities become steadily larger

until the Orion spectrum disappears. There is not much dramatic change in either

optical absorption nor optical emission lines. However the strong nitrogen flare

due to the enhancement of N III, and O I flash due to O I 7772 and 8448 Å to

rival Hα in strength, may occur.

In the ultraviolet, the emission lines do not change much but only increase in

equivalent width as the continuum decays. This is a result of reducing the opacity

of outer layers to become optically thin. That is the envelope is initially hot and

ionized in the inner layers but still neutral or little ionized in the outer layers. The

density of the outer layer decreases as it expands and becomes optically thin. As

a result, the pseudo-photosphere is effectively moving inward.

5. The nebular spectrum: This is a final distinctive stage with an entirely emission

spectrum. This stage is similar to a planetary nebula which at first maintains the

[O I] and [N II] and then produces the [O III] and [Ne III] lines. Coronal lines

can even develop if temperature rises over 106 K and such lines also can be seen

in the ultraviolet.

6. The post-nova spectrum: The ejected shell is resolvable and the individual com-

ponents of the ejecta can be measured. There are recombination lines of H, He,

C, N, O, N III and strong Balmer continuum emission.
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Williams (1992) has also grouped the novae on the basis of their strong post-outburst

emission lines into 2 classes, the Fe II novae and the He/N novae as shown in Figure

1.5. First, the Fe II novae containing prominent Fe II lines are believed to evolve more

slowly, have a lower level of ionization, and show P Cyg absorption profiles. More

than half of Fe II novae develop standard forbidden lines. Their narrow Fe II spectrum

is suggested to be formed in a wind. Second, the He/N novae contain stronger He and

N lines with larger expansion velocities and higher levels of ionization. The spectral

evolution is fast and results in coronal lines, very strong neon lines, or no forbidden

lines at all. Their broader and more flat-topped lines with little absorption are suggested

to be formed in the shell ejected at maximum.

1.5.2 In Quiescence

The spectrum of a nova at quiescence consists of 2 components including the hot com-

ponent, contributed by the primary star and the disk, and the cool component which

is generated from the secondary star. At quiescence, the optical spectra of the longer

orbital period RNe are dominated by that of the red giant (Anupama & Mikołajewska,

1999).

Spectra of quiescent novae, with a blue continuum and either, or both, broad Balmer

absorption or emission lines, both in pre-and post-eruption, are the consequence of a

high Ṁacc thick disk similar to those seen in cataclysmic variables. The line strength

(e.g. equivalent width) correlates with inclination therefore the continuum would be

strong while the absorption and emission lines would be relatively weak if a nova is

face on (Warner, 1987). The emission lines of He II 4686 Å, and C III/N III 4650 Å dis-

tinguishing quiescent novae from dwarf novae are the results of the hot central source

(i.e. the heated primary star) which acts as the source of ionization (Warner, 2008).

The ultraviolet and optical spectra of quiescent novae are suggested to be variable due

to the fluctuations in Ṁacc and the changes in the column density of the optically thick

wind envelope (Anupama & Mikołajewska, 1999).

Kenyon & Fernandez-Castro (1987) presented evidence that the red TiO bands at 6180
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Figure 1.5: Spectra showing typical Fe II novae (top) and He/N novae (bottom). Image from
Williams (1992).
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Å and 7100 Å together with VO 7865 Å and Na I doublet at 8190 Å were a good

indicator for K-M stars in symbiotic systems. Thus, one may use [TiO], [VO], and

[NaI] indices defined by Kenyon & Fernandez-Castro (1987) to identify the spectral

type and luminosity class of the giant secondaries. A proposal that the NIR and IR

colour-colour diagram can help to indicate the red giant secondary stars was provided

by Harrison (1992), Weight et al. (1994), Darnley et al. (2011) and Darnley et al. (2012)

(see e.g. Chapter 2. Section 2.2).

1.6 Progenitors of Type Ia Supernovae

RNe play an important role as one of the suspected progenitor systems of Type Ia su-

pernovae (SNe) which are used as primary distance indicators in cosmology (Parthasarathy

et al., 2007). It is important therefore to investigate the nature of central binary systems

and outbursts of CNe and RNe to determine if they might ultimately be candidates for

Type Ia SNe explosions.

Type Ia SNe, one of the most energetic transient events in the Universe, are thought

to either result from the single degenerate (SD) channel proposed by Whelan & Iben

(1973) or the double degenerate (DD) channel proposed by Iben & Tutukov (1984).

The SD scenario suggests that Type Ia SNe result from the runaway thermonuclear

burning of Carbon in a WD which has grown up to the Chandrasekhar limit (∼1.4M�)

by accreting material from a close binary companion. The primaries in suspected RNe

must comprise a CO, not ONe, WD if there is indeed a link between RNe and Type Ia

SNe (Kotak, 2008). On the other hand, the DD scenario suggests that Type Ia SNe are

a consequence of the merging of two WDs in a binary system due to the emission of

gravitational radiation where the orbit shrinks as a result. A donor in the SD system is

a non-degenerate main-sequence to giant star while that of DD is another degenerate

WD.

Some population syntheses favour the DD scenario (e.g. Yungelson & Livio, 1998)

and recent observational studies have identified many DD binaries (e.g. Marsh, 2000).
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Yet, none of the observed DD systems has both a potential period short enough (i.e.

orbital period∼10 hours) to merge in a Hubble time and a total mass that exceeds the

Chandrasekhar limit (Napiwotzki et al., 2004). The merging between two CO WDs

may also lead to a neutron star instead of a Type Ia SN (Langer et al., 2000; Yoon &

Langer, 2003; Han & Podsiadlowski, 2004).

In terms of the SD model, recent theoretical work found that WDs in the SD scenario

can reach the Chandrasekhar limit (Han & Podsiadlowski, 2004; Walder et al., 2008;

Newsham et al., 2013). As a result, the SD scenario is generally preferred. Different

SD models can be distinguished based on the nature of the secondary star: the WD

can accrete either from a wind (the “symbiotic channel” - Munari & Renzini, 1992),

by Roche lobe overflow (the “RLOF channel” - van den Heuvel et al., 1992), or by

mass transfer from a helium star (the “helium star channel” - Nomoto, 1982; Liu et al.,

2010). The secondary star in the symbiotic channel is often a red giant, while it is a

subgiant or main-sequence star in the RLOF channel.

There is still great debate about the relative importance of each channel however. The

lack of the ex-companion star when looking at the centre of a known SN Ia remnant

SNR 0509-67.5 appears to suggest the DD progenitor as the only remaining possibility

in this case (Schaefer & Pagnotta, 2012).

In addition, the extensive imaging at the location of SN 2011fe/PTF11kly constrains

the visible light luminosity of the progenitor to be 10-100 times fainter than the pre-

vious limit of SNe Ia progenitors, and then obviously favours either the DD or SD

scenarios via the RLOF channel (Li et al., 2011). Luminous red giants and helium

stars are now ruled out for being the donor to the exploding WD. RNe systems such as

RS Oph and T CrB are now therefore in doubt as to whether they led to the explosion

in this case.

On the other hand, a series of high-resolution optical spectra of the SN Ia PTF11kx

revealing a complex environment of multiple shells of circumstellar material are best

described by a symbiotic nova progenitor, similar to RS Ophiuchi (Dilday et al., 2012).

In addition, Schaefer (2010) proposed that the short-period RNe (T Pyx and IM Nor)
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having short orbital period (.0d.3) have their accretion driven by the heating from

WDs, have long evolutionary cycles, and therefore will not become SNe Ia. Mean-

while the long-period RNe (the other 8 RNe) have their accretion driven by the steady

expansion of secondary stars, have short evolutionary cycles, and will become SNe Ia.

In summary, although the RLOF channel with subgiant or main-sequence secondaries

is currently marginally favoured, there is still no firm conclusion as to the exact pro-

genitors of Type Ia SNe even via this route.

1.7 Open Questions

Although there has been a tremendous increase in our knowledge of the cause and con-

sequences of the nova explosion over the past 50 years, there are still many important

questions which remain to be answered. The following are all of those given in Bode

(2010).

- Can we use novae to help to understand the evolutionary history of binary stars? The

evolutionary track from the binary star to the nova phase itself can be studied from

rare novae such as GK Per and V458 Vul where we see the planetary Nebula from a

pre-nova phase still surrounds the objects.

- Is there a continuum of inter-outburst timescales from CNe to RNe, or sub-type of

RNe at least?

- The durations of the super-Eddington and bolometric plateau phases are not yet de-

termined accurately.

- Does the model of TNR need to be reexamined? There is a significant discrepancy

between the ejected mass derived from the models compared to that from the observa-

tions.

- What is the cause of variability seen around maximum light in several novae? In

addition, a nova after outburst is expected to behave as a supersoft source (SSS) emit-

ting soft X-rays whenever the steady H-burning at the base of WD’s envelope heats



1.8. This Work 18

up the WD’s photosphere Te f f from few 105 to 106 K while the expanding envelope is

becoming optically thin to X-rays at the same time. However, the causes of the large

variability during the emergence of SSS in RS Oph and other novae is still unknown.

- Does the MMRD relationship need to be refined? The debate between linear and non-

linear relations, which states that more slow novae in the sample makes the MMRD

more linear (Warner, 2008), can be improved by using an appropriate sub-set of CNe

as the sample and by improving the homogeneity and cadence of nova observations

both Galactic and extragalactic.

- Do RNe act as progenitors of Type Ia SNe? Although WDs in systems like RS Oph

and U Sco seem to gain mass and be very close to the Chandrasekhar limit, several

questions remain: For example, what is the type of WD?; can the H in such systems

really be hidden at the time of SN eruption? Is there a sufficient population of RNe to

explain the Type Ia SNe rate?

- Can we identify potential RNe among the known CNe? Using the fact that RNe

should contain more highly evolved secondary stars is a promising, if challenging, line

of enquiry.

- How many bright novae are we missing each year? Since bright novae may fade

faster, it is possible that we might miss a number of these.

1.8 This Work

The work described in this thesis has the overall aim to address several of the questions

above.

In particular, we describe the use of complementary data from different facilities,

such as the Liverpool Telescope (LT), Southern African Large Telescope (SALT), and

Small and Moderate Aperture Research Telescope System (SMARTS) to perform spec-

troscopy of selected CNe systems identified from their anomalous outburst amplitudes

to investigate the nature of their central systems. In Chapter 2, the criteria and method
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of target selection are explained in order to look for characteristics that may distinguish

RNe and CNe systems. In Chapter 3, details of observations and data reduction are pre-

sented and in Chapter 4, we describe the detailed investigation of the 16 old Galactic

novae in quiescence which are suspected RNe based on their low outburst amplitudes

and and accessibility for observations. Positions of targets on colour-magnitude dia-

grams and characteristics of the spectra are investigated to ascertain the spectral type of

the secondary stars and also to compare to those of the known Galactic RNe. We then

determine whether or not these show characteristics that merit further investigation as

potential RNe.

Chapter 5 introduces the Solar Mass Ejection Imager (SMEI) database which has the

potential to be searched for outbursts of bright novae that have otherwise gone un-

recorded. It also allows the investigation of whether known CNe may have had addi-

tional otherwise unrecorded outbursts and hence show characteristics of RNe. Light

curves derived for some bright objects are presented.

In Chapter 6, an investigation of the physics of the outburst and spectroscopic evolution

of the Recurrent Nova T Pyx in its 2011 outburst is described. The unprecedented

detail of SMEI photometric observations is compared to the spectra of T Pyx obtained

by the LT and SMARTS telescopes. The investigations of how the spectra evolve

together with brightness are presented in order to determine the origin of light curve

variability in the early stage of the nova outburst and comparison is made to TNR

models.

A summary, conclusions, and future work are presented in Chapter 7.



Chapter 2

Selection of Potential Recurrent Novae

among the Classical Novae

2.1 Introduction

As noted in Chapter 1, of the approximately 400 known Galactic novae, only 10 of

them have more than one recorded eruption and are thus so called RNe. At least

eight of these RNe are known to harbour evolved secondary stars rather than the main

sequence secondaries which are found to be typical for CNe (Darnley et al., 2012).

On the basis of the evolved secondaries, the novae must be brighter at quiescence than

CNe and then have a lower outburst amplitude as a result. Therefore the relationship

between outburst amplitude, rate of decline and absolute magnitude is investigated and

applied in this Chapter to distinguish the possible RNe among CNe.

2.2 Relationships between Amplitude, Rate of Decline

and Absolute Magnitude

Since brighter novae were found to fade faster, the relation of maximum magnitude and

rate of decline (MMRD) is often cited as a possible extragalactic distance indicator.

20
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MMRD relationships were suggested to be more linear if the sample includes more

slow novae (Warner, 2008). The linear MMRD relationship is usually expressed as

follows

Mmax = an log tn(d) + bn (2.1)

where Mmax is the absolute magnitude in the V , B, or photographic band at maximum

and n is 2 or 3. Table 2.1 shows typical values of an and bn adopted from Warner

(2008).

Table 2.1: Typical values of MMRD constants adopted from Warner (2008).

M n an bn

pg 3 2.4 -11.3
B 3 1.80 (±0.20) -10.67 (±0.30)
V 2 2.41 (±0.23) -10.70 (±0.30)
V 2 2.52 (±0.32) -11.32 (±0.44)
V 3 2.54 (±0.35) -11.99 (±0.56)

The emitting region of a nova during eruption is roughly spherically symmetric, while

in post-eruption quiescence it is powered by accretion luminosity which depends on

the disk inclination. Warner (1987) proposed

A′ = MV(max) − M′
V(min) (2.2)

where A′ is the observed amplitude with unknown inclination and M′
V(min) is the ab-

solute magnitude at minimum with unknown inclination. This can be assumed to be

an average MV(min) over all speed class, MV(min) (=3.8, adopted from Warner, 1986).

MV(max) is the absolute magnitude at maximum which is independent of inclination

because of the assumption of spherical symmetry at eruption. We note that A′ is inde-

pendent of distance and reddening. However A′ , 4MV(i) which is the amplitude with

known inclination.

Since the A′ values are uncorrected for inclination of the disks, the effects of inclination
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Figure 2.1: Amplitude-rate of decline relationship for CNe from Warner (1987). The amplitude
A′ values are uncorrected for inclination of the disks; the effects of inclination are shown by
the diagonal lines where inclinations 0◦, 56◦.7, 73◦.7, 82◦.4 correspond to ∆MV=-1, 0, 1, and
2 respectively - see text for more details.
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are shown by the diagonal lines in Figure 2.1 which shows data for a large sample of

novae from Warner (1987). This variation in absolute magnitude of an accretion disk

can be expressed as a function of inclination as given by Paczynski & Schwarzenberg-

Czerny (1980) as follows

∆MV(i) = −2.5 log [cos i +
3
2

cos2 i] (2.3)

where ∆MV=-1, 0, 1, 2, 3 and 4 correspond to inclinations 0◦, 56◦.7, 73◦.7, 82◦.4,

86◦.7, and 88◦.6 respectively.

Thus, knowing A′, tn and inclination i, one may be able to trace the true value of 4MV(i)

as shown in Figure 2.1. For example, DQ Her has a known inclination of 89◦ which

corresponds to ∆MV∼4 by using Equation 2.3. Then the position corrected for the

inclination effect should be ∼4 magnitudes vertically down from its observed position.

We now describe the use of this diagram to look for the potential RNe among the CNe

population.

2.3 Criteria of Selection

The proposal that RNe occupy a region separated from CNe in an amplitude-t3 diagram

initially suggested by Duerbeck (1988b), was adopted. The low amplitude results from

the existence of an evolved secondary and/or high mass transfer rate in the quiescent

system.

Among many catalogues providing A′ and t3, a catalogue given by Strope et al. (2010)

provides details of many well-observed nova light curves in V magnitude. Meanwhile a

catalogue produced by Duerbeck (1988a) provides another sample with photographic

magnitudes. Therefore 93 novae with V amplitudes from Strope et al. (2010) and

43 novae with photographic amplitudes from Duerbeck (1988a) were combined and

plotted on an A′ versus t3 diagram as shown in Figures 2.2 and 2.3, respectively, from

which the initial targets that are suspected to be RNe candidates were selected. All
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data plotted for target selection are listed in Table 2.2.

Figure 2.2 shows that all Galactic RNe occupy the bottom area of the plot representing

the low V amplitude region among the CNe. A solid diagonal line represents a typi-

cal CNe trend line calculated by using the MMRD relation from Equation 2.1 where

[MV]min = 3.8 is an average [MV]min over all speed class adopted from Warner (1986),

and coefficients a and b for V magnitude are adopted as 2.54 and -11.99 from Table

2.1. Since the A′ values are uncorrected for inclination of the disks, the effects of incli-

nation are shown by the diagonal lines calculated from Equation 2.3 where ∆MV=-1,

0, 1, 2, 3 and 4 correspond to inclinations 0◦, 56◦.7, 73◦.7, 82◦.4, 86◦.7, and 88◦.6

respectively.

Figure 2.3 also shows the same relations with respect to photographic amplitudes. The

typical CNe trend line was plotted from the same equation (2.1) but with coefficients

a=2.4 and b=11.3 from Table 2.1 for photographic magnitude.

Sixteen targets, including known RNe, were initially selected according to their devia-

tion (the amplitude difference) from the typical CNe line from both catalogues. Among

them, according to the visibility constraint of the observation, ten were assigned to be

observed photometrically at LT and therefore we obtained photometric magnitude. We

note here that other novae with positions at the bottom of the amplitude-t3 diagram

would also be candidates, but are not on our target list because of telescope scheduling

constraints.

Having selected targets for follow-up photometric and spectroscopic observations, we

now describe the detail of instruments and processes of data reduction in the next

Chapter.
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Table 2.2: Novae from catalogues that are used in target selection.

No.a Nova Recurrent Year Filter mmax mquiescent t3 A′ Logt3 Deviation Selected

1 RS Oph X 2006 V 4.8 11 14 6.2 1.15 -6.68

2 T CrB X 1946 V 2.5 9.8 6 7.3 0.78 -6.51 X LT

3 V4074 Sgr 1965 pg 8.6 12.3 120 3.7 2.07 -6.41

4 V4643 Sgr 2001 V 7.7 >16 6 8.3 0.78 -5.51

5 V3890 Sgr X 1990 V 8.1 15.5 14 7.4 1.15 -5.48

6 V2487 Oph X 1998 V 9.5 17.7 8 8.2 0.9 -5.3 X LT, SALT

7 U Sco X 1999 V 7.5 17.6 3 10.1 0.48 -4.48

8 V2313 Oph 1994 V 7.5 >20 17 12.5 1.23 -4.46

9 CI Aql X 2000 V 9 16.7 32 7.7 1.51 -4.27 X LT, SALT

10 LS And 1971 pg 11.7 20.5 8 8.8 0.903 -4.13

11 AR Cir 1906 pg 10.3 15 451 4.7 2.65 -4.03 X SALT

12 BC Cas 1929 pg 10.7 17.4 75 6.7 1.87 -3.89

13 V3964 Sgr 1975 pg 9.4 17 32 7.6 1.5 -3.88 X LT, SALT

14 V351 Pup 1991 V 6.4 19.6 26 13.2 1.41 -3.8

15 HZ Pup 1963 pg 7.7 17 70 9.3 1.84 -3.8

16 V4160 Sgr 1991 V 7 >19 3 12 0.48 -3.78

17 V3645 Sgr 1970 pg 12.6 18 300 5.4 2.47 -3.75 X LT, SALT

18 V445 Pup 2000 V 8.6 14.6 240 6 2.38 -3.74 X LT

19 V2214 Oph 1988 V 8.5 20.5 89 12 1.95 -3.63

20 V4743 Sgr 2002 V 5 16.8 12 11.8 1.08 -3.55

21 V4740 Sgr 2001 V 6.7 >18 33 11.3 1.52 -3.43

22 V794 Oph 1939 pg 11.7 18 220 6.3 2.34 -3.17 X LT, SALT

23 V1330 Cyg 1970 pg 9 18.1 18 9.1 1.25 -2.98 X HETb

V 9.9 17.5 217 7.6 2.34 -2.26

24 FH Ser 1970 V 4.5 16.8 62 12.3 1.79 -2.94

25 V382 Vel 1999 V 2.8 16.6 13 13.8 1.11 -2.86

26 QU Vul 1984 V 5.3 17.9 36 12.6 1.56 -2.74

V 7.1 18 47 10.9 1.67 -0.64

27 V4739 Sgr 2001 V 7.2 >18 3 10.8 0.48 -2.58

28 FS Sct 1952 pg 10.1 18 86 7.9 1.93 -2.55 X LTc

29 BT Mon 1939 V 8.1 15.7 182 7.6 2.26 -2.45 X LT, Yunnanb

30 V1819Cyg 1986 V 9.3 17 181 7.7 2.26 -2.36

31 OS And 1986 V 6.5 17.5 23 11 1.36 -2.23

32 V4742 Sgr 2002 V 7.9 >18 23 10.1 1.36 -2.23

33 T Pyx X 1966 V 6.4 15.5 62 9.1 1.79 -2.14

pg 6.5 15.3 88 8.8 1.94 -1.63

34 DK Lac 1950 V 5.9 13.8 202 7.9 2.31 -2.03

pg 5.9 15.5 32 9.6 1.5 -1.88

35 V2275 Cyg 2001 V 6.9 18.4 8 11.5 0.9 -2

36 V5116Sgr 2005 V 7.6 >16 26 8.4 1.41 -1.95

37 V574 Pup 2004 V 7 17.2 27 10.2 1.43 -1.81

38 V368 Aql 1936 pg 5 15.4 17 10.4 1.23 -1.74 X LT, SALT

39 V450 Cyg 1942 pg 7.8 16.3 108 8.5 2.03 -1.71

continued on next page
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Table 2.2 – continued

No.a Nova Recurrent Year Filter mmax mquiescent t3 A′ Logt3 Deviation Selected

40 EU Sct 1949 pg 8.4 18 42 9.6 1.62 -1.6 X SALT

41 V1016 Sgr 1899 pg 8.5 17 140 8.5 2.14 -1.44

42 V732 Sgr 1936 V 6.4 ∼16 75 9.6 1.88 -1.43

43 HR Lyr 1919 pg 6.5 15.8 74 9.3 1.86 -1.37

44 V2264 Oph 1991 V 10 >21 22 11 1.34 -1.33

45 CN Vel 1905 pg 10.2 17 800 6.8 2.9 -1.33 X SALT

46 T CrB X 1866 pg 2 11.3 6 9.3 0.832 -1.31

47 HR Del 1967 V 3.6 12.1 231 8.5 2.36 -1.29

48 LZ Mus 1998 V 8.5 >18 12 9.5 1.08 -1.25 X SALT

49 V373 Set 1975 V 6.1 >18.3 79 11.9 1.9 -1.16

50 V1370 Aql 1982 V 7.7 18 28 10.3 1.45 -1.04

51 V2295 Oph 1993 V 9.3 >21 16 11.7 1.2 -1.03

52 V992 Sco 1992 V 7.7 17.2 120 9.5 2.08 -1.01

53 LV Vul 1968 V 4.5 15.3 38 10.8 1.58 -0.98

54 V465 Cyg 1948 pg 8 17 140 9 2.14 -0.94

55 V723 Cas 1995 V 7.1 15.7 299 8.6 2.48 -0.9

56 V2467 Cyg 2007 V 7.4 ∼19 20 11.6 1.3 -0.89

57 V603 Aql 1918 V -0.5 11.7 12 12.2 1.08 -0.85

58 LW Ser 1978 V 8.3 19.4 52 11.1 1.72 -0.81

59 V4021 Sgr 1977 V 8.9 18 215 9.1 2.33 -0.77

60 V2274 Cyg 2001 V 11.5 >20 33 8.5 1.52 -0.63

61 V842 Cen 1986 V 4.9 15.8 48 10.9 1.68 -0.62

62 V1493 Aql 1999 V 10.1 ∼21 50 10.9 1.7 -0.57

63 KT Mon 1942 pg 10.3 21 40 10.7 1.6 -0.55

64 T Aur 1891 V 4.5 14.9 84 10.4 1.92 -0.5

pg 4.2 15.2 100 11 2 0.7

65 V1229 Aql 1970 V 6.6 18.1 32 11.5 1.51 -0.47

66 NQ Vul 1976 V 6.2 17.2 50 11 1.7 -0.47

67 V838 Her 1991 V 5.3 19.1 4 13.8 0.6 -0.46

68 V705 Cas 1993 V 5.7 16.4 67 10.7 1.83 -0.45

69 LU Vul 1968 pg 9.5 21 21 11.5 1.32 -0.42

70 V446 Her 1960 V 4.8 16.1 42 11.3 1.62 -0.37

pg 3 18 16 15 1.2 2.78

71 CP Lac 1936 V 2 15 9 13 0.95 -0.37

72 V827 Her 1987 V 7.5 18.1 53 10.6 1.72 -0.33

73 V4633 Sgr 1998 V 7.4 18.7 44 11.3 1.64 -0.32

74 V4745 Sgr 2003 V 7.3 >17 190 9.7 2.28 -0.3

75 V2491 Cyg 2008 V 7.5 ∼20 16 12.5 1.2 -0.23

76 V528 Aql 1945 pg 7 18.1 37 11.1 1.56 -0.23

V 6.9 18.5 38 11.6 1.58 -0.18

77 GK Per 1901 V 0.2 13 13 12.8 1.11 -0.16

78 V1187 Sco 2004 V 9.8 18 17 8.2 1.23 -0.16

79 V356 Aql 1936 pg 7.7 17.7 115 10 2.06 -0.154

V 7 18.3 140 11.3 2.15 0.96

continued on next page
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Table 2.2 – continued

No.a Nova Recurrent Year Filter mmax mquiescent t3 A′ Logt3 Deviation Selected

80 V606 Aql 1899 pg 6.7 17.3 65 10.6 1.81 -0.14

81 DD Cir 1999 V 7.6 20.2 16 12.6 1.2 -0.13

82 PW Vul 1984 V 6.4 16.9 116 10.5 2.06 -0.05

83 V849 Oph 1919 pg 7.3 17 175 9.7 2.24 -0.016

V 7.6 18.8 270 11.2 2.43 1.59

84 RR Pic 1925 V 1 12.2 122 11.2 2.09 0.03

85 V4444 Sgr 1999 V 7.6 >21 9 13.4 0.95 0.03

86 V500 Aql 1943 pg 6.5 17.8 42 11.3 1.62 0.09

87 DN Gem 1912 V 3.6 15.6 35 12 1.54 0.13

pg 3.5 15.8 37 12.3 1.56 0.96

88 V443 Set 1989 V 8.5 >20 60 11.5 1.78 0.23

89 V1494 Aql 1999 V 4.1 17.1 16 13 1.2 0.27

90 V868 Cen 1991 V 8.7 19.9 82 11.2 1.91 0.27

91 QZ Aur 1964 pg 6 18 26 12 1.41 0.29

92 V533 Her 1963 V 3 15 43 12 1.63 0.36

pg 3 15 44 12 1.64 0.84

98 V5114Sgr 2004 V 8.1 >21 21 12.9 1.32 0.47

99 GI Mon 1918 pg 5.6 18 23 12.4 1.36 0.56

100 BY Cir 1995 V 7.4 17.9 124 10.5 2.09 0.71

101 V4169 Sgr 1992 V 7.9 >17 36 9.1 1.56 0.76

102 V5115Sgr 2005 V 7.9 >18 13 10.1 1.11 0.84

103 V1974 Cyg 1992 V 4.3 16.9 43 12.6 1.63 0.96

104 OY Ara 1910 pg 6 17.5 80 11.5 1.9 0.96

105 V1668 Cyg 1978 V 6.2 19.7 26 13.5 1.41 1

pg 6.7 20 23 13.3 1.36 1.46

106 V400 Per 1974 pg 7.8 20 43 12.2 1.63 1.02

107 IM Nor X 2002 V 8.5 18.3 80 9.8 1.9 1.03

108 V604 Aql 1905 pg 8.2 21 25 12.8 1.39 1.05

109 V1186 Sco 2004 V 9.7 >18 62 8.3 1.79 1.06

110 HS Sge 1977 V 7.2 20.7 21 13.5 1.32 1.07

pg 7 20.5 20 13.5 1.3 1.52

111 V888 Cen 1995 V 8 15.2 90 7.2 1.95 1.16 X SALT

112 DO Aql 1925 V 8.5 18 900 9.5 2.95 1.21

113 V1425 Aql 1995 V 8 ∼20 79 12 1.9 1.23

114 V1188 Sco 2005 V 8.9 >19 23 10.1 1.36 1.3

115 XX Tau 1927 pg 5.9 18.5 42 12.6 1.62 1.39

116 V693 CrA 1981 V 7 >21 18 14 1.26 1.4

117 V1419 Aql 1993 V 7.6 ∼21 32 13.4 1.51 1.43

118 V476 Cyg 1920 V 1.9 16.2 16 14.3 1.2 1.57

119 V1039 Cen 2001 V 9.3 ∼21 174 11.7 2.24 1.6

120 V1500 Cyg 1975 V 1.9 17.9 4 16 0.6 1.74

121 HS Pup 1963 pg 8 20.5 65 12.5 1.81 1.75

122 EL Aql 1927 pg 6.4 20 25 13.6 1.39 1.85

123 DQ Her 1934 V 1.6 14.3 100 12.7 2 1.99

continued on next page
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Table 2.2 – continued

No.a Nova Recurrent Year Filter mmax mquiescent t3 A′ Logt3 Deviation Selected

124 V2540 Oph 2002 V 8.1 >21 115 12.9 2.06 2.34

125 V2362 Cyg 2006 V 8.1 >21 246 12.9 2.39 3.18

126 DY Pup 1902 pg 7 20 160 13 2.2 3.18

127 RW UMi 1956 pg 6 21 140 15 2.14 5.05

128 CP Pup 1942 V 0.7 >19.5 8 18.3 0.9 5.3

a Numbers are arranged by deviation from the CNe trend line.
b Novae were observed but have not been yet reduce the data. These novae are excluded in the list of twelve target novae.

c FS Sct was observed photometrically but not successfully obtained a good spectrum due to the underestimated exposure time.

It is therefore excluded in the list of twelve target novae.

2.4 Discussion and Conclusion

The proposal that RNe occupy a region separated from CNe in an outburst amplitude

versus speed class diagram was adopted. The low amplitude results from the exis-

tence of an evolved secondary and/or high mass transfer rate in the quiescent system.

The 93 novae with observed V amplitudes given in the literature and 43 novae with

photographic amplitudes have been combined and plotted on an outburst amplitude

versus rate of decline diagram as shown in Figures 2.2 and 2.3, from which sixteen

target novae suspected to be RNe candidates were selected for the photometric and

spectroscopic observations described in Chapters 3 and 4.
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Figure 2.2: Target selection from V amplitudes and rate of decline. Recurrent novae (squares)
are plotted together with 93 novae (closed circles) from Strope et al. (2010). Target novae have
been observed spectroscopically by SALT (stars) and LT (open circles) and some also have
been observed photometrically by LT (triangles).
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Figure 2.3: Target selection from pg amplitudes and rate of decline. Recurrent novae (squares)
are plotted together with 43 novae (closed circles) from Duerbeck (1988a). Target novae have
been observed spectroscopically by SALT (stars) and LT (open circles) and some also have
been observed photometrically by LT (triangles).



Chapter 3

Ground-based Observations of Novae

and Data Reduction

This Chapter provides details of photometric and spectroscopic data acquisition and re-

duction for the selected targets in Chapter 2, primarily observed by the LT and SALT.

The photometric and spectroscopic data taken by LT were obtained and reduction per-

formed by myself. The spectroscopic observations taken by SALT were carried out by

Dr. Valério A. R. M. Ribeiro (University of Cape Town) and then were passed onto

me for reduction and analysis. The selection criteria in Chapter 2 and the preliminary

photometric results for selected novae in Section 3.1 have been published in Surina

et al. (2013a).

3.1 The Liverpool Telescope

The Liverpool Telescope, a 2 metre unmanned fully robotic telescope located at the

Observatorio del Roque de Los Muchachos on the Canary Island of La Palma, Spain, is

owned and operated by the Astrophysics Research Institute of Liverpool John Moores

University with financial support from the UK Science and Technology Facilities Coun-

cil (STFC; see Figure 3.1).

31
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Figure 3.1: Founder of the Liverpool Telescope Prof. Mike Bode and the LT itself on La Palma
in its fully-opening enclosure.

There are several instruments mounted at the LT: RATCam, an optical camera; RISE,

a fast-readout camera designed for the precision measurement of transiting exoplanet

timing; RINGO3, a fast-readout imaging optical polarimeter with simultaneous po-

larised imaging in three wavebands; FRODOSpec, a dual-beam integral-field input

spectrograph; SkyCam, comprising three cameras providing simultaneous wide field

observations with normal LT data-taking; IO:O, a camera providing a wider field of

view than that of RATCam with improved image quality, and IO:I, a new near-IR cam-

era (see Steele et al., 2004 for a review).

The LT has been used to obtain observations at multiple wavelengths for Galactic no-

vae in outburst and approaching quiescence. Spectroscopic observations with FRO-
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Table 3.1: RATCam photometric observation log

No. Nova mquiescent Filter Date of Exposure times (s)
Name (mag) observation u′ B V r′ i′ z′

1 T CrB 9.8 V 14-04-2011 2×5 2×5 2×5 2×5 2×5 2×5
2 V2487 Oph 17.7 V 02-04-2011 2×400 2×30 2×30 2×25 2×50 2×100
3 CI Aql 16.7 V 03-05-2011 2×50 2×5 2×10 2×10 2×15 2×30
4 V3964 Sgr 17 pg 01-04-2011 2×200 2×15 2×15 2×10 2×20 2×50
5 V3645 Sgr 18 pg 05-04-2011 2×500 2×40 2×40 2×40 2×200 2×300
6 V445 Pup 14.6 V 31-03-2011 2×500 2×50 2×50 2×25 2×50 2×100
7 V794 Oph 18 pg 07-05-2011 2×2500 2×50 2×350 2×50 2×100 2×250
8 FS Sct 18 pg 08-05-2011 2×500 2×40 2×40 2×40 2×100 2×250
9 BT Mon 15.7 V 30-03-2011 2×50 2×5 2×5 2×5 2×5 2×10
10 V368 Aql 15.4 pg 04-04-2011 2×40 2×5 2×5 2×5 2×5 2×10

Table 3.2: Spectroscopic observation log

No. Nova mquiescent Filter Spectroscopy Exposure times (s)a Note
Name (mag) observation Blue Red

1 T CrB 9.8 V 24-06-2012 (LT) 3×100 3×500 RN
2 V2487 Oph 17.7 V 17-08-2012 (SALT) 2×450.8 2×188.0 RN
3 CI Aql 16.7 V 06-05-2012 (SALT) 2×82.0 2×90.2 RN
4 AR Cir 20.2 V 01-05-2012 (SALT) 1×180.2 3×60.2
5 V3964 Sgr 17 pg 11-06-2012 (SALT) 2×221.4 2×92.4
6 V3645 Sgr 18 pg 27-08-2012 (SALT) 2×274.2 2×114.2 suspect RN1

7 V794 Oph 18 pg 10-05-2012 (SALT) 3×160.2 (3×66.2)b suspect RN2

8 V368 Aql 15.4 pg 06-05-2012 (SALT) 2×150.2 2×65.2 eclipsing5

9 EU Sct 18 pg 30-05-2012 (SALT) 2×204.2 2×84.2 suspect RN1

10 CN Vel 17 pg 06-05-2012 (SALT) 3×89.7 1×120.0
11 LZ Mus >18 V 01-05-2012 (SALT) 3×160.4 3×66.2
12 V888 Cen 15.2 V 01-05-2012 (SALT) 3×42.7, 2×90.2c

aBlue SALT observations were obtained with filter PC05400, grating angle 13.25◦ and spectrograph angle 26.51◦.
Red SALT observations were obtained with filter PC04500, grating angle 19.25◦ and spectrograph angle 38.50◦.

b Red observations were obtained with no red arc, therefore only blue spectra were analysed for V794 Oph.
c Red combined spectrum was very faint and indistinguishable from the background, therefore only blue spectra are presented

for V888 Cen.

DOSpec have been used in conjunction with kinematic modelling of the ejecta of no-

vae, e.g. nova V2491 Cyg (Ribeiro et al., 2011) and nova KT Eri (Ribeiro, 2011).

Observations with LT were part of the international campaign on the 2010 outburst of

short the period RN U Sco (Schaefer et al., 2010b). Moreover, the use of LT SkyCams

provided complementary data for the light curve of KT Eri to those obtained with the

Solar Mass Ejecta Imager (SMEI; Hounsell et al., 2010 - see Chapter 5). There is also

another extensive extragalactic programme for LT. This includes the observations of

an extremely luminous nova in M31 (Shafter et al., 2009). In addition, with comple-

mentary use of the Hubble Space Telescope (HST), LT observations revealed a nova

progenitor system in M31 for the first time (Bode et al., 2009). LT also conducted
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a complementary programme to Spitzer observations of novae in M31 (Shafter et al.,

2011a). The compilation of light curves from LT and spectroscopic data from HET on

novae in M31 is given in Shafter et al. (2011b).

In the work presented here, all photometry reported was obtained with RATCam on

LT while spectroscopic observations were obtained with FRODOSpec on LT and the

Robert Stobie Spectrograph on SALT (see Table 3.1 for a photometric observation log

and Table 3.2 for its spectroscopic counterpart).

3.1.1 RATCam

RATCam is an optical 2048×2048 pixel CCD camera with a 4.6’×4.6’ field of view

and eight filters (Sloan u′, g′, r′, i′, z′, Bessell B, V and Hα). The pixel size is 13.5

microns with approximately 0.135arcsec/pixel. The data can be binned by either 1×1

(gain 2.34 electron/count), 2×2 (gain 2.13 electron/count), 3×3, 4×4. The readout

noise is <5 electrons with readout times of ∼10 s (for 1×1 binning), ∼5 s (for 2×2).

The peak quantum efficiency is 93.8% at ∼500 nm.

To investigate the preliminary evolutionary status of the secondary stars in the target

novae via the colour-magnitude diagram (CMD), the photometric RATCam observa-

tions in u′, B, V , r′, i′, z′ bands were carried out during 2011 Mar - May via LT proposal

JL11A02. We used the Exposure Calculator1 to estimate the exposure time required in

order to get a signal-to-noise ratio of 100 with 2×2 binning.

Image Pre-processing

The data from RATCam had already been pre-processed by the pipeline2 before they

are passed to users, the processing stages of which include:

1 Exposure Calculator for RATCam is available online at http://telescope.livjm.ac.uk/Info/TelInst/calc/

2 Details of the pipeline are available online at http://telescope.livjm.ac.uk/Info/TelInst/Inst/RATCam/
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1. Bias Subtraction. Bias subtraction is based purely on analysis of the underscan

region. Linear regression is used to determine a fit to the bias counts as a function

of pixel row number and values deducted across the image according to this

smooth function. RATCam does have a small ramp in the bias down each column

and therefore the first order fit is required.

2. Overscan Trimming. The overscan regions are trimmed off, leaving a 2048x2048

pixel image.

3. Dark Subtraction. This is not currently performed through the pipeline since

the dark current appears not to be significant when the camera is at normal oper-

ating temperature.

4. Flat Fielding. A library of the current calibration frames is maintained as part

of the data archive and updated daily so that images are always reduced using

the latest available flat-field image. The appropriate master flat field is therefore

selected from the library to match the filter and binning configuration of the

current exposure.

5. Bad Pixel Mask. No bad pixel mask is applied via the pipeline.

6. Vignetting. In the extreme corners of the worst affected bands (i’ and g’) the

flux is reduced by up to 15% compared to the unobstructed beam. In the other

filters, obscuration is about 5% in the very corner of the observed field, falling to

negligible values between 10 - 20 arcsec from the field edge. The vignetting gen-

erally flat fields out very well and is rarely obvious in the reduced data although

sometimes can leave distortions within 3 - 5 arcsec from the field corner.

Photometric Data Reduction

Following the pre-processing stage, the data reduction steps below were carried out

using custom automated scripts from within the NOAO IRAF3 environment.

3 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
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1. Image Alignment. Before the first step involving geometrically aligning the

image stack which aids the detection of objects, the images were examined in-

teractively by using imexamine. The FWHM and average sigma value of bright

point sources were obtained as a result. Using IRAF’s starfind task with

HWHM of the PSF calculated from the previously obtained FWHM/2, a list of

stellar objects automatically detected in the image was created. Then the same

three reference stars were identified in each frame via tvmark. These reference

stars were used by the alignment software to calculate the initial transforma-

tion. The alignment was carried out by using three packages: xyxymatch to

produce matched pixel coordinate lists; geomap to compute geometric transfor-

mations between images using matched coordinate lists, and geotran to apply

the geometric transforms to the images. The images can then be combined via

imcombine.

2. Aperture Photometry. Following the alignment and the image combination, the

task setairmass4 was implemented as a good habit prior to starting new pho-

tometry. Then the aperture photometry was carried out using IRAF/DIGIPHOT/

National Science Foundation.
4 A task in the IRAF/ASTUTIL Package - Computing effective airmass and middle UT for an exposure

Figure 3.2: Image of RATCam on the Liverpool Telescope.
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APPHOT Package5 analysis. By examining the reference frames established

from the previous step, parameters required for this analysis including sigma

(standard deviation of the background sky in counts), datamin (minimum good

data value in counts), datamax (maximum good data value in counts), and FWHM

were obtained. Image keyword parameters (e.g. exposure, airmass, filter, obser-

vation time, gain, etc.) had to be updated according to the reference headers.

Then the tool qphot measuring instant magnitudes for a list of stars was per-

formed. The interactive PSF modelling interface requires input parameters in-

cluding:

• Centring box width = (2 x FWHM)

• Inner radius of sky annulus = (4 or 5 x FWHM)

• Width of sky annulus = (2.5 x FWHM)

• List of Photometry apertures = (FWHM)

Finally, the output of selected fields from apphot could be dumped by using

txdump task.

3.1.2 FRODOSpec

The Fibre-fed RObotic Dual-beam Optical Spectrograph (FRODOSpec) is a multi-

purpose integral-field bench-mounted optical spectrograph with a dual beam design so

that the beam splits before the entrance to the individually optimized collimators (see

Barnsley et al., 2012 for the details).

Two resolution options are available on each arm. With low resolution selected on each

arm, the entire spectrum covers 3900-5700Å in the blue arm (R∼2200 with 0.8 Å/pixel)

and 5800-9400Å in the red arm (R∼2600 with 1.6 Å/pixel). The low resolution mode

is implemented using conventional transmission gratings.

The higher resolution option for each arm is provided using a Volume Phase Holo-

graphic (VPH) grating bonded to a prism in order to throw the beam to the same angle

5 Aperture Photometry Package See http://iraf.net/irafdocs/apuser.pdf



3.1. The Liverpool Telescope 38

as that obtained using the diffraction grating at low resolution. The spectral range is

3900-5100Å in the blue (R∼5500 with 0.35 Å/pixel) and 5800-8000Å in the red arm

(R∼5300 with 0.8 Å/pixel).

Optical spectra of target novae were obtained using FRODOSpec for the brighter ob-

jects from Table 3.2 in low resolution mode via LT proposals JL11A02 and JL11B04b.

Figure 3.3: Part of FRODOSpec on an optical bench before shipping to site.

Spectroscopic Data Reduction

The data from FRODOSpec is already pre-processed and reduced by the fully auto-

mated pipeline given in Barnsley et al. (2012) before they are passed to users. The

pipeline specifically consists of i) finding and tracing the positions of the fibres at

points along the dispersion axis, ii) unweighted aperture extractions, iii) wavelength

calibration, iv) fibre throughput correction, v) spectral rebinning to a linear wavelength

calibration, vi) identification and subtraction of sky-only fibres (only possible if they

are available in the field) and vii) reformatting of data to the desired output format.

The science-ready data product, an eight part multi-extension FITS file with each ex-

tension containing a snapshot of the data taken at key stages of the reduction process,

is shown in Table 3.3. A composite image of the L1 IMAGE, SPEC NONSS and
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COLCUBE NONSS extensions is made available through the LT archive website6.

An example is shown in Figure 3.4.

Table 3.3: The format of the science-ready data product from the FRODOSpec pipeline. The
science-ready data product includes; Image, Row Stacked Spectra (RSS) frames used to display
each extracted spectrum as a single row of height one pixel, and Datacubes that reimage the
focal plane at each wavelength. Wavelength is calibrated in units of Å. The Table is adapted
from Barnsley et al. (2012).

Extension Extension Format Wavelength Throughput Sky Subtracted?
Index Name Calibrated? Corrected?

0 L1 IMAGE Image
1 RSS NONSS RSS X X
2 CUBE NONSS Datacube X X
3 RSS SS RSS X X X
4 CUBE SS Datacube X X X
5 SPEC NONSS Spectrum X X
6 SPEC SS Spectrum X X X
7 COLCUBE NONSS Image X

Figure 3.4: An example of FRODOSpec data product preview, presenting SPEC NONSS (top),
L1 IMAGE (middle), and COLCUBE NONSS (bottom).

6 http://lt-archive.astro.livjm.ac.uk/
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In this study, the spectra in extension [6] were used. If sky subtraction was not suc-

cessful, the corresponding extensions ([3], [4] and [6]) will be blank. Therefore the

sky subtraction was performed manually to spectra in extension [5] using IRAF task

dofibers in this case.

Failure of sky subtraction of the pipeline can be because either the target may be lo-

cated toward the edges of the Integral field unit (IFU) or the target may be extended

as FRODOSpec’s IFU has a small field of view, so the pipeline cannot identify the

sky-only fibres (Barnsley et al., 2012). Thus, by using dofibers manually, we can

identify the sky fibre and then subtract it off all the spectra in extension [5]. According

to Barnsley et al. (2012), it is concluded that the sky subtraction products from the

pipeline are of a scientific standard from the dofibers routine.

Spectra were finally median combined the via imcombine IRAF routine and ready to

be used in further analysis.

3.2 The Southern African Large Telescope

SALT (see Buckley et al., 2006, for a review) is one of five 10-m class segmented

mirror telescopes (the others being GranTeCan in La Palma, 2 Keck Telescopes in

Hawaii, and HET in Texas) and the only one situated in the southern hemisphere.

SALT is closely based on the innovative HET design. The telescope is situated at the

South African Astronomical Observatory (SAAO) field station near the small town of

Sutherland ∼380 km from Cape Town at an altitude of 1798m above mean sea level.

The primary mirror consists of a 9.8 m × 11.1 m hexagonal array of 91 identical 1.2 m

× 1.0 m hexagonal mirror segments (see Figure 3.5) with spherical surfaces, tilted at

37◦ to the zenith. SALT has a fixed elevation angle (53◦) and can rotate only about its

azimuth axis to acquire objects. This gives the telescope an annulus-shaped observing

area in the sky as shown in Figure 3.6. In this study, observations were obtained,

following a successful proposal, in service mode.
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3.2.1 The Robert Stobie Spectrograph (RSS)

The Robert Stobie Spectrograph (RSS)7 is the Prime Focus Imaging Spectrograph with

wavelength coverage from 3200-9000Å. RSS provides the highest possible efficiency

spectroscopy using Volume Phase Holographic (VPH) gratings providing resolutions

of R∼800-6000 with a 0.9 arcsec slit width (with seeing FWHM 0.9 arcsec).

7 Detail specification can be found at http://www.salt.ac.za/telescope/instrumentation/rss/

Figure 3.5: The Southern African Large Telescope (SALT) situating at the SAAO field station
(top) with a hexagonal primary mirror array 11 metres across (bottom).

Figure 3.6: The SALT viewing annulus.
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In this study, the RSS was used in low resolution mode with the pg0900 VPH grat-

ing with the long slit set at 1.5 arcsec was used. This gave us the required sensitivity

and spectral resolution for our target. In order to cover both the blue (accretion disk

dominated component) and red (cool stellar component, covering the diagnostic bands

to ∼8500Å) wavelength ranges, two spectrograph angles per object (26.5◦ and 38.5◦

respectively, which also gives decent spectral overlap) were specified. The determi-

nation of exposure time for each object was done by collaborators by using the RSS

exposure time calculator with a combination of a canonical accretion disk spectrum

and a cool (3500 K) black body, assumed to give equal contributions to the flux. With

the observed optical magnitude we then determined the total exposure time to give a

S/N per resolution element of 20 at the central wavelength of the resulting spectrum

for each grating setting.

Figure 3.7: Schematic illustration of spectroscopy modes of RSS.
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Spectroscopic Data Reduction

The IRAF/Longslit Package was used to reduce data from the SALT RSS long-slit.

The following are the steps8 used to reduce data provided from the SALT pipeline

(the “product” data) into the extracted spectra. Each set of reductions requires science

images, flat fields, and an arc lamp image (only red files are shown as an example as

detailed below).

1. Flat fielding. All flat field frames in each grating angle were combined to make

the illumination frame. Then the illumination was examined and a normalised

flat frame created (after being divided by the mean) which would be finally ap-

plied to the object frames. Figure 3.8a shows the combined red flat field frame.

Steps of commands and parameters are then:

<flatcombine red_flat*.fits output=red_Flat.fits combine=

median reject=none scale=mean rdnoise=2.51 gain=1.51

<mkillumflat red_Flat.fits red_Flat_illum.fits xboxmin=3

yboxmin=3 xboxmax=5 yboxmax=5

<imstat red_Flat_illum.fits

<imarith red_Flat_illum.fits/20742 red_Flat_norm.fits

<imarith @red_object.lst/red_Flat_norm.fits cc_//

@red_object.lst

2. Arc files. Here we identify, fit coordinates, and transform the lines in the blue

and red arcs. After that the transformation is applied to the object frame. Note

that the Argon lamp (not the NeAr lamp) is used in the case of blue spectra.

Figure 3.8b shows an arc spectrum and line identification, Figure 3.8c shows an

object spectrum before transformation, and Figure 3.8d shows an object spec-

trum after transformation. Again, steps of commands and parameters are:

<identify red_arc.fits coordlist=linelists$NeAr.txt function=

8 Detail reduction is available at http://www.dartmouth.edu/∼kevinhainline/salt redux.html
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chebyshev order=5 fwidth=6 cradius=6

<reidentify reference=red_arc.fits images=red_arc.fits

interactive=no newaps=yes override=no refit=yes nlost=20

coordlist=linelists$NeAr.txt verbose=yes

<fitcoords images=red_arc interactive=yes combine=no functio=

legendre xorder=5 yorder=3

<transform input=red_arc output=red_transform_arc fitnames=

red_arc interptype=linear flux=yes blank=INDEF x1=INDEF

x2=INDEF dx=INDEF y1=INDEF y2=INDEF dy=INDEF

<transform input=cc_//@red_object.lst output=red_transform_//

@red_object.lst fitnames=red_arc interptype=linear flux=yes

blank=INDEF x1=INDEF x2=INDEF dx=INDEF y1=INDEF y2=INDEF

dy=INDEF

3. Removing cosmic rays. Here we make use of the alternative cosmic ray remover

algorithm, L.A.Cosmic9, which appears to address one individual file at a time.

Figure 3.8e shows an object spectrum after removing cosmic rays, using the

following steps:

<lacos_spec input=red_transform_red_object001.fits output=

cos_red_object001.fits outmask=cos_red_mask001.fits gain=

1.51 readn=2.51 niter=10

<hedit cos_//@red_object.lst BPM "cosmic_mask.fits"

4. Background Subtraction. To remove the sky lines and make the background

level to be approximately zero, the IRAF task background is used. A range

of specified columns collapse into a 2D image where the object spectrum has

the peak in the very centre and the background to the left and right. Fitting

interactively a few times will fit the non-linear background. Figure 3.8f shows a

object spectrum after background subtraction, using the following steps:

9 L.A.Cosmic is an algorithm for robust cosmic ray identification. It detects cosmic rays of arbitrary
shapes and sizes, and distinguishes between undersampled point sources and cosmic rays. The method
is explained in van Dokkum (2001) see http://www.astro.yale.edu/dokkum/lacosmic/
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<background input=cos_//@red_object.lst output=bg_//

@red_object.lst axis=2 interactive=yes naverage=1 function=

cheby order=2 low_rej=2 high_rej=1.5 niterate=5 grow=0

5. Combining images and extracting the traces. Object frames are combined and

then created the variance frame is created afterwards. Note that “im1/2” refers

to being divided by the number of images. Figure 3.8g shows a combined object

spectrum. Finally the apall task is used to extract 1D spectra from 2D spectra:

<imcombine bg_//@red_object.lst red_obj_med.fits sigma=red_obj

_med_sig.fits combine=median scale=mean masktype=goodvalue

<imcalc red_obj_med_sig.fits red_obj_med_sig_sqr.fits "im1**2"

<imcalc red_obj_med_sig_sqr.fits red_obj_med_sig_var.fits "im1/2"

<imdel red_obj_med_sig_sqr.fits

<apall input=red_obj_med.fits output=red_obj_med_ms.fits

line=910 nsum=10

There are some artefacts in spectra obtained by SALT due to the gaps in instrumental

response between 4450-4550Å and 7750-7850Å. Extension of the artefact area also

arises near the edges of each gap after each process of reduction, so they need to be

deleted manually. For some cases, the deleting of the artefact extends to the scientific

region (i.e. K I 7665Å and 7699Å which is very strong and wide in dwarf stars but

much weaker in giants - see Chapter 4 for details).

3.3 Relative Flux Calibration with Standard Stars

All nova observations from LT and SALT were supplemented by obtaining standard

stars along with the observations of the novae themselves. Two WDs listed in the spec-

troscopic standard stars library10 in the onedspec package; eg139 (α=20h34m21s.883,

10 a library of standard star can be found in /iraf/iraf/noao/lib/onedstds/spec50cal/
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Figure 3.8: SALT RSS long-slit data reduction showing data images (left) and spectra (right)
at each steps of the process.
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δ=+25◦03′49′′.74) and eg158 (α=23h19m58s.398, δ=−05◦09′56′′.16) with quiescent mag-

nitude of V= 11.56 and 11.50, respectively, were observed at similar airmass to the

targets.

The IRAF onedspec package was used to create the sensitivity function of a standard

star and apply that to the object spectrum to get a relative flux calibrated spectrum.

Once the onedspec package is loaded, some parameters require correcting for each

spectrum prior to the calibration. For example, an exposure time can be implemented

via hedit, airmass can be corrected by using setairmass in the astutil task, and

radial velocity corrections can be done in rvcorrect.

For the standard star spectrum (see Figures 3.9 and 3.10), the standard task is first

performed in order to identify standard stars and call its flux from the library. Then

the sensitivity function is created by using sensfunc. The output of this interactive

task is something that is used by the calibrate task which applies extinction and flux

calibrations to our target novae spectra. These processes are presented below.

onedspec> standard STDstar.fits STDstar.flux

onedspec> sensfunc STDstar.flux STDstar.sens ignoreap+

onedspec>calibrate obj.fits obj-cal obs=lapalma sens=STDstar.sens

ignoreap+

3.4 Discussion and Conclusion

The proposal that RNe occupy a region separated from CNe in an A′ vs t3 diagram

given in Chapter 2, allowed us to select sixteen RNe candidates for detailed observa-

tions. Photometric magnitudes in u, B, V , r, i and z were obtained for 10 novae at

quiescence using RATCam on LT (see Table 3.1). Spectra for twelve of them were

obtained using FRODOSpec on LT and RSS on SALT (see Table 3.2). Of these, only

nine spectra could be successfully fully reduced and ready for further analysis (see

Table 3.4). Spectra for the other three objects (CN Vel, LZ Mus and V888 Cen) were
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Figure 3.9: Flux calibration of standard star eg139 showing spectrum before (top) and after the
calibration (bottom).

not fully reduced at the moment due to the unclearly matched arc line identifications

which causes a shift in wavelength (for CN Vel and V888 Cen) and an underestimate

of the exposure times making the spectra indistinguishable from the background (for

LZ Mus).

This chapter provided an introduction of facilities that were used and gave details of

photometric and spectroscopic data reduction from pre-processing to flux calibration

with standard stars. In the next Chapter, results of the photometry, and especially the

spectroscopy, will be discussed.
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Figure 3.10: Flux calibration of standard star eg158 showing spectrum before (top) and after
the calibration (bottom).
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Chapter 4

Observations of Galactic Novae in

Quiescence

In the previous Chapter, the photometric magnitudes of ten novae and the flux cali-

brated spectra of twelve novae were derived at quiescence. In this Chapter, the magni-

tudes are plotted on colour-magnitude diagrams (CMDs) and the spectra are analysed

for specific features. The evolutionary status of the secondary stars derived via the

CMDs and the spectral lines are compared. Parts of the results in this Chapter have

been published in Surina et al. (2013a).

4.1 Introduction

Currently, there are only 10 known Galactic RNe among the approximately 400 Galac-

tic CNe. They group themselves into three distinct subtypes: T CrB/RS Oph type (with

red giant secondary stars), U Sco type (with evolved main sequence or sub-giant stars)

and the T Pyx type which have similar secondaries to those in most CNe (i.e. main

sequence stars; see Chapter 1 for details).

Knowledge of the true population of RNe obviously has a bearing on their potential

relationship to SN Ia. At least eight of these Galactic RNe are known to harbour

51
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evolved secondary stars rather than the main sequence secondaries which are found to

be typical for CNe (Darnley et al., 2012).

At quiescence, the optical spectra of particular RNe are suggested to be dominated

by that of the red giant (Anupama & Mikołajewska, 1999). Spectral features indicat-

ing giants secondaries are used to investigate the quiescent spectra of novae that are

suspected RNe in this Chapter by using the following approach.

4.2 Background to the Analysis

The optical emission from all quiescent nova systems is a composition of the emis-

sion from three components: the WD, the accretion disk, and the secondary where

the contribution from WD in the optical region is expected to be negligible (Darnley

et al., 2012). While the contribution of the accretion disk depends on several factors in-

cluding the accretion rate, disk size, system inclination, and observed wavelength, the

contribution from the secondary star is much more straightforward and simply depends

on the type of star (i.e. mass, age, and metallicity) and again of course the observed

wavelength (Darnley et al., 2012).

In this study, we adopted the simplified classification of the evolutionary status of

the secondaries proposed in Darnley et al. (2012); i.e. whether a main-sequence star

(MS-Nova), a sub-giant star (SG-Nova), and a red giant branch star (RG-Nova). All

the known U Sco type RNe would then be placed into the SG-Nova group, all the

known RS Oph/T CrB type RNe into the RG-Nova group, and the T Pyx type RNe

and Classical Novae will populate the MS-Nova group; This classification, by virtue

of the geometry of these systems, would effectively be the same as nova classification

by orbital period since systems with orbital periods longer than 8 hr should contain

evolved secondaries (Warner, 1995). The MS-Novae would have orbital periods of

order hours, the SG-Novae of order a day, and the RG-Novae of order a year (Darnley

et al., 2012). Thus one can distinguish the RG-Novae and SG-Novae from the MS-

Novae population based on solely their quiescent optical and near-IR (NIR) properties.
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Therefore our aim is to determine the spectral and luminosity type of the secondaries

in our target systems by comparing the results derived from the nova positions on the

optical and NIR CMDs to the results derived from the detailed spectral analysis where

specific indicator lines are expected.

4.3 Reddening

Prior to the spectroscopic analysis, each nova is required to be given a reliable interstel-

lar extinction. Known extinction found in previous work in the literature was adopted

where possible. Where this was not available, the AV of each object is estimated by

comparing values taken from two different methods.

In the first method, the AV is derived from 4 different extinction maps1 along the line

of sight including those of Neckel et al. (1980), Schlegel et al. (1998), Dobashi et al.

(2005), and Rowles & Froebrich (2009).

Neckel et al. (1980) provided reddening maps giving E(B−V) versus heliocentric dis-

tance (r) and Galactic position (l, b) at low galactic latitudes (-7◦.6< b <7◦.6 and r.5

kpc) by computing from more than 11000 O to F stars with known AV and r. Schlegel

et al. (1998) constructed a map of the Galactic dust temperature based upon its far-

infrared emission and normalized this dust map to the E(B − V) per unit flux density

of 100 µm emission by using the colours of background elliptical galaxies. Their AV

represents the value to the edge of our Galaxy, thus it should be the largest reddening

compared to the other three sources. Dobashi et al. (2005) derived a large-scale ex-

tinction map covering the region in the Galactic latitude range |b| ≤ 40◦ by applying

a star counting technique to the optical database of the Digitized Sky Survey. Rowles

& Froebrich (2009) generated an all-sky extinction map by studying the column den-

sity distribution of all nearby Galactic giant molecular clouds using the nearest 100

neighbour stars. The AV given by Rowles & Froebrich (2009) turns out to be system-

atically larger by 20% compared to Dobashi et al. (2005) and 40% smaller compared

1 Available online at http://astro.kent.ac.uk/extinction/
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to Schlegel et al. (1998). This is most likely because of the star counting technique

used in the former and the systematic uncertainty in dust temperature and emissivity

presented in the latter.

Thus, in case of novae with unknown extinction, the AV /kpc derived from Neckel et al.

(1980) was then compared to the total AV in that direction given by Schlegel et al.

(1998), Dobashi et al. (2005), and Rowles & Froebrich (2009). The most reliable AV

was finally adopted in the analysis for each object.

Figure 4.1: Extinction along the line of sight (Av) versus the equivalent width of Na I D of
(EW(Na I)) various correlations proposed by Barbon et al. (1990), Richmond et al. (1994), and
Turatto et al. (2003).

In the second method, the AV is derived from the equivalent width (hereafter EW) of

the absorption doublet of Na I D, at 5890Å (D1) and 5896Å (D2), which is a well-

known tracer of gas and dust and its strength is generally expected to indicate the

amount of dust along the line of sight (Poznanski et al., 2012). Several empirical

correlations between EW and colour excess E(B − V) are proposed e.g. Barbon et al.

(1990); Richmond et al. (1994); Turatto et al. (2003). Richmond et al. (1994) have

used 57 high-resolution stellar spectra compiled from literature and shown that the

EW does indeed correlate with E(B− V). Meanwhile Barbon et al. (1990) and Turatto
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et al. (2003) used 6 and ∼30 spectra, respectively, low- to medium-resolution spectra

of SNe Ia to derive the relations which have been used widely in the literature over

the last two decades. Figure 4.1 shows that different published relations are not totally

consistent with one another. This can be either due to the different dust-to-gas ratios

in different galaxy types or the uncertainty in EW measurement contaminated from

the atmospheric sodium which is difficult to remove, therefore Poznanski et al. (2012)

suggested that the low-resolution Na I D absorption measurement may not be a good

extinction indicator.

In this study, we however adopted the most recent relations using EW(D1+D2) given

by Turatto et al. (2003) for both fit 1 and fit 2 since some of our spectra do not resolve

the D1 and D2 doublet. Their larger sample also provided larger range coverage in

EW(D1+D2) than that given by Barbon et al. (1990). The results for derived E(B−V)

and AV were calculated by using the following relations and presented in Table 4.2.

Barbon et al. (1990):

E(B − V) ∼ 0.25 × EW(D1 + D2) (4.1)

Turatto et al. (2003) fit 1 and fit 2:

E(B − V) = −0.01 + 0.16 × EW(D1 + D2) (4.2)

E(B − V) = −0.01 + 0.16 × EW(D1 + D2) (4.3)

Note here that the preferred AV for each nova is given in Table 4.2, as indicated by ‘*’.

4.4 Photometric Observations and Results

Quiescent B,V, u′, r′, i′, z′ magnitudes were obtained for 10 target novae using the RAT-

CAM CCD camera at the LT (see Chapter 3) during 2011 May. Observed apparent

magnitudes are presented in Table 4.1.



4.4. Photometric Observations and Results 56

Ta
bl

e
4.

1:
O

bs
er

ve
d

op
tic

al
an

d
N

IR
ap

pa
re

nt
m

ag
ni

tu
de

s
of

ta
rg

et
no

va
e

at
qu

ie
sc

en
ce

.T
he

op
tic

al
m

ag
ni

tu
de

s
w

er
e

ob
ta

in
ed

by
LT

fo
rt

en
no

va
e.

T
he

JH
K

m
ag

ni
tu

de
s

w
er

e
ta

ke
n

fr
om

2M
A

SS
fo

rt
he

se
te

n
LT

no
va

e
an

d
ot

he
rn

ov
ae

ob
se

rv
ed

sp
ec

tr
os

co
pi

ca
lly

fr
om

SA
LT

.

N
o.

St
ar

u′
B

V
r′

i′
z′

J
H

K
1

T
C

rB
sa

tu
ra

te
d

12
.6

6±
0.

02
10

.9
7±

0.
02

10
.3

0±
0.

02
9.

13
±

0.
02

9.
36
±

0.
02

5.
99
±

0.
02

5.
15
±

0.
04

4.
81
±

0.
02

2
V

24
87

O
ph

18
.3

0±
0.

07
19

.9
±

0.
3

19
.1
±

0.
2

18
.8
±

0.
1

18
.1

7±
0.

06
17

.4
4±

0.
06

15
.3

6±
0.

08
14

.8
8±

0.
10

14
.4

1±
0.

09
3

C
IA

ql
17

.4
2±

0.
07

17
.3

4±
0.

05
16

.1
7±

0.
02

15
.7

3±
0.

01
15

.1
8±

0.
02

14
.8

2±
0.

01
13

.6
7±

0.
04

13
.3

3±
0.

08
12

.6
9

4
A

R
C

IR
-

-
-

-
-

-
11

.8
1±

0.
02

11
.1

0±
0.

02
10

.9
8±

0.
02

5
V

39
64

Sg
r

19
.7

4±
0.

2
19

.1
3±

0.
05

18
.0

9±
0.

03
17

.5
4±

0.
02

17
.0

0±
0.

02
16

.8
1±

0.
02

10
.8

6±
0.

03
10

.0
2±

0.
03

9.
74
±

0.
03

6
V

36
45

Sg
r

18
.7

7±
0.

1
18

.3
7±

0.
05

16
.7

5±
0.

02
16

.2
0±

0.
02

15
.5

3±
0.

02
15

.0
7±

0.
01

15
.4

5±
0.

06
14

.8
9±

0.
08

13
.1

7
7

V
44

5
Pu

p
20

.3
8±

0.
08

19
.8
±

0.
2

19
.1
±

0.
1

19
.0
±

0.
1

18
.8

3±
0.

04
18

.9
4±

0.
01

12
.2

7±
0.

02
11

.9
4±

0.
02

11
.5

2±
0.

03
8

V
79

4
O

ph
20

.2
4±

0.
08

19
.7

6±
0.

07
17

.6
4±

0.
02

16
.9

5±
0.

02
16

.0
2±

0.
02

15
.6

1±
0.

03
14

.1
5±

0.
02

13
.3

8±
0.

02
13

.2
1±

0.
03

9
V

13
30

C
yg

-
-

-
-

-
-

15
.8

1±
0.

06
15

.2
3±

0.
09

15
.1

4±
0.

16
10

FS
Sc

t
20

.6
3±

0.
2

19
.2

5±
0.

05
17

.6
0±

0.
03

16
.9

6±
0.

02
16

.1
8±

0.
02

15
.8

5±
0.

01
14

.6
5±

0.
04

13
.9

3±
0.

04
13

.7
1±

0.
05

11
B

T
M

on
14

.8
0±

0.
02

16
.0

0±
0.

02
15

.5
8±

0.
02

15
.4

6±
0.

02
15

.2
4±

0.
02

15
.2

1±
0.

02
14

.4
0±

0.
04

13
.9

6±
0.

05
13

.7
2±

0.
05

12
V

36
8

A
ql

16
.2

2±
0.

04
16

.5
9±

0.
03

15
.9

7±
0.

02
15

.7
2±

0.
02

15
.5

9±
0.

02
15

.4
9±

0.
02

14
.5

3±
0.

05
14

.1
5±

0.
06

14
.0

3±
0.

07
13

E
U

Sc
t

-
-

-
-

-
-

12
.2

6±
0.

05
11

.1
8±

0.
04

10
.8

0±
0.

04
14

C
N

V
el

-
-

-
-

-
-

15
.6

6±
0.

07
15

.1
2±

0.
09

15
.1

5±
0.

20
15

L
Z

M
us

-
-

-
-

-
-

14
.4

6±
0.

04
13

.7
5±

0.
04

13
.5

1±
0.

06
16

V
88

8
C

en
-

-
-

-
-

-
15

.6
±

0.
2

14
.9

2±
0.

41
14

.7
9±

0.
27



4.4. Photometric Observations and Results 57

In order to obtain the absolute magnitudes and colours, the correction from reddening

was applied by the method described in Section 4.3. This enabled us to calculate the

ranges of absolute magnitudes and distance using the following MMRD relationship

(i.e. Equation 2.1) with the information from Tables 2.1 and 2.2.

MV(max) = 2.54 log t3 − 11.99 (4.4)

The distances and absolute magnitudes shown in Table 4.2 are calculated from the

following relations

log d =
V − MV(max) + 5 − AV

5
(4.5)

where V is the apparent magnitude presented in Table 4.1, MV(max) is maximum ab-

solute magnitude calculated from the MMRD relation from Equation 4.4, and AV is

the extinction from the literature or extinction maps mentioned above.

The parameters including absolute magnitudes, AV , and distances are presented in Ta-

ble 4.2. Resulting calculated absolute magnitudes were plotted in CMDs. Figure 4.2

shows an optical CMD of 10 novae observed by LT compared to Hipparcos data taken

from Perryman & ESA (1997).

Figure 4.2 is the standard CMD with the most commonly used filters. However B and

V are strongly affected by the accretion disk, unless the secondaries are particularly

bright or the systems are very close to edge-on. According to Darnley et al. (2012),

typical RG-Novae are interdispersed among SG-Novae while MS-Novae do appear

separately on the blue side of the main-sequence track. Figure 4.2 implies there are 4

RG-Novae (T CrB, V3645 Sgr, V749 Oph and FS Sct), 2 MS-Novae (V445 Pup and

V368 Aql), and 4 RG/SG-Novae (V2487 Oph, CI Aql, V445 Pup and V3964 Sgr).
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We also made use of archival data from the Two Micron All Sky Survey (2MASS,

Cutri et al. (2003))2 to search for a potential infrared component of the 16 target no-

vae. Such plots are expected to focus strongly on the secondaries which are expected

to dominate the emission. The plot in Darnley et al. (2012) shows there is a clear sepa-

ration between the RG-Novae and the MS-Novae, and possibly a small distinct region

belonging to the SG-Novae.

Comparing the positions of our novae on the NIR CMD to those presented in Darnley

et al. (2012), Figure 4.3 indicates that there are 10 RG-Novae (T CrB, V749 Oph, FS

Sct, V2487 Oph, EU Sct, V3964 Sgr, AR Cir, V1330 Cyg, LZ Mus and V445 Pup), 3

MS-Novae (V445 Pup, V368 Aql and V3645 Sgr), and 3 SG-Novae (CI Aql, CN Vel

and V888 Cen).

The commonalities and discrepancies between results of spectral type determined from

Figures 4.2 and 4.3 are discussed in Section 4.6 below.

4.5 Spectral Analysis to Determine Luminosity Class

and Spectral Type

The dereddened spectra were first subjected to the analysis to distinguish the lumi-

nosity class of main-sequence (V class), sub-giants (IV class) and giants (III class).

This analysis includes the measurement of EW(CaT)3 that yields logg (Jones et al.,

1984; Mallik, 1997) as shown in Figure 4.4, the measurement diagram of Na I 8190

index versus TiO 8465 index (Slesnick et al., 2008) as shown in Figure 4.5, and the

identification of indicators from specific lines.

Specific spectral lines that are usually used to indicate either the spectral class or lu-

minosity class including Mgb, MgH, Na I, Ca I, CaH, VO and K I (see Table 4.4 for

detail) are also identified in each system.

2 Available online at http://irsa.ipac.caltech.edu/

3 EW(CaT) is the sum of EW of Ca II at 8498Å 8542Å 8662Å (Jones et al., 1984; Mallik, 1997)
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Figure 4.2: Optical CMD showing 10 targets compared with stars plotted from the Hipparcos
data set. The positions of the novae shown in Table 4.2 using the selected extinction for each
object are plotted.
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Figure 4.3: Near-infrared CMD showing 16 targets compared with stars generated by cross-
correlating the Hipparcos and 2MASS catalogues. The positions of the novae shown in Table
4.2 using the selected extinction for each object are plotted.
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Figure 4.4: The relationship between EW(CaT) and logg of objects in Class V (open circles),
IV (closed triangles), III (closed circles), I-II (plus signs). Data from Jones et al. (1984) and
Mallik (1997). The bottom panel is the zoomed-in version of the top panel. Relative positions
of our target stars are noted.
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Figure 4.5: The relationship between the gravity-sensitive Na 8190 index and the temperature-
sensitive TiO 8465 index of object class V (open circles) and III (closed circles) given by
Slesnick et al. (2008). Relative positions of our target stars are noted.

Once the luminosity class is determined, our determination of spectral types for giant

secondaries in these novae relies on the measurement of an absorption index, defined

as the depth of a feature at a wavelength λ relative to an interpolated continuum point

(O’Connell, 1973). Thus, index

[I]λ = −2.5log(Fλ/[λ1+(Fλ2 − Fλ1) × (λ − λ1)/(λ2 − λ1)]) (4.6)

where λ1 and λ2 are continuum wavelengths, and Fλ is the flux in a bandpass centered

at λ.

O’Connell (1973) noted that TiO bands at 6180Å and 7100Å are sensitive to tem-

perature, and Sharpless (1956) showed that a VO band at 7865Å appears in giants

cooler than ∼M5, and suggested that the Na I infrared doublet at 8181Å and 8195Å

potentially is a good luminosity discriminant among M stars. Using these correlations,
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we therefore adopted four indices proposed by Kenyon & Fernandez-Castro (1987) to

measure the molecular and atomic absorptions:

Figure 4.6: Dependence of [TiO]1 on spectral type for giants (closed grey circles) given by
Slesnick et al. (2008). Relative positions of our target stars are noted.

[TiO]1 = −2.5log(F6180/[F6125 +(F6370−F6125)×(6180−6125)/(6370−6125)]) (4.7)

[TiO]2 = −2.5log(F7100/[F7025 +(F7400−F7025)×(7100−7025)/(7400−7025)]) (4.8)

[VO] = −2.5log(F7865/[F7400 + (F8050 −F7400)× (8050−7865)/(8050−7400)]) (4.9)

[Na] = −2.5log(F8190/[F8050 + (F8400−F8050)× (8400−8190)/(8400−8050)]) (4.10)

The dependence of the four indices [TiO]1, [TiO]2, [VO] and [Na], on spectral types

is presented in Figures 4.6, 4.7, 4.8 and 4.9, respectively. The [Na] distinguishing hot

giants (<M3) from cooler giants, can also provide an independent check on spectral

types derived from the [TiO] indices as shown in Figure 4.10.
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Figure 4.7: As Figure 4.6 but for the [TiO]2.

Figure 4.8: As Figure 4.6 but for the [VO].
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Figure 4.9: As Figure 4.6 but for the [Na].

Figure 4.10: Dependence of [Na] on [TiO]2 for giants (closed grey circles) given by Slesnick
et al. (2008). Relative positions of our target stars are noted.
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On the other hand, for luminosity class V stars, the determination of spectral type was

done by comparing our spectra to a spectral library4.

4.6 Spectroscopic Observations and Results

The spectroscopic observations and results for each individual nova are described be-

low with the overall summary towards the end of this Section. All figures of individual

objects for classification presented in this Chapter are non-dereddened otherwise the

spectral features used would be more difficult to see clearly. However, for the analysis,

all spectra were dereddened using approximate value of E(B − V) as given in the text.

4.6.1 T CrB

T CrB (α=15h59m30s.161, δ=+25◦55′12′′.59), a RN with previous recorded outbursts

in 1866 and 1946, is designated to harbour an M3 III secondary star (Anupama, 2008).

When we compared our spectrum to the those taken in 1984 by Kenyon & Garcia

(1986) and during 1990-1998 by Anupama & Mikołajewska (1999), we found that

the overall feature of strong absorption TiO bands remains similar but our spectrum

shows much less in emission line fluxes of both Hydrogen Balmer series and He I and

absorption in CH G-band at 4285-4315Å than that taken by Kenyon & Garcia (1986)

but similar to one of those taken (on 1995 Apr 13.8) by Anupama & Mikołajewska

(1999). With Porb of 227.67 days, Anupama & Mikołajewska (1999) suggested that

the considerable variations of optical emission line fluxes are due to the significant

brightening of the optical continuum which is the result of the activity on the WD.

Figure 4.11 shows that our spectrum has no CaH 6385Å to confirm that there is no

dwarf in the system. The insets show the presence of CN and G-band and weak K I

lines. The K I 7665Å, 7699Å lines and Na I D lines (which are strong in dwarfs) are

also weak and therefore suggest a giant secondary star. The visibility of the strong TiO

4 Available at https://www.cfa.harvard.edu/∼pberlind/atlas/atframes.html
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Figure 4.11: Relative flux-calibrated and non-dereddened LT spectrum of T CrB.

band at 6159Å (seen in all spectra by K5), 6652Å and 6714Å (visible from M0) and

7219Å (seen by M1) indicates a spectral type later than M0. Figures 4.4 and 4.5 both

confirm again a class III star.

The E(B − V) = 0.1±0.1 (AV = 0.3±0.3) given in Schaefer (2010) is adopted to dered-

den the spectrum. As a result, the derived [TiO]1=0.48 and [TiO]2=0.83 are in good

agreement with those found by Anupama & Mikołajewska (1999) ([TiO]1=0.49-0.59,

[TiO]2=0.64-0.81), but the [VO]=0.32 and [Na]=0.15 are greater than those of Anu-

pama & Mikołajewska (1999) ([VO]=0.16, [Na]=-0.03). As a result, our spectrum

indicate a spectral type of M4III from all four indices while Anupama & Mikołajew-

ska (1999) propose a broader range of M3-M4III. In this case, the more confidence of

spectral type range should be placed on that derived from [TiO] and [Na] rather than

[VO] since TiO bands are strong but VO at 7865Å is weak here. We note that errors

in index measurement are very small so they are not presented here. Meanwhile the

ranges of indices presented from the literature were derived from the measurements at

several different epochs.
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Our classification from [TiO] and [Na] is in the range of M3.5-M3.8III which is in

good agreement with the position of T CrB in both optical and NIR CMDs as shown

in Figure 4.2 and 4.3, respectively where the nova is at the top of RGB.

4.6.2 V2487 Oph

V2487 Oph (α=17h31m59s.8, δ=-19◦13′56′′.0), having two previous recorded outbursts

in 1900 and 1998, is identified as a U Sco type nova from the analysis of the light curve

of the 1998 outburst by Hachisu et al. (2002). Porb∼1 day indicates the presence of an

evolved secondary (Anupama, 2013) which should be ∼ K2 sub-giant for a typical

U Sco type RN (Kahabka et al., 1999; Schaefer, 2010). While the U Sco type RNe

are suggested to exhibit dominant He II lines at quiescence (Hanes, 1985), we note

here that our spectrum shows prominent emission lines of CIII/NIII 4645Å and He II

4686Å that rival the Balmer emission lines, as shown in Figure 4.12. The insets also

show a presence of CN and G-band and weak K I lines indicating a late-type evolved

secondary star.

However, by looking at the system in NIR colours, Darnley et al. (2012) found that

the system is consistent with one containing a secondary that is climbing the RGB and

concluded that V2487 Oph is an RG-Nova with a less luminous/evolved secondary

than that of RS Oph or T CrB.

Our spectrum shows neither CaH 6385Å nor Ca I 6103Å, 6122Å, 6162Å, and very

weak Na I D at 8183Å and 8194Å lines and K I 7665Å and 7699Å (see the inset of

Figure 4.12). Thus the secondary cannot be a dwarf but a more evolved star. Figure 4.4

indicates a giant while Figure 4.5 places the secondary among the sub-giants. Never-

theless, the spectral lines themselves place more constraint to the giants since the VO

7865 (which appears in only giants cooler than∼M5) is present, although marginally.

Moreover, TiO and VO bands are visible. The secondary star however should not be

later type than M7III due to the absence in VO 6478Å and 6532Å.

The E(B−V) = 0.5±0.2 (AV = 1.6±0.6) given in Schaefer (2010) is adopted to deredden



4.6. Spectroscopic Observations and Results 70

Figure 4.12: Relative flux-calibrated spectrum of V2487 Oph without dereddening correction.
The nova spectra were obtained from SALT (top, binned every 5Å) and LT (bottom).

the spectrum. We note that, for all objects cooler than ∼ M4, the classification from

[VO] is not reliable since the absorption is negligible and the [Na] index which is

a good luminosity discriminant among M stars should be used instead (Kenyon &

Fernandez-Castro, 1987). As a result, the derived [TiO]1, [TiO]2 and [Na] indices

agree to indicate an M4-M4.8III (or possibly IV) star.
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4.6.3 CI Aql

CI Aql (α=18h52m03s.57, δ=-01◦28′39′′.4) is occasionally grouped among T Pyx type

RNe (MS-Nova) due to the similarity in the light curves and outburst spectra which

resemble Fe II CNe (Darnley et al., 2011). However it is grouped as a U Sco type RN

(SG-Nova) due to its orbital period of 0.6 day and position on a NIR CMD and the

short recurrence time of the outburst also indicated the system is a member of the U

Sco type RNe (Darnley et al., 2012).

Similar to the V2487 Oph case, the EW(CaT) in Figure 4.4 indicates the secondary star

as a giant while the Na I versus TiO 8465 indices in Figure 4.5 indicate somewhat a

sub-giant. However, in the case of CI Aql, the position in the indices diagram is much

closer to that of giants than main-sequence stars.

Our spectrum shows no CaH 6385Å nor Na I 8183Å and 8195Å (i.e. the MS-Nova is

ruled out). However, the weak Ca I 6162Å line (which is enhanced in M dwarfs) is still

seen and molecular TiO bands are visible. These may possibly tend towards indicating

a sub-giant.

The E(B − V) = 0.8±0.3 (AV = 2.6±0.9) given in Schaefer (2010) is adopted to dered-

den the spectrum. As a result, the derived [TiO]1, [TiO]2 and [Na] indices agree to

indicate a G6-K4IV star. This is in good agreement with CMD in Figure 4.3 where CI

Aql places itself in the sub-giant region. We note however that Sahman et al. (2013)

estimate M2=2.3±0.2M� and R2=2.07±0.06R� implying a slightly evolved A type star,

while our spectrum shape cannot be from an A-type star, neither can its position on the

CMDs.

We also compared our spectrum to that observed using the Multiple Mirror Telescope

(MMT) at Mount Hopkins, Arizona, in 1992 as shown in Figures 4.12 and 4.14. The

two spectra are similar in overall features, but with much clearer emission lines of

CIII/NIII 4645Å and He II 4686Å in the SALT spectrum.
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Figure 4.13: As Figure 4.12 but for CI Aql.

4.6.4 AR Cir

AR Cir (α=14h48m09s.53, δ=-60◦00′27′′.5, coordinate designated in published nova

catalogues) is an optical pair with a separation of 3.1 arcsec comprising a 14-mag K3V

star (AR Cir A) and the 18-mag ex-nova (AR Cir B) with a very red continuum (Duer-

beck & Grebel, 1993). The light curve classifies the nova as a very slow nova and

probably a symbiotic star (Bianchini et al., 1991). It is suggested to possibly be a Re-

current Nova by Harrison (1992) due to the low outburst amplitude and the IR colours

which are those of an unreddened M0III star which later proved to be dominated ef-

fectively by component A. The spectrum of AR Cir B given by (Duerbeck & Grebel,
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Figure 4.14: Calibrated MMT spectrum of CI Aql obtained by the 4.5 m MMT on 1992 Sep 3.

1993) showing the medium-strength H and He II emission lines which are often found

in the CNe allowed them to conclude that the nova is indeed a Classical Nova.

Our spectrum (Figure 4.15) resembles that of component A, which is not the nova,

given in Duerbeck & Grebel (1993) with the presence of late-type indicators including

CN 4200Å and G-band at around 4285-4315Å (Griffin & Redman, 1960) which are

shown in the inset. Broad Mg b and strong Na I 5890Å, 5896Å, 8183Å, 8195Å, and

Ca I 6162Å indicate a dwarf star. However, the CaH 6385Å which is a dwarf indicator

is undetected or very weak. The VO 6478Å, 6532Å, and 7865Å are absent, therefore

it is a MS not cooler than ∼M5. Figures 4.4 and 4.5 also confirm again the class V star

designation.

Since it turns out that our slit was not placed correctly in order to observe AR Cir

B, but AR Cir A instead (even though the input coordinate is AR Cir B), we do not

compare the resulting spectral classification to that plotted on the CMDs. For AR

Cir B, we adopted the colour B − V = 1.25∼0.2, V = 18.31±0.03, AV∼3.5 and d∼4-5

kpc given in Duerbeck & Grebel (1993) to plot the CMDs yielding the position of an
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Figure 4.15: Relative flux-calibrated SALT spectrum of AR Cir without dereddening correc-
tion. The spectrum was binned every 5Å. Bottom panel is the zoomed-in version of the top
panel. Small panels show line indicators e.g. CN, G-band and K I lines.

RGB star. Meanwhile we adopted AV∼0.7 and d∼250 pc for AR Cir A (Duerbeck &

Grebel, 1993) to deredden the spectrum resulting in the classification of this object as

a K0-K3V star.

By investigation of the 2MASS data set, we now refine the true coordinates of AR

Cir A as α=14h48m09s.53, δ=-60◦00′27′′.5) and AR Cir B as α=14h48m08s.97, δ=-

60◦00′23′′.3.
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4.6.5 V3964 Sgr

V3964 Sgr (α=17h49m42s.34, δ=-17◦23′35′′.6) was found on an objective prism plate

by Huth (1976) with mpg≤9.4 in June 1975. The only published spectrum of the nova

was taken by Lundstrom & Stenholm (1977) and shows the diffuse enhanced type

which is a characteristic for a nova about two magnitude below peak (see Chapter 1).

Therefore Lundstrom & Stenholm (1977) suggested that the maximum magnitude of

the nova should be around mpg∼7.

Figure 4.16: As Figure 4.15 but for V3964 Sgr.

Our spectrum (Figure 4.16) still shows the emission line of Ti II as that found by

Lundstrom & Stenholm (1977). The absence of both K I absorption lines in the inset

and the CaH 6385Å indicate an evolved secondary star. Weak Na I 8183Å, 8195Å
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and the absence of VO 7865Å can indicate a sub-giant or a giant hotter than M4).

The EW(CaT) (Figure 4.4) and Na I versus TiO indices diagram (Figure 4.5) that it

resembles a giant.

The AV = 1.6±0.2 derived from extinction map of Rowles & Froebrich (2009) is used

to deredden the spectrum because a similar value is found from the EW(Na I) method

also (see Table 4.2). As a result, the derived [TiO]1, [TiO]2 and [Na] indices agree to

indicate a G9-M3III star, also agreeing well with a position at the top of the RGB in

the CMDs (Figures 4.2 and 4.3).

4.6.6 V3645 Sgr

V3645 Sgr (α=18h35m49s.31, δ=-18◦41′44′′.3) was discovered in July 1970, roughly

6 months after the outburst which was suspected to be during the winter months of

1969/1970, in an objective prism plate (Mobberley, 2009) with the brightness reaching

12.6 magnitude and fading very slowly (t3=300 days) to 18.0 magnitude at quiescence

(Downes et al., 2001).

The system was previously suggested to be a potential Recurrent Nova candidate due

to the low amplitude and with NIR colour by Weight et al. (1994). Quiescent light

curve and period studies are not yet obtained. The system was noted as a uncertain ID

object and Hoard et al. (2002) proposed new coordinates. We confirmed the position

proposed by Hoard et al. (2002) is correct.

Weight et al. (1994) adopted AV∼1.2 (or E(B − V)∼0.4 for a distance .2 kpc) derived

from Neckel et al. (1980) but were not totally convinced and suggested the reddening

to this nova has been underestimated. Therefore we adopted an AV = 1.3±0.2 derived

from the extinction map of Rowles & Froebrich (2009) to deredden the spectrum be-

cause a similar value is found from the EW(Na I) method.

Our spectrum (Figure 4.17) shows the dwarf indicator line CaH 6385Å. This is in

good agreement with the classification from EW(CaT) (Figure 4.4), the NaI-TiO in-

dices diagram (Figure 4.5) indicating a class V (or possibly IV) star. The K I absorption
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Figure 4.17: As Figure 4.15 but for V3645 Sgr.
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however is weak, therefore a class IV secondary cannot be ruled out and is still consis-

tent with the position on the NIR CMD (Figure 4.3). When compared with the library

template, we estimate the spectral range to be K1-M1V/IV.

4.6.7 V794 Oph

V794 Oph (α=17h38m49s.25, δ=-22◦50′48′′.9) was suggested as one of the RNe candi-

dates due to its low outburst amplitude by Duerbeck (1988b). Its current identification

is also suspected to be incorrect since Woudt & Warner (2003) found no variation in

this V = 17.2 magnitude star.

Figure 4.18: Relative flux-calibrated SALT spectrum of V794 Oph in blue region without
dereddening correction. The spectrum was binned every 5Å.

Only our spectrum in the blue is presented here since the SALT observations in the

red region were done with the wrong arc files, so the red spectra was dereddened by

using the prominent skylines in stead of arc lines. By adopting AV = 3.34±0.09 given

in an extinction map of Schlegel et al. (1998) which is the maximum extinction at the

edge of the Galaxy, EW(CaT) was measured in our dereddened spectrum and we can
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at least estimate the evolutionary status of the secondary as a giant star (see Figure 4.4)

which is consistent with positions on CMDs.

4.6.8 V368 Aql

Figure 4.19: Relative flux-calibrated SALT spectrum of V368 Aql without dereddening cor-
rection. The spectrum was binned every 5Å. The inset panel shows the region of the K I lines.

V368 Aql (α=19h26m34s.46, δ=+07◦36′13′′.8) is an eclipsing nova with Porb=16.57

hours (Marin & Shafter, 2009). The previous spectrum of the nova was published by

Ringwald et al. (1996) but was not of sufficient S/N to tell whether a G-type secondary

is present as predicted by Diaz & Bruch (1994) who estimated this from the photomet-

ric period study.

We compared our spectrum obtained by SALT in 2010 (Figure 4.19) to those observed

by Ringwald et al. (1996) in 1996 and the spectrum observed by Sumner Starrfield

using the 3.5m New Technology Telescope (NTT) in 1995 (Figure 4.20). We found

that spectra of V368 Aql are all very noisy in the blue with a flat continuum, obvious

Ca II K (3934Å) emission, and He II 4686Å being stronger than Hβ and compatible
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with Hα. Our spectrum shows obvious G-band and CIII/NIII 4640-50Å which are not

clearly seen in the other two spectra. The behaviour of a flat continuum and strong

He II and CIII/NIII emission is reminiscent of that of a dwarf nova (Ringwald et al.,

1996).

Figure 4.20: Calibrated NTT spectrum of V368 Aql obtained by a 3.5 m NTT with EMMI on
1995 June 19.

Our spectrum shows neither Ca I 6103Å, 6122Å, 6162Å, CaH 6385Å, K I 7865Å,

7699Å (see the inset) nor Na I 8183Å and 8195Å. A dwarf secondary can thus be

ruled out. While the Na I 5890Å, 5896Å, weak VO 7865Å, and few lines in the VO

7900Å band are present, it can indicate a sub-giant. This classification of a sub-giant

agrees with that seen from the NIR CMD (Figure 4.3) that V368 Aql has just left the

main-sequence. However the EW(CaT) places it among giants.

The AV∼2.39 (E(B−V) = 0.77) given by Weight et al. (1994) was adopted to deredden

the spectrum. The [TiO]1 and [TiO]2 classified the secondary as a G7-K3IV while the

[VO] and [Na] indicate M2-M4IV. Although the spectrum show Na I 890Å, 5896Å

(which are visible in G-M stars), it also show few lines of VO 7900Å band (which is

observed in star later than M7). Moreover, considering the placement of V368 Aql in
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Figure 4.10, this implies that our measurement deviates from the proper values and is

therefore unreliable. Thus our classification will rely on the G7-K3IV derived from

[TiO]1 and [TiO]2. This classification as a sub-giant is in line with Porb=16.57 hours.

4.6.9 EU Sct

EU Sct (α=18h56m13s.12, δ=-04◦12′32′′.3) was suspected as a potential RN due to its

position on the colour-colour diagram by Weight et al. (1994) and due to the derived

small ‘optical-IR range’ R ≡ K−V = 2.6 which is consistent with a RG secondary star

(Harrison, 1992).

Figure 4.21: As Figure 4.19 but for EU Sct.

Woudt & Warner (2003) suspected an uncertain ID of the system since their obser-

vations found no rapid variation in the candidate star (EU Sct) but there is a 19.1

magnitude companion star (EU Sct-comp) at 4 arcsec to the South of candidate star.

However, we have inspected the spectra of both positions and confirmed that the cur-

rent position of EU Sct is correct.
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We compared our spectrum obtained by SALT in 2010 (Figure 4.21) to the spectrum

observed by Sumner Starrfield using the 3.5m New Technology Telescope (NTT) in

1995 June 18 (Figure 4.22). We found that the two spectra of V368 Aql are very

similar in details showing clearly late-type evolve secondary.

An E(B − V) = 0.84 used in Weight et al. (1994) and a distance of 5.1±1.7 kpc from

Duerbeck (1981) are adopted. Our spectrum shows clearly the late-type secondary

with molecular TiO bands. A weak K I absorption also can be seen in the onset. As

in the case of V368 Aql, Figure 4.10 indicates an unreliable measurement of [Na].

Therefore the spectral type is determined from [TiO]1, [TiO]2 and [Na] which agree on

a range of G7-K0III, which is consistent with its position on the NIR CMD.

4.6.10 CN Vel, LZ Mus and V888 Cen

Figures 4.23, 4.24 and 4.25 show spectra for these 3 novae. Only red spectra were

obtained properly for CN Vel and V888 Cen. Ultimately, spectra of CN Vel and V888

Figure 4.22: Calibrated NTT spectrum of EU Sct obtained by the 3.5 m NTT with EMMI on
1995 June 18.
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Cen encounter a shift in wavelength due to the unclearly matched arc line identification

process (as mentioned in Chapter 3). In the case of LZ Mus, the exposure times were

underestimated making the spectra indistinguishable from the background and too faint

to see line features. There was no spectral measurement made for these three novae

therefore. Line identification was then done by eye. We may see the main common

feature of VO 7900 bands (which is observed in stars later than M7) in these three

novae, especially in V888 Cen.

Since Na I 5890Å, 5896Å lines are known to be seen in all G-M stars and greatly

enhanced in dwarfs (Turnshek, 1985), a strong absorption line of Na I D in V888 Cen

implies that the nova harbours a late-type main-sequence secondary star while CN Vel

and LZ Mus might have more evolved late-type secondaries.

Figure 4.23: Relative flux-calibrated SALT spectrum of CN Vel in red region without dered-
dening correction. The spectrum was binned every 5Å.

The resulting summary of the EW(CaT) measurement indicating logg of all targets is

presented in Table 4.3 while Figure 4.4 shows the plot of targets with comparison to

stars of classes III and V. Table 4.4 summarises specific line indicators found in each

target nova. Table 4.5 shows the results of derived indices including [TiO]1, [TiO]2,
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Figure 4.24: As Figure 4.23 but for LZ Mus.

Figure 4.25: As Figure 4.23 but for V888 Cen in red region.
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[VO] and [Na] measured from the dereddened spectra of the novae. Finally Table

4.6 compares the results of the evolutionary status of the secondaries between the two

methods; from CMDs and from the spectra.

Table 4.3: Measured EW(CaT) and stellar parameters for target novae.

No. System EW(Ca II) (Å) EW(Ca II) (Å) EW(Ca II) (Å) EW(CaT) (Å) logga Corresponding
8498Å 8542Å 8662Å Luminosity Class

1 T CrB 2.2±0.1 3.0±0.1 3.0±0.2 8.3±0.2 2±1 III
2 V2487 Oph 2.6±0.5 2.5±0.4 4±1 9±1 2±1 III
3 CI Aql 1.7±0.1 5.4±0.6 0.3±0.6 7.4±0.6 3.3±0.4 III/IV
4 AR Cir 1.04±0.05 3.37±0.08 0.97±0.04 10.7±0.1 3.4±0.1 V/IV (AR Cir A)
5 V3964 Sgr 1.21±0.05 3.6±0.3 2.96±0.04 7.7±0.2 2.6±0.6 III
6 V3645 Sgr 0.82±0.04 3.13±0.02 2.4±0.1 6.3±0.1 3.63±0.08 V
7 V794 Oph - - - - - (no red observation)
8 V368 Aql 2.9±0.2 8.43±0.04 0.45±0.04 11.8±.2 1.2±0.2 III
9 EU Sct 1.68±0.05 3.83±0.03 2.83±0.01 8.34±.08 2.50±.08 III
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4.7 Discussion and Conclusion

Sixteen novae were selected initially for photometric and spectroscopic follow-up from

the list in Chapter 2. Among them, ten were observed with LT and photometric magni-

tudes obtained. All sixteen novae were plotted in a NIR CMD to determine the spectral

type of the secondaries.

Determinations of reddening were adopted from the literature for seven novae with

known extinction. Extinction for another five novae was estimated from extinction

maps and equivalent widths of Na I D lines.

The dereddened spectra were used to determine luminosity class by using relations

including the EW(CaT) versus logg, the Na I 8190 index versus TiO 8465 index, and

the identification of specific line indicators.

Determination of spectral types was accomplished by identifying specific lines and

calculating indices from TiO bands, VO bands, and the Na atomic line for giants (4

stars) and sub-giants/giants (3 stars). The spectral library template was used instead

of the indices in cases of main-sequence stars (2 stars). The summary of findings on

the evolutionary status of secondaries in nine novae with observed spectra is shown in

Table 4.6.

Spectral type identifications from both optical and NIR CMDs are consistent with one

another for 7 systems; 3 RG-Novae (T CrB, V749 Oph, FS Sct), 3 RG/SG-Novae

(V3964 Sgr, V2487 Oph, CI Aql), and 1 MS-Nova (V368 Aql).

Comparison of results from NIR CMD (based on the definition of secondaries in nova

systems given by Darnley et al., 2013) to those from spectroscopy again shows 7 sys-

tems are in good agreement (4 RG-Novae: T CrB, V2487 Oph, V3964 Sgr and EU

Sct; and 3 SG-Novae: CI Aql, V794 Ophand V368 Aql). Only 2 systems (AR Cir and

V3645 Sgr) disagree.



4.7. Discussion and Conclusion 89

Ta
bl

e
4.

6:
Pr

op
os

ed
sp

ec
tr

al
an

d
lu

m
in

os
ity

cl
as

s
of

se
co

nd
ar

ie
s

in
ta

rg
et

no
va

e.

N
oa .

N
ov

a
R

ec
ur

re
nt

Sy
st

em
Se

co
nd

ar
y

N
am

e
Ty

pe
a

Sp
ec

tr
al

C
la

ss
b

1
T

C
rB

X
R

G
-N

ov
a(

1,
2)

M
3-

M
4I

II
(4

),
M

4I
II

2
V

24
87

O
ph

X
R

G
-N

ov
a(

1,
2)

,S
G

-N
ov

a(
1,

5)
M

4-
M

4.
8I

II
(/

IV
)

3
C

IA
ql

X
SG

-N
ov

a(
1,

2)
K

-M
IV

(4
),

G
6-

K
4I

V
4

A
R

C
ir

R
G

/S
G

-N
ov

a(
1)

K
3V

(6
),

K
0-

K
3V

5
V

39
64

Sg
r

R
G

-N
ov

a(
1)

G
9-

M
3I

II
6

V
36

45
Sg

r
R

G
-N

ov
a(

1)
K

1-
M

1V
/I

V
7

V
44

5
Pu

p
M

S-
N

ov
a(

1)
-

8
V

79
4

O
ph

R
G

-N
ov

a(
1)

II
I

9
V

13
30

C
yg

R
G

-N
ov

a(
1)

-
10

FS
Sc

t
R

G
-N

ov
a(

1)
-

11
B

T
M

on
SG

-N
ov

a(
1)

-
12

V
36

8
A

ql
SG

-N
ov

a(
1)

G
7-

K
3I

V
13

E
U

Sc
t

R
G

-N
ov

a(
1)

G
7-

K
3I

II
14

C
N

V
el

SG
-N

ov
a(

1)
-

15
L

Z
M

us
R

G
-N

ov
a(

1)
-

16
V

88
8

C
en

SG
/M

S-
N

ov
a(

1)
-

N
ot

es
:

a
Sp

ec
tr

al
cl

as
s

of
th

e
se

co
nd

ar
y

st
ar

s
de

si
gn

at
ed

by
us

in
g

N
IR

C
M

D
in

th
is

st
ud

y,
un

le
ss

ot
he

rw
is

e
st

at
ed

.
b

A
n

av
er

ag
e

of
sp

ec
tr

al
cl

as
se

s
ra

ng
es

de
riv

ed
fr

om
Ta

bl
e

4.
5.

R
ef

er
en

ce
s:

(1
)T

hi
s

pa
pe

r,
(2

)D
ar

nl
ey

et
al

.(
20

12
),

(3
)S

ch
ae

fe
r(

20
10

),
(4

)A
nu

pa
m

a
(2

00
8)

,(
5)

H
ac

hi
su

et
al

.(
20

02
)



4.7. Discussion and Conclusion 90

In the case of AR Cir, we cannot do the comparison since the our slit was not placed

correctly in order to observe AR Cir B (the nova) but AR Cir A (a field star). We

however designated AR Cir B as an RGB star from the CMDs, and AR Cir A as a

K0-K3V star from the spectra. In the case of V3645 Sgr, the optical NIR CMD and

spectrum designating it as a RG/SG-Nova by the CMDs, but showing spectra of class

V stars is a discrepancy that we still need to investigate.

Our investigation also confirmed the positions of AR Cir, V794 Oph and EU Sct where

there had been some ambiguity previously. Ultimately, we suggest here four prime

candidates (2 RG-Novae - V3964 Sgr and EU Sct, and 2 SG-Novae - V794 Oph and

V368 Aql) which are currently classified as CNe, to look for more than one outburst in

archival plates or large sample sky surveys such as SMEI. This will be explored further

in the next Chapter.



Chapter 5

Investigation of Novae with the Solar

Mass Ejection Imager (SMEI)

The ground-based observations and results presented in Chapters 2 and 3 show spec-

troscopically that novae with low outburst amplitude potentially harbour evolved sec-

ondaries which might then help identify them as potential RNe. In this Chapter, we

introduce a novel space-based observational archive that might detect the unrecorded

outbursts of bright novae which are suggested to be missed due to their fast fading

(see Chapter 1). Among many other variable and transient sources, the archive also

contains light curves of novae during outbursts, including important data used for an

investigation of the Recurrent Nova T Pyx, described in Chapter 6.

5.1 Introduction

The Solar Mass Ejection Imager (SMEI), a full-sky white-light CCD-based camera

system for observing the inner heliosphere from Earth orbit, is on board the U.S. Air

Force Coriolis Mission spacecraft which was launched into an 840 km Sun-synchronous

terminator orbit on 2003 Jan 6 (Jackson et al., 2004). The operation ceased on 2011

Sep 28, although the spacecraft and instruments were still functioning well. Figure

5.1 shows the Coriolis spacecraft with the SMEI instrument on board prior to Vanden-

91
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berg Air Force Base launch. Three CCD cameras are seen on the lower portion of the

spacecraft.

Figure 5.1: Coriolis spacecraft (4.69 m
height × 1.34 m diameter) with the SMEI
three CCD cameras (circled in red) on
board. Image from Jackson et al. (2004).

Figure 5.2: Schematic of SMEI in orbit.
SMEI scans an area over a ∼180◦ range of
the sky from three cameras looking outward
from the Earth. Image from Jackson et al.
(2004).

SMEI consists of three CCD cameras each with a roughly 60◦×3◦ field of view. It

continuously took 4-second exposures, swept nearly over all the sky every 102 min-

utes, with ∼1◦ spatial resolution, and therefore provided about 1500 frames from each

camera per Earth orbit (Hick et al., 2005). SMEI thus scans an area over a ∼180◦ range

of the sky from the three baffled cameras looking outward from the Earth as shown in

Figure 5.2.

SMEI was operated as a high precision differential photometer (Buffington et al., 2006)

and can reliably detect brightness changes in point sources down to mSMEI∼8 with

the instrument’s peak quantum efficiency at ∼700 nm (corresponding roughly to an R
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photometric band) and FWHM ∼300 nm (Hounsell et al., 2010).

Approximately 5600 point sources brighter than mSMEI<6 were removed individually

from the composite skymaps in order not to compromise the photometric specification

for SMEI. These sources were removed by fitting the ‘standard’ point spread function

(PSF) which was created from the observation of several bright isolated stars over a

year (Hick et al., 2005). That is, a sidereal map was being subtracted removing the

stars below 6th magnitude, so anything we pick up in the maps are just the variation of

that object, e.g. when it peaks.

Therefore with its high-cadence-all-sky observations, SMEI can investigate bright nova

explosions (mSMEI<8) whose outbursts occurred within the time period of operation

(i.e. during 2003-2011) and produce extremely detailed light curves. These caught, for

example, the pre-maximum halts during the outbursts of several novae, as presented in

Hounsell et al. (2010).

The SMEI real-time data pipeline produces calibrated sky maps in which brightness

contributions from zodiacal dust and unresolved sidereal background have been sub-

tracted. Figure 5.3 shows SMEI data frames from Cameras 1, 2 and 3 from top to bot-

tom. While Camera 1 is always the farthest in angular distance from the Sun, Camera

3 is almost facing the Sun at the same time. Camera 1 and 2 operate at their designed

temperature of -30◦C, while Camera 3 operates at temperatures between -10◦C and

3◦C. The images from the cameras showing the point sources are intentionally defo-

cused and extended into a fish-like shape spreading the light over 200 CCD pixels in

order to prevent the pixels from saturating.

SMEI was originally designed to map large-scale variation of electron densities in the

heliosphere by observing Thomson-scattered sunlight from the solar-wind (Jackson

et al., 2004). In order to isolate the Thomson-scattered sunlight, other sources includ-

ing the white-light contributions from the zodiacal dust cloud, the sidereal background,

and the individual point sources (i.e. bright stars and planets) are subtracted (see Hick

et al., 2007, for details). The contribution of these signals as a function of elongation

from the Sun is shown in Figure 5.4.
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Figure 5.3: SMEI 60◦×3◦ data frames from each of three cameras; Camera 1, 2 and 3 from top
to bottom, the one viewing farthest to the one viewing nearest the Sun. Image from Jackson
et al. (2004).

Figure 5.4: Composite view of the sky over a full orbit projected from individual SMEI CCD
cameras. The Sun is at the centre with the ecliptic plane along the horizontal axis. Bright fea-
tures are labelled, and blank areas are excluded due to either being inaccessible to the cameras
during the orbit or the contamination of high particle flux from the Sun. Image from Hick et al.
(2005).
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5.2 Acquisition of SMEI Data

A week in November 2011 was spent working with Rebekah Hounsell alongside the

SMEI team at UCSD in order to gain familiarity with the data and their reduction.

Here we give a short overview of the data reduction process remotely controlled from

LJMU. Detail description and subsequences of each step are given in the Appendix.

1. Connecting to the SMEI Computer and Accessing the Database. In order

to access the SMEI database running on the UCSD computer from abroad, the

remote control software was installed. In this study we used two software pack-

ages, working together called ‘PuTTY’ and ‘TightVNC’ to run on the Windows

machine properly. Then we connect them to the server at UCSD.

2. Adding New Objects to SMEI’s Object List. Before fitting the point sources

in SMEI maps, the objects must be included in SMEI’s object list which requires

information including name, magnitude, RA and DEC.

3. Object Visual Inspection in SMEI’s Sky Maps. Objects and their surrounding

region on SMEI’s sky map were inspected visually prior to the point source

fitting for bad orbits (i.e. orbits thats are contaminated by artefacts from the

pipeline reduction process) which were then identified and excluded.

4. Fitting a Point Source. The photometry of a single point source was obtained

by fitting the standard PSF mentioned above using a least-squares procedure

implemented in IDL (see Hounsell, 2012, for more details). In this study, all in-

vestigated objects were fitted by using the same set of parameters, e.g. automatic

adjusting for PSF centroid, automatic calculating of the size of the PSF radius

which depends on the object’s brightness, removal of background, removal of

zodiacal light, cleaning edge when an object moves from one camera to another.
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Table 5.1: List of bright novae selected for SMEI investigation, and adapted from Table 2.2.
Novae which have recorded outburst during 2003-2011 were investigated during the outburst.
Otherwise, novae with no recorded outburst during that time were searched for an unrecorded
outburst that might have occurred. The horizontal line separates bright novae with recent out-
bursts during 2003-2011 (in the upper part) from the novae with no outburst recorded from
other sources during 2003-2011.

No. Prioritya Name Year 2003-2011? mpeak Filter Spectrum comment
1 36 V5116 Sgr 2005 1 7.6 V Not visible 1,2

2 37 V574 Pup 2004 1 7.0 V Not visible 1,2

3 56 V2467 Cyg 2007 1 7.4 V Visible 1,2 , t2=9±3 days
4 74 V4745 Sgr 2003 1 7.3 V Not visible 2

5 75 V2491 Cyg 2008 1 7.5 V Barely visible 1,2

6 78 V1187 Sco 2004 1 9.8 V Visible 1,2, t2=9.5±0.5 days
7 102 V5115 Sgr 2005 1 7.9 V Not visible
8 109 V1186 Sco 2004 1 9.7 V Not visible 1,2

9 114 V1188 Sco 2005 1 8.9 V Not visible 1,2

10 3 V4074 Sgr 1965 0 8.6 pg Not visible
11 4 V4643 Sgr 2001 0 7.7 V Not visible
12 8 V2313 Oph 1994 0 7.5 V
13 13 V3964 Sgr 1975 0 9.4 pg LT, SALT Not visible
14 16 V4160 Sgr 1991 0 7.0 V Not visible
15 18 V445 Pup 2000 0 8.6 V
16 20 V4743 Sgr 2002 0 5.0 V
17 21 V4740 Sgr 2001 0 6.7 V
18 23 V1330 Cyg 1970 0 9.0 V
19 24 FH Ser 1970 0 4.5 V
20 26 QU Vul 1984 0 5.3 V
21 27 V4739 Sgr 2001 0 7.2 V Not visible
22 29 BT Mon 1939 0 8.1 V
23 31 OS And 1986 0 6.5 V
24 32 V4742 Sgr 2002 0 7.9 V Not visible
25 34 DK Lac 1950 0 5.9 V LT Not visible
26 35 V2275 Cyg 2001 0 6.9 V
27 38 V368 Aql 1936 0 5.0 pg LT, SALT Not visible
28 39 V450 Cyg 1942 0 7.8 pg
29 40 EU Sct 1949 0 8.4 pg SALT
30 41 V1016 Sgr 1899 0 8.5 pg
31 42 V732 Sgr 1936 0 6.4 V
32 47 HR Del 1967 0 3.6 V
33 50 V1370 Aql 1982 0 7.7 V
34 53 LV Vul 1968 0 4.5 V
35 55 V723 Cas 1995 0 7.1 V
36 57 V603 Aql 1918 0 -0.5 V
37 64 T Aur 1891 0 4.5 V
38 65 V1229 Aql 1970 0 6.6 V
39 66 NQ Vul 1976 0 6.2 V
40 67 V838 Her 1991 0 5.3 V
41 68 V705 Cas 1993 0 5.7 V
42 70 V446 Her 1960 0 4.8 V
43 71 CP Lac 1936 0 2.0 V
44 72 V827 Her 1987 0 7.5 V
45 73 V4633 Sgr 1998 0 7.4 V
46 76 V528 Aql 1945 0 6.9 V
47 77 GK Per 1901 0 0.2 V
48 79 V356 Aql 1936 0 7.0 V
49 82 PW Vul 1984 0 6.4 V
50 83 V849 Oph 1919 0 7.6 V
51 85 V4444 Sgr 1999 0 7.6 V
52 87 DN Gem 1912 0 3.6 V
53 89 V1494 Aql 1999 0 4.1 V
54 92 V533 Her 1963 0 3.0 V
55 101 V4169 Sgr 1992 0 7.9 V

Notes: a Priority set from Table 2.2 according to the low amplitude criteria.
References: (1) This study, (2) Hounsell (2012).
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5.3 Light Curves of Detected Variables

5.3.1 Omicron Ceti

As an illustration of the light curves that can be derived from SMEI data we undertook

a short investigation of an example variable.

Figure 5.5: SMEI light curve of Mira Omi Cet from Camera 1 (pink) and 2 (blue) and visible
light observation from AAVSO (light blue).

Omicron Ceti (α=02h19m20s.792, δ=-02◦58′39′′.50), discovered on 1596 Aug 13 by

D. Fabricius, is a prototype of Mira stars with period of 332 days (Mattei et al., 2002).

Miras are the brightest and most famous long-period pulsating variables. They are cool

and evolved stars associated with the asymptotic giant branch (AGB) and undergo ra-

dial pulsations which lead to cycles of visual light variations (Ireland et al., 2008).

Although the pulsation models of Miras already exist, the precise mechanism respon-

sible for the pulsation has not been yet identified (Fabas et al., 2011). Miras normally
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change visual brightness by up to 8 magnitudes over their roughly yearly cycle (Reid

& Goldston, 2002). Figure 5.5 shows SMEI observations present far higher cadence

and potentially reveal more light curve details than those given by AAVSO.

The discrepancies in photometry from Camera 1 and 2 seen in the light curves of O

Cet will be discussed in Section 5.3.2 (Nova V1187 Sco) below.

5.3.2 Detected Novae Outbursts

Searching for the outbursts of novae that occurred during 2003-2011 in the SMEI data

was first undertaken by Hounsell (2012) and resulted in classification into two groups;

the “first class data” and the “second class data”. The first class data are unprece-

dented in their detail compared to previous observations. The second class data are

light curves that are much fainter than those in the first class data. Since many of the

novae have peak brightness at around 8th magnitude, detection of the subsequent light

curve is hence unreliable. In this study, reanalysis of data from all three cameras inde-

pendently of those done by Hounsell, 2012 was carried out for each target nova. Table

5.1 summarises the main findings.

Bright novae (.8th magnitude) from Table 2.2 in Chapter 2 were selected and a new

list of targets was created as presented in Table 5.1. Bright novae with recent outbursts

during 2003-2011 were added to the list (in the upper part) and therefore were inves-

tigated during the outburst. Otherwise, novae with no outburst recorded from other

sources during 2003-2011 were arranged by the amplitude criteria (see Chapter 2) and

therefore were searched for an unrecorded outburst that might have occurred.

Except in the case of T Pyx which will be presented at the end of this Chapter, all

light curves presented in this Chapter are second class data. The light curves derived,

although more noisy than those of the first class data above, have however provided

precise dates for the peak, further evidence for the existence of the premaximum halt,

outburst magnitude, and in some cases decay time.
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Nova V2467 Cyg

Nova V2467 Cyg (α=20h28m12s.52, δ=+41◦48′36′′.5) was discovered by A. Tago at

7.4 magnitude on 2007 Mar 15.787 UT (HJD 2454175.2843) and reached maximum

at 6.8±0.4 magnitude on 2007 Mar. 16.768 UT (2454176.2653) by using an unfil-

tered CCD (Nakano et al., 2007). It was suggested as an Fe II nova (Munari et al.,

2007). The photometric light curve analysis derives parameters including Vmax=7.67,

Bmax=9.38, t2=9 days (from V) and 12 days (from B), E(B−V)=1.38 distance=2.5±0.3

kpc, and MWD=0.97±0.01 (Shugarov et al., 2010). Around the time of the discovery,

an extremely strong OI line at 8446Å was present in spectra, proposed as a result of

overabundance of oxygen (Tomov et al., 2007).

Figure 5.6: SMEI light curves of nova V2467 Cyg from Camera 2 (blue) and 3 (red).

During the transition phase, the V light curve shows some periodic brightness oscil-

lations starting in April with a period of ∼ 20-30 days and an amplitude of 0.7 mag

during the decline (Nakano et al., 2007). The periodic oscillations during the transi-
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tion phase are typical and proposed to be related to an accretion disk process. V2467

Cyg also showed an early appearance of forbidden lines during the transition stage

(Poggiani, 2009).

One year after the outburst, Ness et al. (2008) reported that V2467 Cygni was a soft

X-ray source. Two distinct periods of 3.8 h and 35 min were found by Swierczynski

et al. (2010) who propose the nova is possibly an intermediate polar.

Previously only the light curve viewed from Camera 3 was investigated by Houn-

sell (2012). In this study, data from Cameras 2 and 3 of the SMEI archive pro-

vided the light curves for nova V2467 Cyg presented in Figure 5.6. No detection

was found in Camera 1. The SMEI data both from Cameras 2 and 3 show the ini-

tial rise at mSMEI=11.1±0.2 on HJD 2454173.8687 (∼1.4 days prior to the discov-

ery date) which must have risen from Vquiescent∼19 mag (Strope et al., 2010) to peak

at mSMEI=6.7±0.2 on HJD 2454176.3382 (similar to that reported by Nakano et al.

(2007)). Within this rise the pre-maximum halt was detected from HJD 2454174.0-

2454174.5 at mSMEI=8.7±0.1 for 0.5 days by Camera 2. This pre-maximum halt was

not detected before in Hounsell (2012). This short duration of halt might be reason-

able for a very fast nova like V2467 Cyg (see Hounsell et al., 2010). In fact we find the

approximate t2=9±3 days. The SMEI light curve from Camera 2 also presents oscilla-

tions starting around HJD 2454182 which is about a week earlier than that reported in

Nakano et al. (2007).

We note that light curves from Cameras 2 and 3 are offset in magnitude because the

sky subtraction in Camera 2 is better than that in Camera 3. This artifact is also found

and explained in detail in the case of V1187 Sco (see Figure 5.8 for example).

Nova V1187 Sco

Nova V1187 Sco (α=17h29m18s.81, δ=-31◦46′01′′.5) was discovered by A. Takao at

9.9 magnitude on 2004 Aug 2.071 UT (HJD 2453219.5749) with an unfiltered CCD,

and reached maximum 7.4 magnitude on 2004 Aug 3.583 UT (HJD 2453221.0868)

(Yamaoka, 2004). It harbours an ONeMg WD which did not form dust before entering
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its nebular phase, and with E(B − V)=1.56±0.08, a distance of 4.9±0.5 kpc is derived

(Lynch et al., 2006).

Figure 5.7: SMEI light curve of nova V1187 Sco from Camera 1 (pink) Camera 2 (blue) and 3
(red).

Previously only the light curve viewed from Camera 2 was investigated by Hounsell

(2012). Again in this study, data from Cameras 1 and 2 of the SMEI archive provided

light curves for nova V1187 Sco, as presented in Figure 5.7. No detection was found

in Camera 3. Although the data do not show the rise from quiescence (Vquiescent∼18

mag Strope et al., 2010), they catch the peak at mSMEI=6.9±0.2 on HJD 2453221.2688.

The approximate t2=9.5±0.5 days again classifies the system as a fast nova.

We note there is an offset in magnitude between the two cameras and a high back-

ground level in Camera 1 prior to the outburst. The discrepancy can be explained by

Figure 5.8 where the background subtraction in Camera 2 is cleaner than that in Cam-

era 1. As a result, the derived magnitudes from Camera 2 are more reliable. The high
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background level in both Camera 1 and 2 presented in light curves prior to the outburst

is due to the nearby Moon that contributes more brightness to the object, as shown in

Figure 5.9.

Figure 5.8: SMEI sky maps for V1187 Sco at peak brightness (i.e. all images are taken at
the same orbit 8230) where images are non-subtraction (left), with background subtraction
(middle) and with background and zodiacal light subtraction (right). Top and bottom panels
are data from Camera 1 and 2, respectively. Middle panels show that Camera 2 has better
background subtraction than Camera 1 and a more reliable derived magnitude as a result.
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Figure 5.9: SMEI sky maps for V1187 Sco with the Moon nearby (orbit 8165, top panels)
compared with those taken at peak when the Moon is far away (orbit 8230, bottom panels).
Images presented are non-subtraction (left), with background subtraction (middle) and with
background and zodiacal light subtraction (right) images.

5.4 Searching for Nova Outbursts

This section presents four examples of novae (e.g. V4074 Sgr, V3964 Sgr, DK Lac

and V368 Aql) which do not have any otherwise recorded outbursts during 2003-2011

and are marked as ‘Not visible′ in Table 5.1. They were selected based on two main

reasons. First, the low outburst amplitude criterion (see Chapter 2) in the case of V4074

Sgr, V4643 Sgr, V3964 Sgr and V4160 Sgr, and carried out the investigation following

the list in Table 5.1. The second factor is the availability of observed optical spectra

taken by the LT (see Chapter 4) in the case of DK Lac and V368 Aql. This is to look

for the second outbursts of CNe that suggested they are RNe candidates due to their

colour on a CMD (see Chapter 4). We note that the work presented in Chapter 4 was

begun prior to that presented in this Chapter, this is why the investigation order listed

in Table 5.1 sometimes jumped to the faint novae instead of the brighter novae or the

novae with lower outburst amplitudes. These bright novae with higher priority on the

list should however be investigated further in the future (see Chapter 7).

The resultant failure of our search for missing outbursts is illustrated in Figure 5.10-

5.13 where variations are those of the background light. This shows a wave shape in
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each figure. This variation in background is the seasonal variation in the SMEI sky

maps (Buffington et al., 2007). Note that it is also possible however that outbursts

could have occurred in the gaps in the data.

Figure 5.10: SMEI results at the position of nova V4074 Sgr from 2003 (top left) to 2011
(bottom right) observed by Camera 1 (pink) Camera 2 (blue) and 3 (red). Dotted lines indicate
the previous recorded outburst magnitude.
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Figure 5.11: As Figure 5.10 but for nova V3964 Sgr.

Figure 5.12: As Figure 5.10 but for nova DK Lac.
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Figure 5.13: As Figure 5.10 but for nova V368 Aql.

When considering Figures 5.10, 5.11, 5.12 and 5.13 overall, two features were noticed

in general. First, the background sky levels have a wave shape over the year through

which might be fitted and subtracted and yield therefore better result. Second, there

were some detections which are brighter than the line indicating the previous recorded

outburst magnitude. More intensive investigation should be carried out in the future

work.

5.5 SMEI Observations of Nova T Pyxidis

T Pyx (α=9h4m41s.50, δ=−32◦22′47′′.5) has the shortest known orbital period (∼0d.076

or 1h.824) of any Recurrent Nova (see Anupama, 2008, for a review) and the only RN

that is below the cataclysmic variable (CV) period gap (Schaefer et al., 1992; Patterson

et al., 1998; Uthas et al., 2010).
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According to standard evolutionary models, a CV below the period gap should be faint

and have a low accretion rate (Ṁacc) driven by gravitational radiation (Warner, 2002,

2008). T Pyx’s pre-outburst mass transfer rate turned out to be &10−8 M�yr−1 (Pat-

terson et al., 1998; Selvelli et al., 2010) which is higher than that expected (∼10−10

M�yr−1) in CVs with this period (Hellier, 2001). This unusually high Ṁacc is under-

standable if the system is a wind-driven supersoft X-ray source (SSS) which can accel-

erate the binary evolution (Knigge et al., 2000). Although the SSS has not been seen

yet in quiescence, T Pyx is a weak hard source detected in an XMM-Newton spectrum

(Selvelli et al., 2010). A recent model reveals that nuclear burning WDs do not need to

be bright in soft X-rays during the phase of mass accretion to reach the Chandrasekhar

mass (Di Stefano, 2010; Newsham et al., 2013). Thus the absence of a SSS therefore

may not invalidate Knigge et al.’s (2001) postulate.

T Pyx has had previous observed outbursts in 1890, 1902, 1920, 1944, 1966/1967, and

now 2011, with an extensive shell of ejected gas associated with these. The photo-

metric and spectroscopic characteristics of the first outbursts were briefly presented in

Payne-Gaposchkin (1964) while the 1966 event was discussed post-outburst by Catch-

pole (1969) and Landolt (1970). All the outbursts have exhibited brightness fluctua-

tions near the optical peak and the subsequent declines have been slow. The ejection

velocity observed previously was ∼2000 km s−1 in 1967 (Catchpole, 1969; Williams,

1982) with t3=63 days (Schaefer, 2010). The distance has been revised most recently

by Shore et al. (2011) to be ≥4.5 kpc, with a strict lower limit of 3.5 kpc which was

the previously accepted value. Taking Mbol=−7.0 given by Schaefer (2010) gives Lbol

∼ 2×1038 erg s−1 at maximum light (∼Ledd for a 1M� WD).

T Pyx is unique for having an outburst light curve plateau in the decline stage which is

different from the five other RNe (IM Nor, CI Aql, V2487 Oph, U Sco, and RS Oph)

with observed (so-called ‘true’) plateaus in their light curves. While the latter true

plateaus are believed to be the result of the combination of the irradiation of the disk

(by the supersoft emission from nuclear burning near the WD after the wind associated

with the ejecta has stopped) and the steady light decline from the shell which leads to

a flattening of the light curve until the nuclear burning turns off, the plateau in T Pyx
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is thought to arise from a different mechanism including the emission lines increasing

in brightness (Hachisu et al., 2000). Unlike true plateaus that have the flat portion

starting during an apparently final decline, T Pyx’s plateau starts immediately after a

sharp drop (∼2.0 mag in 20 days after peak) and starts again in the final decline (∼105

days after peak). This feature, of a plateau starting after a sharp drop, is also present

in RS Oph; however, the presence of a Super Soft Source (SSS) and the lack of colour

changes during the plateau phase in RS Oph indicates a true plateau (Hachisu et al.,

2008). On the other hand, the shape of T Pyx’s plateau in B and V band light curves is

significantly different (Schaefer, 2010).

Another unique feature of T Pyx is the secular decline from 1890 to the present across

many eruptions. It is the only RN that shows a decreasing trend in quiescent B magni-

tude which has declined from 13.8 before the eruption in 1890 to 14.38, 14.74, 14.88,

and 14.72 for the next four inter-eruption periods and finally faded to 15.5 from the

1980’s until 2004 (Schaefer, 2005) and then to 15.7 from 2009 to 2011 (Schaefer et al.,

2013) as shown in Figure 5.14. By looking at this drop of a total of 1.9 magnitudes

corresponding to a factor of 5.75 in flux, and using Ṁacc∝Fβ where β=2.0 given by

Schaefer (2005), Schaefer et al. (2010a) commented that the Ṁacc has dropped by a

total factor of 33 since 1890. This convinced them to predict the next eruption to be

103 to 106 years from that time, which was of course shown to be a gross overestimate

of the timescale to outburst.

Figure 5.14: Secular decline of B magnitude and mass accretion rate of T Pyx. The schematic
plot of quiescent B magnitude of previous eruptions (left) implies the mass accretion rate (right)
has dropped to within 3% of its earlier value (from Schaefer et al., 2010a).
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Figure 5.15: SMEI light curve of Recurrent Nova T Pyx. The outburst of T Pyx in 2011 was
discovered by AAVSO observer M. Linnolt at a visual magnitude of 13.0 on JD 2455665.7931
(see Chapter 6 for more details). Data from Camera 2 (blue) is much less scattered compared
to those from Camera 1 (black) and Camera 3 (red). As a result, only data from Camera 2 are
used in Chapter 6.
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The latest outburst of T Pyx in 2011 is detected in the SMEI data. The preliminary

analysis was given in Hounsell (2012), showing the light curve from Camera 2. In

this study, all three cameras were investigated, again independently of work done by

Hounsell (2012). It is found that, similar to the case of V1187 Sco, data from Camera 2

are more reliable than those from Cameras 1 and 3 as seen in Figure 5.15. As a result,

only data from Camera 2 (Table 5.2) as shown in Figure 5.16 are used in the detailed

investigation of T Pyx in its 2011 outburst, described in Chapter 6.

Figure 5.16: SMEI light curve of Recurrent Nova T Pyx in its 2011 outburst as viewed by
Camera 2.

5.6 Discussion and Conclusion

In this Chapter, we have introduced the high cadence full-sky space-based observa-

tional archive of SMEI. Selected targets were added into the SMEI’s object list, each
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was inspected in SMEI’s sky maps by eye to identify bad orbits. Background light and

sidereal zodiacal light were then subtracted from sky maps, and finally the magnitudes

of the the targets were obtained by fitting the standard PSF.

Using data from the SMEI archive, we derived light curves of one Mira (O Cet) and

two novae with known outbursts during 2003-2011 (V2467 Cyg and V1187 Sco). The

SMEI light curves potentially reveal more details than those given by ground-based

observations. The pre-maximum halt was found in V2467 Cyg as well as oscillations

in light curves found earlier than those found in previous studies. The precise date of

maximum of each nova was provided.

Four bright novae that are potentially RNe candidates, as suggested in Chapters 2 and

3, were searched for second outbursts, but none were found. It should be noted that

further investigation of bright novae with high priority in Table 5.1 should be carried

out. Hounsell (2012) proposed that over 50 novae may be found within the SMEI data

archive since the estimated number of novae brighter than 8th magnitude occurring

each year is ∼ 6 (Shafter, 2002).

Among the nova outbursts detected by SMEI, the unprecedented detail in first class

data of the Recurrent Nova T Pyx in its 2011 outburst reveals important results which

will be used for detailed investigations, as described in Chapter 6.
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Table 5.2: SMEI observations of T Pyx from Camera 2.

JD t mSMEI | JD t mSMEI | JD t mSMEI

2455667.3422 1.55 8.80 ± 0.09 | 2455672.2802 6.49 7.89 ± 0.06 | 2455676.8656 11.07 8.11 ± 0.07

2455667.5538 1.76 8.71 ± 0.09 | 2455672.3508 6.56 7.96 ± 0.06 | 2455676.9361 11.14 8.10 ± 0.07

2455667.6244 1.83 8.54 ± 0.08 | 2455672.4213 6.63 8.01 ± 0.07 | 2455677.2183 11.43 8.09 ± 0.07

2455667.6949 1.90 8.40 ± 0.08 | 2455672.7035 6.91 8.11 ± 0.07 | 2455677.2888 11.50 8.05 ± 0.07

2455667.7654 1.97 8.52 ± 0.08 | 2455672.7741 6.98 8.06 ± 0.07 | 2455677.3594 11.57 8.13 ± 0.07

2455667.8402 2.05 8.37 ± 0.08 | 2455672.8446 7.05 8.04 ± 0.07 | 2455677.4299 11.64 8.11 ± 0.07

2455667.9066 2.11 8.43 ± 0.08 | 2455672.9151 7.12 8.10 ± 0.07 | 2455677.5004 11.71 8.18 ± 0.07

2455667.9771 2.18 8.41 ± 0.08 | 2455672.9857 7.19 8.18 ± 0.07 | 2455677.5710 11.78 7.99 ± 0.06

2455668.0476 2.25 8.26 ± 0.07 | 2455673.0563 7.26 8.09 ± 0.07 | 2455677.6415 11.85 8.02 ± 0.07

2455668.1182 2.33 8.37 ± 0.08 | 2455673.1267 7.33 8.14 ± 0.07 | 2455677.7121 11.92 7.94 ± 0.06

2455668.1887 2.40 8.41 ± 0.08 | 2455673.1973 7.40 8.07 ± 0.07 | 2455677.7826 11.99 7.88 ± 0.06

2455668.2593 2.47 8.50 ± 0.08 | 2455673.2679 7.47 8.08 ± 0.07 | 2455677.8532 12.06 7.80 ± 0.06

2455668.3298 2.54 8.42 ± 0.08 | 2455673.3384 7.55 7.95 ± 0.06 | 2455677.9237 12.13 7.82 ± 0.06

2455668.4003 2.61 8.39 ± 0.08 | 2455673.4089 7.62 8.03 ± 0.07 | 2455677.9942 12.20 7.73 ± 0.06

2455668.4709 2.68 8.26 ± 0.07 | 2455673.4795 7.69 7.97 ± 0.06 | 2455678.0648 12.27 7.79 ± 0.06

2455668.5414 2.75 8.30 ± 0.07 | 2455673.5560 7.76 7.89 ± 0.06 | 2455678.1354 12.34 7.81 ± 0.06

2455668.6120 2.82 8.40 ± 0.08 | 2455673.6205 7.83 7.95 ± 0.06 | 2455678.2059 12.41 7.92 ± 0.06

2455668.8941 3.10 8.34 ± 0.08 | 2455673.6911 7.90 7.95 ± 0.06 | 2455678.2764 12.48 7.86 ± 0.06

2455668.9647 3.17 8.47 ± 0.08 | 2455673.7617 7.97 7.79 ± 0.06 | 2455678.3470 12.55 7.83 ± 0.06

2455669.1058 3.31 8.32 ± 0.08 | 2455673.8322 8.04 7.75 ± 0.06 | 2455678.4175 12.62 7.87 ± 0.06

2455669.3174 3.52 8.52 ± 0.08 | 2455673.9027 8.11 7.86 ± 0.06 | 2455678.5586 12.77 7.87 ± 0.06

2455669.3880 3.59 8.44 ± 0.08 | 2455673.9733 8.18 7.80 ± 0.06 | 2455678.6292 12.84 7.99 ± 0.06

2455669.4585 3.67 8.36 ± 0.08 | 2455674.0439 8.25 7.81 ± 0.06 | 2455678.6997 12.91 8.02 ± 0.07

2455669.6701 3.88 8.36 ± 0.08 | 2455674.1144 8.32 7.88 ± 0.06 | 2455678.7702 12.98 7.97 ± 0.06

2455669.7407 3.95 8.35 ± 0.08 | 2455674.1849 8.39 7.97 ± 0.06 | 2455678.8408 13.05 7.98 ± 0.06

2455669.8112 4.02 8.36 ± 0.08 | 2455674.2555 8.46 7.96 ± 0.06 | 2455678.9113 13.12 7.94 ± 0.06

2455669.8818 4.09 8.34 ± 0.08 | 2455674.3260 8.53 7.93 ± 0.06 | 2455678.9818 13.19 8.00 ± 0.07

2455669.9523 4.16 8.24 ± 0.07 | 2455674.3966 8.60 8.02 ± 0.07 | 2455679.0524 13.26 7.99 ± 0.07

2455670.0229 4.23 8.20 ± 0.07 | 2455674.3966 8.60 8.07 ± 0.07 | 2455679.1230 13.33 8.09 ± 0.07

2455670.0934 4.30 8.19 ± 0.07 | 2455674.5376 8.74 7.97 ± 0.06 | 2455680.5338 14.74 7.58 ± 0.05

2455670.1640 4.37 8.15 ± 0.07 | 2455674.6082 8.82 8.15 ± 0.07 | 2455680.6044 14.81 7.49 ± 0.05

2455670.2345 4.44 8.26 ± 0.07 | 2455674.6787 8.89 8.05 ± 0.07 | 2455680.6749 14.88 7.51 ± 0.05

2455670.3050 4.51 8.23 ± 0.07 | 2455674.7493 8.96 8.04 ± 0.07 | 2455680.7454 14.95 7.63 ± 0.06

2455670.3756 4.58 8.25 ± 0.07 | 2455674.8198 9.03 8.07 ± 0.07 | 2455680.8160 15.02 7.62 ± 0.06

2455670.4462 4.65 8.17 ± 0.07 | 2455674.8904 9.10 8.21 ± 0.07 | 2455680.8865 15.09 7.66 ± 0.06

2455670.5166 4.72 8.11 ± 0.07 | 2455675.0315 9.24 8.21 ± 0.07 | 2455681.0276 15.23 7.48 ± 0.05

2455670.5872 4.79 8.07 ± 0.07 | 2455675.1020 9.31 8.17 ± 0.07 | 2455681.0982 15.31 7.50 ± 0.05

2455670.7283 4.94 8.09 ± 0.07 | 2455675.1725 9.38 8.31 ± 0.08 | 2455681.1687 15.38 7.55 ± 0.05

2455670.7989 5.01 8.00 ± 0.07 | 2455675.2431 9.45 8.22 ± 0.07 | 2455681.2392 15.45 7.51 ± 0.05

2455670.8694 5.08 8.08 ± 0.07 | 2455675.3136 9.52 8.13 ± 0.07 | 2455681.3098 15.52 7.47 ± 0.05

2455670.9399 5.15 8.01 ± 0.07 | 2455675.3842 9.59 8.19 ± 0.07 | 2455681.3803 15.59 7.50 ± 0.05

2455671.0105 5.22 8.10 ± 0.07 | 2455675.4547 9.66 8.14 ± 0.07 | 2455681.4508 15.66 7.45 ± 0.05

2455671.0810 5.29 8.08 ± 0.07 | 2455675.5252 9.73 8.10 ± 0.07 | 2455681.5214 15.73 7.37 ± 0.05

2455671.1516 5.36 8.03 ± 0.07 | 2455675.5958 9.80 8.13 ± 0.07 | 2455681.5920 15.80 7.41 ± 0.05

2455671.2221 5.43 8.10 ± 0.07 | 2455675.6663 9.87 8.01 ± 0.07 | 2455681.6625 15.87 7.45 ± 0.05

2455671.2926 5.50 8.16 ± 0.07 | 2455675.7369 9.94 8.09 ± 0.07 | 2455681.7330 15.94 7.47 ± 0.05

2455671.3632 5.57 8.06 ± 0.07 | 2455675.8074 10.01 8.02 ± 0.07 | 2455681.8036 16.01 7.48 ± 0.05

2455671.4337 5.64 8.14 ± 0.07 | 2455675.8780 10.08 8.05 ± 0.07 | 2455681.8741 16.08 7.50 ± 0.05

2455671.5043 5.71 8.18 ± 0.07 | 2455675.9485 10.16 8.03 ± 0.07 | 2455681.9446 16.15 7.52 ± 0.05

2455671.5748 5.78 8.17 ± 0.07 | 2455676.0190 10.23 8.00 ± 0.07 | 2455682.0152 16.22 7.49 ± 0.05

2455671.6454 5.85 8.19 ± 0.07 | 2455676.0896 10.30 8.02 ± 0.07 | 2455682.0858 16.29 7.52 ± 0.05

2455671.7159 5.92 8.10 ± 0.07 | 2455676.1601 10.37 7.97 ± 0.06 | 2455682.1563 16.36 7.52 ± 0.05

2455671.7865 5.99 8.17 ± 0.07 | 2455676.2307 10.44 7.91 ± 0.06 | 2455682.2268 16.43 7.43 ± 0.05

2455671.8570 6.06 8.05 ± 0.07 | 2455676.3012 10.51 7.79 ± 0.06 | 2455682.2974 16.50 7.54 ± 0.05

2455671.9275 6.13 8.10 ± 0.07 | 2455676.3718 10.58 7.85 ± 0.06 | 2455682.3679 16.57 7.56 ± 0.05

2455671.9981 6.21 8.02 ± 0.07 | 2455676.4423 10.65 7.84 ± 0.06 | 2455682.4384 16.65 7.51 ± 0.05

2455672.0686 6.28 8.04 ± 0.07 | 2455676.6540 10.86 8.02 ± 0.07 | 2455682.5090 16.72 7.55 ± 0.05

2455672.1392 6.35 8.06 ± 0.07 | 2455676.7245 10.93 7.99 ± 0.07 | 2455682.5795 16.79 7.53 ± 0.05

2455672.2097 6.42 8.12 ± 0.07 | 2455676.7950 11.00 8.09 ± 0.07 | 2455682.6501 16.86 7.51 ± 0.05

continued on next page
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Table 5.2 – continued

JD t mSMEI | JD t mSMEI | JD t mSMEI

2455682.7206 16.93 7.37 ± 0.05 | 2455688.2229 22.43 7.00 ± 0.04 | 2455692.8786 27.09 6.83 ± 0.04

2455682.7912 17.00 7.38 ± 0.05 | 2455688.2934 22.50 6.96 ± 0.04 | 2455692.9492 27.16 6.75 ± 0.04

2455682.8617 17.07 7.37 ± 0.05 | 2455688.3640 22.57 7.01 ± 0.04 | 2455693.0197 27.23 6.67 ± 0.04

2455682.9322 17.14 7.34 ± 0.05 | 2455688.4345 22.64 7.04 ± 0.04 | 2455693.0902 27.30 6.64 ± 0.04

2455683.0028 17.21 7.32 ± 0.05 | 2455688.5051 22.71 7.08 ± 0.04 | 2455693.1608 27.37 6.60 ± 0.03

2455683.0733 17.28 7.23 ± 0.05 | 2455688.5756 22.78 7.10 ± 0.04 | 2455693.2313 27.44 6.62 ± 0.03

2455683.1439 17.35 7.22 ± 0.05 | 2455688.6461 22.85 7.16 ± 0.04 | 2455693.3018 27.51 6.59 ± 0.03

2455683.2144 17.42 7.17 ± 0.04 | 2455688.7167 22.92 7.17 ± 0.04 | 2455693.3724 27.58 6.61 ± 0.03

2455683.2850 17.49 7.21 ± 0.05 | 2455688.7872 22.99 7.07 ± 0.04 | 2455693.4429 27.65 6.51 ± 0.03

2455683.3555 17.56 7.23 ± 0.05 | 2455688.8578 23.06 7.21 ± 0.05 | 2455693.6546 27.86 6.43 ± 0.03

2455683.4260 17.63 7.21 ± 0.05 | 2455688.9283 23.14 7.25 ± 0.05 | 2455693.7251 27.93 6.33 ± 0.03

2455683.4966 17.70 7.14 ± 0.04 | 2455688.9988 23.21 7.27 ± 0.05 | 2455693.7956 28.00 6.48 ± 0.03

2455683.7082 17.92 7.31 ± 0.05 | 2455689.0694 23.28 7.27 ± 0.05 | 2455693.8662 28.07 6.55 ± 0.03

2455683.7788 17.99 7.33 ± 0.05 | 2455689.1399 23.35 7.36 ± 0.05 | 2455693.9367 28.14 6.58 ± 0.03

2455683.8493 18.06 7.23 ± 0.05 | 2455689.2105 23.42 7.37 ± 0.05 | 2455694.0073 28.21 6.57 ± 0.03

2455683.9198 18.13 7.17 ± 0.04 | 2455689.2810 23.49 7.26 ± 0.05 | 2455694.0778 28.28 6.65 ± 0.04

2455683.9904 18.20 7.15 ± 0.04 | 2455689.3516 23.56 7.26 ± 0.05 | 2455694.1484 28.36 6.55 ± 0.03

2455684.0609 18.27 7.15 ± 0.04 | 2455689.4221 23.63 7.29 ± 0.05 | 2455694.2189 28.43 6.43 ± 0.03

2455684.1315 18.34 7.09 ± 0.04 | 2455689.5632 23.77 7.42 ± 0.05 | 2455694.2894 28.50 6.41 ± 0.03

2455684.2020 18.41 7.09 ± 0.04 | 2455689.6337 23.84 7.32 ± 0.05 | 2455694.3600 28.57 6.50 ± 0.03

2455684.2725 18.48 7.03 ± 0.04 | 2455689.7043 23.91 7.32 ± 0.05 | 2455694.8537 29.06 6.77 ± 0.04

2455684.3431 18.55 7.09 ± 0.04 | 2455689.7748 23.98 7.36 ± 0.05 | 2455694.9243 29.13 6.72 ± 0.04

2455684.4136 18.62 7.01 ± 0.04 | 2455689.8453 24.05 7.43 ± 0.05 | 2455695.0654 29.27 6.51 ± 0.03

2455684.4842 18.69 7.00 ± 0.04 | 2455689.9159 24.12 7.30 ± 0.05 | 2455695.1359 29.34 6.49 ± 0.03

2455684.5547 18.76 6.99 ± 0.04 | 2455689.9864 24.19 7.33 ± 0.05 | 2455695.2065 29.41 6.51 ± 0.03

2455684.6253 18.83 6.98 ± 0.04 | 2455690.0569 24.26 7.36 ± 0.05 | 2455695.3475 29.55 6.84 ± 0.04

2455684.6958 18.90 7.08 ± 0.04 | 2455690.1275 24.33 7.20 ± 0.05 | 2455695.4181 29.63 6.75 ± 0.04

2455684.9779 19.18 7.09 ± 0.04 | 2455690.1980 24.40 7.28 ± 0.05 | 2455695.4886 29.70 6.75 ± 0.04

2455685.0485 19.26 7.07 ± 0.04 | 2455690.2686 24.48 7.22 ± 0.05 | 2455695.5592 29.77 6.68 ± 0.04

2455685.1190 19.33 7.03 ± 0.04 | 2455690.3391 24.55 7.24 ± 0.05 | 2455695.6297 29.84 6.65 ± 0.04

2455685.1896 19.40 7.09 ± 0.04 | 2455690.4097 24.62 7.28 ± 0.05 | 2455695.7002 29.91 6.70 ± 0.04

2455685.2601 19.47 7.10 ± 0.04 | 2455690.4802 24.69 7.28 ± 0.05 | 2455695.7708 29.98 6.70 ± 0.04

2455685.3307 19.54 7.10 ± 0.04 | 2455690.8329 25.04 7.17 ± 0.04 | 2455695.8413 30.05 6.73 ± 0.04

2455685.4012 19.61 7.16 ± 0.04 | 2455690.9035 25.11 7.17 ± 0.04 | 2455695.9119 30.12 6.72 ± 0.04

2455685.4717 19.68 7.09 ± 0.04 | 2455690.9740 25.18 7.08 ± 0.04 | 2455695.9824 30.19 6.69 ± 0.04

2455685.5423 19.75 7.03 ± 0.04 | 2455691.0445 25.25 7.00 ± 0.04 | 2455696.0530 30.26 6.65 ± 0.04

2455685.6129 19.82 7.05 ± 0.04 | 2455691.1151 25.32 6.89 ± 0.04 | 2455696.1235 30.33 6.70 ± 0.04

2455685.6834 19.89 7.04 ± 0.04 | 2455691.1151 25.32 6.93 ± 0.04 | 2455696.1941 30.40 6.86 ± 0.04

2455685.7539 19.96 7.04 ± 0.04 | 2455691.2562 25.46 6.86 ± 0.04 | 2455696.2646 30.47 6.87 ± 0.04

2455685.8245 20.03 7.04 ± 0.04 | 2455691.3267 25.53 6.79 ± 0.04 | 2455696.3351 30.54 6.79 ± 0.04

2455685.8950 20.10 6.97 ± 0.04 | 2455691.3972 25.60 6.80 ± 0.04 | 2455696.4762 30.68 6.81 ± 0.04

2455686.0361 20.24 7.10 ± 0.04 | 2455691.4678 25.67 6.85 ± 0.04 | 2455696.5467 30.75 6.77 ± 0.04

2455686.1066 20.31 7.14 ± 0.04 | 2455691.5383 25.75 6.94 ± 0.04 | 2455696.6173 30.82 6.59 ± 0.03

2455686.1772 20.38 7.05 ± 0.04 | 2455691.6089 25.82 6.78 ± 0.04 | 2455696.6878 30.89 6.61 ± 0.03

2455686.3183 20.53 7.02 ± 0.04 | 2455691.6794 25.89 6.89 ± 0.04 | 2455696.7584 30.97 6.58 ± 0.03

2455686.3888 20.60 6.99 ± 0.04 | 2455691.7500 25.96 6.88 ± 0.04 | 2455696.8289 31.04 6.61 ± 0.03

2455686.4593 20.67 7.02 ± 0.04 | 2455691.8205 26.03 6.84 ± 0.04 | 2455696.8995 31.11 6.60 ± 0.03

2455686.6710 20.88 6.88 ± 0.04 | 2455691.8910 26.10 6.84 ± 0.04 | 2455696.9700 31.18 6.61 ± 0.03

2455686.7415 20.95 6.91 ± 0.04 | 2455692.0321 26.24 6.78 ± 0.04 | 2455697.0405 31.25 6.63 ± 0.04

2455686.8120 21.02 6.90 ± 0.04 | 2455692.1026 26.31 6.79 ± 0.04 | 2455697.1111 31.32 6.67 ± 0.04

2455686.8120 21.02 6.88 ± 0.04 | 2455692.1732 26.38 6.80 ± 0.04 | 2455697.1816 31.39 6.79 ± 0.04

2455686.9531 21.16 6.91 ± 0.04 | 2455692.2438 26.45 6.79 ± 0.04 | 2455697.2522 31.46 6.82 ± 0.04

2455687.0237 21.23 6.97 ± 0.04 | 2455692.3143 26.52 6.87 ± 0.04 | 2455697.3227 31.53 6.77 ± 0.04

2455687.0942 21.30 7.05 ± 0.04 | 2455692.3848 26.59 6.91 ± 0.04 | 2455697.3932 31.60 6.86 ± 0.04

2455687.1648 21.37 7.03 ± 0.04 | 2455692.4554 26.66 6.94 ± 0.04 | 2455697.4638 31.67 6.74 ± 0.04

2455687.2353 21.44 7.03 ± 0.04 | 2455692.5260 26.73 6.94 ± 0.04 | 2455697.6754 31.88 6.88 ± 0.04

2455687.3059 21.51 7.01 ± 0.04 | 2455692.5965 26.80 6.93 ± 0.04 | 2455697.7459 31.95 7.04 ± 0.04

2455688.0113 22.22 6.95 ± 0.04 | 2455692.6670 26.87 6.81 ± 0.04 | 2455697.8165 32.02 6.99 ± 0.04

2455688.0818 22.29 6.93 ± 0.04 | 2455692.7376 26.94 6.72 ± 0.04 | 2455697.8870 32.09 6.71 ± 0.04

2455688.1523 22.36 6.98 ± 0.04 | 2455692.8081 27.02 6.77 ± 0.04 | 2455697.9575 32.16 6.80 ± 0.04

continued on next page
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Table 5.2 – continued

JD t mSMEI | JD t mSMEI | JD t mSMEI

2455698.0281 32.24 6.68 ± 0.04 | 2455702.5427 36.75 7.35 ± 0.05 | 2455709.5966 43.80 7.16 ± 0.04

2455698.0987 32.31 6.59 ± 0.03 | 2455702.6132 36.82 7.34 ± 0.05 | 2455709.6672 43.87 7.29 ± 0.05

2455698.1692 32.38 6.64 ± 0.04 | 2455702.6837 36.89 7.32 ± 0.05 | 2455709.7377 43.94 7.32 ± 0.05

2455698.2397 32.45 6.84 ± 0.04 | 2455702.7543 36.96 7.30 ± 0.05 | 2455709.8083 44.02 7.21 ± 0.05

2455698.3103 32.52 6.94 ± 0.04 | 2455702.8248 37.03 7.22 ± 0.05 | 2455709.8788 44.09 7.41 ± 0.05

2455698.3808 32.59 6.92 ± 0.04 | 2455702.8954 37.10 7.20 ± 0.05 | 2455710.3020 44.51 7.49 ± 0.05

2455698.4513 32.66 6.90 ± 0.04 | 2455702.9624 37.17 7.14 ± 0.04 | 2455710.3726 44.58 7.34 ± 0.05

2455698.5219 32.73 6.93 ± 0.04 | 2455703.0365 37.24 7.26 ± 0.05 | 2455710.4431 44.65 7.50 ± 0.05

2455698.5924 32.80 6.97 ± 0.04 | 2455703.1070 37.31 7.34 ± 0.05 | 2455710.5137 44.72 7.14 ± 0.04

2455698.6630 32.87 7.09 ± 0.04 | 2455703.1775 37.38 7.25 ± 0.05 | 2455710.5842 44.79 7.34 ± 0.05

2455698.7335 32.94 6.90 ± 0.04 | 2455703.2481 37.46 7.21 ± 0.05 | 2455710.6547 44.86 7.52 ± 0.05

2455698.8746 33.08 7.11 ± 0.04 | 2455703.3186 37.53 7.14 ± 0.04 | 2455710.7253 44.93 7.63 ± 0.06

2455698.9451 33.15 7.20 ± 0.05 | 2455703.3892 37.60 7.09 ± 0.04 | 2455710.7958 45.00 7.49 ± 0.05

2455699.0157 33.22 7.14 ± 0.04 | 2455703.4597 37.67 7.12 ± 0.04 | 2455710.8663 45.07 7.55 ± 0.05

2455699.0862 33.29 7.23 ± 0.05 | 2455703.5302 37.74 7.11 ± 0.04 | 2455710.9369 45.14 7.66 ± 0.06

2455699.1567 33.36 7.18 ± 0.04 | 2455703.6008 37.81 7.12 ± 0.04 | 2455711.0074 45.21 7.61 ± 0.05

2455699.2273 33.43 7.20 ± 0.05 | 2455703.6713 37.88 7.04 ± 0.04 | 2455711.0780 45.28 7.39 ± 0.05

2455699.2978 33.50 7.21 ± 0.05 | 2455703.7418 37.95 7.06 ± 0.04 | 2455711.1485 45.36 7.32 ± 0.05

2455699.3684 33.58 7.10 ± 0.04 | 2455703.8124 38.02 7.17 ± 0.04 | 2455711.1485 45.36 7.30 ± 0.05

2455699.4389 33.65 7.05 ± 0.04 | 2455703.8829 38.09 7.06 ± 0.04 | 2455711.2896 45.50 7.37 ± 0.05

2455699.5095 33.72 7.03 ± 0.04 | 2455704.6589 38.87 7.21 ± 0.05 | 2455711.4307 45.64 7.56 ± 0.05

2455699.5800 33.79 6.98 ± 0.04 | 2455704.7294 38.94 7.16 ± 0.04 | 2455711.7128 45.92 7.56 ± 0.05

2455699.6505 33.86 6.90 ± 0.04 | 2455704.7999 39.01 7.20 ± 0.05 | 2455711.8539 46.06 7.87 ± 0.06

2455699.7211 33.93 6.89 ± 0.04 | 2455704.8705 39.08 7.16 ± 0.04 | 2455711.9244 46.13 7.42 ± 0.05

2455699.7916 34.00 6.83 ± 0.04 | 2455704.9410 39.15 7.09 ± 0.04 | 2455711.9950 46.20 7.67 ± 0.06

2455700.0032 34.21 7.00 ± 0.04 | 2455705.0116 39.22 7.02 ± 0.04 | 2455712.0655 46.27 7.42 ± 0.05

2455700.0738 34.28 6.96 ± 0.04 | 2455705.0821 39.29 6.94 ± 0.04 | 2455712.1360 46.34 7.38 ± 0.05

2455700.1443 34.35 6.98 ± 0.04 | 2455705.1527 39.36 6.87 ± 0.04 | 2455712.2066 46.41 7.63 ± 0.06

2455700.2149 34.42 7.07 ± 0.04 | 2455705.2232 39.43 6.88 ± 0.04 | 2455712.2771 46.48 7.40 ± 0.05

2455700.2854 34.49 7.10 ± 0.04 | 2455705.2937 39.50 6.87 ± 0.04 | 2455712.3477 46.55 7.50 ± 0.05

2455700.3559 34.56 7.18 ± 0.05 | 2455707.2688 41.48 7.13 ± 0.04 | 2455712.4185 46.63 7.52 ± 0.05

2455700.4265 34.63 7.22 ± 0.05 | 2455707.3394 41.55 7.24 ± 0.05 | 2455712.4887 46.70 7.50 ± 0.05

2455700.4970 34.70 7.25 ± 0.05 | 2455707.4099 41.62 7.14 ± 0.04 | 2455712.5593 46.77 7.32 ± 0.05

2455700.7086 34.92 7.36 ± 0.05 | 2455707.4805 41.69 7.23 ± 0.05 | 2455712.6298 46.84 7.22 ± 0.05

2455700.7792 34.99 7.34 ± 0.05 | 2455707.6921 41.90 7.11 ± 0.04 | 2455712.7004 46.91 7.21 ± 0.05

2455700.8497 35.06 7.35 ± 0.05 | 2455707.7626 41.97 7.12 ± 0.04 | 2455712.7709 46.98 7.37 ± 0.05

2455700.9203 35.13 7.41 ± 0.05 | 2455707.8331 42.04 7.16 ± 0.04 | 2455712.8414 47.05 7.21 ± 0.05

2455700.9908 35.20 7.36 ± 0.05 | 2455707.9037 42.11 7.12 ± 0.04 | 2455712.9120 47.12 7.28 ± 0.05

2455701.0613 35.27 7.31 ± 0.05 | 2455707.9743 42.18 7.13 ± 0.04 | 2455712.9825 47.19 7.27 ± 0.05

2455701.1319 35.34 7.22 ± 0.05 | 2455708.0448 42.25 7.15 ± 0.04 | 2455713.0530 47.26 7.39 ± 0.05

2455701.2024 35.41 7.23 ± 0.05 | 2455708.1153 42.32 7.21 ± 0.05 | 2455713.1236 47.33 7.37 ± 0.05

2455701.2730 35.48 7.23 ± 0.05 | 2455708.1859 42.39 7.12 ± 0.04 | 2455713.1941 47.40 7.38 ± 0.05

2455701.3435 35.55 7.22 ± 0.05 | 2455708.2564 42.46 7.14 ± 0.04 | 2455713.2647 47.47 7.40 ± 0.05

2455701.4140 35.62 7.28 ± 0.05 | 2455708.3269 42.53 6.90 ± 0.04 | 2455713.3352 47.54 7.38 ± 0.05

2455701.4846 35.69 7.29 ± 0.05 | 2455708.3975 42.60 7.28 ± 0.05 | 2455713.6174 47.82 7.41 ± 0.05

2455701.5551 35.76 7.23 ± 0.05 | 2455708.4680 42.67 7.06 ± 0.04 | 2455713.6879 47.89 7.37 ± 0.05

2455701.6257 35.83 7.24 ± 0.05 | 2455708.5386 42.75 7.24 ± 0.05 | 2455713.7584 47.97 7.37 ± 0.05

2455701.6962 35.90 7.27 ± 0.05 | 2455708.6091 42.82 7.30 ± 0.05 | 2455713.8290 48.04 7.40 ± 0.05

2455701.7668 35.97 7.21 ± 0.05 | 2455708.6796 42.89 7.19 ± 0.05 | 2455713.8995 48.11 7.39 ± 0.05

2455701.8373 36.04 7.33 ± 0.05 | 2455708.7502 42.96 7.27 ± 0.05 | 2455713.9700 48.18 7.41 ± 0.05

2455701.9078 36.11 7.29 ± 0.05 | 2455708.8207 43.03 7.24 ± 0.05 | 2455714.0406 48.25 7.37 ± 0.05

2455701.9783 36.19 7.29 ± 0.05 | 2455708.8913 43.10 7.10 ± 0.04 | 2455714.1111 48.32 7.50 ± 0.05

2455702.0489 36.26 7.24 ± 0.05 | 2455709.0323 43.24 7.17 ± 0.04 | 2455714.1817 48.39 7.21 ± 0.05

2455702.1195 36.33 7.34 ± 0.05 | 2455709.1029 43.31 7.22 ± 0.05 | 2455714.2522 48.46 7.36 ± 0.05

2455702.1900 36.40 7.30 ± 0.05 | 2455709.2440 43.45 7.06 ± 0.04 | 2455714.3227 48.53 7.42 ± 0.05

2455702.2605 36.47 7.37 ± 0.05 | 2455709.3145 43.52 7.14 ± 0.04 | 2455714.3933 48.60 7.49 ± 0.05

2455702.3311 36.54 7.35 ± 0.05 | 2455709.3850 43.59 7.19 ± 0.05 | 2455714.7460 48.95 7.31 ± 0.05

2455702.4016 36.61 7.29 ± 0.05 | 2455709.4556 43.66 7.24 ± 0.05 | 2455714.8165 49.02 7.26 ± 0.05

2455702.4721 36.68 7.31 ± 0.05 | 2455709.5261 43.73 7.07 ± 0.04 |



Chapter 6

T Pyxidis in its 2011 Outburst

6.1 Introduction

In this Chapter, we first describe our extensive photometric and spectroscopic datasets.

We then use the results of these to explore the various phases of development of the

nova both in comparison to those found in other novae and also with models of the

outburst. Periodicities in the SMEI light curve are also investigated. Comparison with

extensive observations at X-ray and radio wavelengths is detailed. The summary of

this Chapter has been published in Surina et al. (2013b) while the full paper will be

published in Surina et al. (2014).

6.1.1 Central System and Surroundings

In a classical nova, the mass of the WD (MWD) is typically around 1M� (Uthas et al.,

2010). For a RN, in order for the thermonuclear runaway (TNR) to occur on a short

time scale, the WD has to be more massive (i.e. MWD&1M�) and luminous with high

Ṁacc (Starrfield, 2008a) implying that the secondary star has to be evolved. As a result

of the unusually high Ṁacc, T Pyx is more luminous than CNe at quiescence in which

the Roche lobe filling main-sequence donor star is transferring mass onto a high-mass

WD. Unfortunately, MWD is not accurately known for this system.
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Based on optical spectroscopy obtained at the Very Large Telescope and the Magellan

Telescope, Uthas et al. (2010) estimated a mass ratio q=0.2±0.03. Thus with the mass

of the secondary star M2=0.14±0.03M� derived from the main-sequence mass-radius

relation of a 5-Gyr isochrone given by Baraffe et al. (1998) then the mass of the primary

WD is MWD=0.7±0.2M�. This estimate of MWD is lower than that expected from

previous theoretical studies which range from 1.30-1.37M� (Kato, 1990), 1.25-1.30M�

(Schaefer et al., 2010a), and 1.25-1.4M� (Selvelli et al., 2010). Therefore Uthas et al.

(2010) turned the problem around by mentioning that if MWD>1M� then M2>0.2M�

for their estimated q=0.2 mass ratio.

The results of Uthas et al. (2010) were derived without putting any spectroscopic con-

straints to the mass of the secondary star since T Pyx has a bright accretion disk that

outshines the spectral signature from the donor in the optical. They however used

the period-density relation for a Roche lobe filling secondary star given by Eggleton

(1983) to set some constraints. They adopted 0-20% inflation to the donor star while

Patterson et al. (2005) and Knigge (2006) suggested the donor stars in ordinary CVs

below the period gap are inflated by approximately 10% due to mass loss relative to

ordinary main-sequence stars of the same mass.

The orbital period at quiescence, P=0d.076, is well established (Patterson et al., 1998;

Schaefer et al., 1992; Uthas et al., 2010) with an increasing period Ṗ = 6 × 10−10 (Pat-

terson et al., 1998). The light curve had a highly significant modulation in the 1966

eruption with a period of 0.0990±0.0001 days found by Schaefer (1990). Other tran-

sient periodicities at 0.109±0.001 days and 1.240±0.001 days were found by Patterson

et al. (1998) in quiescence. Patterson et al. (1998) suggested that the 1.24-day period

might arise from precession in the accretion disk as it is roughly in the range of that in

CVs while there is no explanation for the 0.1098-day period.

The orbital inclination, i, is thought to be low from the spectral profiles and low radial

velocity amplitude (Uthas et al., 2010). It has been estimated to be ∼6◦ (Shahbaz

et al., 1997), 10◦−20◦ (Patterson et al., 1998), 20◦−30◦ (Selvelli et al., 2010), i=10◦±2◦

(Uthas et al., 2010) and recently i=15◦ (Chesneau et al., 2011). Such a fairly low

inclination is suggested to be the cause of the long dip, which lasts for half of the orbit
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in the flat top light curve, due to the heating effect on the companion star (Patterson

et al., 1998).

T Pyx is the only RN that presents a persistent nova shell as shown in Figure 6.1.

This has a radius of ∼5”, discovered by Duerbeck & Seitter (1979). A fainter outer

halo around the shell discovered by Shara et al. (1997) extends to a radius of ∼10”.

The shell has been found to be slowly expanding with thousands of discrete knots

(Duerbeck & Seitter, 1979; Williams, 1982; Shara et al., 1997) and is suggested to be

a result of the shocks from the new eruption ejecta that interact with the ejecta from

the previous eruption (Contini & Prialnik, 1997).

Figure 6.1: T Pyx and its shell (on 18 September 1997) as seen from the ground by the ESO
5.58m NTT (left) and from space by HS T WFPC2 (right). Image Credit: M. M. Shara, R. E.
Williams, and D. R. Zurek (STScI); R. Gilmozzi (ESO); D. Prialnik (Tel Aviv University); and
NASA. The excellent angular resolution of HS T allow us to see that shell consists of thousands
knots which are extremely slowly expanding.

Using HST images over 13 years, Schaefer et al. (2010a) inferred that a nova shell

was first ejected in the year 1866±5 at a velocity of 500-715 km s−1 with shell total

ejected mass ∼10−4.5M�. This very low velocity and too high ejected shell mass for

a typical RN allowed them to conclude that the first eruption in 1866 must have been

a normal classical nova eruption with a very long time of prior quiescence. T Pyx

is proposed to have originally formed with a high mass WD (Schaefer et al., 2010a)
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and the 1866 eruption has triggered the high-Ṁacc-wind-driven phase suggested by

Knigge et al. (2000). However this phase was not completely self-sustained (Uthas

et al., 2010) resulting in the decreasing nuclear burning rate and brightness as seen in

the 1890 eruption and later.

6.1.2 The Outburst in 2011

The outburst of T Pyx in 2011 was discovered by AAVSO observer M. Linnolt at a

visual magnitude of 13.0 on 2011 Apr 14.29 UT (JD 2455665.7931, hereafter t=0

day) and published in Schaefer et al. (2013). Figure 6.2 presents the AAVSO optical

light curves of T Pyx in its 2011 outburst from before the eruption to 2012 Mar 31 (JD

2456018, t=353 days).

Figure 6.2: The AAVSO optical light curves of T Pyx in its 2011 outburst.

Schaefer et al. (2013) reported that from 2008 to 2011 Mar 31 (JD 2455652, t=−13.8

days) T Pyx’s brightness was steady at V=15.5 with the usual periodic variation of <0.2

mag and it was never brighter than V=15.0. On 2011 Apr 5.51 UT, it was observed
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with variations from V=14.4-14.7 and continued to fade slowly until 2011 Apr 10.54

UT (JD 2455662.0417, t=−3.7 days). There was a short brightness increase, a so called

“pre-eruption rise” (peak around V=14.4 mag) as shown in Figure 6.3, occurring about

13 days prior to the initial rise (Schaefer et al., 2013). After the sharp initial rise on

day t=0, a small fading occurred roughly 2 days after that (Schaefer et al., 2013).

Patterson et al. (2013) studied the post-outburst light curve in 2011 and found that

an orbital period signal appeared by t=170 days (V=11.2) with a period increase of

0.0054(7)% implied to be the result of mass ejection from the WD. They derived an

ejected mass of at least 3×10−5M�, similar to that in CNe.

Spectroscopic observations of the 2011 outburst are discussed in Shore et al. (2011,

2013) and in Imamura & Tanabe (2012). Shore et al. (2011) report high resolution

observations at 7 epochs from t=1.6-46.6days and Shore et al. (2013) describe obser-

vations at a further 4 epochs much later in the ourburst (t=179, 180, 349 and 360 days).

Imamura & Tanabe (2012) meanwhile report 11 epochs of low resolution spectroscopy

at early times (t=2.7-30.8 days). Comparison with results of our more extensive and

intensive spectroscopic coverage is given below, together with high cadence photome-

try.

Figure 6.3: The pre-eruption rise (left) is believed not to be a part of the TNR. The initial rise
(right) shows the TNR has started with a small break at about 2 days later which indicates that
the photosphere may have receded (from Schaefer et al., 2013).
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6.2 Observations

6.2.1 Photometric Observations from SMEI

Photometric observations of T Pyx were obtained with the Solar Mass Ejection Imager

(SMEI, see Chapter 5). In this case, the white light observations of T Pyx by SMEI

were made from 2011 Apr 15.84 UT (JD 2455667.3422, t=1.5 days) to 2011 Jun 2.32

UT (JD 2455714.8165, t=49.0 days) - see Figure 6.4.

6.2.2 Spectroscopic Observations

Spectroscopic observations were secured with the 1.5m telescope of the Small and

Moderate Aperture Research Telescope System (SMARTS) and the 2m Liverpool Tele-

scope (LT). A log of the observations is given in Table 6.1.

Small and Moderate Aperture Research Telescope System (SMARTS)

The 1.5m telescope of the SMARTS II Consortium located at CTIO Chile is equipped

with a long-slit R-C spectrograph. An ultraviolet transmitting grating is used at the

f/7.5 focus with a plate scale 18.1 arcseconds/mm and a 1200×800 CCD. We obtained

99 low-to-moderate-resolution (300 < R < 3400) optical spectra of T Pyx. These

spectra include 49 moderate-resolution spectra in the blue region (3655-5424Å and

3870-4544Å), 37 moderate-resolution spectra in the red region (5630-6950Å), and 13

low-resolution spectra in a wide wavelength region (3250-9520Å). Fifty six spectra of

particular interest here were obtained from 2011 Apr 14 (JD 2455666.55056, t=0.757

days, given hereafter 0.8 days), which was the earliest epoch T Pyx was observed

spectroscopically, to 2011 Jul 3 (JD 2455746.49198, t=80 days). Another 43 spectra

were obtained from 2011 Sep 15 (JD 2455820.92030, t=155.127) to 2011 Dec 19

(JD 2455915.72555, t=249.9 days). All data were obtained pre-reduced through the

SMARTS atlas - see Walter et al. (2012)1.

1 Available online at http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/tpyx/tpyx.html
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Table 6.1: Log of optical spectral observations. The time in the third column is counted from
the discovery on 2011 Apr 14.29 UT (JD 2455665.7931, t=0 days).

Observation dates JD t (d) λ range (Å)* Telescope | Observation dates JD t (d) λ range (Å)* Telescope
2011-04-14 2455666.55056 0.8 5630-6950 SMARTS | 2011-06-23 2455736.45998 70.7 3870-4544 SMARTS
2011-04-15 2455667.49308 1.7 3250-9520 SMARTS | 2011-06-25 2455738.44247 72.6 3250-9520 SMARTS
2011-04-16 2455668.44853 2.7 3655-5424 SMARTS | 2011-06-26 2455739.45381 73.7 3870-4544 SMARTS
2011-04-17 2455669.43890 3.6 5630-6950 SMARTS | 2011-06-28 2455741.40939 75.6 3870-4544 SMARTS
2011-04-18 2455670.51676 4.7 3870-4544 SMARTS | 2011-06-30 2455743.44596 77.7 3655-5424 SMARTS
2011-04-19 2455671.47293 5.7 5630-6950 SMARTS | 2011-07-01 2455744.47839 78.7 3250-9520 SMARTS
2011-04-22 2455674.38198 8.6 3900-5700, 5800-9400 LT | 2011-07-02 2455745.46245 79.7 3870-4544 SMARTS
2011-04-22* 2455674.61188 8.8 5630-6950 SMARTS | 2011-07-03 2455746.49198 80.7 5630-6950 SMARTS
2011-04-23 2455675.38192 9.6 3900-5700, 5800-9400 LT | 2011-09-15 2455820.92030 155.1 3655-5424 SMARTS
2011-04-23 2455675.46047 9.7 3655-5424 SMARTS | 2011-09-19 2455824.89457 159.1 3655-5424 SMARTS
2011-04-24 2455676.38186 10.6 3900-5700, 5800-9400 LT | 2011-09-21 2455826.89632 161.1 5630-6950 SMARTS
2011-04-24 2455676.50600 10.7 5630-6950 SMARTS | 2011-09-21a 2455826.92193 161.1 4060-4735 SMARTS
2011-04-25 2455677.38180 11.6 3900-5700, 5800-9400 LT | 2011-09-23 2455828.91213 163.1 3250-9520 SMARTS
2011-04-25 2455677.44188 11.6 3655-5424 SMARTS | 2011-09-25 2455830.87711 165.1 3655-5424 SMARTS
2011-04-27 2455679.45705 13.7 3655-5424 SMARTS | 2011-09-27 2455832.89575 167.1 5630-6950 SMARTS
2011-04-28 2455680.55124 14.8 5630-6950 SMARTS | 2011-09-29 2455834.86413 169.1 3870-4544 SMARTS
2011-04-29 2455681.38713 15.6 5630-6950 SMARTS | 2011-10-03 2455838.86920 173.1 3870-4544 SMARTS
2011-05-01 2455683.51565 17.7 3250-9520 SMARTS | 2011-10-03a 2455838.89211 173.1 5630-6950 SMARTS
2011-05-02 2455684.46054 18.7 3655-5424 SMARTS | 2011-10-05 2455840.83755 175.0 3870-4544 SMARTS
2011-05-03 2455685.29780 19.5 3870-4544 SMARTS | 2011-10-05a 2455840.87123 175.1 5630-6950 SMARTS
2011-05-04 2455686.44255 20.6 3870-4544 SMARTS | 2011-10-07 2455842.85832 177.1 3250-9520 SMARTS
2011-05-05 2455687.45694 21.7 3655-5424 SMARTS | 2011-10-09 2455844.85722 179.1 5630-6950 SMARTS
2011-05-07 2455689.46274 23.7 3655-5424 SMARTS | 2011-10-15 2455850.84231 185.0 5630-6950 SMARTS
2011-05-08 2455690.45846 24.7 6230-7550 SMARTS | 2011-10-16 2455851.86406 186.1 3250-9520 SMARTS
2011-05-09 2455691.47495 25.7 3655-5424 SMARTS | 2011-10-17 2455852.86060 187.1 5630-6950 SMARTS
2011-05-10 2455692.45741 26.7 5630-6950 SMARTS | 2011-10-19 2455854.83327 189.0 3655-5424 SMARTS
2011-05-11 2455693.46645 27.7 3655-5424 SMARTS | 2011-10-23 2455858.83362 193.0 5630-6950 SMARTS
2011-05-13 2455695.45393 29.7 3655-5424 SMARTS | 2011-10-29 2455864.78561 199.0 3655-5424 SMARTS
2011-05-14 2455696.55773 30.8 3870-4544 SMARTS | 2011-11-01 2455867.83583 202.0 3250-9520 SMARTS
2011-05-15 2455697.45702 31.7 3250-9520 SMARTS | 2011-11-03 2455869.82510 204.0 5630-6950 SMARTS
2011-05-16 2455698.43956 32.6 5630-6950 SMARTS | 2011-11-05 2455871.82328 206.0 3655-5424 SMARTS
2011-05-17 2455699.46366 33.7 5985-9480 SMARTS | 2011-11-15 2455881.78178 216.0 3870-4544 SMARTS
2011-05-18 2455700.40413 34.6 3655-5424 SMARTS | 2011-11-15a 2455881.80037 216.0 5630-6950 SMARTS
2011-05-20 2455702.45740 36.7 5630-6950 SMARTS | 2011-11-16 2455882.77670 217.0 3250-9520 SMARTS
2011-05-24 2455706.43767 40.6 3655-5424 SMARTS | 2011-11-19 2455885.78113 220.0 3655-5424 SMARTS
2011-05-25 2455707.45922 41.7 3655-5424 SMARTS | 2011-11-21 2455887.74116 221.9 3870-4544 SMARTS
2011-05-26 2455708.54164 42.7 3870-4544 SMARTS | 2011-11-21a 2455887.84304 222.0 5630-6950 SMARTS
2011-05-29 2455711.37204 45.6 3655-5424 SMARTS | 2011-11-23 2455889.74104 223.9 3250-9520 SMARTS
2011-05-30 2455712.45091 46.7 5630-6950 SMARTS | 2011-11-25 2455891.80641 226.0 5630-6950 SMARTS
2011-05-31 2455713.45613 47.7 5630-6950 SMARTS | 2011-11-29 2455895.69458 229.9 3655-5424 SMARTS
2011-06-01 2455714.43748 48.6 3250-9520 SMARTS | 2011-12-08 2455904.67796 238.9 3655-5424 SMARTS
2011-06-02 2455715.50471 49.7 5630-6950 SMARTS | 2011-12-09 2455905.69137 239.9 3870-4544 SMARTS
2011-06-03 2455715.51736 49.7 3655-5424 SMARTS | 2011-12-12 2455908.67536 242.9 3655-5424 SMARTS
2011-06-08 2455721.51827 55.7 3655-5424 SMARTS | 2011-12-13 2455909.81406 244.0 5630-6950 SMARTS
2011-06-09 2455722.45866 56.7 3870-4544 SMARTS | 2011-12-14 2455910.66410 244.9 3870-4544 SMARTS
2011-06-10 2455723.47018 57.7 3250-9520 SMARTS | 2011-12-14a 2455910.77023 245.0 5630-6950 SMARTS
2011-06-11 2455724.45218 58.7 3655-5424 SMARTS | 2011-12-15 2455911.76083 246.0 3655-5424 SMARTS
2011-06-12 2455725.44831 59.7 5630-8860 SMARTS | 2011-12-16 2455912.74787 247.0 3250-9520 SMARTS
2011-06-14 2455727.47669 61.7 5630-6950 SMARTS | 2011-12-17 2455913.74309 247.9 5630-6950 SMARTS
2011-06-16 2455729.46994 63.7 5630-6950 SMARTS | 2011-12-18 2455914.73296 248.9 3870-4544 SMARTS
2011-06-22 2455735.45566 69.7 3655-5424 SMARTS | 2011-12-19 2455915.72555 249.9 5630-6950 SMARTS

* Spectra with λ range 3250-9520Å are taken with low resolution.
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Liverpool Telescope (LT)

T Pyx’s spectra on the nights of 2011 Apr 22-25 were secured using the FRODOSpec

spectrograph (see Chapter 3) on LT over 3900-5700Å in the blue (R∼2200) and 5800-

9400Å in the red arm (R∼2600), with exposures of 60 s. Data reduction was performed

through a pipeline that initially performs bias, dark frame, and flat field subtraction. A

spectroscopic standard star HD289002 (α=06h45m13s.371, δ=+02◦08′14′′.70) was ob-

served at a similar airmass and used to remove instrumental and atmospheric response.

We used the onedspec package in IRAF2 to analyse all LT spectra.

6.3 Results and Discussion

6.3.1 SMEI Light Curves

The SMEI light curve was compiled from 533 observations (see Chapter 5) and pro-

vides unprecedented detail with high cadence data that are compared to AAVSO light

curves as shown in Figures 6.4 and 6.5.

Phases of the 2011 Outburst from the SMEI Light Curve

We divide the SMEI light curve into 4 parts based on the idealised nova optical light

curve given in Warner (2008) - see Figure 6.5:

1. The initial rise (2011 Apr 15-16, t=1.5-3.3 days): The first reliable detection

of the nova outburst by SMEI occurred at the end of the rapid rise seen in

AAVSO data, at mSMEI=8.80±0.09 on 2011 Apr 15.84 UT (JD 2455667.3422,

t=1.5 days). After that time SMEI observed T Pyx approximately every 102

minutes. The light curve rose to mSMEI=8.26 on JD 2455668.0476 (t=2.2 days)

2 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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and began quasi-periodic variations (Hounsell et al., 2011) as shown in the top

left panel of Figure 6.5. This phase ended at t∼3.3 days when the light curve

began to flatten.

Figure 6.4: The SMEI light curve of T Pyx during its 2011 outburst (open black circles with
error bars) compared to UBVRI light curves observed by AAVSO (plus signs).

2. Pre-maximum halt (2011 Apr 16-27, t=3.3-13.3 days): Following the initial rise,

the SMEI light curve rose very slowly (noted as “almost plateau”, by Hounsell

et al. (2011)) with clear quasi-periodic variations as shown in Figure 6.5 (b).

The peak-to-peak times of the variations vary between 1.1-2.8 days. The mag-

nitudes ranged between 7.7-8.5 mags. The first peak and dip of this variation

was also noticed by Schaefer et al. (2013). However the AAVSO light curve

does not clearly show the quasi-periodic variations detectable in the SMEI light

curve. This phase may coincide with the pre-maximum halt defined as a pause

at about 2 magnitudes below maximum for a few days for slow novae (Warner,

2008; Hounsell et al., 2010). There was then a gap in the SMEI data (due to

instrumental problems) lasting 1.4 days (t=13.3-14.7 days).
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Figure 6.5: Four idealised phases of the SMEI light curves including the initial rise (a), the
pre-maximum halt (b), the final rise (c), and the early decline (d). Vertical dotted lines separate
each phase of the light curve.
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3. Final rise (2011 Apr 28 - May 11, t=14.7-27.9 days): After the pre-maximum

halt phase, the light curve was seen to rise more steeply to mSMEI=6.88±0.04

at t=20.9 days. Meanwhile the apparent quasi-periodic variations still persisted

with approximately half the amplitude of those seen in the previous phase.

The light curve then suddenly dropped at t=22.1 days to mSMEI∼7.4 for about

two days. This event appeared as a major dip in the light curve before it reached

maximum light. After this dip, the light curve rose again to mSMEI=6.79±0.04 at

t=25.5 days and stayed there for roughly two days before it reached visual max-

imum at mSMEI=6.33±0.03 on 2011 May 12.22 UT (JD 2455693.7251, t=27.9

days) as seen in the bottom left panel of Figure 6.5.

4. Early decline (2011 May 11 – [∼Oct 3] , t=27.9 days – [∼90 days]): After

optical maximum, the nova declined with variations (amplitude ranges roughly

between 0.1-0.3 mags) to mSMEI∼7.2-7.4 from 2011 May 19.42-20.76 UT (JD

2455700.9203-2455702.2605, t=35.1-36.5 days). The light curve experienced

a dip again at around t∼ 36 days and followed this with a broad hump lasting

from t∼ 44-47 days as seen in Figure 6.5 (d). The last reliable detection of T

Pyx by SMEI was at mSMEI=7.26±0.05 on 2011 Jun 2.37 UT (JD 2455714.8165,

t=49.02 days).

Further light curve observations provided by the AAVSO in Figure 6.2 show

that the early decline phase ends at around t∼90 days with the brightness having

declined by approximately 2.5-3.5 magnitudes from maximum. The final decline

(∼6 magnitudes from maximum) began around t∼260 days.

We may compare the early stages of the outburst captured by SMEI to the light curves

presented by Hillman et al. (2013) from TNR modelling with a range of parameters

as shown in Figure 6.6. There is certainly some resemblance to some of these model

light curves in terms of the pre-maximum halt and subsequent smaller reversal just

before optical peak. The former is attributed to a temporary drop in energy flux as

convection in the expanding, thinning envelope ceases to be efficient near the surface

of the envelope. The later dip resembles the shorter time scale feature noticed in e.g.
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RS Oph and KT Eri by Hounsell et al. (2010) just before maximum light.

When directly comparing the SMEI to the AAVSO light curves, we see that the nova

seems to be bluer and similar to the magnitude in the B filter at the pre-maximum halt

phase, then exhibits the same brightness in the B and V filters at visual maximum where

it is expected to behave like an early type star, usually in the range from B5-F5 (Warner,

2008). After visual maximum, it tends to be redder, approaching the magnitude in the

R filter as shown in Figure 6.4.

Figure 6.6: Modelled light curves of a typical nova cycle from Hillman et al. (2013). Each
light curve is given in its entirety (right panel) and a close-up of its pre-nova rise (left panel).
These show the evolution of nova luminosity given in MV (solid blue), MNUV (green dash), and
MXRT (black dash-dot) of the three nova phases proposed by Hillman et al. (2013) – pre-nova
rise, mass loss phase, and post-nova decline phase.
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Figure 6.7: The outburst in 2011 from SMEI (plus signs) compared to previous outburst ob-
servations (upper panel) and to previous outburst templates (lower panel). In upper panel,
the B (circles) and V (triangles) observations are highlighted in different colours to represent
each year of outburst (1890:open black, 1902:open blue, 1920:open green, 1944:open red,
1967:open pink). Data for the previous outbursts are taken from Schaefer (2010).

When comparing the SMEI data to the previous five outbursts in B and V and their re-

sulting eruption templates provided in Schaefer (2010), we find that the shape and the
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magnitude of the visual peak in 2011 are compatible with previous outbursts. However

the pre-maximum halt phase in 2011 seems to be fainter while during the decline after

the visual maximum the nova is brighter in 2011 than shown in the templates (Figure

6.7). All the maxima, including the 2011 maximum, have exhibited brightness fluctu-

ations near the optical peak and the declines have been slow. This is consistent with

observations noted in Catchpole (1969) and Williams (1982) for the 1966 outburst.

Investigation of Periodicities

The SMEI light curve was searched for any periodic modulations. The analysis was

undertaken using all the available SMEI data but we separated it into 5 cases which are

(a) from the first observation to the last observation, (b) from the first observation to the

end of pre-maximum halt, (c) from the first observation to visual maximum, (d) from

the end of pre-maximum halt to the last observation, and (e) from visual maximum

to the last observation. The analysis used the PERIOD043 PC code from Lenz &

Breger (2004, 2005). PERIOD04 is especially useful for analysis of astronomical

time series containing gaps. The program extracts the individual frequencies from the

multi-periodic content and provides the frequencies, semi-amplitude, and phase of the

harmonic signals of the light curve by using a combination of least-squares fitting and

the discrete Fourier transform algorithm. The uncertainty of the estimated periods was

also derived from Monte Carlo simulations by the PERIOD04 code.

The resulting periodograms for all 5 cases are displayed in Figures 6.8, 6.9, 6.10, 6.11,

and 6.12. The top panels show how closely the calculations agree with the observa-

tions, and the most prominent peaks are presented in Table 6.2. The second panels are

derived from the fitted curves and these curves are constructed from an incremental

sinusoidal curves fitting process. The third panels are derived directly from the data.

The prominent period of 1.8 days is apparent after the pre-maximum halt. However, by

far the most strongly detected period, P=1.44±0.05 days, with the highest signal ratio

∼106 as shown in Figure 6.9, is found up to this time. This period is close to the weak

3 Available online at http://www.univie.ac.at/tops/Period04/
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signal of 1.24 days found by Patterson et al. (1998) who suggested it might originate

from precession in an accretion disc.

Table 6.2: Results from PERIOD04

Cases Parts of light curve t (days) Most prominent period (days)
(a) first observation - last observation 1.5-49.0 1.8±0.1, 3.6±0.5
(b) first observation - end of pre-maximum halt 1.5-13.4 1.44±0.05
(c) first observation - visual maximum 1.5-27.9 3.5±0.08, 1.34±0.03
(d) end of pre-maximum halt - last observation 13.4-49.0 1.7±0.1
(e) visual maximum - last observation 27.9-49.0 0.77±0.02, 1.84±0.05

Precession is a phenomenon seen in astrophysical jets and is usually attributed to mo-

tion of the collimating mechanism such as a circumstellar torus or disk (Crocker et al.,

2002). The angular speed of a torus or disc, with radius r, undergoing forced preces-

sion as a result of the influence of a companion star can be estimated using the equation

given by Crocker et al. (2002) following Merritt & Petterson (1980)

Ω = −
3
4

√
G
mh

mhmc

mh + mc

r
3
2

a3 cosα

where mh is the mass of the hot component which is in this case mWD, mc is the mass

of the cool component, a is their separation, r is a radius of a disk, and α is the an-

gle between the equatorial plane of the disk and the orbital plane of the stars. This

relation assumes that the disk is centred on the hot component; the companion star

causing the forced precession is the cool companion. We then take the average value

of mWD=1.3M� (Kato, 1990; Schaefer et al., 2010a; Selvelli et al., 2010), q=0.2 (Uthas

et al., 2010) and therefore mc=0.26M�, and the inclination i∼15◦ which is an average

value from Patterson et al. (1998); Uthas et al. (2010); Chesneau et al. (2011), and

calculate possible disk radius.

To obtain a precession period of 1.44 days assuming the average value of Ω with α

ranges from 0◦-90◦ requires a disk radius of around 0.2 AU (∼1012cm) which is much

bigger than the semi-major axis a calculated from Kepler’s third law (∼0.004 AU or

6.1×1010cm) of the binary and the distance of L1 from the primary star RL1 (0.0026
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AU). Hence, the forced precession mechanism does not appear to be responsible in

this case. Indeed, it is doubtful whether the disk would re-form so soon after the

outburst, and at this early time, the central system is expected to lie well within the

pseudo-photosphere (see below) and therefore not be directly observed.

Some of the TNR models by Hillman et al. (2013) however produced marked oscilla-

tions prior to or during extensive mass loss, caused by the restructuring and rebalanc-

ing of the envelope as it expands (see Figure 6.6). However, we found no significant

changes in Hα line shape with the 1.44 day period when we compared the four red

spectra (t=5.7, 8.6, 9.6, 11.6 days) taken during the optical pre-maximum halt. Simi-

larly, we found no significant differences in the overall ionization during a cycle from

consideration of the appearance of lines across the full spectral range. These two as-

pects are also found to be the same in the blue spectra, where the Hγ line was of course

investigated rather than Hα.

6.3.2 Spectra from SMARTS and LT

The spectra of T Pyx are also used here to try to understand what causes the gross

changes in the light curve - e.g. changes in mass loss rate from the WD surface as the

TNR proceeds - and to derive other parameters of the outburst. In order to compare the

spectra to the light curve at the exactly the same date, we interpolate the mSMEI of the

date (at the start time of the observations) for which the spectra are available as shown

in the top panel of Figure 6.13.

The light curve was compared to the flux and ejection velocities measured from Hα,

Hβ, and Hγ lines as shown in this figure. The variation in flux of the Balmer lines

is similar to that found in the light curves before visual maximum. For example, the

variation in Hα flux around on 2011 May 17 (t=33.7 days) is obviously responsible for

the sharp and high-amplitude peak light curve at this time.
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Figure 6.8: Period found by analysing the SMEI light curve from the beginning of SMEI
observations to the last observation. The observation points were fitted (top) and yielded the
spectral window (below), the observational data (middle), and the ratio of the spectral window
to the amplitude which gives us the possible periods (bottom).
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Figure 6.9: As Figure 6.8 but from the beginning of SMEI observations to the end of the pre-
maximum halt phase.
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Figure 6.10: As Figure 6.8 but from the beginning of SMEI observations to visual maximum.
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Figure 6.11: As Figure 6.8 but from the end of the pre-maximum halt phase to the last SMEI
observation.
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Figure 6.12: As Figure 6.8 but from the visual maximum to the last SMEI observation.
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Figure 6.13: SMEI light curve of T Pyx compared to flux and ejection velocity from Balmer,
average Fe II (5169, 5018, 4233, 4178, and 4173Å), O I, and Ca II K lines. Dashed lines in the
top two panels connect observations of Hα flux. The evolution of the FWHM of Balmer lines
is also shown (bottom panel). Vertical dotted lines represent phases in the light curve referred
to in the text.
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Velocities Derived

The ejection velocities (Ve j) were measured from the P Cygni profiles. The measured

lines include Hα, Hβ, Hγ which have measurable P Cygni profiles from 2011 Apr 16

- 2011 Jun 1 (t=2.7-48.6 days), Fe II recombination lines at 5169, 5018, 4233, 4178,

and 4173Å, O I 7775Å, and the Ca II K line at 3934Å. Figure 6.14 shows the P Cygni

profiles of Hα lines from the initial rise to the end of the pre-maximum halt phase.

Figure 6.14: P Cygni profiles of Hα lines from the initial rise to the end of the pre-maximum
halt phase.

Spectral Evolution

Figure 6.15 shows all low-resolution spectra taken from t=1.7-247 days which cover

the initial rise phase through to the transition phase of the light curve. In the following,

we discuss the spectral evolution based on the idealised nova optical light curve given

in Warner (2008) together with a recognition of a common pattern of line development

described by McLaughlin (1942, 1944). We also note the physical interpretation of

various stages. For example, from the earliest moment, the nuclear explosion on the

surface of the WD leads to the ejection of a hot, luminous, and massive shell that

expands radially with time. Ney & Hatfield (1978) called this stage the “pseudo −
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photospheric expansion′′ for the spectral energy distribution (SED) and spectroscopic

features are characteristic of the photosphere of a star with spectral type A to F (Payne-

Gaposchkin, 1964). Gehrz (1988) called this stage the “ f ireball′′ because it has been

used to describe the early development of man-made atomic explosions and therefore

he used it to describe the expanding pseudo-photosphere of the nova.

The fireball’s envelope is initially small and dense with the radiation peak at X-ray

wavelengths. Then the envelope cools adiabatically as it increases in size. As a re-

sult, the opacity increases, the ejecta become optically thick after the outburst, and the

radiation peak shifts towards longer wavelengths (Shore et al., 1994). Therefore, this

cooling of the ejecta envelope together with the rapid expansion of the photosphere

(Ennis et al., 1977; Gehrz et al., 1980) provide the rapid initial rise in the optical light

curve.

Following optical maximum, the effective temperature (Te f f ) of a nova, which is ra-

diating at constant bolometric luminosity (as mentioned in Section 1.4), rises as the

pseudo-photosphere shrinks back onto the WD and as the mass loss rate from the WD

decreases (Bath & Harkness, 1989). As a result, the peak emission now shifts toward

shorter wavelengths. The effective temperature of the pseudo-photosphere changes as

the visual flux declines according to

Te f f = T0 · 10∆V/2.5 (6.1)

where ∆V is the decline in magnitude from visual maximum, and T0 is the photospheric

temperature at optical peak (Bath & Harkness, 1989). We take T0=8000K (Evans et al.,

2005) and use the equation above to estimate Te f f . According to Bath & Harkness

(1989), the physical state of the photosphere (i.e. temperature, radius, density, and

pressure) is approximately the same at equal magnitudes below the optical maximum

in all novae. Consequently, one might anticipate that the spectral appearance of a nova

should be the same at the same magnitude below peak in all novae if this simple model

is correct. It can then be applied before and after peak if the mass-loss rate from the

WD is the governing factor.
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Figure 6.15: Low-resolution spectra of T Pyx taken from t=1.7-247 days. Spectra before the
seasonal gap (top) are offset in flux for clarity, as indicated, with the spectrum at 1.7 days
representing the observed flux and those from 17.7-78.7 days being offset in steps of 5×10−11

erg cm−2Å−1. Spectra after the seasonal gap (bottom) are offset in flux with the spectrum at
177.1 days representing the observed flux and those from 186.1-247.0 days being offset in steps
of 2×10−11 erg cm−2Å−1.
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1. The initial rise (2011 Apr 14-16, t=0.8-3.3 days): The first red spectra were

obtained on 2011 Apr 15.05 UT (JD 2455666.55056, t=0.8 days) about 27 days

before the visual maximum. At this time, the AAVSO visual magnitude was

V∼8.7 (about 6.8 mags brighter than quiescence at V∼15.5 and about 2.4 mags

below visual maximum - see Figure 6.2). The top panel of Figure 6.16 reveals

that the lines were broad and diffuse. Hα and Hβ emissions were strong while

the P Cygni profiles were not yet seen clearly when compared to other later

spectra, shown in Figure 6.14. Moreover, the spectrum at t=1.7 days in Figure

6.15 shows the brightness of the nova comes almost entirely from the continuum

at this early stage of the outburst. This is consistent with the characteristics of

the pre − maximum spectrum stage given by Payne-Gaposchkin (1964) - see

Chapter 1. This is expected as the expanding pseudo-photosphere is of similar

extent to the maximum radius initially reached by the ejecta.

The pre − maximum spectrum is defined as the earliest spectrum at which any

given nova has been observed on the rise until at least one or two days after

maximum light (McLaughlin, 1942). It usually contains lines which are broad

and diffuse with negative velocity displacement (Payne-Gaposchkin, 1964).

Our spectra showed P Cygni profiles in the Balmer, Fe II, and O I lines quite

early in the first spectra, during this fireball phase. This aspect is similar to that

observed at this time in DQ Her and LMC 91 as mentioned in Schwarz et al.

(2001). The absorption components of P Cygni profiles became broader and

shallower from t=0.8 to 2.7 days.

The initial rise ended just after 2011 Apr 16.95 UT (JD 2455668.44853, t=2.7

days) where the first medium-resolution blue spectra were obtained. At t=0.8

days, the H I Balmer lines were present in emission and becoming stronger with

blue-shifted absorptions and the presence of He I. By t=2.7 days, the rise of

ionized iron emission lines was evident. There were emissions of high excitation

lines (see Table 6.3) i.e. C III, N III, Ne II, O II, N II, He I, and Ne I present

during this phase (see Fig 6.16) which disappeared later around 2011 Apr 22-23

(t=8.6-9.7 days). These O II and N II lines are also those expected as the ionized
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elements that should be found at ∼1.5 mag below peak (Bath & Harkness, 1989)

- see Table 6.4. Other expected emission lines at 2.9 mag below peak are O III

at 4435Å which is also seen at t=1.7-2.7 days.

Table 6.3: High ionization lines and some lower ionization lines present in the spectra of T Pyx
2011 in its initial rise and pre-maximum halt phases.

High excitation lines Ionization potential (eV) λ (Å) Days since discovery
First detected Last detected

O III 54.90 4435.0 1.7 2.7
C III 47.90 4651.4 1.7 3.6

6167.5 0.8 3.6
6727.0 0.8 3.6

N III 47.24 5943.0† 0.8 5.7
6487.0†† 0.8 8.6

Ne II 41.00 4713.4 1.7 2.7
5178.5††† 1.7 2.7

O II 35.10 4676.2 2.7 9.7
N II 29.60 5045.0 1.7 2.7

5686.2 3.6 10.7
5938.0 3.6 11.6

He I 24.60 4120.8 2.7 8.6
5875.6 0.8 14.8
6678.1 0.8 14.8 or 26.7?
7065.2 1.7 17.7

Ne I 21.60 4663.5 2.7 9.7
5156.6 2.7 8.6
5684.6 0.8 3.6
5934.4 0.8 8.6
6213.8 0.8 0.8

† N III 5943Å + Ne I 5934Å could account for N II 5938Å.
†† Could also be N II 6487Å.
††† Could also be Mg I 5178Å.

A marked drop in the derived expansion velocity (Ve j) during this phase is also

noted (see Figure 6.13). We note that Imamura & Tanabe (2012) and Shore et al.

(2011) also report a decline in derived expansion velocities at early times. The

first observations show a derived expansion velocity of ∼4000 km s−1 at t=0.8

days which then drops to ∼2000 km s−1 at t=2.7 days for Balmer lines. This

should not be interpreted as a deceleration. This aspect of the pre-maximum

spectrum with the dramatic decrease in Ve j during the initial rise is also found
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Table 6.4: Ionization levels at various decline stages according to Bath & Harkness (1989,
Only species with strong optical lines noted).

∆B B Element ionization level t (days) Te f f (K)
1.45 7.78 O II 2.7, 3.6-13.6, 33.7-61.7 30,000
1.55 7.88 N II 2.7, 3.6-10.7, 36.7-80.8 33,000
2.85 9.18 N III 0.8-2.7, 5.7, 8.6, 73.7, 155.1-221.9 110,000
3.15 9.48 O III 0.8-1.7, [45.6]1-246 145,000
4.85 11.18 N V 73.7 (N V 4603Å) 700,000

1 Marginally detected at this time.

in the slow nova DQ Her (McLaughlin, 1937) for Balmer lines. Meanwhile the

fast nova V603 Aql (Wyse, 1940) also showed the decrease in Ve j for Balmer

and metal lines from a few observations during the final rise.

If the initial ejection is a Hubble-like flow, then one will a see high Ve j ini-

tially which declines as one sees into deeper layers. We also note, as an aside,

a comparison to the high velocity features (HVFs) found in all Type Ia SNe

and believed to be the result of the interaction of initial highest velocity ejecta

with a circumstellar envelope (Benetti et al., 2005). The subsequent change in

behaviour of the derived Ve j during the pre-maximum halt phase suggests two

different stages of mass loss: a short-lived phase first occurring immediately af-

ter outburst and then followed by a more steadily evolving and higher mass loss

phase.

2. The pre-maximum halt (2011 Apr 17-27, t=3.6-13.7 days): The SMEI light curve

at this phase has mSMEI∼8 mag (with 0.1-0.3 mag variations) which is about 2

magnitudes below maximum (6.33 mag). This phase lasts for about ten days. As

Warner (2008) notes, the pre-maximum phase is generally much longer-lasting

in slow novae than in fast novae.

All of the C III lines disappeared by t=3.6 days while other lower ionization

lines such as N III, Ne II, N II and Ne I lasted a little longer until disappearing

approximately around t=5.7-10.7 days as shown in Table 6.3 and Figure 6.18,

consistent with behaviour reported in Shore et al. (2011). The spectra at t=3.6-
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Figure 6.16: Detection of high ionization lines (e.g. O III and N III) present in red spectra (top)
and in blue spectra (bottom) during the initial rise (t=0.8-2.7 days). Spectra show the observed
flux in each case.
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5.7 days show broad and strong emission lines present between λ∼6480-6530Å

and then these fade away. Lines which were present all the time during this

phase are O I, O II, He I and Fe I which is again consistent with the behaviour

proposed by Bath & Harkness (1989) at this magnitude below peak. We note

that He I 5875Å and 6678Å were present from t=0.8 days then became weaker

and totally disappear by t=14.8 days. They appeared again at t=80.7 days.

The end of the f ireball stage occurs around t=8.6 days which is also the be-

ginning of the next optically thick phase called the “iron curtain”. The iron

curtain (Hauschildt et al., 1992; Schwarz et al., 2001) occurs when the pseudo-

photosphere reaches its minimum temperature (∼104K). The iron-peak elements

recombine at this temperature. The overlapping of absorptions of Fe II lines in

the near UV region results in line blanketing in the UV which dominates the UV

SED and redistributes most of the emitted light into the optical and IR.

At this stage, we found three characteristics of the iron curtain which are men-

tioned in Schwarz et al. (2001). First, is the increase in the width of the emission

lines which is clearly occuring in the final rise (see Figure 6.13); second, is the

increase in the derived expansion velocity which Schwarz et al. (2001) suggested

could be due to the gradually accelerating optically thick wind that is proposed

to begin after the initial outburst (Kovetz, 1998); finally, the increase in the in-

tensity of Fe II multiplets and O I 7775Å and 8447Å. Figures 6.17 and 6.19

show that the low excitation lines such as Fe-peak transitions, particularly Fe II

recombination lines at 5169, 5018, 4233, 4178, 4173Å, begin to rise from t=8.6

days.

There is also a tendency for the absorption components, especially those of the

Fe II lines, to become sharper and stronger as maximum is approached. We note

that during this phase (for particular ions) the spectrum tends to develop such that

the shorter wavelength lines are evident first and then followed by the next lines

toward the longer wavelength. For example, Fe I 7443Å develops first, followed

by Fe I 7446Å. This also happens with Fe I 7469-7473Å, O II 7895-7898Å, and

Fe I 8468-8471Å.
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The variation of the light curve during the pre-maximum halt phase seems to

be consistent with variations in the strength of the Hα, Hβ, Hγ, and Fe II lines

during this halt as shown in Figure 6.13. There is an obvious sharp variation

in the light curve during t=8.6-11.6 days where spectra show some Fe I lines

were present at t=9.6-10.6 days but not before or after that (bottom panel of

Figure 6.18). For example, the Fe I 7854Å line was not detected at t=8.6 days

but was present on days 9.6 and 10.6 before disappearing again at t=11.6 days.

Meanwhile Fe I 8838Å was present only at t=10.6 days.

Imamura & Tanabe (2012) and Ederoclite (2013) suggested that T Pyx evolved

from a He/N to an Fe II-type nova (Williams, 1992) by the time it reached visual

maximum. Here we can point out the exact time that this process began was

during this pre-maximum halt phase and was completed by the final rise. We

note, however, that this spectral classification is normally applied to novae from

maximum light onwards. The evolution of T Pyx from a He/N nova to an Fe II

type nova suggests that there was sufficient mass loss for the optical thickness in

the outer layers to increase during the rise to maximum so that we were seeing

less deep into the expanding layers. This type of evolution could be typical

for many novae in outburst but has not been seen before because of insufficient

observations early in the outburst.

The maximum Ve j of approximately 2200 km s−1 (Figure 6.13) during this phase

derived from the Balmer lines agrees very well with that obtained by Imamura &

Tanabe (2012). Although we do not have information from the P Cyg profiles in

Fe II lines until t=3.6 days to verify the very high Ve j at the same initial rise phase

as the Balmer lines, the Fe II lines seem to show a similar trend subsequently to

that of the Balmer lines in that Ve j stabilises at ∼1500 km s−1 during the pre-

maximum halt and tends to increase afterward.

3. Final rise (2011 Apr 28 - May 11, t=14.7-27.9 days): Here the light curve rises

more steeply toward maximum. As noted above, the iron curtain stage is ex-

pected to peak around this time. However Figure 6.17 shows the Fe II flux rose

to a sharp peak just before t∼23 days when there is a major dip in the SMEI light
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Figure 6.17: Evolution of the flux of Fe II lines at 5169, 5018, and 4233Å.

curve with a minimum at t=23.7 days. The visual maximum then occurred four

days later at t=27.9 days.

The “principal spectrum” which dominates CNe spectra at visual maximum

(Payne-Gaposchkin, 1964; Warner, 2008) displays strong lines of O I (i.e. the

“O I flash”). In T Pyx these became apparent around t∼17 days and grew in

intensity at about the same rate as the Fe II lines (see Figures 6.20 and 6.21). At

the O I flash, the V magnitude was ∼1.5 mag below peak which agrees with that

expected by Bath & Harkness (1989) from the ∆B at this time. Strong bright

lines of Fe II and Ca II are always present (see Chapter 1). The emission of [N

II] 5755Å begins to grow stronger at t=26.7 days, about ten days after the O I

flash , since N lines, i.e. [N II] 5755Å together with emission lines of N III, N

IV and N V in the UV, are expected to be seen in the principal spectrum phase

of novae (Jaschek & Jaschek, 2009)4.

Again the Balmer lines and other lines show a similar trend of Ve j, i.e. gradu-

ally increasing (after the initial decrease at early times) as seen in Figure 6.13.

This may imply that here the innermost layers of material now move faster than

the outer layers (i.e. the relative radius of the pseudo-photosphere to that of the

ejecta was shrinking significantly and therefore revealing higher velocity mate-

rial again). As noted above, this was proposed by Schwarz et al. (2001) in terms

4 The section (about emission lines of NII in novae) published in the book is available at
http://ned.ipac.caltech.edu/level5/Glossary/Jaschek/N.html
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Figure 6.18: The red spectra during the pre-maximum halt phase. Spectra are offset for clarity
in flux with the spectrum at 3.6 days (top panel) and 8.6 days (bottom panel) representing the
observed flux and the later spectra being offset in steps of 3×10−12 and 5×10−12 erg cm−2Å−1

in each figure, respectively.
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Figure 6.19: The blue spectra during the pre-maximum halt phase. Spectra are offset in flux for
clarity with the spectrum at 4.7 days representing the observed flux and the later spectra being
offset in steps of 1×10−11 erg cm−2Å−1.

of a gradually accelerating wind in nova LMC 1991 and has been used to model

early hard X-ray emission in some CNe (e.g. O’Brien et al., 1994). The visual

maximum at t=27.9 days seems to exhibit the lowest ionization lines, again as

predicted in the simple Bath & Harkness (1989) models.

The three characteristics of the iron curtain which are first mentioned in the pre-

maximum halt phase persist in this final rise phase. Returning to the major dip

in the light curve at t=23.7 days, we find that the normalized flux of the blue

spectra with respect to the Hα line on the day before, at, and after the dip (at

t=21.7, 23.7, and 25.7 days respectively) all looked exactly the same in shape

but only difference in the Hα flux that dropped very significantly at the dip. Thus

the mechanism that causes the very marked drop in emission line strength of Hα,

and other lines at longer wavelengths, must be responsible for the major dip in

the total flux in the final rise. Meanwhile, there are almost no other emission

lines apart from Hα in the red spectra at t=24.7 days.
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Figure 6.20: The blue spectra during the final rise phase. Spectra are offset in flux for clarity
with the spectrum at 13.7 days representing the observed flux and the later spectra being offset
in steps of 1×10−11 erg cm−2Å−1.

4. Early decline (2011 May 11 - Oct 3, t=27.9-90 days):

The early decline phase of the CN light curve is defined as the beginning of

the decrease in brightness to ∼3.5 magnitudes below peak (Warner, 2008). The

SMEI light curve declines in brightness from mSMEI=6.5 (t=27.9 days) to mSMEI=7.26

at the last SMEI detection (t=49.7 days). The multi-colour light curves from

AAVSO subsequently show sharp drops in all colours at t∼90 days, where ∆V∼2.5-

3.5 magnitudes from maximum.

Hα reached its maximum observed flux at t=31.7 days, which is after visual max-

imum was reached at t=27.9 days. The strong emission of Fe II and Ca II, which

is always present in the conventional principal spectrum (Payne-Gaposchkin,

1964), persist until sometime before t∼48 days. About five days after optical

maximum, the nebular lines of [O I] 6300 and 6363Å appeared. The O II lines,

which are the expected to became apparent at ∆B∼1.5 mag below peak (Bath &

Harkness, 1989), are always present from t=33.7-61.7 days.
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Figure 6.21: The red spectra during the final rise phase. Spectra are offset in flux for clarity
with the spectrum at 14.8 days representing the observed flux and the later spectra being offset
in steps of 2×10−12 erg cm−2Å−1.

The Balmer lines began to show a double-peaked structure from the spectrum

taken at t=42.7 days. About twenty days after the maximum (t=45.6 days), the

forbidden line of [O III] 5007Å appeared. The flux of Balmer lines began to fade

around t=70 days. The “4640 emission” (Payne-Gaposchkin, 1964) produced

by a blend of NIII and NII lines and known as the characteristic of the “Orion

spectrum” (see Chapter 1) becomes apparent at t∼70-80 days as shown in Figure

6.22. The emission line of N V at 4603Å, which is expected to appear during the

Orion spectrum phase of a typical nova (Jaschek & Jaschek, 2009), also begins to

emerge at t=73.7 days. The emergence of these lines is designated the ‘nitrogen

flaring’ (see Chapter 1). Thus we find that the Orion spectrum stage (Payne-

Gaposchkin, 1964; Warner, 2008) started around t=70 days. We note that the

N III and N V lines appeared earlier than would have been expected from the

simple Bath & Harkness model.

This evolution is in line with the progression toward the “nebular spectrum”

stage of Classical Novae (Warner, 2008). Meanwhile the pseudo-photosphere is
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continuing to shrink in radius and the effective temperature is increasing.

The He I 5876Å line and the [Fe X] 6375Å coronal line were marginally de-

tected at t=80.7 days which was the last spectrum observed before the seasonal

gap. When spectroscopic observations started again at t=155.1 days the nova

displayed the expected nebular spectrum (see Figure 6.23).

Figure 6.22: The blue spectra during the early decline phase. Spectra are offset in flux for
clarity with the spectrum at 27.7 days representing the observed flux and the later spectra being
offset in steps of 1×10−11 erg cm−2Å−1.

5. Transition to the nebular phase (2011 Oct 3 - Dec 19, t=90-250 days): After the

seasonal gap, T Pyx had declined to about 5 magnitudes below maximum. By



6.3. Results and Discussion 152

Figure 6.23: The red spectra during the early decline phase. Spectra are offset in flux for clarity
with the spectrum at 32.6 days representing the observed flux and the later spectra being offset
in steps of 1×10−11 erg cm−2Å−1.
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this time, as indicated in the previous phase, the [O III] 5007Å nebular and [Fe

X] 6375Å coronal lines had clearly developed (see Figures 6.24 and 6.25). It is

then of interest to note that the Swift satellite detected the rise in the X-ray light

curve at t=111 days (see below).

The first blue spectrum (t=155.1 days) already showed [Ne III] 3869Å, [C III]

4364Å, N III 4640Å and these were increasing in intensity, especially the [C III]

line as shown in Figure 6.24. The appearance of N III at t∼90 days is consistent

with the expectations of Bath & Harkness (1989) for ∆B=2.9 mag. Hε, Hδ, and

Hγ have already faded. Moreover, the coronal lines [Fe X] 6375Å and [Fe VII]

6087Å were clearly present in the first red spectrum at t=161.1 days as shown

in Figure 6.25. The Balmer lines are still stronger than [O III] 5007Å, however,

and they present a multi-peak structure. [O III] 5007 was the strongest rival to

the Balmer lines at t=165.1 days. The emission of [O III] and N III was strongest

again at t=221.9 days. The last spectroscopic observation was made at t=249.9

days where the nova was clearly in the nebular spectrum stage and still exhibited

[NII], He I, [Fe VII], and [Fe X] lines.
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Figure 6.24: The blue spectra during the transition phase. Spectra are offset in flux for clarity
with the spectrum at 155.1 days representing the observed flux and the later spectra being offset
in steps of 5×10−12 erg cm−2Å−1.
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Figure 6.25: The red spectra during the transition phase. Spectra are offset in flux for clairity
with the spectrum at 161.1 days representing the observed flux and the later spectra being offset
in steps of 2×10−13 erg cm−2Å−1 for the left panel and steps of 1×10−12 erg cm−2Å−1 for the
right panel.
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6.3.3 Comparison to the X-ray and Radio Light Curves

Figure 6.26 shows the optical light curves from AAVSO and SMEI, together with the

expected appearance of various spectral lines from Bath & Harkness (1989), the X-

ray light curve from SWIFT, and the radio light curves from the VLA as presented in

Nelson et al. (2012). During the pre-maximum halt phase in the SMEI light curve,

the rise of the high frequency (33 GHz) radio emission was detected at t=7-15 days

but X-rays were not yet detected. During the final rise through the early decline (until

t∼45 days) radio emission at all frequencies tended to be stable with a small trend of

increase during the optical decline. At t∼45 days, [O III] 5007Å appeared, and while

the radio emission subsequently rose steeply, the X-rays were still not detected.

The Swift satellite detected the rise of X-ray emission (0.3-10 keV) at t=111 days,

at ∆V∼ 4 mag below peak. From Equation 6.1, Te f f would be ∼320,000 K. This

is typical for a SSS (see Kahabka, 2006). Taking Lbol∼2×1038 erg s−1, calculated

from Mbol=−7.0 given by Schaefer (2010), the approximate radius of the pseudo-

photosphere at this time would be 5.1×109cm. As expected, this is smaller than the

binary separation calculated from the binary parameters given in Uthas et al. (2010)

as 6.1×1010cm, but larger than the radius of ∼4.9×108cm of a 1M� WD (Starrfield

et al., 2012). We note however that the Chandra grating spectra at this phase showed

that emission lines were very strong in the X-ray spectrum (Orio, 2012). The X-ray

emission at this time is likely a mix of a SSS and shocked circumstellar gas.

The X-ray emission then rose to a peak at t∼144 days (Kuulkers et al., 2011). This

is consistent with the appearance of lines from highly ionized species such as [Ne

III] 3869Å, [C III] 4364Å, and N III 4640Å, that we found in the first blue spectrum

(t=155.1 days) right after the seasonal gap. The presence of the N III line was expected

some time between 85 and 90 days in the seasonal gap according to ∆B (Bath & Hark-

ness, 1989) although N III+ N II 4640Å was detected slightly earlier at 73.7 days. By

the time of the rise in X-rays Hε, Hδ, and Hγ had already faded.

The clear presence of the coronal lines [Fe VII] 6087Å and [Fe X] 6375Å at t=161.1

days coincides with the middle of the X-ray plateau phase and also the peak of the
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radio emission (see below). The X-ray emission again became undetectable at t∼222

days. The blue optical spectrum at t=221.9 days shows the strongest emission to be [C

III] 4364Å and N III 4640Å.

The radio light curve kept increasing throughout the X-ray rise and peaked at around

t∼155 days for the highest frequency (37 GHz) corresponding to the middle of the

plateau in the X-ray light curve. In contrast, the lowest frequency (1.25 GHz) seemed

to reach its peak at t=290-330 days. Nelson et al. (2012) suggested that it was the

material ejected during the 2011 outburst that gave rise to the radio emission not the

ionization of a pre-existing circumbinary medium. They note that although the re-

solved pre-outburst Hα+[N II] emitting nebula surrounding T Pyx could be conceived

to cause the rise (t∼62-149 days) and fade of the radio light curve, the observed Hα

luminosities during the outburst are much too low to be consistent with this. In addi-

tion, they concluded that dense material in the immediate vicinity of the central binary

should have similar characteristics to a stellar wind and, therefore, exhibit a partially

optically thin radio spectrum while the observed spectrum during the rise appears to

be completely optically thick (Nelson et al., 2012).

6.4 Conclusions

In this Chapter, we investigated the optical light curve of T Pyx in its 2011 out-

burst through compiling a database of SMEI and AAVSO observations. The SMEI

light curve, providing unprecedented detail with high cadence data, was divided into

four phases based on the idealised nova optical light curve: the initial rise; the pre-

maximum halt; the final rise, and the early decline.

A period of 1.44±0.05 days was the most strongly detected and was found in the in-

terval from the first observation to the end of the pre-maximum halt phase, before the

visual maximum. We compared this result to oscillations found in CVs and ascribed to

accretion disk precession (Hirose & Osaki, 1990). Our observed Porb/Pprecession is then

5.3% corresponding to q=0.125-0.15 which compares to q=0.2±0.03 derived by Uthas
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et al. (2010). Although the period is in line with that expected from studies of disk

precession in CVs, we question however whether the disk would again be present so

early in the outburst. Such oscillations are however present in some of the light curves

derived by Hillman et al. (2013) from TNR models and may be related to restructuring

and rebalancing of the ejected envelope as it expands. We find no spectral variations

related to the light curve periodicity however.

The pre-maximum halt and subsequent dip in the SMEI light curve at t∼22-24 days

again resemble features in the light curves produced by Hillman et al., with the latter

possibly mirroring the shorter duration feature seen in other novae observed by SMEI

(Hounsell et al., 2010). We note that this is coincident with a sharp transitory decline

in Hα flux and an equally sharp increase in that from Fe II.

The spectra from the LT and SMARTS were investigated through each of the 4 phases

of the optical light curve, in order to study the spectral evolution and investigate the

physical causes of the variations of the light curve. We conclude, taking each phase in

turn:

Initial Rise (t=0.8-3.3 days). The spectra show lines of high ionization species con-

sistent with the presence of a high effective temperature pseudo-photosphere. The

emission comes almost entirely from the continuum in this the “fireball” stage. The

marked drop in the derived expansion velocity (4000 km s−1 at t=0.8 days to ∼2000

km s−1 at t=2.7 days) is consistent with the initial ejection in the form of a Hubble-like

flow, but also resembles that noted in Type Ia SNe and ascribed to interaction with

pre-outburst material.

Pre-Maximum Halt (t=3.6-13.7 days). The subsequent change in behaviour of the

derived Ve j during the pre-maximum halt phase may suggest 2 different stages of mass

loss: a short-lived phase occurring immediately after outburst and then followed by

a more steadily evolving and higher mass loss phase. The fireball spectrum is main-

tained until t=8.6 days which is also the beginning of the typical iron curtain stage.

Overall, the ionization/excitation and effective temperature of the underlying pseudo-

photosphere appear to be decreasing through this phase, in line with basic models.
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Final Rise (t=14.7-27.9 days). The typical principal spectrum of a CN seems to be

apparent and displays the O I flash beginning at t∼17 days with the characteristics of

the iron curtain phase still persisting. The gradual increase in Ve j, starting to appear in

the final rise (t=14.8 days) and later, may be related to increasing ejection velocities

from the central system, as proposed in other novae. The visual maximum at t=27.9

days seems to exhibit the lowest ionization lines, as expected.

Early Decline (t=27.9-90 days). The Balmer lines began to have a double-peaked

structure from t=42.7 days and this is shortly followed by the emergence of forbidden

lines. The typical Orion spectrum is suggested to start at t∼70 days. The emission line

of N V at 4603Å begins to emerge at t=73.7 days. The strong enhancement of N lines

is associated with ‘nitrogen flaring’ in the typical Orion spectrum stage.

Transition to the Nebular Phase (t=90-280 days). By this time, the [O III] 5007Å

nebular and [Fe X] 6375Å coronal lines have developed, the latter having been marginally

detected at t=80 days while the rise in the X-ray light curve was detected at t=111 days.

The last spectroscopic observation reported here at t=249.9 days in the nebular stage

still exhibited [NII], He I, [Fe VII], and [Fe X] lines.

The overall spectral development of T Pyx is similar to that of CNe whose ejected mass

is higher and velocity of ejection is lower than in typical RNe such as U Sco and RS

Oph. We also found that in general the detected ionized elements are in line with those

expected from the simple pseudo-photosphere models of Bath & Harkness (1989) at

the same ∆B as shown in Table 6.4 and Figure 6.26. An exception to this occurred

near the end of the early decline phase where for example N III and N V emission lines

emerged earlier than would have been predicted.

In terms of the relationship of the optical development described here to that at other

wavelengths, we found that the rise of the high frequency (33 GHz) radio emission was

detected at t=7-15 days during the pre-maximum halt phase in the SMEI light curve,

while X-rays were not yet detected.

At t∼45 days, where the [O III] 5007Å was first present, the radio emission rose steeply

while the X-rays were still undetectable. The rise in the X-ray emission, which then
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began at t=111 days and rose to peak at t∼144 days (Kuulkers et al., 2011), is consistent

with the appearance of lines from highly ionized species such as [Ne III] 3869Å, [C

III] 4364Å, N III 4640Å, found in the first blue spectrum (t=155.1 days) right after the

seasonal gap.

If the onset of the X-ray phase and the start of the final decline in the optical are related

to the cessation of significant mass loss, this occurred at t∼90-110 days. During the

rise in X-rays, the radio flux kept increasing and peaked at around t∼155 days for the

highest frequency (37 GHz) corresponding to the middle of the plateau in the X-ray

light curve where we clearly detected the coronal lines [Fe X] 6375Å and [Fe VII]

6087Å in our spectra (t=161.1 days).

Although the appearance of the X-ray emission is in line with predictions of the emer-

gence of the SSS from the simple Bath & Harkness (1989) model, we note that X-ray

emission may be a mix of SSS and shocked circumstellar gas.

Having discussed the results of our work on T Pyx in this penultimate Chapter, we now

summarise the work contained in this thesis and make suggestions for future studies in

Chapter 7.



Chapter 7

Summary, Conclusions and Future

Work

7.1 Summary and Conclusions

The results of the research conducted within this thesis are discussed below.

7.1.1 Observations of Galactic Novae in Quiescence

The proposal that RNe occupy a region separated from CNe in an outburst amplitude

versus speed class diagram was adopted. The low amplitude results from the exis-

tence of an evolved secondary and/or high mass transfer rate in the quiescent system.

The 93 novae with observed V amplitudes given in the literature and 43 novae with

published photographic amplitudes have been combined and plotted on an outburst

amplitude versus rate of decline diagram as shown in Figures 2.2 and 2.3. From these,

16 target novae suspected to be RNe candidates were selected for the photometric and

spectroscopic observations.

Quiescent photometric magnitudes in u, B, V , r, i and z were obtained for 10 novae

at quiescence using RATCam on LT (see Table 3.1). Spectra for twelve of them were

162
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obtained using FRODOSpec on LT and RSS on SALT (see Table 3.2). Of these, only

nine spectra could be successfully fully reduced for further analysis (see Table 3.4).

Spectra for the other three objects (CN Vel, LZ Mus and V888 Cen) were not fully

reduced due to the unclearly matched arc line identifications which causes a shift in

wavelength (for CN Vel and V888 Cen) and an underestimate of the exposure times

making the spectra indistinguishable from the background (for LZ Mus).

All sixteen initially selected novae were plotted in a NIR CMD to determine the spec-

tral type of the secondaries. Meanwhile ten novae observed by LT were plotted in an

optical CMD to compare with results determined by the NIR CMD. Determinations

of reddening were adopted from the literature for seven novae with known extinction.

Extinction for another five novae was estimated from extinction maps and equivalent

widths of Na I D lines.

As discussed in Chapter 4, the dereddened spectra were used to determine luminosity

class by using relations including the EW(CaT) versus logg, the Na I 8190 index versus

TiO 8465 index, and the identification of specific line indicators.

Determination of spectral types was accomplished by identifying specific lines and

calculating indices from TiO bands, VO bands, and the Na atomic line for giants (4

stars) and sub-giants/giants (3 stars). A spectral library template was used instead of

the indices in cases of main-sequence stars (2 stars). The summary of findings on

the evolutionary status of secondaries in nine novae with observed spectra is shown in

Table 4.6.

Comparison of results between the optical and NIR CMDs found that 7 systems show

consistent results; 3 RG-Novae (T CrB, V749 Oph, FS Sct), 3 RG/SG-Novae (V3964

Sgr, V2487 Oph, CI Aql), and 1 MS-Novae (V368 Aql).

Comparison of results from NIR CMD (based on the definition of secondaries in nova

systems given by Darnley et al., 2013) to those from spectroscopy again shows 7 sys-

tems are in good agreement (4 RG-Novae: T CrB, V2487 Oph, V3964 Sgr and EU

Sct; and 3 SG-Novae: CI Aql, V794 Oph and V368 Aql). Only 2 systems (AR Cir

and V3645 Sgr) show inconsistent results. In the case of AR Cir, this is due to the
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erroneous acquisition of the nearby companion star in SALT spectroscopy. The cause

for V3645 Sgr is still to be determined.

Our investigation also confirmed the positions of AR Cir, V794 Oph and EU Sct where

there had been some ambiguity previously. Ultimately, we suggest here four prime

candidates (2 RG-Novae - V3964 Sgr and EU Sct, and 2 SG-Novae - V794 Oph and

V368 Aql) which are currently classified as CNe, to look for more than one outburst in

archival plates or large sample sky surveys.

7.1.2 Investigation of Novae with the Solar Mass Ejection Imager

(SMEI)

We have introduced the high cadence full-sky space-based observational archive of

SMEI. Selected targets were added into SMEI’s object list, each was inspected in

SMEI’s sky maps by eye to identify bad orbits. Background light and sidereal zo-

diacal light were then subtracted from sky maps, and finally the magnitudes of the

targets were obtained by fitting the standard PSF.

Using data thus derived from the SMEI archive, we derived light curves of one Mira (O

Cet) and two novae with known outbursts during 2003-2011 (V2467 Cyg and V1187

Sco). The SMEI light curves potentially reveal for more details of the progress of

an outburst in the optical than those given by ground-based observations. The pre-

maximum halt was found in V2467 Cyg as well as oscillations in light curves found

earlier than those found in previous studies. The precise date of optical maximum of

each nova was determined.

Four bright novae that are potentially RNe candidates, as suggested in Chapters 2 and

3, were searched for second outbursts, but none were found.

Among the nova outbursts detected by SMEI, the unprecedented detail in first class

data of the Recurrent Nova T Pyx in its 2011 outburst reveals important results which

were used for detailed investigations.
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7.1.3 T Pyxidis in Its 2011 Outburst

We investigated the optical light curve of T Pyx in its 2011 outburst through compiling

a database of SMEI and AAVSO observations. The SMEI light curve, providing un-

precedented detail with high cadence data, was divided into four phases based on the

idealised nova optical light curve: the initial rise; the pre-maximum halt; the final rise,

and the early decline.

A period of 1.44±0.05 days was the most strongly detected and was found the interval

from the first observation to the end of the pre-maximum halt phase, before the visual

maximum. Although the period is in line with that expected from studies of disk

precession in CVs, we question however whether the disk would again be present so

early in the outburst. Such oscillations are however present in some of the light curves

derived by Hillman et al. (2013) from TNR models and may be related to restructuring

and rebalancing of the ejected envelope as it expands. No spectral variations that mirror

the light curve periodicity were found however.

The spectra from the LT and SMARTS were investigated through each of the 4 phases

of the optical light curve, in order to study the spectral evolution and investigate the

physical causes of the variations of the light curve. We conclude, taking each phase in

turn:

Initial Rise (t=0.8-3.3 days). The spectra show lines of high ionization species con-

sistent with the presence of a high effective temperature pseudo-photosphere. The

emission comes almost entirely from the continuum in this the “fireball” stage. The

marked drop in the derived expansion velocity (4000 km s−1 at t=0.8 days to ∼2000

km s−1 at t=2.7 days) is consistent with the initial ejection in the form of a Hubble-like

flow, but also resembles that noted in Type Ia SNe and ascribed to interaction with

pre-outburst material.

Pre-Maximum Halt (t=3.6-13.7 days). The subsequent change in behaviour of the

derived Ve j during the pre-maximum halt phase may suggest 2 different stages of mass

loss: a short-lived phase occurring immediately after outburst and then followed by
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a more steadily evolving and higher mass loss phase. The fireball spectrum ended

and the typical iron curtain stage began at around t=8.6 days. Overall, the ioniza-

tion/excitation and effective temperature of the underlying pseudo-photosphere appear

to be decreasing through this phase, in line with basic models.

Final Rise (t=14.7-27.9 days). The typical principal spectrum of a CN seems to be

apparent and displays the O I flash beginning at t∼17 days with the characteristics of

the iron curtain phase still persisting. The gradual increase in Ve j, starting to appear in

the final rise and later, may be related to increasing ejection velocities from the central

system, as proposed in other novae. The visual maximum at t=27.9 days seems to

exhibit the lowest ionization lines, as expected.

Early Decline (t=27.9-90 days). The Balmer lines began to have a double-peaked

structure followed by the emergence of forbidden lines. The typical Orion spectrum

is suggested to start at t∼70 days. The strong enhancement of N lines associated with

‘nitrogen flaring’ emerges in this stage.

Transition to the Nebular Phase (t=90-280 days). By this time, the [O III] nebular

and [Fe X] coronal lines have developed while the rise in the X-ray light curve was

detected at t=111 days. The last spectroscopic observation reported here at t=249.9

days in the nebular stage still exhibited [NII], He I, [Fe VII], and [Fe X] lines.

The overall spectral development of T Pyx is similar to that of CNe whose ejected mass

is higher and velocity of ejection is lower than in typical RNe such as U Sco and RS

Oph. We also found that in general the detected ionized elements are in line with those

expected from the simple pseudo-photosphere models of Bath & Harkness (1989) at

the same ∆B.

If the onset of the X-ray phase and the start of the final decline in the optical are related

to the cessation of significant mass loss, this occurred at t∼90-110 days. During the

rise in X-rays, the radio flux kept increasing and peaked at around t∼155 days for the

highest frequency (37 GHz) corresponding to the middle of the plateau in the X-ray

light curve where we clearly detected the coronal lines [Fe X] 6375Å and [Fe VII]

6087Å in our spectra (t=161.1 days).
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Although the appearance of the X-ray emission is in line with predictions of the emer-

gence of the SSS from the simple Bath & Harkness (1989) model, we note that the

X-ray emission may be a mix of SSS and shocked circumstellar gas.

7.2 Future Work

Future work proposed to be conducted on areas of research presented within this thesis

is discussed below.

7.2.1 Galactic Novae in Quiescence

A further investigation could be made of the nova spectra encountering the shift in

wavelength of the calibration arcs and also data on other novae observed by HET

(V1330 Cyg) and the Yunnan Observatory (BT Mon) could be fully reduced and anal-

ysed. In addition, more novae with low outburst amplitudes could be from an A′ versus

t3 diagram and their spectra investigated. While the spectra in the red region can deter-

mine the types of the secondaries, further blue spectra could be gathered to investigate

the accretion disk contribution and thus perhaps determine the accretion rate.

From this study, we know that the luminosity class determination is the first step to

identify the evolutionary status of the secondaries, whether they are class V, IV or III

stars, by using relations including the EW(CaT) versus logg or the Na I 8190 index

versus the TiO 8465 index. Therefore one may quickly classify the secondary stars

of novae by obtaining spectra in only the red region covering Ca II at 8498Å 8542Å

8662Å, Na I 8190 and TiO 8465. This method could be done at a 2-m class telescope

in order to reduce the observation times.
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7.2.2 Investigation of Novae with the Solar Mass Ejection Imager

(SMEI)

It should be noted that further investigation of bright novae with high priority in Table

5.1 should be carried out. Hounsell (2012) proposed that over 50 novae may be found

within the SMEI data archive since the estimated number of novae brighter than 8th

magnitude occurring each year is ∼ 6 (Shafter, 2002).

When considering light curves of novae throughout the years overall, two features

were noticed in general. First, the background sky levels have a wave shape over the

year (see Figure 5.13 - 5.16) which might be fitted and subtracted and yield therefore

better results. Second, there were some detections which are brighter than the line

indicating the previous recorded outburst magnitude (see e.g. Figure 5.15). More

intensive investigation should be carried out in the future on this.

Features in the nova light curves from SMEI (first-class data) should be compared

in detail with the TNR modelled light curves of typical CNe given by Hillman et al.

(2013) which provides detailed nova evolution from pre-nova rise, mass loss phase and

post-nova decline phase. Finally we note that the SMEI archive is still a relatively un-

tapped resource for investigating transient and variable astrophysical sources of many

types.



Appendix A

Acquisition of SMEI Data

Here we describe the subsequent steps in accessing and reducing the data remotely

from LJMU.

A.1 Connecting to the SMEI Computer and Accessing

the Database

In order to access the SMEI database running on the UCSD computer from abroad, the

remote control software was installed. In this study we used two software packages,

working together called ‘PuTTY’1 and ‘TightVNC’2 to run on the Windows machine

properly.

Once the PuTTY and TightVNC were installed, we connected PuTTY to the host name

soft@smei.ucsd.edu via Port 22 and logged in as username:soft. Then we opened

TightVNC and connected to server: localhost 3. The SMEI desktop appeared and

allowed us to work on its Linux terminal.

1 PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform.
PuTTY is free open source software that is downloadable at http://www.putty.org/

2 TightVNC is a free remote control software package allowing you to see the desktop of a re-
mote machine and control it with your local mouse and keyboard. It is can be downloaded at
http://www.tightvnc.com/download.php
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A.2 Adding New Objects to SMEI’s Object List

Before fitting the point sources in SMEI maps, the objects must be included in SMEI’s

object list which requires information including name, magnitude, RA and DEC. Ac-

cess the list can be achieved by the following steps below:

zaphod:˜$ ssh cass185.ucsd.edu

cass185:˜$ cd smei/ucsd/camera/idl/star

cass185:˜/smei/ucsd/camera/idl/star$ vi nova-list.txt

<<< add new objects, save and quit :wq >>>

cass185:˜/smei/ucsd/camera/idl/star$ exit

cass185:˜/smei/ucsd/camera/idl/star$ ssh smei

cass185:˜/smei/ucsd/camera/idl/star$ full_refresh

A.3 Object Visual Inspection in SMEI’s Sky Maps

Objects and their surrounding region on SMEI’s sky map were inspected visually prior

to the point source fitting for bad orbits (i.e. orbits thats are contaminated by artefacts

from the pipeline reduction process) which were then identified and excluded.

To see if the object is visible in SMEI’s sky map at a given date and time, the orbit

number3 is required. For example, the image of the Recurrent Nova T Pyx at visual

maximum (on 2011 May 12.22 UT corresponding to orbit number 43279) can be ob-

tained by the following steps:

SMEI’s user interface is written in IDL programmed by the SMEI team at UCSD. The

main window is qsmei sky that can call several other associating modules including

qTool and qEphem.

1. Open a terminal.
zaphod:˜$ idl

3 Orbit number, date, time, and operation status of three cameras for each orbit are provided at
http://smei.ucsd.edu/sky/index.html
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IDL> qsmei_sky

2. In a qsmei sky window (Figure A.1 top), input general parameters; the orbit

number (1); selected map which can be either non-subtracted or subtracted by

either background or zodiacal light (2); selected Camera (3); and size of the

monitor (4 and 5). Then call qTool (6) and qEphem (7) modules. The qTool

(Figure A.1 middle) allows us to zoom (8), choose the box’s colour (9), and

adjust the brightness (10) of the monitor. While the qEphem (Figure A.1 bottom)

targets the input object i.e. T Pyx (11) and presents as a resizable box (12). The

qsmei sky’s monitor will activate on pressing the Enter key (Figure A.2).

Figure A.1: SMEI user interface showing the modules used for this work. The main qsmei sky
window (top) with the associating modules qTool (middle) and qEphem (bottom). The general
input parameters are labelled.

Figure A.3 shows the PSF of T Pyx in different 2 epochs: prior to the outburst (top pan-

els) and around visual maximum (bottom panels), and also shows brightness changes

due to the subtraction of the sky map, from without any subtraction (left) to those with

background subtraction (middle) and with both background and zodiacal light subtrac-

tion (right). Note that the rotation in angle of PSFs depending on position in the sky

map (Hick et al., 2007) can also be seen in the Figure.
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Figure A.2: Object point source displayed on SMEI’s sky map. Different patches of sky cov-
ered by three cameras are labelled. The object T Pyx is located in a white square box. This
image is taken from orbit number 43279 (2011 May 12 at 05:07:52 UT).

Figure A.3: SMEI sky maps for T Pyx at different epochs; HJD 2455623.1767 or orbit number
42279 (top), and HJD 2455693.7145 or orbit number 43279 (bottom). All images are viewed
by Camera 2 with non-subtraction (left), with background subtraction (middle) and with back-
ground and zodiacal light subtraction (right).

A.4 Fitting a Point Source

The photometry of a single point source was obtained by fitting the standard PSF men-

tioned above using a least-squares procedure implemented in IDL (see Hounsell, 2012,

for more details). In this study, all investigated objects were fitted by using the same set
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of parameters, e.g. automatic adjusting for PSF centroid (fix centroid), automatic

calculating of the size of the PSF radius which depends on the object’s brightness

(auto wing), removal of background (rmbkgnd), removal of zodiacal light (rmzld),

cleaning edge (cleanedge) when an object moves from one camera to another .

For example, fitting the data of T Pyx from Camera 2 from an orbit number 011231

which is observed on a Day of Year (DOY) 60 in year 2011 to an orbit number 214758

(DOY 269 in year 2011) can be done by using the routine smei star fitone as

follows:

IDL> smei_star_fitone, ’T Pyx’,

[timeset(’2011_060_011231’),

timeset(’2011_269_214758’)], /fix_centroid,

/auto_wing, /degrees, /use_weights, /rmzld, /rmbkgnd,

destination=’/home/soft/Momay/’, cat=’*’, mode=’sky’,

camera=2, /cleanedge, /fix_fovangle, /fix_psfangle

Then once the output file ‘T Pyx .txt’ is automatically saved, it can then be trans-

formed from the intensity in the image to mSMEI by using the routine startimes given

below. This also can be done by the simple calculation mSMEI=[-2.5*log((I/Istd)/Gain)-

a]/b, where a=1.65 and b=0.99 (Hounsell, 2012).

IDL> startimes, ’Momay/T_Pyx___.txt’,

outfile=’Momay/TPyx_magC2.txt’
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