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ABSTRACT 

Video compression is the process of reducing the amount of data required to represent 

digital video while preserving an acceptable video quality. Recent studies on video 

compression have focused on multimedia transmission, videophones, teleconferencing, 

high definition television (HDTV), CD-ROM storage, etc. The idea of compression 

techniques is to remove the redundant information that exists in the video sequences.  

Motion compensated predictive coding is the main coding tool for removing temporal 

redundancy of video sequences and it typically accounts for 50-80% of the video 

encoding complexity. This technique has been adopted by all of the existing 

international video coding standards. It assumes that the current frame can be locally 

modelled as a translation of the reference frames. The practical and widely method used 

to carry out motion compensated prediction is block matching algorithm. In this 

method, video frames are divided into a set of non-overlapped macroblocks; each target 

macroblock of the current frame is compared with the search area in the reference frame 

in order to find the best matching macroblock. This will carry out displacement vectors 

that stipulate the movement of the macroblocks from one location to another in the 

reference frame. Checking all these locations is called full Search, which provides the 

best result. However, this algorithm suffers from long computational time, which 

necessitates improvement. Several methods of Fast Block Matching algorithm were 

developed to reduce the computation complexity.  

This thesis focuses on two classifications: the first is called the lossless block matching 

algorithm process, in which the computational time required to determine the matching 

macroblock of the full search is decreased while the resolution of the predicted frames is 

the same as for the full search. The second is called the lossy block matching algorithm 

process, which reduces the computational complexity effectively but the search result’s 

quality is not the same as for the full search. 
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1CHAPTER 1: INTRODUCTION  

Digital video is a series of orthogonal bitmap digital images called frames displayed in 

rapid succession at a constant rate to give the illusion of a motion picture. Digital video 

applications have been extended to a wide range of industrial applications, especially in 

the area of entertainment, communications, and broadcasting. As a result of 

technological advances, several commercial products are becoming an integral part of 

modern life, such as High Definition Television (HDTV), digital cinema, smart phones, 

and other mobile devices. Huge revenue from these products and services is being 

gained since the number of end users increases continuously. Currently, more than one 

billion unique users visit YouTube each month [YouTube, 2013], and video chat 

reaches tens of thousands of users online at any time during a day [Tian et al., 2013]. In 

addition, the digital video industry invests a lot of money in the research and 

development of video technology (around £1.5 billion in 2013 and is expected to be 

more than £2.73 billion in 2017 in the UK alone [eMarketer, 2013]) to ensure 

continuous growth in the long term. The major challenge for efficient digital video 

storage and transmission lies in the huge amount of data needed to display digital video, 

and hence a large memory space is required to store video images, and equally large 

bandwidth is required for their transmission. To reduce this amount of data while 

preserving an acceptable video quality, different video compression techniques have 

been actively proposed and developed by researchers and companies since the 1980s 

[Al-Mualla et al., 2002]. The idea of these techniques is to provide efficient solutions to 

represent video data in a more compact and robust way so that the information can be 

stored or transmitted faster in videoconferencing and videophone, digital broadcasting, 

interactive games (internet), etc. Well-known international video coding standards 

include the former MPEG series and H.26x series [ISO/IEC, 1993; ISO/IEC, 1996; 

ITU-T and ISO/IEC, 2003; Sullivan et al., 2004; Sullivan and Wiegand, 2005; Ohm and 

Sullivan, 2013].  

The main idea of compression techniques is to remove the redundant information that 

exists in video sequences. Digital video carries four types of redundancy: colour space 

redundancy, spatial redundancy, temporal redundancy and statistical redundancy 

[Richardson, 2010]. These redundancies are processed separately because of the 

differences in their characteristics. Video compression contains two systems: video 

http://en.wikipedia.org/wiki/Digital_image
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encoders and video decoders. A video encoder compresses the original video for storage 

and transmission, after which the encoded video is decompressed by a video decoder 

back to the displayable video before playback and editing.  

A video encoder consists of three main functional units: colour subsampling (to remove 

colour redundancy), inter-frame encoder (to remove temporal redundancy) or intra-

frame encoder (to remove spatial redundancy), and an entropy encoder (to remove 

statistical redundancy), as shown in Figure ‎1.1.  

 

Figure ‎1.1: Encoder/decoder  

Video compression efficiency is achieved by an inter-frame encoder, which reduces or 

eliminates temporal redundancy [Bhattacharyya and Deprettere, 2010]. An inter-frame 

encoder exploits the high correlation that exists between successive frames in video 

sequences especially if the frame rate is high. This correlation leads to temporal 

redundancy. The goal of inter-frame encoding is to reduce this redundancy. Video 

coding standards share a number of common features for inter-frame encoding. Each 

standard assumes that after colour subsampling there are four stages of inter-frame 

encoding to produce the compressed bitstream, which are: temporal prediction, 

transform, quantisation and entropy coding. 

Temporal prediction is the main tool that reduces temporal redundancy by predicting 

some frames from others to reduce the transmission rate of the sequence of the video 

images and obtain high compression. This means that the current frame (𝐹 ) can be 

locally modelled as a translation of the reference frame (𝐹 ). Reference frames have to 

be encoded first, while a residual (difference) between current and reference frames 

which contain less energy will be encoded later instead of encoding the current frame 

[Richardson, 2003]. To decrease this residual, the prediction can be improved by 

estimating the motion of the moving objects between the current and the reference 
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frames, which is called Motion Estimation (ME) technique [Sayood, 2006]; that is, the 

motion estimation used to calculate the Motion Vectors (MVs) by comparing the 

current frame and the reference frame. The technique that uses MVs to predict a new 

frame from a reference frame is called Motion Compensation (MC). The predicted 

frame is known as the Motion Compensated Prediction (MCP) [Richardson, 2010]. The 

first output of this process will be the difference between the current frame and the 

MCP, which is called the Residual Prediction Error (RPE) (or Displaced Frame 

Difference (DFD)); the second output will be the motion vectors. The MVs are encoded 

using entropy coding and RPE between the current frame and the MCP is encoded using 

transform coding, quantisation and entropy coding, as shown in Figure ‎1.2 [Sullivan et 

al., 2004; Leontaris et al., 2009; Richardson, 2010; Sayood, 2006; Marpe et al., 2006; 

Al-Mualla et al., 2002].  

 

Figure ‎1.2: Inter-frame encoder (adapted from [Sayood, 2006; Bovik, 2010]) 

At the decoder, the received MVs will be utilised to form an MCP from the 

reconstructed reference frame, and then the current frame will be reconstructed by 

adding the reconstructed RPE to the MCP [Bhattacharyya and Deprettere, 2010]. 

ME technique has the highest complexity of all other stages; it typically accounts for 

50-80% of the total video encoder complexity. This technique has been adopted by all 

existing international video coding standards such as the MPEG series and the H.26x 

series including its latest H.265 code [ISO/IEC, 1993; ISO/IEC, 1996; ITU-T and 

ISO/IEC, 2003; Sullivan et al., 2004; Sullivan and Wiegand, 2005; Ohm and Sullivan, 

2013]. Therefore, ME is the main challenge for implementing real-time video encoding.  
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It is possible to estimate the displacement for every one or two pixel positions between 

successive video frames. However, this is not a practical method since the calculation of 

these motion vectors is very computationally intensive. Moreover, the number of 

motion vectors is equal to or half the number of pixels. These vectors will be sent to the 

decoder in order to form an MCP. As a result, a large amount of data should be 

transmitted. Therefore, the most practical and widely used method is to use a group of 

pixels, called a MacroBlock (MBl), to estimate the motion of the current frame. This 

method is called Block Matching Algorithm (BMA) or Block Matching Motion 

Estimation (BMME) [Srinivasan and Rao, 1985; Huang et al., 2006; Horn and Schunck, 

1981; Richardson, 2010].  

BMA is the most popular technique used for motion estimation in which video frames 

are divided into a set of non-overlapped MBls of size N×M. Each target MBl in the 

current frame is compared with a number of candidate macroblocks within the search 

area in the reference frame in order to find the best matching macroblock. The spatial 

difference between the two matching macroblocks will determine a set of displacement 

vectors that stipulate the movement of the macroblocks from one location to another in 

the reference frame [Barjatya, DIP 6620 Spring 2004; Ezhilarasan and Thambidurai, 

2008]. There are a number of Block Distortion Measures (BDMs) that can be used to 

calculate the difference between two macroblocks, namely Mean Absolute Difference 

(MAD), Sum of Absolute Differences (SAD) and Mean Square Error (MSE) [Sayood, 

2006]. If a maximum displacement of p pixels/frame is allowed, then (    )  

locations have to be searched in order to find the best match of the current macroblock. 

Checking all search area locations is referred to as the Full Search (FS) algorithm. It 

produces the best possible match and the highest resolution MCP. However, this 

algorithm suffers from long computational time, which necessitates improvement. 

Various methods of fast block matching algorithms have been developed to decrease 

and improve the computational complexity [Nie and Ma, 2002; Huang et al., 2006; Cai 

et al., 2009].  

In this thesis two classifications of fast block matching algorithm were investigated: the 

first is called the lossless block matching algorithm process, in which the computational 

time required to determine the matching macroblock of the full search is decreased 

while the resolution of the predicted frames is the same as the full search. The second is 
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called the lossy block matching algorithm process, which reduces the computational 

complexity effectively but the search result’s quality is not the same as that of the full 

search.  

1.1 Motivation and Problem Statement 

Motion estimation is the main challenge for implementing real-time video encoding 

since it has the highest complexity of all other stages. It typically accounts for 50-80% 

of the total video encoder complexity and has been adopted by all existing international 

video coding standards. It is also the critical part that affects the video quality and 

compression efficiency. For this reason, many algorithms and models have been 

proposed to optimise this process [ISO/IEC, 1993; ISO/IEC, 1996; ITU-T and ISO/IEC, 

2003; Sullivan et al., 2004; Sullivan and Wiegand, 2005; Ohm and Sullivan, 2013]. 

With the advancement of video compression standards, the requirements of motion 

estimation have been increased and thus optimisations must be implemented to cope 

with the increased complexity. Variable block size and multiple reference frames have 

been involved in the latest video coding standards, which has led to high computational 

requirements and as a result motion estimation has become a problem in many video 

applications, especially for any video coding that requires real-time transmission such 

as mobile video. This indicates that this is an extremely active field of research.  

A number of fast block matching motion estimation algorithms have been developed as 

a solution to the problem associated with the FS approach, which is the simplest 

algorithm used for motion estimation to find motion vectors. FS exhaustively searches 

for the best matching block within the search area, where the correlation window is 

moved to each possible candidate position within the search area. As a result, a large 

amount of computational complexity is involved, which means a long time is required 

for processing. Various algorithms have been proposed and developed to reduce the 

huge computational complexity. These algorithms can be classified into lossy and 

lossless categories. Lossy block matching motion estimation can achieve more 

compression ratio and faster processes than FS by sacrificing the quality of the 

compressed video. Lossless BMAs have the specific requirement to preserve the quality 

of the video [Nie and Ma, 2002; Huang et al., 2006; Cai et al., 2009]. Lossy BMAs can 

be classified into: Fixed Set of Search Patterns, Predictive Search, Hierarchical or 



Chapter 1: Introduction 

6 

Multiresolution Search, Subsampled Pixels on Matching Error Computation, and Bit-

width Reduction; while lossless BMAs include Partial Distortion Elimination (PDE) 

algorithm and Successive Elimination Algorithm (SEA) [Nie and Ma, 2002; Huang et 

al., 2006; Cai et al., 2009]. The performance of each fast block matching algorithm is 

evaluated and compared against the FS algorithm. Their performance is measured by 

the reduction in the RPE and the computational requirement.  

1.2 Research Objective and Contributions 

The objective of this thesis is to design, implement and optimise fast block matching 

motion estimation. The major focus of this research study is to investigate the 

possibility of developing novel techniques for both the lossless and lossy block 

matching algorithms’ process for the purpose of managing both the time needed to 

process the block matching algorithm and the resolution of predicted frame. The 

contributions of the thesis can be summarised by:   

1. In lossy block matching algorithms, Mean Predictive Block Matching (MPBM) 

[Ahmed et al., 4-6 July 2011] and Enhanced Mean Predictive Block Matching 

Algorithm (EMPBM) [Ahmed et al., 2012] have been proposed to decrease the 

time needed for processing and improve the resolution of the predicted frame in 

comparison to the well-known standard fast block matching algorithm.  

2. In lossless block matching algorithms, Fast Computations of Full Search (FCsFS) 

is proposed to reduce the search time of the macroblock matching, while keeping 

the resolution of the predicted frames close to the one predicted by full search.  

3. All the proposed algorithms use the fact that the general motion in any video 

frame is usually coherent; therefore the motion of previous above and left MBls 

could be a good a prediction for the search process of the current macroblock’s 

motion.  

4. Moreover, the PDE algorithm has been used to stop the partial sum of matching 

distortion between current macroblock and candidate macroblock. Good 

prediction leads to detecting matching MBl in the early steps; therefore applying 

the PDE algorithm will speed up the search process. 
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5. A simple edge detection technique was proposed to classify the current MBl of 

size 4×4 into shade and edge. The shade macroblock has a probability to move in 

the same direction as its neighbouring macroblocks, hence decrease the number of 

search points required to find the matching MB1.  

6. All the proposed techniques were benchmarked with well-known standard 

algorithms for the purpose of evaluation. The experimental results of all proposed 

techniques were conducted on a luminance component for 50 frames of six 

popular video sequences with various motion activities of low, medium and large.  

7. The simulation’s results indicated that motion activity of video sequences affected 

the proposed algorithms FCsFS and MPBM in that where video sequences have 

low motion activity these algorithms are more effective; that is, the improvement 

has shown clearly in comparison to the benchmarked algorithm.  

8. Finally, the simulations of the Enhanced Mean Predictive Block Matching 

algorithm indicated that using edge detection could improve the computational 

complexity when compared with MPBM; while keeping or enhancing the 

resolution of compensated frames built by EMPBM is close to the one built by 

MPBM. Unlike other proposed algorithms, motion activity of video sequences 

does not affect the computational complexity of EMPBM and the resolution of the 

compensated frames built by it due to its similarity with MPBM. 

1.3 Thesis Structure 

The remaining part of this thesis is structured into the following chapters: 

Chapter 2 introduces some basic concepts of digital video compression such as 

redundant information, lossy and lossless compression, and digital video frame types.  

Chapter 3 considers the fundamentals of the inter-compression system in which the 

main focus is on ME, motion compensation, and block matching motion estimation.  

Chapter 4 surveys fast block matching motion estimation algorithms and architectures. 

It describes various techniques of lossy and lossless block matching algorithms. 



Chapter 1: Introduction 

8 

Chapter 5 provides an overview of the designed fast block matching architectures. It 

introduces a novel method in lossless block matching algorithms which is called Fast 

Computations of Full Search Block Matching Motion Estimation (FCsFS) and two 

novel techniques of lossy block matching algorithms called Mean Predictive Block 

Matching algorithm (MPBM) and Enhanced Mean Predictive Block Matching 

algorithm (EMPBM). 

Chapter 6 presents the analysis and the simulation results for the novel algorithms as 

well as the benchmarked techniques.  

Chapter 7 provides the conclusion for the work outlined in this thesis as well as 

suggestions for future works. 
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2CHAPTER 2: INTRODUCTION TO VIDEO COMPRESSION  

In this chapter, a brief description of some concepts of video compression is introduced, 

with some of the methods and techniques used for such process. This chapter is divided 

into two sections. Section one introduces some basic definitions of analogue and digital 

videos with colour representation and the different types of standard digital videos. 

Section two presents the fundamentals of video coding. It starts by providing the 

chronological development of video coding standards, and then gives the outline of 

video compression, introducing concepts such as that of redundant information, 

Lossless and Lossy compression, Quality Measure in video coding and, finally, digital 

video frame types. The chapter is summarised in section three.  

2.1 Analogue and Digital Videos 

Video, in common terms, is a time sequence of still images (frames) that is a spatial 

distribution of intensity, as shown in Figure ‎2.1. Also, video may be defined as a three-

dimensional (3D) function,  (     ), where the pair (   ) denotes the spatial (plan) 

coordinate and t denotes time. The amplitude of   at (     ) is called the intensity of 

the image in time (t) at the location (   ). When the video  (     ) is continuous in 

both (   ) and ( ), the video is called analogue video. Analogue video signal refers to a 

one-dimensional (1D) electrical signal obtained by sampling  (     ) along the vertical 

( ) coordinate and along the time (t) direction and converting intensity to electrical 

representation [Bovik, 2009]. This sampling process is known as scanning and the result 

is a series of time samples, which are complete frames or pictures. The most commonly 

used scanning methods are progressive and interlaced, as shown in Figure ‎2.2. In 

progressive scanning, a frame is formed by a single scanning pass. In interlaced 

scanning, a frame is formed by two successive scanning passes. In the first pass, the odd 

lines are scanned to form the first field, and then the even lines are scanned to form the 

second field. The lines of the two fields form a single frame [Bovik, 2010; Gonzalez et 

al., 2009]. 
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Figure ‎2.1: Video sequence 

 

Figure ‎2.2: Video scanning [Al-Mualla et al., 2002] 

The important parameters of the video signal are: the aspect ratio, vertical resolution, 

frame rate and refresh rate. The aspect ratio is the ratio of the width to the height of a 

frame. The vertical resolution is related to the number of scan lines per frame. The 

frame rate is the number of frames scanned per second measured by Frames Per Second 

(FPS). Smooth motion can be achieved using a frame rate of about 25–30 FPS, but the 

human eye picks up the flicker produced by refreshing the display between frames. To 

prevent that, the display refresh rate must be above 50 FPS [Al-Mualla et al., 2002; 

Bovik, 2010]. However, in many systems, like television, such fast refresh rates are not 

possible because of bandwidth limitations, unless spatial resolution is severely 
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compromised. Interlaced scanning is a solution for this problem; for example, to reduce 

bandwidth requirements, the television industry uses interlaced scanning. In this case, 

the field rate is set to 50 or 60 fields per second (fields/s) to avoid refresh flicker, while 

the frame rate is set to 25 or 30 FPS to maintain smooth motion. 

There are three main analogue video systems. In most of Western Europe, the Phase 

Alternation Line (PAL) system is used, which is 625/50 (625 scan lines and 50 fields/s). 

In Russia, France, the Middle East and Eastern Europe, a 625/50 SEquential Couleur 

Avec Memoire (SECAM) system is used. In North America and Japan, a 525/60 

National Television System Committee (NTSC) system is used. All three systems are 

interlaced with a 4:3 aspect ratio [Al-Mualla et al., 2002; Sayood, 2006; Bovik, 2010].  

Digital video is obtained by digitising the analogue video signal or the 3D space–time 

intensity distribution. Digitising involves two distinct subprocesses: digitising the 

coordinate values, which is called sampling, and digitising the amplitude value, which is 

called quantisation. Sampling a video signal at a specific time generates a sampled 

frame or image. The most common format for a sampled image is a rectangle with the 

sampling points positioned on a square or rectangular grid. Figure ‎2.3 shows the 

sampling of progressive analogue video. If interlaced analogue video is sampled, then 

the digital video is also interlaced as shown in Figure ‎2.4 [Richardson, 2003]. 

 

Figure ‎2.3: A single frame from a sampled progressive video sequence 
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Figure ‎2.4: A single frame of two fields from a sampled interlaced video sequence 

The discrete samples have continuous amplitudes. Quantisation is used to assign a finite 

set of discrete amplitudes to the amplitude values at each sampling instant. This finite 

set can be represented by a finite number of bits. A discrete location with the discrete 

amplitude is called an image element or pixel. This means that the pixels are arranged in 

a two-dimensional (2D) array to form a digital image. To eliminate errors caused by 

quantisation, the number of pixels should be increased. Moreover, the visual quality of 

the image is influenced by the number of pixels. The resolution of the frame (number of 

image pixels) can be calculated by multiplying the number of horizontal pixels and 

vertical pixels. In a monochrome image the intensity of each pixel is called the grey 

level and requires just one number to indicate the brightness or luminance. Colour 

images require at least three numbers per pixel position to represent colour accurately 

[Richardson, 2003]. The method chosen to represent brightness and colour is described 

as a colour space, as shown in the next section.  

2.1.1 Colour Space  

There are three basic colours: red, green and blue (RGB) to describe colour digital 

video. Colour space of digital video determines how to describe these basic colours 

mathematically. The suitability of the colour space is dependent on its usage. For 

example, RGB colour space is suitable for video capture and display, while YCbCr 

(YUV) colour space is more suitable for storage and transmission [Waggoner, 2002; 

Richardson, 2003; Kim, 2010; Sayood, 2006; Al-Mualla et al., 2002].  
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In RGB space, colour image sampling is represented by the three additive primary 

colours: red (R), green (G) and blue (B). Any colour can be created by combining red, 

green and blue in varying proportions. Each of these three colours is highly correlated 

with the other two, which means that the luminance (brightness) cannot be separated 

from chrominance (which is related to the perception of colour information). RGB 

space can only be poorly compressed and is not suitable for storage. This colour space 

is always used in computer graphics, and all digital video starts and ends as RGB, even 

if it is never stored as that.  

YCbCr colour space of digital systems or YUV (YIQ) of analogue systems separates the 

brightness Y (luminance component) from the colours Cb (U) and Cr (V) (chrominance 

components). There are three main methods to calculate the luminance and chrominance 

components from the RGB components created by the three main analogue video 

systems, PAL, SECAM and NTSC. For example, the PAL system calculates the 

luminance and chrominance components as follows: luminance component Y is 

calculated as a weighted average of R, G and B:  

 
Y = 0.299R + 0.587G + 0.114B 

(2.1)  

While the chrominance components U and V can be obtained from: 

 

U = 0.493(B – Y)   

V = 0.877 (R – Y) 

(2.1) 

The NTSC and SECAM systems calculate luminance in the same way but use different 

coefficients for obtaining the chrominance components.  

It should be noted that U and V may be negative in the YUV colour space and cannot be 

directly used in a digital system. In order to make chrominance components 

nonnegative, the Y, U and V are scaled and shifted to produce the YCbCr model. The 

YCbCr colour space is widely used in digital systems and converts from RGB space as 

follows: 
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Y = 219 (+0.299R + 0.587G + 0.114B) + 16 

Cb =   4 (−0. 69R − 0.33 G   0.500B)     8 

Cr =   4 ( 0.500R − 0.4 9G − 0.08 B)     8 

(2.2) 

The human visual system (HVS) is more sensitive to luminance than to chrominance. 

Thus, the resolution or bits required for representing chrominance Cb and Cr can be 

reduced by colour subsampling to achieve compression while keeping acceptable 

quality, which is described in the next section. It should be noted that, before displaying 

the image, it is usually necessary to convert it back to RGB. 

2.1.2  Colour Subsampling  

There are three common subsampling patterns for Y, Cb and Cr, as shown in Figure 2.5 

[Richardson, 2003; Pu, 2005]: 

1. 4:4:4 YCbCr: this is a format with no subsampling of Y, Cb and Cr components, in 

which the three components (Y, Cb and Cr) have the same resolution and hence a 

sample of each component exists at every pixel position. This means that for every 

four luminance samples there are four Cb and four Cr samples. 4:4:4 sampling 

preserves the full fidelity of the chrominance components.  

 

2.  4:2:2 YCbCr: this format uses 2:1 horizontal down-sampling. This means that for 

every four luminance samples in the horizontal direction there are two Cb and two Cr 

samples. Therefore, the total storage required for Cb and Cr is reduced by 50%.  

 

3. 4:2:0 YCbCr: due to its compression ratio this subsampling format is widely used in 

vide or image compression application. This format uses 2:1 horizontal down-

sampling and 2:1 vertical down-sampling. This means that for every four luminance 

samples there is one Cb and one Cr sample. Therefore, the total storage space 

required for Cb and Cr is only 25% compared with the 4:4:4 YCbCr format. This 

yields a 2:1 reduction in data before further compression.  
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This research work has only used the luminance information approach, i.e. pixels are 

assumed to contain the Y component of the YCbCr colour space.  

 

Figure ‎2.5: Colour subsampling [Richardson, 2003] 

2.1.3 Video Format 

Exchange of digital video between different industries, applications and networks 

requires standard digital video formats. The most common digital frame format used in 

standard video compression is Common Intermediate Format (CIF), which is the basis 

for a family of formats. In this family the colour subsampling is 4:2:0, and each pixel is 

usually represented by 8 bits, and a rate of 30 FPS. The luminance component of the 
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CIF format is represented by 352 pixels×288 lines and the two chrominance 

components have half the luminance resolution in both the horizontal and vertical 

planes. Quarter-CIF (QCIF) has a luminance component of 176×144 pixels, whereas 

Sub-QCIF (SQCIF) has a luminance component of 128×96 pixels and 4CIF has 

704×576 pixels. The choice of frame resolution depends on the application and 

available storage or transmission capacity. For example, 4CIF is appropriate for 

standard definition television and DVD-video; CIF is popular for videoconferencing 

applications; QCIF or SQCIF are appropriate for mobile multimedia applications, where 

the display resolution and the bitrate are limited. 

The other common formats are Source Input Format (SIF) and Quarter-SIF (QSIF), 

which are used for storage applications. These formats define different vertical 

resolution values for NTSC and PAL, while CIF and its family support the NTSC and 

PAL video formats using the same parameters. SIF resolution is 352×288 pixels with a 

frame rate of 25 frames/s for PAL, but 352×240 pixels with a frame rate of 30 FPS for 

NTSC. For both cases the resolution of the chrominance components is half of the 

luminance resolution in both the horizontal and vertical planes. QSIF has half the 

dimensions of SIF in both directions [Richardson, 2003; Bovik, 2010; Sayood, 2006].  

2.2 Fundamentals of Video Compression  

Video compression, or what may be known as video coding, has become an essential 

part of multimedia systems. A huge amount of information is needed in order to display 

a digital video, therefore a large memory space will be required to store digital video 

images and it will need an equally large bandwidth for transmission. Video compression 

is the process of reducing the amount of data required to represent digital video images 

while preserving an acceptable video quality. This technique provides efficient solutions 

to representing video data in a more compact and robust way so that the information can 

be stored or transmitted faster in videoconferencing and videophone, digital 

broadcasting, interactive games (internet), etc. The balance between video quality 

(dependent upon frame size, frame rate and bit depth) and file size should be 

considered.  

This section gives a short overview of the fundamentals of video compression. The 

chronological development of video coding standards will also be introduced. 
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2.2.1 Video Coding International Standard  

The existing standard of video compression techniques were developed by two public 

international organisations: the International Telecommunication Union–

Telecommunication Standardization Sector (ITU-T), known as the Visual Coding 

Experts Group (VCEG), and the International Organization for 

Standardization/International Electrotechnical Commission (ISO/IEC), known as the 

Moving Picture Experts Group (MPEG). The standards approved by the ISO/IEC are 

called the MPEG family, whose applications range from consumer video on CD-ROM 

(MPEG-1 1991) to broadcast/storage standard or high definition TV (MPEG-2 1994) 

and object-based representation (MPEG-4 Visual or part 2 1998). On the other hand, the 

H.26x series of video standards published by the ITU-T focuses on improving the 

coding efficiency for bandwidth-restricted telecommunication applications as the 

number of video services increases. The ITU-T published its first video coding standard 

H.261 in 1990, and in 1995, it evolved H.263 video coding standards (and later 

enhancements of H.263 known as H.263+ and H.263++) with higher compression 

ratios [ISO/IEC, 1993; ISO/IEC, 1996; Li Liu et al., 2010 ]. The various applications for 

transmitting videos over the network have created great demand for efficient video 

coding. VCEG and MPEG formed the Joint Video Team (JVT) in December 2001 to 

complete the draft of the video coding standard as H.264/AVC (MPEG-4 Part 10) in 

May 2003. The video coding standard H.264/AVC is reported to achieve gains in 

compression efficiency of up to 50% compared with its predecessor MPEG-2. However, 

the increasing popularity of high definition TV, video delivery on mobile devices and 

other multimedia applications create new demands for video coding standards. In 

January 2010, the Joint Collaborative Team on Video Coding (JCT-VC) was created as 

a group composed of VCEG and MPEG to develop a new-generation video coding 

international standard. In February 2012, JCT-VC introduced the committee draft video 

compression standard called High Efficiency Video Coding (HEVC), which is also 

known as H.265 and MPEG-H Part 2. The final draft international standard appeared in 

January 2013 [Ohm and Sullivan, 2013]. HEVC code (without reduction in visual 

quality) has improved the video compression ratio by at least 50%, compared with 

H.264, across various applications such as videoconferencing, digital storage media, 

television broadcasting, internet streaming and communication [Wiegand et al., 2003; 

Li Liu et al., 2010 ; Nightingale et al., 2012; Bross et al., 2012]. 

http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Video_compression
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2.2.2 Redundant Information  

For all the standard video compression techniques, video coding can be obtained by 

taking advantage of the redundant information in any video [Kim, 2010; ITU-T and 

ISO/IEC, 2003; Al-Mualla et al., 2002; Metkar and Talbar, 2010; ISO/IEC, 1993; 

Sayood, 2006; Chanyul, 2010]. 

Colour Space Redundancy 

As mentioned in section 2.1.1, the Human Visual System (HVS) is more sensitive to 

luminance components than to chrominance components. Therefore, colour 

subsampling can reduce the resolution required to represent chrominance components. 

The first of several steps in compression is to transfer the information in the picture into 

the frequency domain. That is, the RGB intensity information in each pixel is transferred 

into luminance/brightness values as well as chrominance components in the YCbCr 

colour subsampling to achieve compression.  

Spatial Redundancy 

This redundancy comes from the spatial correlation in an image, where a block of an 

image can be predicted from its neighbouring pixels, which is called intra-frame 

compression, as shown in Figure ‎2.6. There are several spatial compression algorithms 

that are proposed for this purpose; the most common uses are predictive coding, 

transform coding such as Discrete Cosine Transform (DCT), quantisation and entropy 

coding. 

Temporal Redundancy 

In this case, the adjacent frames are highly correlated; that is, most of the time, the 

image frame looks similar to the frame before it, as shown in Figure ‎2.6. This redundant 

information can be removed using inter-frame compression.  

There are several inter-frame compression methods of varying degrees of complexity, 

such as subsampling coding, difference coding, block-based difference coding and 

motion compensation [ISO/IEC, 1993; Metkar and Talbar, 2010]. This thesis deals with 

temporal redundancy and attempts to enhance the complexity computations that come 

from inter-frame compression, as shown in Chapter 3.  
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Figure ‎2.6: Spatial and temporal correlation in video sequence [Richardson, 2003] 

Statistical Redundancy 

For any data, there is a minimum number of bits required to represent it without losing 

any information. Bit redundancy could be removed to further compress intra-frame and 

inter-frame compression. This can be performed by entropy coding such as Run Length 

Coding (RLC), Huffman Coding and Arithmetic Coding [Gonzalez et al., 2009].  

2.2.3 Lossless and Lossy Compression 

In general, video coding contains two systems: video encoders and video decoders, as 

shown in Figure ‎1.1. A video encoder consists of three main functional units: colour 

subsampling, a temporal model (inter-frame encoder) or a spatial model (intra-frame 

encoder) and an entropy encoder. The target of the encoder is to condense the huge 

amount of information needed to display a video frame in order to achieve a high 

compression ratio using the following equation: 

 
                 =  

                    (     )

                      (     )
 (2.3) 

 

The balance between decoded video quality and file size should be considered. The 

encoder can be classified into two approaches: lossless and lossy approaches. The 
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lossless technique (which is also known as bitpreserving or the reversible method) is 

used to compress the statistical redundancy. This method has a low compression ratio of 

about 3:1 or 4:1 in the best case, but the reconstructed data is identical to the original 

data. On the other hand, the lossy technique usually achieves a high compression ratio 

from 50:1 to 200:1 and even above, but the reconstructed data is not identical to the 

original data; that is, there is loss of information [Richardson, 2003; Vanne, 2011].  

2.2.4 Quality Measure in Video Coding  

In video compression, the lossy approach is the main method used to achieve a high 

compression ratio; however, this approach leads to lost information (it is called 

distortion) after reconstruction of the compressed video. In order to assess the quality of 

the reconstructed video, several methods have been developed. One of the simplest and 

most popular methods is to use Mean Square Error (MSE) for each frame separately and 

take their arithmetic mean. MSE is the average of the squared error measure determined 

according to the following equation: 

 
   (   ̂) =  

 

   
∑∑( (   ) −  ̂(   ))

 
 

   

 

   

 (2.4) 

Where M and N are the horizontal and vertical dimensions of the frame, respectively, 

and  (   ) and  ̂(   ) are the pixel values at location (   ) of the original and 

reconstructed frames, respectively.  

A more common form of the MSE measure is the Peak Signal-to-Noise Ratio (PSNR), 

which is defined as:  

 
    (   ̂) =  0      (

(    )
 

   
) (2.5) 

Where      is the maximum possible pixel value (for example, 255 for an 8-bit 

resolution component). The unit measure of PSNR is decibels (dB). Equation (2.5) 

shows that the PSNR measures the strength of the signal relative to the strength of the 

error. In application, PSNR between the original and reconstructed video sequences is 

measured by computing the PSNR for each frame separately and taking their arithmetic 
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mean. A high PSNR usually indicates high quality and low PSNR usually indicates low 

quality. However, PSNR is an objective measure, which means that a particular value of 

PSNR does not necessarily equate to a subjective video quality perceived by the HVS. 

The easy and quick calculation of PSNR makes it a very popular quality measure and it 

is widely used to compare the quality of the decompressed and the original videos [Al-

Mualla et al., 2002; Sayood, 2006]. Thus, to facilitate comparisons with algorithms 

reported by others, this research work adopts the PSNR measure.  

2.2.5 Types of Frames  

Video frames are compressed using different algorithms depending on the frame type. 

Figure ‎2.7 shows the three major frame types used in different video coding algorithms, 

which consist of I-frame, P-frame and B-frame. It should be noted that all information 

provided in this section is taken from the following reference [Bhaskaran and 

Konstantinides, 1997; Moeritz and Diepold, 2004; Richardson, 2010]. 

I-frame ‘Intra-coded frame’: this type of frame is coded independently from all other 

frames. This frame is compressed as a still image using a still image compression 

technique such as transform coding, vector quantisation or entropy coding. This type of 

frame is the largest size in encoding but is faster to decompress than the other frames. 

P-frame ‘Predicted frame’: an inter-coded frame, which is forward predicted from the 

last I-frame or P-frame, i.e. it is impossible to reconstruct it without the data of the 

previous frame (I or P). P-frames are typically a smaller size in encoding than I-frames.   

B-frame ‘Bi-predictive frame’: an inter-coded frame, which is a bi-directionally 

predicted frame, coded based on both the previous and next I- or P- frames, but a B-

frame cannot be the reference for other B-frames, i.e. there are two other frames 

necessary to reconstruct them. So B-frames are an effective video coding tool to 

improve coding efficiency. However, using B-frames for coding requires more memory 

in the encoder and decoder, as an extra frame (next reference) needs to be stored during 

the decoding process. Furthermore, B-frames introduce extra delay (next reference send 

first), which is unacceptable in two-way video coding such as for a videoconferencing 

application; in this case, no B-frames are used [Sayood, 2006].  
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2.2.6 Group of Pictures 

Frames between two successive I-frames, including the leading I-frame, are collectively 

called a Group Of Pictures (GOP), which is the smallest random access unit in the video 

sequence, as shown in Figure ‎2.7. A GOP pattern is defined by the ratio of P- to B-

frames within a GOP. Common frame patterns used for DVD are IBP and IBBP. All 

three frame types do not have to be used in a pattern. For example, an IP pattern can be 

used in two ways for video coding, as mentioned previously. Longer GOP lengths (the 

term long GOP refers to the fact that there are several P- and B-frames used between I-

frame intervals) encode video very efficiently by giving a good compression ratio. 

Smaller GOP patterns with shorter GOP lengths work better with video that has quick 

movements, but they do not compress the data as much. For television systems, an I-

frame is sent typically every half second in order to enable channel surfing [Moeritz and 

Diepold, 2004]. 

An I-frame is often used to efficiently code frames corresponding to scene changes, i.e. 

frames that are different from previous frames and cannot be easily predicted. Since 

video sequences have variable scene durations, depending on the content, it is not 

possible to use a fixed GOP structure to efficiently code the video sequence. This is 

because the position of I-frames in the sequence depends on the time that scene changes 

happen. For example, video coding standards allow for macroblocks which are 16×16 

pixels in P- and B-frames to be intra-coded if they cannot be predicted efficiently. This 

means that, even if all the frames are set to be of types P or B, there may be many 

macroblocks in each frame that are intra-coded [Turaga and Chen, 2001; Huang, 2005].  
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Figure ‎2.7: Types of coded frames ( adapted from [Huang, 2005]) 

Coding as P- and B-frames gives a higher compression rate, but it is more 

computationally expensive than coding an I-frame. This relates to the fact that coding P- 

and B-frames uses motion estimation and motion compensation, which will be 

discussed in the next chapter. 

2.3 Chapter Summary 

Digital video consists of a series of orthogonal bitmap digital images displayed in rapid 

succession at a constant rate. Video compression is the process of reducing the amount 

of data required to represent digital video images while preserving an acceptable video 

quality. There are four types of redundant information in any video, which are: colour 

space redundancy, spatial redundancy, temporal redundancy and statistical redundancy. 

The video compression system contains two systems: video encoders and video 

decoders. A video encoder consists of three main functional units to remove redundant 

information: colour subsampling, a temporal model (inter-frame encoder) or a spatial 

model (intra-frame encoder), and an entropy encoder.  

Efficient video compression can be achieved by an inter-frame encoder in which the 

current frame can be locally modelled as a translation of the reference frames. That is, 

most frames will depend on the others to reduce the temporal redundancy and reduce 

http://en.wikipedia.org/wiki/Digital_image
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the transmission rate of the sequence of the video images in order to obtain high 

compression. Therefore inter-frame encoding is the important part in video 

compression. For this reason, improving video compression is an active research area, 

and is investigated in this research.  More details about inter-frame compression will be 

provided in the next chapter.  
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3CHAPTER 3: MOTION COMPENSATION AND MOTION 

ESTIMATION 

As seen in Chapter 2, the efficiency of the video compression process is achieved by 

reducing or eliminating temporal redundancy, which is called inter-frame compression. 

This chapter concentrates on the inter-compression system, motion compensation and 

block motion estimation.  

3.1 Inter-Frame Compression  

Inter-frame compression exploits the high correlation that exists between successive 

frames in video sequences, especially if the frame rate is high. This correlation leads to 

temporal redundancy. The goal of inter-frame coding is to reduce this redundancy. 

Video coding standards share a number of common features, as shown in Figure ‎1.2. 

Each standard assumes that after colour subsampling there will be four stages of inter-

frame encoding to produce the compressed bitstream: temporal prediction between 

current frame and reference frame, transform coding (TC), quantisation (Q) and entropy 

coding. 

 

3.1.1 Temporal Prediction  

The goal of temporal prediction is to reduce temporal redundancy coming from high 

correlation between successive frames. This can be done by predicting some frames 

from others to reduce the transmission rate of video image sequences and obtain further 

compression. Reference frames of type I or P could be used to predict frames of type P 

or B. In forward prediction, past frames in the display order have been used as reference 

frames to the current frame; while, in backward prediction, the reference frames of the 

current frame are displayed in the display order in the future frames. The average of the 

forward and backward predictions may be used to predict frames of type B. In any 

prediction, reference frames have to be encoded first, while a residual (difference) 

between current and reference frames which contain less energy will be encoded later 

instead of the encoded current frame [Richardson, 2003].  
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To decrease this residual, prediction was improved by estimating the motion of the 

moving objects in-between the current and the reference frames, which is called Motion 

Estimation (ME) technique. That is, the motion estimation has been used to calculate 

the Motion Vectors (MVs) by comparing the current frame and the reference frame. The 

technique that uses the MVs to predict a new frame from a reference frame is called 

Motion Compensation (MC). The predicted frame is known as a Motion Compensated 

Prediction (MCP). The first output of this process will be the difference between the 

current frame and the MCP, which is called the residual prediction error (RPE) (or may 

be known as displaced frame difference (DFD)); the second output will be the motion 

vectors.  

Motion vectors are encoded by lossless compression, while RPE is encoded by lossy 

compression to get high compression ratio [Sullivan et al., 2004; Leontaris et al., 2009; 

Richardson, 2010; Sayood, 2006; Marpe et al., 2006; Al-Mualla et al., 2002]. This 

thesis focuses on this stage and the details will be introduced in sections 3.2 and 3.3 

3.1.2 Transform Coding (TC)  

Transform coding is one of the most important tools, which is employed to reduce 

spatial redundancy. The RPE, which is the difference between the current frame and the 

MCP frame, has a high correlation between neighbouring pixels, as shown in 

Figure ‎3.1. Inter-frame compression can be coded more efficiently by exploiting these 

similarities and reducing the spatial redundancy. Transform coding converts the data 

from a spatial domain of the RPE into a transform domain to produce a set of 

coefficients. The energy of the transformed data (coefficients) is localised and 

compacted at some certain areas. The transform should be reversible and transform as 

much information as possible into a small number of transform coefficients. Over the 

years, a variety of linear transform methods have been developed. The most popular 

transforms can be classified into two types: block-based transform coding and image-

based transform coding [Richardson, 2010; Jizheng et al., 2009].  

Block-based coding is widely used in image/video coding standards systems. In block-

based transforms, an image is divided into non-overlapping macroblocks and for each 

macroblock the 2-D transform coding is applied. Most transform coding systems 

employ a macroblock size of 8×8 or 16×16. Note that both sizes are powers of 2, which 
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reduce the computation complexity of the transform coding and requires low memory. 

The block-based transform coding converts the macroblock pixel information into the 

frequency domain where pixel correlation information is captured in a DC coefficient 

and pixel difference information is captured in AC coefficients. The AC coefficients 

normally have very small values because of the high correlation between the pixels in a 

macroblock. Therefore, the energy is concentrated in the DC coefficients and a small 

number of AC coefficients that are close to the DC coefficient. That is, the macroblock 

energy is usually concentrated in the low frequency region. Furthermore, block-based 

transform allows each macroblock to be processed in a different way according to its 

content in order to improve the coding performance significantly, as performed in 

H.264. The disadvantage of such block-based transform is that the transform can only 

exploit the correlations within the macroblock and hence this technique suffers from 

artefacts at edge macroblocks using very low bit rates, which affects the coding 

efficiency. Popular block-based transforms include: Discrete Cosine Transform (DCT), 

Karhunen–Loeve Transform (KLT), and Singular Value Decomposition (SVD) 

[Richardson, 2010; Bovik, 2010; Jizheng et al., 2009; Prasantha et al., 2007]. 

Image-based transform resolves the problem of artefacts initiated at edge macroblocks 

by using Discrete Wavelet Transform (DWT) on the entire image or video frame. An 

image-based transform would provide better energy compaction, but it tends to suffer 

from higher computational complexity and memory requirements in comparison to 

block-based transform because the whole image is processed as a unit. Therefore, the 

block-based transform is better compatible with the residual prediction error [Jizheng et 

al., 2009; Vanne, 2011; Richardson, 2010; Bovik, 2010].  
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Figure ‎3.1: The similarity between neighbouring pixels of the residual prediction error 

[Kim, 2010] 

3.1.3 Quantisation (Q) 

Quantisation is a mapping of a large set of possible inputs into a smaller set of possible 

outputs. Quantisation forms the heart of lossy compression and it is an irreversible 

process. The goal of this scheme is to map the data from a source into as few bits as 

possible such that the reconstructed data from these bits is as close to the original one as 

possible. There are two types of quantisation, scalar and vector. Scalar quantisation 

maps a single value of the input signal to one quantised output value (level). A simple 

example of uniform scalar quantisation is the process of rounding a fractional number to 

the nearest integer. The reconstructed values are usually the midpoint of the two 

adjacent step values. The length of the interval of the output levels is called step size. A 

scalar quantiser of the same step size is called a uniform quantiser, while a quantiser of 

different step size is called a non-uniform quantiser. If the step size is large (coarse), 

fewer numbers of bits are required and hence high compression ratio is achieved while 

the quality of the reconstructed data is reduced. However, small step size gives a larger 

range of quantised values and hence reduces compression efficiency and improves the 

reconstructed data. In each video coding standard, there exists a defined set of 
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quantisation step size parameters that provide the best balance between decoded video 

quality and compression ratio for different applications.  

Vector quantisation maps a group of input values (vector) (such as a block of image 

samples) to a group of quantised values which is the index from a “codebook”. Vector 

quantisation can be used alone as a method of compression and is very powerful with 

high computational complexity.  

Scalar quantisation techniques are involved in most video coding standards with the 

combination of transform coding. After the transformation, the energy in both the pixel 

and the transform domains are equal but the transform coefficients are less correlated 

than the original data. In the transform domain the majority of energy is concentrated on 

the low frequencies while little energy is concentrated on the high frequencies. Since the 

human eyes are more sensitive to low frequencies compared to high frequencies, 

therefore greater compression can be achieved by apply coarser quantisation step size at 

higher frequencies to remove insignificant coefficient values [Kou, 1995; Pu, 2005; 

Pereira and Ebrahimi, 2002; Yu and Peng Wang, 2010; Marpe et al., 2006; Sayood, 

2006; Richardson, 2010]. 

3.1.4 Entropy coding (EC) 

Entropy coding is the last stage in a video encoding system. It is a lossless compression 

scheme used to remove statistical redundancy by determining the minimum number of 

bits required to represent the data without losing any information. EC converts the MVs, 

the quantised transform coefficients and other information from the intra-compression 

process into a compressed bitstream suitable for transmission or storage. The widely 

used entropy coding are Variable Length Coding (VLC) and Arithmetic Coding. 

Arithmetic coding usually provides better compression efficiency, with relatively high 

computational complexity. These codes are improved by Context-Adaptive VLC 

(CAVLC) and Universal VLC (UVLC), which are based on VLC, while Context-

Adaptive Binary Arithmetic Coding (CABAC) is based on arithmetic coding. CABAC 

provides bit-rate savings of 9-14% compared to CAVLC but this is at the cost of higher 

complexity. The low complexity CAVLC entropy encoding method is utilised by the 

H.264 standard [Wiegand et al., 2003; Richardson, 2010; Yu and Peng Wang, 2010]. 
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3.1.5 Decoding of Inter-frame compression 

The decoder interprets the compressed data stream of the compressed motion vectors 

and compressed RPE; the process is reversed to reconstruct the original frame.  

In the decoder side (Figure ‎3.2), the reference frame was already reconstructed 𝐹̂  by 

intra-frame decoding and is ready to compensate and predict the current frame. The MC 

uses the decompressed MVs from entropy decoding to predict MCP of the current 

frame. On the other hand, to produce decoding of residual prediction error which is 

denoted by     ̂ in Figure ‎3.2, start by entropy decoding followed by inverse 

quantisation (   ), then inverse transform coding     . Note that the irreversible 

quantisation process means that    ̂ is not identical to RPE. Finally,    ̂ is added to 

the predicted frame to introduce the reconstructed current frame  𝐹̂ . 

 

Figure ‎3.2: Inter frame decoder ( adapted from [Sayood, 2006; Bovik, 2010]) 

 

3.2 Motion Compensation (MC) 

Motion compensation (MC) has been used as a main tool to reduce the temporal 

redundancy that comes from the small change in the contents from one image to another 

in video sequences. That is, MC is the key to achieve high compression ratio for the 

coding system. This technique dates back to the early 1970s and has been adopted by all 

of the existing international video coding standards, such as MPEG series and H.26x 

series including H.265 [ISO/IEC, 1993; ISO/IEC, 1996; ITU-T and ISO/IEC, 2003; 

Sullivan et al., 2004; Sullivan and Wiegand, 2005; Ohm and Sullivan, 2013]. 
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Motion Compensated Prediction (MCP) assumes that the current frame can be locally 

modelled as a translation of the reference frames. MC uses reference frames to predict 

the current frame, and then encodes RPE. Normally, a P-frame is predicted from one of 

the previous reference frames. Similarly, a motion compensated bi-prediction or B-

frame is predicted from two previous reference frames and the next frame. To achieve 

such a high coding efficiency, H.264/MPEG-4 AVC use Multiple Reference Frames’ 

ME (MRFME) of up to five reference frames to predict the current frame. However, 

this dramatically increases the computational complexity of the encoders. Moreover, 

MRFME must be stored in memory until they are no longer needed for further usage, 

which requires a large amount of memory usage [Huang et al., 2006; Kim, 2010; 

Srinivasan and Rao, 1985]. 

The simplest method of MCP is to use the previous frame as the predictor for the 

current frame, and encode the difference between them. However, this prediction can be 

effective only if the two frames are similar and the residual values are close to zero. In 

any video, either the camera is moving or the object is moving with the fixed camera or 

scene lighting changes. In all cases, the difference between successive frames will not 

be close to zero and a lot of energy remains in the residual frame. This means that there 

is still a big amount of information to compress after this stage. To achieve further 

compression, a better prediction of the current frame may be formed by compensating 

for motion between the two frames. In order to carry out motion compensated 

prediction, the motion of the moving objects has to be estimated first; this is known as 

Motion Estimation (ME). Figure ‎3.3 shows the residual prediction error with/without 

ME [Srinivasan and Rao, 1985; Huang et al., 2006; Yu and Peng Wang, 2010].  
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Figure ‎3.3: The residual prediction error without ME and the residual prediction error 

with ME [Richardson, 2010] 

3.3 Motion Estimation (ME) 

Motion Estimation is the first step of inter-frame compression and usually the most 

computationally intensive part (about 50% for one reference - 80% for five of the entire 

system) in a video encoder [Srinivasan and Rao, 1985; Huang et al., 2006; Horn and 

Schunck, 1981; Richardson, 2010]. It is possible to estimate the displacement for every 

pixel position between successive video frames, producing a field of pixel flow vectors 

known as the optical flow. The field is subsampled and hence only one vector for every 

two pixels is shown. However, for motion compensation, this is not a practical method 

since the calculation of optical flow is very computationally intensive and needs 

computations for each pixel. Moreover, the number of optical flow vectors is equal to or 

half the number of pixels. These vectors will be sent to the decoder in order to form 
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MCP. As a result a large amount of data should be transmitted [Srinivasan and Rao, 

1985; Huang et al., 2006; Horn and Schunck, 1981; Richardson, 2010].  

Nowadays ME is not only used for the application of video compression, it is used and 

implemented in various fields to solve their problems some of them are intelligent 

applications such as psychological studies of Gesture Recognition [Mr. P. Vijaykumar, 

2011]. Gesture Recognition can be termed as the process in which the receiver 

recognizes the gestures made by the user. Gesture is a meaningful expression involving 

the movements of the face, hand, finger, etc. Motion estimation has been used to get the 

motion vector of the movement data as an important part of the hall process [Kratz and 

Ballagas, 2007; Mitra and Acharya, 2007]. Therefore ME attracts the attention of a lot 

of researchers. 

The practical and widely used method to estimate the motion of a group of pixels 

(macroblock) of the current frame is called Block Matching Algorithm (BMA).  

3.4 Block Matching Motion Estimation  

Block matching algorithm is the most popular technique used for motion estimation, in 

which the current luminance frame is divided into non-overlapped MacroBlocks (MBls) 

of size N×M. These macroblocks are then compared with the corresponding macroblock 

and their adjacent neighbours in the reference frame. This will carry out displacement 

vectors that stipulate the movement of the macroblocks from one location to another in 

the reference frame [Barjatya, DIP 6620 Spring 2004]. For any macroblock in the 

current frame, the BMA finds the matching macroblock of the same size N×M in the 

search area within the reference frame. The position of the matching macroblock gives 

the Motion Vector (MV) of the current macroblock, as shown in Figure ‎3.4. This 

motion vector has two parts, horizontal and vertical, which can be positive or negative. 

A positive value means motion to the right or motion down and a negative value means 

motion to the left or motion up. These motion vectors will be used to form the MCP to 

the current frame from the reference by block motion compensation, as shown in 

Figure ‎3.5. The MVs will be encoded using entropy coding and the RPE between the 

current frame and the MCP will be encoded using transform coding, quantisation and 

entropy coding. At the decoder, the received MVs and RPE will be decoded and utilised 
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to form MCP from the reconstructed reference frame and use the reconstructed RPE to 

reconstruct the current frame.  

 

Figure ‎3.4: Block matching ME (adapted from  [Huang, 2006]) 

 

Figure ‎3.5: Block motion compensation [Kim, 2010] 

The matching measure is usually determined using a Block Distortion Measure (BDM) 

like Mean Absolute Difference (MAD) (equation 3.1), or Sum of Absolute Differences 

(SAD) (equation 3.2) or Mean Square Error (MSE) (equation 3.3). The macroblock with 

the least BDM is considered to be the one matching the current macroblock [Metkar and 

Talbar, 2010].  
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The search area for a macroblock match is usually constrained up to   pixels on all four 

sides around the corresponding macroblock in the reference frame, where   is the 

search parameter. Larger motions require a larger   value, which demands more 

computational power, as shown in Figure ‎3.4.  

For the current macroblock C of dimension N N and the candidate macroblock R in the 

reference frame with a displacement of (     )  SAD, MAD and MSE are defined as: 
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where  (   ) is the pixel value of current MBl at position (   ) and R(         ) is 

the pixel value of the reference frame with the vector (     ) within the search range 

 −    . 

3.4.1 Block-Size Motion Estimation 

Macroblock size is an important parameter of the BMA. In the BMA, increasing the 

size of the macroblock means that more computations are required. However, it also 

means that there will be fewer macroblocks per frame, so the amount of computation 

needed to perform motion estimation will be decreased. There is a high possibility that 

the big macroblock will contain different objects moving in different directions. In other 

words, using a larger macroblock size reduces the amount of computation; however, it 

provides poor prediction; while smaller macroblock size can produce better motion 

compensation results and hence reduces residual energy. However, smaller MBl size 

leads to increased complexity and increase in the number of motion vectors that need to 

be transmitted, which may outweigh the benefit of reduced residual energy. An effective 



Chapter 3: Motion Compensation and Motion Estimation 

36 

compromise is to adapt the macroblock size to the picture characteristics, for example 

choosing a large block size in the homogeneous and shade regions of a frame and 

choosing a small block size for areas of high details, edges, and complex motion, which 

is called Variable Block-Size Motion Estimation (VBSME) [Marpe et al., 2006; 

Richardson, 2003; Sayood, 2006; Ruiz and Michell, 2011].  

The default block size for motion compensation is 16×16 samples for the luminance 

component. Fixed Block-Size Motion Estimation (FBSME) of size 16×16 or 8×8 has 

been used in the first-generation coding standards; while H.264\AVC utilises VBSME, 

which is more complicated. VBSME allows a macroblock of 16×16 samples of the 

luminance component to be partitioned into 4 ways, as shown in Figure ‎3.6: one 16×16 

MBl, two 16×8 sub-MBls, two 8×16 sub-MBls or four 8×8 sub-MBls. In addition, each 

of the four 8×8 sub-MBl partitions within the MBl can be further sub-partitioned into 3 

ways, as shown in Figure ‎3.6: two 8×4 sub-MBls, two 4×8 sub-MBls or four 4×4 sub-

MBls. These partitions and sub-partitions give around 41 MBls in total for each MBl. 

For each type of sub-MBl, a motion vector is required. Each motion vector must be 

coded and transmitted with the choice of partition(s). In order to get these MVs for each 

MBl, the computation of comparison operations was increased. To enhance these 

computations, a large partition size is applied for homogeneous areas of the frame and a 

sub-partition size may be useful for detailed areas [V.K.Ananthashayana and 

Pushpa.M.K, 2009; Sayood, 2006; Sullivan and Wiegand, 2005; Wien, 2003; Ruiz and 

Michell, 2011]. 

 

 

Figure ‎3.6: Macroblock partitions and sub-macroblock partitions [Ruiz and Michell, 

2011] 
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3.4.2 Full Search 

The simplest algorithm which can be used for motion estimation to find motion vectors 

is the Full Search (FS), or Exhaustive Search (ES), which exhaustively searches for the 

best matching block within the search area, where the correlation window is moved to 

each candidate position within the search area. It can be described by: 

 
   (   ) = ∑∑| (   ) −  (       )|

 

   

 

   

    −             (3.4) 

 
   =   (   ) |    (   )       (   )  −                (3.5) 

where : 

SAD (m, n) is the distortion of the candidate macroblock at search position (m, n),  

  (   ) |                       means current macroblock data,  

  (   )|  −                −                stands for search area data; the 

search range is  −    , the block size is N×N.  

 

 

Figure ‎3.7: Pseudo code of FS 

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using FS motion estimation 

- For each macroblock MBl in frame I+2. 

- compute the SAD  between current MBl and each candidate macroblocks at the search 

windows in the reference frame I. 

- let         = MINIMUM (SUM)   

- find the coordinates of the vector where         . 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 
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From the above, (    )  of search locations need to be examined by the FS 

algorithm. As a result, FS finds the best possible match and gives the highest PSNR 

amongst any block matching algorithm; however, a large amount of computational 

complexity is involved, especially with VBSME and MRFME. 

Various methods of fast block matching algorithms have been developed to decrease 

and improve this computational complexity. If the algorithm enhances the computation 

and produces the same quality results as FS then it is called lossless block matching 

algorithm while if the algorithm could not keep the same quality results then it is called 

lossy block matching algorithm [Sayood, 2006; Srinivasan and Rao, 1985; Huang et al., 

2006]. 

3.5 Chapter Summary  

The high correlation between successive frames in video sequences leads to temporal 

redundancy. To reduce this redundancy and satisfy compression, inter-frame 

compression has been used. The first stage of inter-frame compression is temporal 

prediction, in which some frames can be predicted from others to reduce the 

transmission rate of video image sequences and obtain further compression. Motion 

estimation technique has been used to improve this prediction by estimating the motion 

of the moving objects between the reference frame and the current frame. Motion 

estimation is the most computationally intensive part in a video encoder. The practical 

and most widely used method to estimate the motion of the macroblock of the current 

frame is called Block Matching Algorithm (BMA). In this case, video frames are 

divided into a set of non-overlapped MBls. Each target macroblock in the current frame 

is compared with a number of candidate macroblocks within the search area in the 

reference frame in order to find the best matching macroblock. The spatial difference 

between the two matching macroblocks will determine a set of displacement vectors 

that stipulate the movement of the macroblocks from one location to another in the 

reference frame. Checking all search area locations is called the Full Search algorithm. 

The full search algorithm can produce the best possible matching and hence the highest 

resolution MCP. However, this algorithm suffers from long computational time, which 

necessitates improvement. Various methods of fast block matching algorithms have 

been developed to decrease and improve the computational complexity. These methods 
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can be classified into two types, lossless and lossy BMA. More details about both types 

will be provided in Chapter 4 and the novel algorithms to develop these methods will be 

introduced in Chapter 5. 
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4CHAPTER 4: FAST BLOCK MATCHING ALGORITHMS 

As shown in Chapter 3, motion estimation shows computational complexity. Hence, the 

computational complexity of video coding can be reduced by efficiently coding Motion 

Estimation (ME). A block matching algorithm is the most common technique used for 

motion estimation to find the best matching macroblock for the current macroblock 

from the reference frame. FS is the simplest but the most computation-intensive Block 

Matching Algorithm (BMA), which exhaustively tests all the search locations for the 

best matching macroblock within the search area. As a result, Full Search (FS) finds the 

best possible match and gives the highest Peak Signal-to-Noise Ratio (PSNR). 

Moreover, variable block size and multiple reference frames have been involved in the 

later video coding standards. Therefore, the required computation is highly increased 

and motion estimation has become a problem in many video applications, for example 

mobile video and real-time video coding.  

In the last three decades, various methods of fast BMA have been developed to reduce 

such high computational complexity. Some of the fast BMA algorithms have been 

adopted in video coding standards [ISO/IEC, 1993; ISO/IEC, 1996; ITU-T and 

ISO/IEC, 2003]. This indicates that this is an extremely active field of research, and 

most of the fast block matching algorithms are introduced first for FBSME and then 

extended to VBSME [Xiong et al., 2011]. The performance of each algorithm can be 

estimated by benchmarking with FS. The effective one minimises the RPE and saves 

the computational time compared with Full Search. 

Fast block matching algorithms can be classified into lossy block matching algorithms 

and lossless block matching algorithms. Lossy BMAs reduce the computational 

complexity; however, the search results quality is not the same as for FS. That is, the 

PSNR of the decompressed video with lossy BMA is not as good as the PSNR of the 

one with the full search. While lossless BMA preserves the video quality as well as 

speeding up the FS [Nie and Ma, 2002; Huang et al., 2006; Cai et al., 2009]. 

This chapter discusses various lossy and lossless techniques using block matching 

algorithms, as shown in section 4.1 and 4.2. The chapter summary is provided in section 

4.3.  
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4.1 Lossy Block Matching Algorithms 

Lossy BMAs can be classified into the following categories:  

4.1.1 Fixed Set of Search Patterns  

Fixed set of search patterns or what is known as reduction in search positions is the 

most popular category in lossy block matching algorithms. These algorithms reduce 

search complexity by selecting a subset of the possible search candidate locations 

instead of all possible MBls within the search window. Most algorithms in this category 

state that the error decreases monotonically as the search location moves closer to the 

best-matching location. Therefore, the search starts with the locations coarsely spread 

over the search window according to some predefined uniform pattern. After that, the 

search is repeated with a smaller spread around the search location with the minimum 

BDM (error) obtained from the preceding step. Each search pattern has a specific shape 

(rectangle, diamond, hexagonal, cross, etc.) [Al-Mualla et al., 2002; Huang et al., 2006].  

The first algorithm proposed in this category was the Two-Dimensional Logarithmic 

Search (2D-LOG), which was proposed in 1981 [Jain and Jain, 1981]. After that, some 

well‐known similar algorithms were proposed, such as: Three Step Search (TSS) [Koga 

et al., 1981], Orthogonal Direction Search (OSA) [Puri et al., 1987], New Three Step 

Search (NTSS) [Reoxiang et al., 1994], Four Step Search (4SS) [Lai-Man and Wing-

Chung, 1996], Diamond Search (DS) [Shan and Kai-Kuang, 1997], Simple and 

Efficient Search (SESTSS) [Jianhua and Liou, 1997], Cross-Diamond Search algorithm 

(CDS) [Cheung and Po, 2002], Novel Hexagon-based Search (NHS) [Ce et al., 2004],  

Efficient Three Step Search (ETSS) [Xuan and Lap-Pui, 2004], Modified DS (MODS) 

[Xiaoquan and Nam, 2005] Multi-pattern-based search (TCon) [Akram and Izquierdo, 

2010] and many others. 

Much of the research and coding was dependent on the Fixed Set of Search Patterns due 

to its high-speed search capabilities in comparison to other lossy BMA categories.  

Unfortunately, these algorithms produce significant loss in visual quality when the 

actual motion does not match the pattern and hence these algorithms become trapped in 

a local minimum. As an example, a centre-biased search pattern cannot provide optimal 

motion estimation for videos with large motions [Hui-Yu and Shih-Hsu, 2011].  
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N-Step 

Three step search, new three step search and simple and efficient three step search come 

under the N-Step Search class. The steps of this class are summarised as follows: (1) 

Choose step size (which is usually slightly larger or equal to half of the search window). 

(2) Number of search points is selected at a distance of the step size as well as the centre 

point. The macroblock with the minimum BDM value becomes the centre of the next 

step. (3) Divide step size by two and select new search points at a distance of the new 

step size. (4) Repeat step 2 until the step size becomes one.  

Three Step Search (TSS) 

TSS uses a maximum of three steps in a coarse to fine search patterns. For a usual 

search window of parameter p= 7 the initial step size will be 4=round((p+1)/2); TSS 

utilises nine search points centred at the search area (eight points on the boundary of the 

search square and one centre point) to be compared in the first step search. As 

mentioned before, the point with the minimum BDM value becomes the centre of the 

next step. Therefore, there are eight search points to be compared in the second and 

third step searches, i.e. the total number of search points is (9+8+8=25), as shown in 

Figure ‎4.1. 

 

Figure ‎4.1: TSS [Jong-Nam and Tae-Sun, 1998] 
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Due to its simplicity and reasonable performance, the TSS is widely used for research 

purposes [Chao-Feng et al., 2012]. The drawback of the TSS is the reality of its not 

being efficient with small motion video, since the search points forming the search 

pattern in the first step are positioned at a relatively large distance from the search 

centre; while 80% of the MBls in various motion video sequences can be regarded as 

stationary or quasi-stationary MBls, which means that 80% of MVs are centre-biased, 

i.e. lie within a region of 5×5 of the central area [Cheung and Po, 2002]; therefore TSS 

is not efficient for most video sequences. This problem was solved in 1994 by 

proposing a new search called NTSS [Reoxiang et al., 1994]. 

New TSS (NTSS) 

NTSS provided improvement over the quality results of TSS [Reoxiang et al., 1994]. 

This algorithm is considered as one of the first widely accepted fast block matching 

algorithms. Moreover, it has been used in earlier standards like MPEG 1 and H.261 

[Mogus et al., 2010].  

 

Figure ‎4.2: : NTSS [Reoxiang et al., 1994] 

NTSS added a smaller search pattern of eight points at the central area to the first step 

of the original TSS search pattern. That is, NTSS requires more search points compared 

to TSS. For search windows of parameter p= 7, NTSS requires 33 search points for 
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large motion MBls while TSS always required 25, which means more computations 

may be needed. In order to compensate the disadvantage of adding a centre-biased 

searching pattern, NTSS used a halfway stop technique for stationary and quasi-

stationary MBls as follows:  

Step 1: similar to the first step of the TSS algorithm, the matching macroblock is 

determined first using eight search points on the boundary of the step size search square 

and the centre point: (±stepsize,0), (0, ±stepzise), (0,0), (±stepsize,±stepsize), and eight 

extra neighbours of the centre-biased search pattern will be searched: (±1,0), (0, ±1), 

(±1,±1) as shown in Figure ‎4.2.  

Step 2: if the minimum BDM in the first step is already at the centre of the search 

window, the search will be stopped and the motion vector is set as (0, 0), which mean 

that the total number of search points is 9+8; this is called the first-step-stop. Otherwise, 

the centre will move to the minimum BDM. In stationary and quasi-stationary MBls, the 

new centre will move to the centre-biased search points and the search in the second 

step will be performed only for three or five neighbouring points to complete 8 points 

adjacent to this centre, as illustrated in Figure ‎4.2. The minimum BDM of this step 

search gives the matching MBl, i.e. the total number of search points will be only 

9+8+3 or 9+8+5, and this is called the second-step-stop. Otherwise, for the large motion 

MBls, the new centre will move to the boundary search square then the same procedure 

of TSS is applied and hence the total number of search points will be 33 [Reoxiang et 

al., 1994; Barjatya, 2004; Mogus et al., 2010; Jae-Yong and Sung-Bong, 1999; Goel and 

Bayoumi, 2006].  

Therefore, for typical video sequences, NTSS is faster than TSS, while for high motion 

video sequences the computational complexity for NTSS will be higher than that of 

TSS. In general, NTSS works better than TSS by producing smaller motion 

compensation errors, and in terms of computational complexity it is similar to TSS, 

being simple in nature. Therefore, it is utilised as one of the comparison algorithms in 

this thesis and the pseudo code of NTSS is illustrated in Figure ‎4.3.  
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Figure ‎4.3: Pseudo code of NTSS 

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using NTSS motion estimation 

- For each macroblock MBl in frame I+2 

- Let L = round((p+1)/2) and  

- Let stepsize =L 

- Compute the MAD between MBl and the 17 candidate macroblocks at the positions (±stepsize,0), 

(0, ±stepzise), (0,0), (±stepsize,±stepsize), (±1,0), (0, ±1), (±1,±1). 

- make sure the position of the candidate macroblock is not out of the frame  

- find the coordinate of the vector V=(v1,v2) where the MAD is minimum  

- If V =(0,0) then V is the motion vector and the  search will end. 

- else V become the centre of new search  

- If V is one of the candidate macroblocks (±1,0), (0, ±1), (±1,±1)  

- compute the MAD  between MBl and the candidate macroblocks at eight points adjacent to this 

centre by add only for three or five neighbouring points depend on the position of the new centre. 

- Make sure that don’t calculate the same points again that were calculate in the initial search.  

- Make sure the position of the candidate macroblock is not out of the frame. 

- find the coordinates of the new vector where the MAD is minimum and stop the search. 

- else let stepsize = round (L / 2);  

- while (stepsize >= 1)  do 

- compute the MAD  between MBl and the candidate macroblocks at eight search points in distance 

of the step size around  the new centre.  

- Make sure that don’t calculate the same points again that were calculate in the previous search.  

- Make sure the position of the candidate macroblock is not out of the frame. 

- find the coordinates of the new vector where the MAD is minimum and store it.  

- move the centre of the search to new vector. 

- stepsize = stepsize / 2 

- end do 

- find the coordinates of the new vector where the MAD is minimum and stop the search. 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 
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Simple and Efficient TSS (SESTSS) 

Another extension illustrated to speed up TSS was done by Simple and Efficient TSS 

[Jianhua and Liou, 1997]. SESTSS requires around half of the computation for TSS 

while keeping the same regularity and good performance. It exploits the fact that the 

uniform distribution search pattern in TSS is not effective since the error decreases 

monotonically as the search location moves closer to the best-match location, i.e. 

minimum points cannot occur in two directions opposite to each other, which means 

that, for the search pattern in TSS, at most half of the total eight points are actually 

required to be searched in each step, and, thus, the computational complexity can be 

further reduced. Additional computation is needed to determine which directions are to 

be chosen. The algorithm still has three steps like TSS but each step has two phases as 

follows [Jianhua and Liou, 1997]: 

Step 1: first phase: compute MAD of the three locations A, B and C as shown in 

Figure ‎4.4. Point A refers to the centre location. B and C are located at step size =4 away 

from A, towards the right-hand side and bottom. In the second phase, a few more points 

are added depending on the following conditions:  

      ( )      ( )        ( )       ( )        ( )  

      ( )      ( )       ( )      ( )        ( )  

      ( )      ( )       ( )      ( )        ( )  

      ( )      ( )       ( )      ( )        ( )  

Where: 

(b) is the second phase of one point more add to phase one located at  step size =4 away 

from B towards bottom side.  

(c) is the second phase of two points more add to phase one located at step size =4 away 

from A and B towards above side. 

(d) is the second phase of three points more add to phase one located at step size =4 

away from A, towards left-hand side, above and up-left corner. 

(e)  is the second phase of two points more add to phase one located at step size =4 

away from A and C towards left-hand side.  
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Figure ‎4.4: Search patterns of SESTSS depending on MAD of A, B and C [Jianhua and 

Liou, 1997] 

Step 2: the point with the minimum MAD value from step 1 becomes the centre of the 

current step and the step size will be 2. The pattern of the first phase in this step is 

similar to first phase in step 1. 

Step 3: repeat step 2 with step size equal to 1. 

Figure ‎4.5 shows an example for the SESTSS, and the pseudo code of SESTSS is 

illustrated in Figure ‎4.6 
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Figure ‎4.5: Example of the SESTSS search procedure [Jianhua and Liou, 1997] 
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Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using SESTSS motion estimation 

- For each macroblock MBl in frame I+2 

- Let L = round((p+1)/2) and  

- Let stepsize =L 

- While stepsize  =    do 

- Compute the MAD between MBl and the 3 candidate macroblocks at the positions A=(0,0), 

B=(stepsize,0), and C=(0,stepsize). 

- make sure the position of the candidate macroblock is not out of the frame  

-       ( )  =      ( )        ( )   =      ( )

o Compute MAD at (stepsize,stepsize) 

-             ( )  =      ( )       ( )      ( ) 

o Compute MAD at (0,-stepsize) and (stepsize,-stepzise) 

-            ( )      ( )       ( )      ( ) 

o Compute MAD at (0,-stepsize) , (-stepsize,stepzise) and (-stepzise,0) 

-            ( )      ( )       ( )  =     ( ) 

o Compute MAD at (-stepsize,-stepzise) and (-stepzise,0) 

- Make sure the position of the candidate macroblock is not out of the frame. 

- find the coordinate of the vector V=(v1,v2) where the MAD is minimum  

- let V become the centre of new search  

- let stepsize = round (L / 2);  

- end do 

- find the coordinates of the new vector where the MAD is minimum and stop the search. 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 

Figure 4.6: Pseudo code of SESTSS 
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Diamond Search (DS) 

DS is one of the most common and widely used algorithms. DS requires significantly 

less computation by reducing the average search points while achieving acceptable 

performance in comparison with its prior fixed set of search pattern algorithms. 

Therefore, it is adopted by the reference software of MPEG-4 [ISO/IEC, 1999; Huang et 

al., 2006].  

Similar to NTSS, the DS is based on the assumption that most motion vectors of typical 

video sequences are centre-biased. Also, it is based on the fact that the MBl 

displacement of real-world video sequences could be in any direction, but mainly in 

horizontal and vertical directions [Shan and Kai-Kuang, 1997] .  

This technique utilises two search patterns, a large diamond search pattern (LDSP) of 9 

search points and a small diamond search pattern (SDSP) of five search points, as 

follows: in the first step the matching MBl is searched within the search points of the 

LDSP which are {(±2,0), (0, ±2), (0,0), (±1,±1)}, as shown in Figure ‎4.7. The position 

of the minimum BDM for the LDSP becomes the centre of the new search. If the 

minimum BDM is already at the centre of the LDSP, then the search pattern is switched 

from the LDSP to a SDSP of four points {(±1, 0), (0, ±1)}. Otherwise, the search in the 

next step will be performed only for three or five neighbouring points that complete the 

LDSP of this new centre, as illustrated in Figure ‎4.7. The LDSP is repeatedly used in 

the searching procedure until the step in which the minimum BDM point stays at the 

centre of the LDSP. The search pattern is then switched to a SDSP. The minimum BDM 

point found from the SDSP will be the best matching block [Zhu and Ma, 2000; 

Barjatya, 2004; Mogus et al., 2010; Shan and Kai-Kuang, 1997].  

The search pattern of the DS algorithm is neither too small nor too big since the step 

size has two pixels in horizontal and vertical directions and one pixel in each diagonal 

direction. Also, the DS algorithm does not have a limited number of search steps. 

Therefore, for both large motion MBls, and stationary or quasi-stationary MBls, the DS 

algorithm is not so easily trapped into a local minimum point; this algorithm can find 

the global minimum accurately. In addition, the compact shape of the search patterns 

used in the DS algorithm increases the possibility of finding the global minimum point 

located inside the search pattern. The pseudo code of DS is shown in Figure ‎4.8. 
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Figure ‎4.7: DS [Shan and Kai-Kuang, 1997] 

 

 

Figure ‎4.8: Pseudo code of DS 

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using DS motion estimation 

- For each MBl in frame I+2 

- Compute the MAD between MBl and 9 search points of large diamond search pattern (LDSP) 

which are {(±2,0), (0, ±2), (0,0), (±1,±1)}.  

- make sure the position of the candidate macroblock is not out of the frame. 

- find the coordinate of the vector V where the MAD is minimum. 

- while (V is not at the centre of LDSP) do  

- the position of the minimum MAD becomes the centre of the new search of LDSP. 

- Compute MAD between MBl and three or five neighbouring points that complete the LDSP of 

the new centre. 

- End do  

- compute the MAD between MBl and 4 search points of a small diamond search pattern 

(SDSP), {(±1, 0), (0, ±1)}. 

- find the coordinates of the vector where the MAD is minimum at SDSP and stop the search. 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 
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4.1.2 Predictive Search  

Predictive search technique is a lossy block matching algorithm that exploits the 

correlation between the current MBl and its neighbouring MBl. It utilises the motion 

information in the spatial and/or temporal neighbouring MBl. The predicted MV can be 

obtained by selecting one of the previously-coded neighbouring MVs; for example, the 

predictors can be the MVs of the MBls on the left, top, and top right, as shown in 

Figure ‎4.9, or the MV of the collocated MBl in the previous frame, as shown in 

Figure ‎4.10, and in the previous two frames.  

 

Figure ‎4.9: Current MBl with the predictor MV of top (T), left (L) and top right (TR) 

MBls  

 

Figure ‎4.10: Current MBl and the collocated MBl in the previous frame (adapted from 

[Huang, 2006]) 

 The Motion Vector Predictor (MVP) is utilised in two ways:  

1. The difference between the current motion vector and the MVP, which is called 

motion vector difference, is transmitted instead of the current MV itself. The 

MVP in this case is the median of three candidate predictors, which are the 
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motion vectors of the three neighbouring MBls, as illustrated in Figure ‎4.9 [Al-

Mualla et al., 2002].  

2. The MVP forms an initial estimate of current MV. This type is a fast motion 

estimation algorithm that has low computational complexity with acceptable 

performance. It can effectively reduce the search points and hence the 

computation by exploiting the target macroblock that is likely to belong to the 

area of the neighbouring MVs, and the initial search starts directly in this area. 

The MVP could be one or more of the previously-coded neighbouring MVs, or 

their average MVs as in Figure ‎4.9,. Note that additional memory for storing the 

neighbouring MVs is needed in this method [Ezhilarasan and Thambidurai, 

2008; Chalidabhongse and Kuo, 1997; Richardson, 2010].  

This technique is used in the Adaptive Rood Pattern Search (ARPS) algorithm [Nie and 

Ma, 2002], Joint Adaptive Block Matching Search (JABMS) algorithm, Unsymmetrical 

Multi-Hexagon search (UMHexagonS) [Yi et al., 2005], and simplified block matching 

algorithm for fast motion estimation [Ananthashayana and Pushpa, 2009].  

Adaptive Rood Pattern Search (ARPS) Algorithm 

The ARPS algorithm [Nie and Ma, 2002] based on the MPEG-4 Verification Model 

(VM) [ISO/IEC, 1999] showed a speed 2-3 times faster and maintained a fairly similar 

performance than that of the DS [Zhao et al., 2008]. ARPS uses a predictive search 

technique to form an initial estimate of finding the global minimum point. This relates 

to the fact that, if the MBl around the current block moves in a particular direction, then 

there is a high probability that the current MBl will also have a similar motion vector. 

Moreover, the step size search pattern of this algorithm is changeable according to the 

motion vector predicted behaviour. This technique depends on the DS technique, which 

uses two different types of fixed patterns, the Large Search Pattern (LSP) and the Small 

Search Pattern (SSP), as shown in Figure ‎4.11. In addition, the motion vector predicted 

(MVP) of this algorithm is the coded motion vector of the immediate left MBl, which 

means one neighbouring MV needs to be recorded. This MVP is utilised to pre-

determine the motion behaviour of the current MBl and to define the most suitable step 

size to perform efficient ME. The steps of this algorithm are as follows:  



Chapter 4: Fast Block Matching Algorithms 

54 

Step 1: determine the step size that refers to the distance between the centre and any 

vertex points in the LSP. If   and   are the horizontal and vertical components of the 

MVP, respectively, then the step size will be the maximum absolute value of these 

components determined as follows [Nie and Ma, 2002]: 

          =     | | | |  (4.1) 

For the MBl on the left side of the frame, the step size will be fixed as 2 pixels.  

Step 2: the matching macroblock is searched first within the search points of LSP plus 

the search point indicated by the MVP, as shown in Figure ‎4.12. The point that has the 

least MAD becomes the origin for subsequent search steps. The new search centre 

directly moves to an area where there is a high probability of finding the global 

minimum, and the new search pattern is changed to a SSP, as shown in Figure ‎4.11. 

Step 3: the matching MBl found in the current step will be re-positioned as the new 

search centre of the next search if it is not already at the centre of the search pattern. 

This process will be repeated until the matching MBl stays at the centre of the SSP.  

Figure ‎4.13 shows the pseudo code of ARPS.  

A further development of this algorithm is called Adaptive Rood Pattern-Zero Motion 

Prejudgment (ARP-ZMP), which can be achieved by checking for zero motion 

prejudgment in which, if the SAD between the current MBl and the MBl at the same 

location in the reference frame (i.e., the centre of the current search window) is less than 

a predefined threshold, then the search is stopped and the MV will be zero [Nie and Ma,  

2002].  
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Figure ‎4.11:  The solid circle points (●) are the LSP and the squares (■) are the SSP for 

ARPS 

 

Figure ‎4.12: Adaptive Rood Pattern Search [Nie and Ma, 2002] 
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4.1.3 Hierarchical or Multiresolution Search  

Hierarchical search exploits the correlation between different resolution levels that 

represent the same image, which is shown in Figure ‎4.14 [Song and Ra, 1998]. It uses a 

multiresolution structure (also known as a pyramid structure) that has different image 

resolutions with smaller image size at the coarser level. The multiresolution structure is 

constructed either with simple subsampling or filtering.  

Hierarchical search is based on the idea of performing motion estimation at each level 

successively. Thus, motion estimation is first applied at the lowest resolution level to 

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using ARPS motion estimation 

- For each macroblock MBl in frame I+2 

- If MBl on the left side of the frame, then stepsize = 2 

- Else stepzise =     | | | | ,  where x,y  are the components of the MV for the previous left 

MBl. 

- Compute the MAD between MBl and 5 or 6 search points of large search pattern (LSP) which 

are {(±stepsize,0), (0, ±stepsize), (0,0) }and if stepsize ≠2 then add the search point (x,y).  

- make sure the position of the candidate macroblock is not out of the frame. 

- the position of the minimum MAD becomes the centre of the new search pattern which is 

small search pattern SSP of 4 points {(±1, 0), (0, ±1)}. 

- find the coordinate of the vector V where the MAD is minimum. 

- if( V is not at the centre of SSP) then let V be the centre of  new search and repeat SSP till V 

become the centre of the SSP   

- else find the coordinates of V and stop the search. 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 

Figure 4.13: Pseudo code of ARPS 
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obtain an estimate of motion vector. This MV is then passed to the next higher 

resolution level as an initial estimate. Motion estimation at the higher resolution level is 

then used to refine this initial estimate. This process is repeated until the highest 

resolution level is reached. Typically, a two- or three-level hierarchical search is 

adopted. To reduce the complexity of calculating BDMs, small MBls are used for block 

matching algorithm at lower resolution levels. Moreover, smaller search ranges are used 

at higher-resolution levels, since motion estimation starts from a good initial estimate. 

This reduces the number of locations to be searched. Therefore, more levels can save 

the amount of computation required, but it has the disadvantage of possibly being trapped 

in a local minimum because, when the subsampling or filtering is applied to an image, 

some important details will be lost. In spite of this, multiresolution technique has been 

regarded as one of the most efficient methods in BMA and it is adopted in applications 

with very large frames and search areas [Song and Ra, 1998; Cai et al., 2009; Al-Mualla 

et al., 2002; Nie and Ma, 2002; Huang et al., 2006]. 

 

Figure ‎4.14: Hierarchical motion estimation using a mean pyramid of three levels [Lin et 

al., 1998] 

4.1.4 Subsampled Pixels on Matching Error Computation 

The previous three groups of BMAs can reduce the computation of ME by limiting the 

number of search locations. This category reduces the complexity of the BDM by 

decreasing the number of MBl pixels in current and candidate MBls to speed up ME. In 
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homogeneous areas, neighbouring pixels have high correlation and hence subsampling 

for these areas can be done without search quality regression. However, in highly 

textured areas the subsampling will be less accurate. Therefore, this category does not 

guarantee to find the best match, hence it is lossy BMA even when checking all search 

area locations. Koga et al used in their work [Koga et al., 1981] a uniform subsampling 

pattern that performs 2:1 pixel subsampling in both horizontal and vertical directions. 

As a result, the total computation can be reduced by a factor of 4, as shown in 

Figure ‎4.15. Liu and Zaccarin in their work [Liu and Zaccarin, 1993] have used a non-

uniform subsampling pattern.  

Figure ‎4.16 shows a block of 8 × 8 pixels with each pixel labelled        and   in a 

regular pattern. If only the pixels of the pattern that consists of all the   pixels are used 

for block matching, then the computation is reduced by a factor of 4. To reduce the 

drawback that ¾ of the pixels do not enter into the matching computation, all four 

subsampling patterns are used in a specific alternating manner, as illustrated in 

Figure ‎4.16. 

 

 

 

 

 

 

Figure ‎4.15: Uniform subsampling 

pattern 2:1 [Alzoubi and Pan, 2007] 

Figure ‎4.16: Non-uniform subsampling 

pattern 4:1 [Liu and Zaccarin, 1993]

To enhance the quality of a non-uniform subsampling, Yui-Lam and Wan-Chi [Yui-

Lam and Wan-Chi, 1996] changed the number of pixels in the subsampling pattern 

according to block details. That is, for shade MBls fewer pixels are used and more 

pixels are involved for high-activity MBls. Such a computation reduction method can be 
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incorporated into other BMAs to achieve higher computational gain, as in [Alzoubi and 

Pan, 2007].  

4.1.5 Bitwidth Reduction 

In a luminance frame, each pixel is represented with 8 bits resolution. This search 

technique reduces the original 8 bits resolution to less bits width in order to reduce the 

hardware cost and power consumption and then applies normal ME search strategies. 

The first algorithm proposed in this category was Bit-Plane Matching (BPM), which 

indicates whether a pixel is edge or not [Jian et al., 1995]. The MBl mean is used as the 

threshold to satisfy a One–Bit Transformation (1BT), and the bit plane of an image 

frame is constructed in the form of: 

 
 (   ) = {

     (   )     

  
0          

}  (4.2) 

where     is the threshold value that is set equal to the MBl mean,  (   ) shows the 

(   )   pixel of the image frame and  (   ) shows the corresponding bit-plane value.  

The other common transformation maps a frame of multi-valued pixels to a frame of 

binary-valued pixels by comparing the original frame with their multi-bandpass filtered 

versions to construct 1BT representations [Natarajan et al., 1997]. Each frame I is 

filtered with a 17 ×17 kernel K which is given as in equation 4.3. The filtered frame    

is compared with the original frame I to create a one-bit frame B, as in equation 4.4 

[Erturk, 2007].  

 
 (   ) = {

   5      0 4 8     6 
  
0          

}  (4.3) 

 

 
 (   ) = {

     (   )    (   )
  
0          

}  (4.4) 
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where   (   ) is the filtered form of the image frame  (   ). 

To find the best matching MBl for the current MBl, a full search can be used. The error 

between current and candidate MBls will be calculated as the Number of Non-Matching 

Points (NNMP), which is measured by the exclusive-or (XOR) operation as follows 

[Erturk, 2007]: 

 

    (   ) =  
 

   
∑ ∑(  (   )       (       ))

 

   

 

   

 

−           −   

(4.5) 

where (   ) shows the candidate displacement,   (   ) and     (   ) are the one-bit 

planes for the current and reference frame, respectively,   determines the search range, 

and   is the XOR operation [Mizuki et al., 1996]. 

In Erturk and Erturk (2005), a Two-Bit Transformation (2BT) was proposed to improve 

motion estimation accuracy compared with 1BT. The first bit plane of 2BT is 

constructed using the mean value ( =       ) of the threshold window surrounding the 

current MBl. The second bit plane is constructed using the square root of the variance 

value (  =      
  −        ) as follows:  

 
  (   ) = {

     (   )   
  
0          

}  (4.6) 

 
  (   ) = {

     (   )            (   )    −    
  
0          

}  (4.7) 

where   (   ) and   (   ) represent the 2BT, while the number of non-matching points 

is defined as:  
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=  
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(4.8) 

where (   ) shows the candidate displacement,     
 (   ) and     

    are the two-bit 

planes for the current and reference frame, respectively,   represents the search range, 

and   is the XOR operation. The operation    denotes the Boolean OR operation.  

Some other algorithms were proposed to enhance and modify the 2BT as in [Demir and 

Erturk, 2007] and [Nam-Joon et al, 2009]. All these algorithms save hardware costs and 

power consumption but are run at the risk of losing too much quality and hence they are 

classified as lossy block matching algorithms.  

4.2 Lossless Block Matching Algorithms (Fast Full Search) 

In this section lossless block matching algorithms will be discussed. A lossless 

algorithm attempts to improve the time to determine the matching MBl without 

affecting the quality of the FS. However, many studies have indicated that the quality of 

the produced compressed videos is not as good as that of the ones produced by FS 

[Huang et al., 2006]. Usually, the ideas of this category are borrowed from the fast 

search of Vector Quantisation (VQ) [Chang-Da and Gray, 1985].  

4.2.1 Partial Distortion Elimination (PDE) Algorithm  

This algorithm is the earliest algorithm in this category that has been widely used to 

reduce the computational complexity efficiently. It is employed in the FS algorithms in 

H.263 and H.264 [Kim Jong-Nam and Choi Tae-Sun, 2000; Lin Chen-Fu and Leou Jin-

Jang, 2005]. It uses the halfway-stop technique in the BDM calculation. In other words, 
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the partial sum of matching distortion between current MBl and candidate MBl is 

stopped as soon as the matching distortion exceeds the current minimum distortion, 

meaning that the remaining computation is avoided. The conventional top-to-bottom kth 

partial SAD matching scan is determined as follows:  

∑∑| (   ) −  (         )| 

 

   

 

   

      =         (4.9) 

where   represents MBl size, C and R are the current and candidate MBls. If   is 

smaller than   and the summation exceeds the current       , then the remaining 

summation can quit and move to the next candidate MBl. Figure ‎4.17 shows the pseudo 

code of PDE. 



Chapter 4: Fast Block Matching Algorithms 

63 

The speed-up problem in this algorithm depends on: (1) fast searching, that is, how fast 

the global minimum in a given search range is detected; (2) fast matching error, that 

is, how to stop the calculation of the matching error early in the comparison process, 

which means finding the   value in equation (4.9) faster to stop the partial sum.  

The fast searching can be satisfied by applying the PDE algorithm with a spiral-ordered 

search starting at the centre of the search area since the best match location is usually 

centre-biased, as shown in section 4.1, then going outward in a spiral design. This was 

employed in Telenor’s H.263 codec [Al-Mualla et al., 2002].  

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using PDE motion estimation 

- For each macroblock MBl in frame I+2. 

- compute the SAD  between current MBl and the candidate macroblocks in centre of the search 

windows. 

- Put the        =SAD. 

- For the next search point R, let Sum=0 

- compute SAD between the first line of MBl and R add the result to SUM 

- While (SUM <=        ) do 

- compute SAD between the next line of MBl and R add the result to SUM 

- end do  

- let         = MINIMUM (       , SUM)  

- go to the next search point and repeat the process till complete the search window points 

- find the coordinates of the vector where         . 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 

Figure 4.15: Pseudo code of PDE 
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The fast matching can be satisfied by eliminating the average number of rows examined 

per MBl as well as the operations required. PDE employs SAD as a BDM to avoid more 

multiplication when calculating the matching error using MSE and others. Moreover, 

instead of the ordinary top-to-bottom matching scan, there are different scanning orders 

that improve performance of block matching. Kim et al. proposed various types of 

matching scan [Kim Jong-Nam and Choi Tae-Sun, 2000; Kim Jong-Nam et al., 2002; 

Jong-Nam et al., 2001] depending on the relationship between block matching error and 

the spatial complexity of the reference MBl, which is based on the concept of 

representative pixels. That is, the representative pixels are examined earlier than other 

pixels to detect the impossible candidates faster and reject them to obtain the reduction 

of computation in the block-matching algorithm. This algorithm is called adaptive 

matching scan algorithm based on gradient magnitude. It utilises four directions: top-

to-bottom, bottom-to-top, left-to-right, right-to-left. It uses gradient magnitude to 

measure the image complexity due to performance and computational complexity. In 

general, the gradient points in the direction of the maximum increase of a function. The 

gradient magnitude G can be calculated as follows:  

|   (   ) |   |  |  |  |  | (   ) −  (     )|  | (   ) −  (     )| (4.10) 

The gradient magnitudes are calculated in four 8×8 sub-blocks of the candidate MBl, as 

shown in Figure ‎4.18, and then make a sum of gradient magnitudes in sub-blocks 

{(1),(2),(3),(4)}, which are in four cases: (1)+(2), (3)+(4), (1)+(3), (2)+(4). The 

maximum value of these sums points to the direction of matching scan; for example, the 

direction of matching scan is from top-to-bottom when the sum of gradient magnitudes 

(1) and (2) is maximum, as shown in Figure ‎4.18, which describes this algorithm. The 

sub-block may be 4×4, i.e. there are 16 sub-blocks as in Jong-Nam et al. (2001). The 

matching scan order will also be according to the local complexity of the sub-block. 

  

If the matching scan order is well arranged then the probability to eliminate the average 

number of rows examined increases.  
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Figure ‎4.18: Adaptive matching scan based on representative pixels: (a) gradient 

magnitudes of sub-block division, (b) (top-to-bottom) matching scan when (1)+(2) is 

maximum, (c) bottom-to top matching scan when (3)+(4) is maximum, (d) left-to right 

when (1)+(3) is maximum, (e) right-to left when (2)+(4) is maximum [Kim Jong-Nam and 

Choi Tae-Sun, 2000]  

However, these algorithms are not effective since decreasing the number of checking 

rows does not necessarily lead to enhancing the real time needed, because a lot of 

add/subtract operation is required per MBl to compute the gradient magnitude in order 

to decide the matching order, which may render it unsuitable for real-time video coding 

systems. Therefore, three low complexity scanning orders were proposed by Grecos et 

al. (2004) which show improvements of ¼ operation count ratio and show an increase in 

the speed-up ratio of 45 times on average as compared with an adaptive matching scan 

algorithm based on gradient magnitude. Unlike the adaptive matching scan algorithm, 

two of Grecos et al.’s algorithms – spiralling inward scanning order and alternating 

spiralling inward scanning order – used fixed order of SAD computation between 

current and reference MBls to eliminate unsuitable predictors in the reference frame. 

These algorithms are based on the idea that the sides of the MBl could represent the 

most information. Therefore, the representative pixels are examined earlier than other 

pixels without pre-processing, by computing the SAD value between pixels located on 

the sides of the squares of decreasing size inside the current and reference macroblocks, 

as shown in Figure ‎4.19, in order to reject impossible candidate predictors faster than 

the conventional top-to-bottom scan. The fixed direction scanning of the spiralling 

inward scanning order starts from top-horizontal and ends in left-vertical (Figure ‎4.19); 

it may increase computations since the complexity of candidate MBl could be in any 

vertical or horizontal sides. If a candidate MBl should be rejected on the basis of left-

vertical SAD information then it has to wait until three sides of SAD computations are 

completed. For this reason, the alternating spiralling inward scanning order was 
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designed to reject the candidate MBl on the basis of horizontal and vertical SAD 

information, as shown in Figure ‎4.19 (b).  

 
Figure ‎4.19: (a) spiralling inward scanning order, (b) alternating spiralling inward 

scanning order [Grecos et al., 2004] 

The last algorithm of Grecos et al.’s, which is horizontal/vertical scanning order, 

utilises very limited pre-processing to avoid increasing the real time needed for 

computation and hence losing the benefit of computational reduction that happened with 

the adaptive matching scan algorithm. It determines the scanning order by examining 

only the SAD between the boundary rows and columns of the current and candidate 

MBls. The scanning direction will be the direction of the maximal SAD.  

4.2.2 Successive Elimination Algorithm (SEA) 

The SEA [Li and Salari, 1995] eliminates impossible candidate MBl by checking if the 

absolute difference between the summation of current MBl pixels and the summation of 

candidate MBl pixels is larger than the updated minimum SAD; if it is, then this 

candidate MBl should be rejected. Thus, a large part of unnecessary computation for 

impossible candidate MBls can be avoided. This algorithm is based on the triangular 

mathematical inequality given by:  

 
|∑  

 

|  ∑|  |

 

 (4.11) 

where    are arbitrary real numbers. Appling this inequality to the SAD achieves: 
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(4.12) 

where  (   ) is the pixel value of current MBl at the position (   ) and R(       ) is 

the pixel value of reference frame with the vector (   ), which are within the search 

range  −    . In other words, the previous inequality can be written as: 

 
|   −    (   )|     (       ) (4.13) 

where    is the summation of current MBl and   (   )is the summation of candidate 

MBl at the vector (   ). If       (     ) is the current updated minimum SAD at the 

search location (     ), then to achieve better match MBl at the location (   ) the 

SAD should be less than        , that is    (   )        (     ). This will 

substitute in (4.13) to get: |   −    (   )|        (     ). This means that a MBl 

at location (   ) can be immediately skipped from the search if:  

 
|   −    (   )|        (     ) (4.14) 

While, if the difference |   −   R(   )| is smaller than        (     ), then the 

candidate MBl is elected to calculate SAD between these two MBls and the new SAD 

becomes       . Since the candidate MBls are overlapping then the two horizontal 

neighbouring candidate MBls   (   ) and   (     ) are also overlapping and they 

share N−1 columns. Therefore, subtracting the sum of the first column of MBl   (   ) 

and adding the sum of the last column in  B    (     ) will improve the block 

matching computation. A similar procedure can be used for vertical neighbouring 

candidate MBls.  

Note that, similar to PDE, if the global minimum in a given search range is detected at 

the initial search, then SEA will be faster [Essannouni et al., 2006; Huang et al., 2006]. 
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Various algorithms have been introduced to enhance SEA [Soo-Mok et al., 2000; Jung 

et al., 2002; Hwal-Suk et al., 2008; Man-Yau and Wan-Chi, 2006].  

4.3 Chapter Summary 

The FS algorithm is the simplest, but the most computation-intensive BMA, which 

exhaustively tests all the search locations for the best matching macroblock within the 

search area. Fast block matching algorithms have been developed to reduce the huge 

computational complexity of FS. Various methods and techniques have been proposed 

for fast BMA search; some of them have been adopted in video coding standards. 

Similar to all video and image compression techniques, fast block matching algorithms 

can be classified into lossy and lossless categories. Lossy BMAs can achieve more 

compression ratio and faster processes than FS by sacrificing the quality of the 

compressed video whereas lossless BMAs have the specific requirement to preserve the 

quality of the video. There are various lossy and lossless BMAs. Lossy BMAs can be 

classified into: Fixed Set of Search Patterns, Predictive Search, Hierarchical or 

Multiresolution Search, Subsampled Pixels on Matching Error Computation, and Bit-

width Reduction, while lossless BMAs include PDE algorithm and SEA. Some of these 

categories have been used in this thesis to propose and develop novel techniques that 

enhance both lossless and lossy BMAs process, as will be discussed in Chapter 5.  
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5CHAPTER 5: ENHANCED FAST BLOCK MATCHING 

MOTION ESTIMATION  

This chapter discusses novel techniques proposed to enhance both lossless block 

matching algorithms and lossy block matching algorithms processes. The general 

motion in any video frame is usually coherent; that is, if the macroblocks around the 

current macroblock move in a particular direction then there is a high probability that 

the current macroblock will also have the same direction. Therefore, the research work 

in this thesis used the mean value of two motion vectors of the previous neighbouring 

macroblocks to predict the first step of the search process in different techniques 

depending on the algorithm. The neighbouring macroblocks are chosen as the top and 

left macroblocks. 

As shown in the previous chapter, the fast full search Partial Distortion Elimination 

(PDE) algorithm has been widely used to reduce the computational complexity 

efficiently. It utilises a halfway-stop technique in the Block Distortion Measure (BDM) 

calculation. The performance problem in this algorithm depends on fast searching; that 

is, how fast global minimum in a given search range is detected as well as how fast 

matching error can calculate the matching error on a candidate Macroblock (MBl). The 

novel proposed techniques attempt to capture the global minimum in the first search by 

using the predictor Motion Vectors (MVs); therefore, all the proposed algorithms will 

use the PDE to enhance and improve the time needed for processing. Moreover, PDE 

technique was applied to the existing fast block matching algorithm to improve the time 

needed for processing without affecting the quality.  

This chapter is divided into four sections: section 1 introduces the novel method of 

lossless block matching algorithms, which is called Fast Computations of Full Search 

Block Matching Motion Estimation (FCsFS). The purpose of this method is to decrease 

the computational time required to determine the matching macroblock of the full 

search while keeping the resolution of the predicted frames the same as the full search. 

This is performed by using the motion vector of two previous neighbouring MBls – the 

up and left – to determine the search window using the mean values. The correlation 

between current and neighbouring MBls increase the probability that the global 
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minimum is detected in the new search window, therefore applying the PDE algorithm 

will speed up the search processing. 

Sections 2 and 3 propose two novel techniques of lossy block matching algorithms. 

These two novel methods use three types of fast block matching algorithm: fixed set of 

search patterns, predictive search and PDE algorithm. The aim of these algorithms is to 

improve the fast block matching motion estimation by decreasing both computational 

time required to determine the matching macroblock and the residual prediction error 

between current frames and compensated frames. The first algorithm is called Mean 

Predictive Block Matching (MPBM) and the second algorithm is called Enhanced Mean 

Predictive Block Matching Algorithm (EMPBM). The chapter summary is provided in 

section 4. 

5.1 Fast Computations of Full Search (FCsFS)  Block Matching 

Motion Estimation  

As seen in Chapter 4, various scanning orders in both searching and matching have 

improved performance in the full search block matching algorithm that uses the 

halfway-stop technique. Some of these have used various types of matching scan 

between current and candidate MBls, depending on the spatial complexity of the 

reference MBl [Kim Jong-Nam and Choi Tae-Sun, 2000; Kim Jong-Nam et al., 2002; 

Jong-Nam et al., 2001]. It has been proven that some of these algorithms are not 

effective since decreasing the number of checking rows does not necessarily lead to 

enhancing the real time needed for processing a full search, because many add/subtract 

operations are required per MBl to compute the gradient magnitude of MBls in order to 

decide the matching order, which refers to a state that is unsuitable for real-time video 

coding systems. 

The proposed algorithm FCsFS is one of the lossless block matching algorithms that 

attempts to avoid this problem. The purpose of the proposed method is to decrease the 

computational time required to determine the matching macroblocks of full search while 

keeping the resolution of the predicted frames the same as the resolution obtained from 

full search. This is performed by using two predictors, which are the motion vector of 
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the two previous neighbouring MBls, the up (MVA) and the left (MVL), as shown in 

Figure ‎5.1. 

 

 

Figure ‎5.1: Position of the two predictive macroblocks  

The purpose of using these predictors is to get the global matching MBl faster than 

using a single previous neighbour. Furthermore, the selection of these predictors will 

avoid unnecessary computations arising from choosing three previous neighbouring 

MBls. The neighbours may move to different directions; therefore, these MVs are used 

to determine the new search window depending on the mean of its components. That is, 

the search range of the new search windows will be the mean of  -components and  -

components of MVA and MVL, respectively, as follows:  
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(5.1) 

where :    and    are the  -components of MVA and MVL , respectively. 

    and    are the  -components of MVA and MVL , respectively. 

 

The current MBls are searched for the reference image using ‘first the search range of 

±   in the  -axis and    in the  -axis’ instead of using the fixed search range of ±   in 

both of them, as seen in Figure ‎5.2.  
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Figure ‎5.2: The default search window of maximum step size p and the new search 

window of maximum step size h in the x-axis and w in the y-axis 

Meanwhile, there is a high correlation between neighbouring MBls therefore the global 

matching MBl has a probability to be in the new search window of maximum step size 

w in the x-axis and h in the y-axis. Hence, applying the PDE algorithm will speed up the 

search process. This search will stop if the error between the matching MBl obtained 

from this search window range and the current MBl is less than the threshold value 

(N×N, for the MBlsize=N). Then the rest of the default search window will not need to 

be completed. Otherwise, the rest of the default search window will be completed. The 

threshold will be computed as the number of pixels of the MBl since one degree 

difference for each pixel will not affect the matching MBls. Figure ‎5.3 shows the block 

diagram of the proposed algorithm FCFS and its pseudo code is illustrated in Figure ‎5.4. 

The simulation results indicate that the FCsFS technique reduces the search time of the 

macroblock matching, and keeps the resolution same as full search. 
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Figure ‎5.3: The diagram of the proposed FCsFS to get the motion vector of the current 

MBl 
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Figure ‎5.4: Pseudo code of FCsFS 

  

Input 

- Convert video to frames and convert to greyscale 

- Read frames 

- Let frame I be the reference frame of frame I+2 

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using FCsFS motion estimation 

- For each macroblock MBl in frame I+2. 

- compute the SAD  between current MBl and the candidate macroblocks in centre of the search 

windows. 

- Put the        =SAD. 

- if MBl is on the top-left corner then PDE will be apply 

- else for the previous above MV (     ) and the left MV (     ), let   =      (   ((   

  )  ))       =      (   ((     )  )) 

- let the new search window of maximum stepsize= w in the  -axis and h in the  -axis 

- For the next search point R in the new search window, let Sum=0 

- compute SAD between the first line of the pixels for MBl and R add the result to SUM 

- While (SUM <=        ) do 

- compute SAD between the next line of the pixels MBl and R add the result on SUM 

- end do 

- let         = MINIMUM (       , SUM) 

- go to the next search point in the new window and repeat the process till complete the search 

points of the new window. 

- If          =    then the search is complete 

- Else the rest of the default search window will be completed by the same way 

- find the coordinates of the vector that where        . 

 

Output 

- Motion vectors for all MBls ;  Number of search points ; Time of process. 



Chapter 5: Enhanced Fast Block Matching Motion Estimation 

75 

5.2 Mean Predictive Block Matching (MPBM) 

In this section, a novel algorithm in lossy block matching algorithms is proposed 

[Ahmed et al., 2011b]. The novel technique has improved the fast block matching 

algorithms by combining three types: predictive search technique, fixed set of search 

patterns, and PDE algorithm. 

The first type, predictive search technique, utilises the motion information of two 

previous spatial neighbouring MBls, left and above, as shown in Figure ‎5.1, in order to 

form an initial estimate of current MV. As shown in the previous section, since the 

motion of neighbouring MBls is coherent then using these predictors increase the 

probability of determining the global matching MBl by avoiding different directions 

motion that regards to use one previous neighbour. Moreover these two predictors will 

avoid unnecessary computations required from selecting three previous neighbouring 

MBls. The maximum of the mean   and   components for the two predictor MVs will 

be used to determine the step size.  

The second type, fixed set of search patterns, as in ARPS [Nie and Ma, 2002] and DS 

techniques [Shan and Kai-Kuang, 1997], uses two different types of fixed patterns, the 

Large Search Pattern (LSP) and the Small Search Pattern (SSP), as shown in Chapter 4. 

Moreover, the first step search includes the MVs of two previous neighbouring MBls 

with the LSP. The step size will be used to determine the position of the LSP in the first 

step. Therefore, seven positions are examined in this step. To avoid unnecessary 

computations, this technique utilises a pre-defined threshold value for the error between 

the current macroblock and the matching macroblock that has been determined from the 

first step. If the error is less than the threshold value (               ), the SSP 

will not be needed, and hence the computations will be reduced.  

The last type, the PDE algorithm, has been used to improve the computation time. It is 

used to stop the partial sum of matching distortion between current macroblock and 

candidate macroblock as soon as the matching distortion exceeds the current minimum 

distortion.  

The following explains the steps involved in the proposed technique:  
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Step 1: compute the sum of absolute differences (SADcentre) between the current MBl of 

size N×N and the MBl at the same location in the reference frame (i.e. the centre of the 

current search window). In this case, if the sum of absolute differences (SADcentre) is 

less than a pre-defined threshold value (      ), this means that there will be no 

motion and the search process will be terminated.  

Step 2: if the macroblock MBl is in the high left corner, then only 5 points of LSP 

{(±stepsize,0), (0, ± stepsize), (0,0)} will be searched first; otherwise, the above motion 

vector (MVA) and left motion vector (MVL) will be added to the first search and used to 

predicate the step size as follows: 

 

 

  =      (   (
     

 
)) 

  =      (   (
     

 
)) 

(5.2) 

where :    and    are the  -components of MVA and MVL , respectively. 

    and     are the  -components of MVA and MVL , respectively. 

In this case step size = max{    ,   }.  

 

Step 3: the matching macroblock is then searched using the PDE algorithm within LSP 

points {(±stepsize,0), (0, ± stepsize), (0,0)} and the following vectors {(MVA), (MVL )}, 

as shown in Figure ‎5.5. That is, if the current SAD value exceeds the previous SAD 

then the computation will be stopped and will jump to the next position; otherwise, all 

pixels will be completed and go to the next search point repeat the same process till 

complete all LSP points.   



Chapter 5: Enhanced Fast Block Matching Motion Estimation 

77 

 

Figure ‎5.5: The solid circle points (●) are the first step search in MPBM, which is the 

Large Search Pattern (LSP) and the two predictive vectors 

Step 4: if the error between the current MBl and the matching MBl from previous 

search pattern in step 3 is less than the pre-defined threshold (   ), value then the 

process will be stopped and the matching MBl will give the motion vector. Otherwise, 

the position of the matching macroblock in step 3 becomes the centre of the new search 

and the SSP of four points {(±1, 0), (0, ±1)} will be checked as shown in Figure 4.8 in 

the ARPS algorithm. If the matching macroblock stays in the centre then the 

computation will be ended; otherwise, the same process will be repeated until the 

matching macroblock reaches the centre. The matching centre will give the motion 

vector. 

 

Figure ‎5.6 illustrates a block diagram of the proposed fast block matching algorithm 

MPBM, while Figure ‎5.7 shows the pseudo code of MPBM. The simulation results 

indicated that the ratio between PSNR of compensated frames generated by the novel 

algorithms and the time needed for computation gives better results in comparison to the 

benchmarked algorithms. 

Since the initial search depends on two neighbouring MBls, therefore the first step 

search has a probability of containing the global minimum MBl and hence the time 

should be enhanced. Also, the MPBM algorithm does not have a limited number of 

search steps. Therefore, for all motion activity video sequences, MPBM algorithm dose 
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not trapped into a local minimum point and the global minimum can be founded with 

more accurately than other algorithms. 
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Figure ‎5.6: The diagram of the MPBM algorithm 
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Figure ‎5.7: Pseudo code of MPBM  

Input  

- Convert video to frames and convert to greyscale  

- Read frames 

- Let frame I be the reference frame of frame I+2  

- Divided the frames into macroblocks of size N×N. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using MPBM motion estimation 

- For each macroblock MBl in frame I+2. 

- compute the SAD  between current MBl and the candidate macroblocks in centre of the search 

windows. 

- If SAD < =        then the centre will be the matching MBl and the search is stop 

- Else put the        =SAD. 

-  if MBl is on the top-left corner then let stepsize=2 and the search points will be the large 

search pattern (LSP) of only five points {(±stepsize,0), (0, ±stepsize), (0,0)} 

- else add the previous above MV (     ) and the left MV (     ), to the LSP and let    =

     (   ((     )  ))        =      (   ((     )  )),  let stepsize = max{    ,   } 

- For the first search point R, let Sum=0 

- compute SAD between the first line pixels of MBl and R add the result to SUM 

- While (SUM < =        ) do 

- compute SAD between the next line pixels of MBl and R add the result on SUM  

- end do  

- let         = MINIMUM (       , SUM)  

- go to the next search point in the search pattern and repeat the process till complete the search 

points. 

- make sure the position of the candidate macroblock is not out of the frame. 

- If         < =    then the search is complete  

- Else the position of the         becomes the centre of the new search pattern which is small 

search pattern SSP of 4 points {(±1, 0), (0, ±1)}. 

- Make sure that don’t calculate the same points again that were calculate in the previous search.  

- make sure the position of the candidate macroblock is not out of the frame. 

- If the position  not at the centre of SSP then let it be the centre of  new search and repeat SSP 

till it become the centre of the SSP   

- find the coordinates of the vector that where        . 

 

Output  

- Motion vectors for all MBls ;  Number of search points ; Time of process. 
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5.3 Enhanced Mean Predictive Block Matching Algorithm (EMPBM) 

Using Edge Detection  

Enhanced Mean Predictive Block Matching Algorithm is a new technique proposed to 

decrease the computations of the previous fast block matching algorithm Mean 

Predictive Block Matching algorithm [Ahmed et al., 2012]. In order to find the 

matching macroblock for the current macroblock from the previous frame, this 

technique classifies the current macroblock into shade and edge. The shade macroblock 

has a probability to move in the same direction as its neighbouring macroblocks. This 

will lead to search only the motion vectors of the neighbouring macroblocks and ignore 

other motion vectors that were utilised in the first search step of the Mean Predictive 

Block Matching algorithm. For edge macroblock, the proposed technique will use the 

same approach that was used in the Mean Predictive Block Matching algorithm.  

Edge information can be described as a straight line across the macroblock with a sharp 

change of intensity in the spatial domain [Ali Al-Fayadh, 2009]. A fixed small size 4×4 

macroblock is utilised to achieve good subjective quality. Therefore, this technique can 

be useful for small MBls in variable block-size motion estimation. In order to avoid 

more computations in the existing edge detection methods, the absolute value approach 

has been used. The idea is to use the absolute value between the summation values of 

the vertical halves of the macroblock and the absolute value of the difference between 

the summation values of the horizontal halves, as shown in Figure ‎5.8. 

 

Figure ‎5.8: Vertical halves and horizontal halves for 4×4 MBls 
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When the sum of theses difference is less than a threshold value     ( = 4    )  =

4 , the macroblock is classified as shade; otherwise, the macroblock will be classified as 

edge, as follows:  

Let   =              4  represent a 4×4 frame macroblock. In this case,    is a grey 

level pixel value corresponding to position (i, j) of row i and column j in the image 

block B. The discrete gradients of the macroblock B in the x and in the y directions are 

determined as follows: 

 


  


4

3

4

1

2

1

4

1 i j

ij

i j

ijx bbG  


  


4

1

4

3

4

1

2

1 i j

ij

i j

ijy bbG  

(5.3) 

The gradient magnitude is defined by: 

 yx GGG   (5.4) 

If the gradient magnitude G in Equation (5.3) of the macroblock B is smaller than 

threshold T    = (  )   = 4 , then it is considered that the macroblock contains no 

significant gradient and it is classified as a shade macroblock; otherwise, it will be 

classified as an edge macroblock.  

The shade macroblock has a high probability to move in the same direction of its 

neighbouring macroblock. This fact has been used in MPBM to decrease the search 

points as follows: 

Step 1: as in MPBM, compute the sum of absolute differences (SADcentre) between 

the current macroblock and the macroblock at the same location in the reference frame 

(i.e. the centre of the current search window). In this case, if the sum of absolute 

differences (SADcentre) is less than a pre-defined threshold value (      ; N=4) this 

means that there will be no motion and the process will be determined.  
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Step 2: use gradient magnitude to classify the current MBl. For shade macroblocks, 

only the above motion vector (MVA) and left motion vector (MVL) will be tested, while 

for the edge macroblock the LSP search points will be tested, as shown in Figure ‎5.5.  

Step 3: the PDE algorithm will be applied. That is, if the current SAD value exceeds the 

previous SAD then the computation will be stopped.  

 Step 4: if the error of the matching macroblock from previous steps is less than the pre-

defined threshold value then the process will be stopped and the matching macroblock 

will give the motion vector. Otherwise, the matching macroblock will become the centre 

of the new search. If the matching macroblock stays in the centre then the computation 

will be ended; otherwise, the same process will be repeated until the matching 

macroblock reaches the centre.  

The simulation results of this algorithm show improvement in computational 

complexity compared with the MPBM while trying to keep or enhance the resolution of 

compensated frames.  

Figure ‎5.9 shows the block diagram of the proposed EMPBM algorithm and its pseudo 

code is illustrated in Figure ‎5.10. 
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Figure ‎5.9: The diagram of the EMPBM algorithm 
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Figure ‎5.10: Pseudo code of EMPBM 

Input 

- Convert video to frames and convert to greyscale 

- Read frames 

- Let frame I be the reference frame of frame I+2 

- Divided the frames into macroblocks of size N×N; N=4. 

- Let the search window of maximum stepsize =P 

Find the motion vectors for each macroblock by using EMPBM motion estimation 

- For each macroblock MBl in frame I+2. 

- Compute the SAD between current MBl and the candidate macroblocks in centre of the search 

windows. 

- If SAD <=        then the centre will be the matching MBl and the search is stop. 

- Else if MBl is on the top-left corner then let stepsize=2 and the search points will be the large 

search pattern (LSP) of only five points {(±stepsize,0), (0, ±stepsize), (0,0)} 

- Else Put the        =SAD, the gradient magnitude G of current MBl   =          =     = 4 , 

Let   =    (   (   (   ( =      =   4))) −     (   (   ( = 3 4  =   4))))  Let 

  =    (   (   (   ( =   4  =     )))–     (   (   ( =   4  = 3 4))))  Let 

 =       

- If G <= (   )    = 4, then B is shade then then only previous above MV (     ) and the left 

MV (     ) will be candidate and the search is stop. 

- else add the previous above MV (     ) and the left MV (     ), to the LSP and let    =

     (   ((     )  ))        =      (   ((     )  )),  let stepsize = max{    ,   } 

- For the first search point R, let Sum=0 

- compute SAD between the first line pixels of B and R add the result to SUM 

- While (SUM <=        ) do 

- compute SAD between the next line pixels of B and R add the result on SUM 

- end do. 

- let         = MINIMUM (       , SUM) 

- go to the next search point in the search pattern and repeat the process till complete the search 

points. 

- make sure the position of the candidate macroblock is not out of the frame. 

- If         <=    then the search is complete 

- Else the position of the         becomes the centre of the new search pattern which is small search 

pattern SSP of 4 points {(±1, 0), (0, ±1)}. 

- Make sure that don’t calculate the same points again that were calculate in the previous search. 

- make sure the position of the candidate macroblock is not out of the frame. 

- If the position  not at the centre of SSP then let it be the centre of  new search and repeat SSP till it 

become the centre of the SSP 

- find the coordinates of the vector that where        . 

Output 

- Motion vectors for all MBls ;  Number of search points ; Time of process. 
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5.4 Chapter Summary 

This chapter presented novel techniques in both the lossless block matching algorithms 

process and lossy block matching algorithms process. The improvements in these 

processes were achieved by:  

(1) using two previous neighbours, the above and left MBls, to predict the first step of 

the search process and to determine the global matching MBl faster than using one 

previous neighbour. Furthermore, avoiding unnecessary computations comes from 

choosing three previous neighbouring MBls. It all goes back to the fact that these two 

neighbours MBl may be moved to different directions; therefore, the proposed 

algorithms will use the mean of the MVs as a starting point with a different style 

depending on the algorithm.  

(2) using the PDE algorithm enhanced and improved the time needed for processing 

since the proposed techniques try to catch the global minimum MBl in the first search 

by using the predictor MVs which improve the performance of PDE. 

The proposed technique of lossless block matching algorithms is Fast Computations of 

Full Search Block Matching Motion Estimation, which decreases the computational 

time required to determine the matching macroblock of the full search while keeping the 

resolution of the predicted frames the same as the one obtained from full search. This is 

determined by using the predictive search technique to predict the new search window 

and the partial distortion elimination algorithm to decrease the search time. It also 

completes the original search windows if the error between the matching MBl from the 

new search windows and the current MBl is not small enough.  

The improvement of lossy block matching algorithms was illustrated by two other 

proposed techniques: Mean Predictive Block Matching (MPBM) and Enhanced Mean 

Predictive Block Matching Algorithm (EMPBM). The first technique combine three 

types of fast block matching algorithm: predictive search technique, fixed set of search 

patterns, and partial distortion elimination algorithm, while the second technique is 

trying to improve the first one by classifying the current macroblock into shade and 

edge. The shade macroblock has a high probability to move in the same direction as its 

neighbouring macroblocks. This will lead to test only the motion vectors of the 

neighbouring macroblocks and ignore other motion vectors that were utilised in the first 
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search step of the MPBM algorithm. For the edge macroblock, the proposed technique 

will use the same approach that was used in the MPBM algorithm.  
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6CHAPTER 6: EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter presents the experimental results for the proposed algorithms to enhance 

fast block matching estimation.  

The performance of the proposed algorithms is evaluated using speed of search to get 

the matching Macroblocks (MBls) and the efficiency of keeping the RPE between the 

current frame and its prediction the same as for the full search technique. The results are 

benchmarked with standard fast block matching algorithms. Table ‎6.1 shows a brief 

comparison between these algorithms.  

Table ‎6.1: Comparison between the novel algorithms and the standard block 

matching algorithms. 

Motion 

Estimation 

Algorithm  

Complexity  Advantage  Disadvantage 

ES 
(    )  

Best picture quality 
Very high computational 

cost 

PDE 
(    )  

Same as ES quality with 

less computation than ES 

Very high computational 

cost 

Proposed 

FCsFS 
 

Picture quality is similar 

to ES and less 

computation than PDE 

Very high computational 

cost 

TSS [1+8      (    )  
Less complexity, 

Than ES 
can’t detect small motion 

NTSS [1+8      (    )  +8 

For small motion video 

the complexity is less 

than TSS 

For high motion video the 

complexity is higher  than 

TSS 

SESTSS 
Maximum [6*    (   

 )   
Less complexity than 

TSS  

The quality can be reduce 

in some videos 

DS 9+4n 

For small and high 

motion video the 

complexity is less than 

NTSS  

The quality is not as NTSS 

ARPS 6+ 4n 
Similar quality as DS and 

less complexity 

Need memory to store 

previous predicted MBl 

Proposed 

MPBM 
7+4n 

Better quality than ARPS 

and less complexity  

Need memory to store two 

previous predicted MBls 

Proposed 

EMPBM 

For shade MBl : 3 

For edge MBl : 7+4n 

Less complexity than 

MPBM 

The size MBl should be 

small for edge detection 

process  
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This chapter is organised as follows. Section 6.1 includes selected video sequences, 

benchmarked algorithms, measure tools, software and hardware - those are used to 

determine the performance of the proposed techniques. Section 6.2 illustrates the 

experimental result and analysis of the novel technique for the lossless block matching 

algorithms’ process, (FCsFS). The simulation results and analysis for the novel 

techniques of lossy block matching algorithms’ process are shown in sections 6.3, 

(MPBM) and section 6.4, (EMPBM). While section 6.5 discusses the results of applying 

the PDE technique to the Diamond Search, which is called Enhanced Diamond Search 

(EDS), and New Three Step Search, which is called Enhanced New Three Step Search 

(ENTSS), hence compares the results with MPBM, section 6.4 gives the simulation 

results of the Enhanced Mean Predictive Block Matching Algorithm (EMPBM). The 

chapter summary will be provided in section 6.6.  

 

6.1 Framework Evaluation 

The performance of the proposed techniques is benchmarked with the well-known 

standard algorithms. The FCsFS algorithm is benchmarked with FS and PDE. The two 

novel techniques in the lossy block matching algorithms’ process MPBM and EMPBM 

algorithms are evaluated by benchmarking with the FS, DS, NTSS, FSS, SESTSS, and 

ARPS, whose search strategies and patterns are described in Chapter 4. PDEDS and 

PDENTSS are compared with DS and NTSS respectively.  

The simulation results of these techniques are determined using Matlab 2009 software 

with an ‘Intel (R) Core(TM)i3 CPU M330@2.13 GHz 2.13 GHz’ process.  

The experimental results of all proposed techniques were conducted on the luminance 

component for 50 frames of six popular video sequences from [National Science 

Foundation, 2011]. Three of them are CIF format (Common Intermediate Format) video 

sequences (i.e. 352×288 pixels, 30fps), which are “News” (Figure ‎6.1), “Stefan” 

(Figure ‎6.2), and “Coastguard” (Figure ‎6.3). The remaining videos are QCIF format 

(Quarter-CIF) video sequences (i.e. 176×144 pixels, 30fps), which are “Claire” (

 Figure ‎6.4), “Akiyo” (Figure ‎6.5), and “Carphone” (Figure ‎6.6).  

These selected video sequences have various motion activities. “Akiyo” and “Claire” 

have low motion activity; “News” and “Carphone” have medium motion activity; while 
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“Coastguard” and “Stefan” have high motion activity. These video sequences have been 

used in this thesis to study the performance of the proposed techniques.  

To avoid unreasonable results that can be obtained from the high correlation between 

successive frames, all the proposed and benchmarked algorithms have used two-steps 

backward frame as a reference frame, which means that if the current frame is I then the 

reference frame is I-2.  

Four measuring tools have been used to determine the performance of the proposed 

techniques. Two of them are used to measure the speed search of these algorithms, 

which are the processing average time in seconds and the average number of search 

points required to get the motion vectors. In order to assess the quality of the predicted 

frames or compensated frames generated by the proposed algorithms, two measuring 

tools are used, which are the MSE and the PSNR:  

    (   ̂) =  
 

   
∑∑( (   ) −  ̂(   ))

 
 

   

 

   

 (6.1)  

where M and N are the horizontal and vertical dimensions of the frame, respectively, 

and  (   ) and  ̂(   ) are the pixels values at location (   ) of the original and predicted 

frames, respectively.  

And  

     ((   ̂) =  0      (
(    )

 

   
) (6.2)  

where      is the maximum possible pixel value which is used here: 255 for an 8-bit 

resolution.  

It should be noted that the MAD and PSNR between the original and the compensated 

frames are measured by computing the MAD and PSNR for each frame with their 

compensated frames separately and then calculating their arithmetic mean. 

Moreover, the statistical figures those give for frame-by-frame comparison of PSNR, 

MAD and number of search points per MBl, are illustrated using selected frames of the 
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video sequences for all proposed algorithms to be clear figures instead of using the 

whole 50 frames.  
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Figure ‎6.1: News (CIF) 

 

Figure ‎6.2: Stefan (CIF) 

 

Figure ‎6.3: Coastguard (CIF) 
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 Figure ‎6.4: Claire (QCIF)  

 

Figure ‎6.5: Akiya (QCIF) 

 

Figure ‎6.6: Carphone (QCIF) 
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6.2 Simulation Results of FCFS 

Simulations were carried out to test the performance of the proposed FCFS. The size of 

each MBl will be 16×16 for all the selected video sequences and the current MBls are 

searched for the reference image using a search range of ±7 for the original search 

windows.  

The simulation results for FCsFS are benchmarked with the simulation results for FS 

and PDE. The computational complexity is measured using: (1) the average number of 

search points required to get each motion vector, as shown in Table ‎6.2 and (2) the time 

required for these algorithms, since applying PDE improves the computational time 

without access to the number of search points; therefore, the time needed for processing 

has been used to evaluate the performance of the proposed algorithm, which is shown 

in. Table ‎6.4 and Table ‎6.5 show the simulation results for the mean MAD and the mean 

PSNR respectively, for the proposed and benchmarked techniques.  

Table ‎6.2: Average number of search points per MBl of size 16 ×16 

Table ‎6.3: The simulation results of the average time in seconds needed to process 

50 frames 

Sequence Format FS PDE FCsFS 

Claire QCIF 0.351 0.18 0.06 

Akiyo QCIF 0.334 0.11 0.01 

Carphone QCIF 0.336 0.18 0.15 

News CIF 1.492 0.65 0.38 

Stefan CIF 1.464 1.09 0.88 

Coastguard CIF 1.485 1.19 1.03 

Sequence Format FS PDE FCFS 

Claire QCIF 184.56 184.6 48.98 

Akiyo QCIF 184.56 184.6 46.2 

Carphone QCIF 184.56 184.6 170.2 

News CIF 204.28 204.3 121.6 

Stefan CIF 204.28 204.3 204.3 

Coastguard CIF 204.28 204.3 204.3 
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Table ‎6.4: The simulation results of mean MAD for 50 frames 

Sequence Format ES PDE FCsFS 

Claire QCIF 1.13 1.13 1.13 

Akiyo QCIF 0.81 0.81 0.81 

Carphone QCIF 3.42 3.42 3.42 

News CIF 1.59 1.59 1.59 

Stefan CIF 11.6 11.6 11.6 

Coastguard CIF 7.91 7.91 7.91 

Table ‎6.5: The simulation results of mean PSNR for 50 frames 

Sequence Format FS PDE FCsFS 

Claire QCIF 38.94 38.94 38.94 

Akiyo QCIF 39.61 39.61 39.61 

Carphone QCIF 30.82 30.82 30.81 

News CIF 33.48 33.48 33.47 

Stefan CIF 22.16 22.16 22.16 

Coastguard CIF 26.19 26.19 26.19 

 

All codes are implemented in Matlab, hence it takes a long time to process the condition 

statements. Nevertheless, the experimental results show that the proposed technique 

reduces the search time of the macroblock matching, while keeping the resolution of the 

predicted frames the same as the one predicted using the full search algorithm. Also, it 

could be noted that the performance of the proposed FCsFS algorithm is more effective 

if the video sequences have lower motion activity and vice versa. This is due to using 

two previous neighbours to predict the dimension of the new search window which has 

a high probability to contain the global matching MBl. Furthermore, for high motion 

activity video sequences “Stefan” and “Coastguard”, the number of search points in the 

FCsFS is the same as FS and PDE but with enhancement in the processing time. 

Figure ‎6.7 and Figure ‎6.8 show the frame-by-frame comparison of the average number 

of search points per MBl using the PSNR and MAD quality measures for low motion 

activity video sequences of 23 frames “Claire” and “Akiyo”, respectively; while the 

frame-by-frame comparisons for the medium motion activity video sequences of 23 

frames of “News” and “Carphone” are shown in Figure ‎6.9 and Figure ‎6.10, 

respectively. For medium motion activity video sequences of 23 frames of 
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“Coastguard” and “Stefan”; the frame-by-frame comparisons are illustrated in 

Figure ‎6.11 and Figure ‎6.12, respectively.  

For each video sequence, the visual images illustrated from Figure ‎6.13 to Figure ‎6.18 to 

describe the performance of the proposed technique at frame 50 and its predicted frame 

from reference frame 48 using the block matching motion estimation FS, PDE and the 

proposed FCsFS.  
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Figure ‎6.7: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “Claire” video sequence of 23 frames  
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Figure ‎6.8: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “Akiyo” video sequence of 23 frames 
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Figure ‎6.9: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “Carphone” video sequence of 23 frames 
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Figure ‎6.10: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “News” video sequence of 23 frames 
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Figure ‎6.11: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “Stefan” video sequence of 23 frames 
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Figure ‎6.12: Average number of search points per MBl, PSNR performance and MAD of 

FCsFS, FS and PDE in “Coastguard” video sequence of 23 frames 
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Figure ‎6.13: (a) Frame 50 of “Claire” (b) predicted frame using FS, (c) predicted frame 

using PDE, (d) predicted frame using FCsFS, (e) the difference error between frame 50 

and its reference frame 48, (f) the difference error between frame 50 and its predicted 

frame using FS, (g) the difference error between frame 50 and its predicted frame using 

PDE, (h) the difference error between frame 50 and its predicted frame using the 

proposed FCsFS 
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Figure ‎6.14: (a) Frame 50 of “Akiyo” (b) predicted frame using FS, (c) predicted frame 

using PDE, (d) predicted frame using FCsFS, (e) the difference error between frames 50 

and its reference frame 48, (f) the difference error between frame 50 and its predicted 

frame using FS, (g) the difference error between frame 50 and its predicted frame using 

PDE, (h) the difference error between frame 50 and its predicted frame using the 

proposed FCsFS 
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Figure ‎6.15: (a) Frame 50 of “Carphone” (b) predicted frame using FS, (c) predicted 

frame using PDE, (d) predicted frame using FCsFS, (e) the difference error between frame 

50 and its reference frame 48, (f) the difference error between frame 50 and its predicted 

frame using FS, (g) the difference error between frame 50 and its predicted frame using 

PDE, (h) the difference error between frame 50 and its predicted frame using the 

proposed FCsFS 
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Figure ‎6.16: (a) Frame 50 of “News” (b) predicted frame using FS, (c) predicted frame using PDE, 

(d) predicted frame using FCSFS, (e) the difference error between frame 50 and its reference frame 

48, (f) the difference error between frame 50 and its predicted frame using FS, (g) the difference 

error between frame 50 and its predicted frame using PDE, (h) the difference error between frame 

50 and its predicted frame using the proposed FCSFS 
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Figure ‎6.17: (a) Frame 50 of “Stefan” (b) predicted frame using FS, (c) predicted frame using PDE, 

(d) predicted frame using FCSFS, (e) the difference error between frame 50 and its reference frame 

48, (f) the difference error between frame 50 and its predicted frame using FS, (g) the difference 

error between frame 50 and its predicted frame using PDE, (h) the difference error between frame 

50 and its predicted frame using the proposed FCSFS 
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Figure ‎6.18: (a) Frame 50 of “Coastguard” (b) predicted frame using FS, (c) predicted frame using 

PDE, (d) predicted frame using FCSFS, (e) the difference error between frame 50 and its reference 

frame 48, (f) the difference error between frame 50 and its predicted frame using FS, (g) the 

difference error between frame 50 and its predicted frame using PDE, (h) the difference error 

between frame 50 and its predicted frame using the proposed FCSFS 
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6.3 Simulation Results of Mean Predictive Block Matching Algorithm 

(MPBM)  

The performance of the novel technique MPBM is benchmarked with six standard fast 

block matching algorithms, which are FS, DS, NTSS, 4SS, SESTSS, and ARPS. The 

size of each MBl will be 16 ×16 for all the selected video sequences and the current 

MBls are searched for the reference image using a search range of ±7. The SAD and 

MAD are used as the Block Distortion Measures.  

The simulation results indicated that the proposed algorithm (MPBM) shows 

improvement in the computational complexity; also, it attempts to keep or reduce the 

error between current and compensated frames.  

The results of the computational complexity measured by the average number of search 

points required to get each motion vector are shown in Table ‎6.6. Moreover, the 

processing time of these algorithms should be computed for the performance when 

applying the PDE algorithm. The time required for these algorithms is shown in 

Table ‎6.7. The resolution of the predicted frames that is built by the proposed and 

benchmarked algorithms is explained by mean MAD, which is shown in Table ‎6.8, and 

mean PSNR, which is shown in Table ‎6.9. 

Table ‎6.6: Average number of search points per MBl of size 16 ×16 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM 

Claire QCIF 184.6 11.63 15.09 14.77 16.13 5.191 2.128 

Akiyo QCIF 184.6 11.46 14.76 14.67 16.2 4.958 1.938 

Carphone QCIF 184.6 13.76 17.71 16.12 15.73 7.74 7.06 

News CIF 204.3 13.1 17.07 16.38 16.92 6.058 3.889 

Stefan CIF 204.3 17.69 22.56 19.05 16.11 9.641 9.619 

Coastguard CIF 204.3 19.08 27.26 19.91 16.52 9.474 8.952 
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Table ‎6.7: The simulation results of average time in seconds needed to process 50 

frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM 

Claire QCIF 0.351 0.037 0.031 0.031 0.037 0.025 0.015 

Akiyo QCIF 0.354 0.036 0.031 0.031 0.037 0.023 0.006 

Carphone QCIF 0.338 0.039 0.036 0.032 0.035 0.031 0.033 

News CIF 1.539 0.161 0.142 0.136 0.151 0.112 0.079 

Stefan CIF 1.537 0.267 0.232 0.174 0.15 0.158 0.139 

Coastguard CIF 1.551 0.263 0.235 0.178 0.15 0.152 0.14 

Table ‎6.8: The simulation results of mean MAD for 50 frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM 

Calire QCIF 1.13 1.13 1.13 1.13 1.14 1.13 1.13 

Akiyo QCIF 0.81 0.81 0.81 0.81 0.81 0.81 0.81 

Carphone QCIF 3.42 3.47 3.47 3.6 3.8 3.51 3.49 

News CIF 1.59 1.6 1.6 1.61 1.61 1.61 1.6 

Stefan CIF 11.6 12.6 12.1 12.6 13.3 12.1 11.9 

Coastguard CIF 7.91 8.05 7.99 8.02 8.3 7.99 7.94 

Table ‎6.9: The simulation results of mean PSNR for 50 frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM 

Calire QCIF 38.94 38.94 38.94 38.92 38.89 38.94 38.94 

Akiyo QCIF 39.61 39.61 39.61 39.61 39.61 39.61 39.61 

Carphone QCIF 30.82 30.69 30.7 30.4 30.1 30.58 30.6 

News CIF 33.77 33.45 33.63 33.42 33.19 33.39 33.56 

Stefan CIF 22.16 21.49 21.81 21.51 21.04 21.82 21.93 

Coastguard CIF 26.19 25.98 26.05 26.02 25.6 26.05 26.11 

Table ‎6.10: The ratio between PSNR and processing time 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM 

Claire QCIF 110.94 1052.4 1256.1 1255.5 1051.1 1557.6 2596 

Akiyo QCIF 111.89 1100.3 1277.7 1277.7 1070.5 1722.2 6601.7 

Carphone QCIF 91.183 786.92 852.78 950 860 986.45 927.27 

News CIF 21.943 207.76 236.83 245.74 219.8 298.13 424.81 

Stefan CIF 14.418 80.487 94.009 123.62 140.27 138.1 157.77 
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Coastguard CIF 16.886 98.783 110.85 146.18 170.67 171.38 186.5 

Similar to previous technique these codes have been implemented in Matlab and the 

simulation results indicated that the proposed algorithm (MPBM) shows improvement 

in the computational complexity, and it tries to keep or reduce the error between current 

and compensated frames benchmarked with the other algorithms. 

For low motion activity video sequences, the resolution of the predicted frame 

(Table ‎6.8 and Table ‎6.9) is close to the ones predicted by full search and there is 

enhancement in the computational complexity; while for the medium and high motion 

activity video sequences, the improvement of computational complexity and the 

resolution of the predicted frame are acceptable compared with other fast block 

matching algorithms. The “Carphone” video sequence has less average number of 

search points (Table ‎6.6) but the average time (Table ‎6.7) is not the lowest; this is due to 

the condition statements which take a long time to process in Matlab. Moreover, it 

could be noticed in Table ‎6.10 that the ratio between PSNR and time needed for 

computation of the proposed algorithm gives the best results in comparison to the 

benchmarked algorithms.  

To introduce a more clear expression for this performance, Figure ‎6.19 to Figure ‎6.24 

show the frame-by-frame comparison of the average number of search points per MBl, 

PSNR performance and MAD of MPBM, FS, DS and ARPS for 23 frames of the tested 

videos, respectively.  

For each video sequence, the visual images illustrated from Figure ‎6.25 to Figure ‎6.30 

describe the performance of the proposed technique at frame 50 and its predicted frame 

from reference frame 48 using the block matching motion estimation DS, ARPS and the 

proposed MPBM.  
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Figure ‎6.19: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “Claire” video sequence of 23 frames 
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Figure ‎6.20: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “Akiyo” video sequence of 23 frames 
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Figure ‎6.21: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “Carphone” video sequence of 23 frames 
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Figure ‎6.22: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “News” video sequence of 23 frames 
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Figure ‎6.23: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “Stefan” video sequence of 23 frames 
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Figure ‎6.24: Average number of search points per MBl, PSNR performance and MAD of 

MPBM and different search algorithms in “Coastguard” video sequence of 23 frames  
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Figure ‎6.25: (a) Frame 50 of “Claire”, (b) predicted frame using DS, (c) predicted frame 

using ARPS, (d) predicted frame using MPBM, (e) the difference error between frame 50 

and its reference frame 48, (f) the difference error between frame 50 and its predicted  

frame using DS, (g) the difference error between frame 50 and its predicted frame using 

ARPS and (h) the difference error between frame 50 and its predicted frame using the 

proposed MPBM   
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Figure ‎6.26: (a) Frame 50 of “Akiyo”, (b) predicted frame using DS, (c) predicted frame 

using ARPS, (d) predicted frame using MPBM, (e) the difference error between frame 50 

and its reference frame 48, (f) the difference error between frame 50 and its predicted 

frame using DS, (g) the difference error between frame 50 and its predicted frame using 

ARPS and (h) the difference error between frame 50 and its predicted frame using the 

proposed MPBM  
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Figure ‎6.27: (a) Frame 50 of “Carphone”, (b) predicted frame using DS, (c) predicted 

frame using ARPS, (d) predicted frame using MPBM, (e) the difference error between 

frame 50 and its reference frame 48, (f) the difference error between frame 50 and its 

predicted frame using DS, (g) the difference error between frame 50 and its predicted 

frame using ARPS and (h) the difference error between frame 50 and its predicted frame 

using the proposed MPBM  



Chapter 6: Experimental Results and Analysis 

121 

 
Figure ‎6.28: (a) Frame 50 of “News”, (b) predicted frame using DS, (c) predicted frame using 

ARPS, (d) predicted frame using MPBM, (e) the difference error between frame 50 and its 

reference frame 48, (f) the difference error between frame 50 and its predicted frame using DS, (g) 

the difference error between frame 50 and its predicted frame using ARPS and (h) the difference 

error between frame 50 and its predicted frame using the proposed MPBM  
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Figure ‎6.29: (a) Frame 50 of “Stefan”, (b) predicted frame using DS, (c) predicted frame using 

ARPS, (d) predicted frame using MPBM, (e) the difference error between frame 50 and its 

reference frame48, (f) the difference error between frame 50 and its predicted frame using DS, (g) 

the difference error between frame 50 and its predicted frame using ARPS and (h) the difference 

error between frame 50 and its predicted frame using the proposed MPBM 
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Figure ‎6.30: (a) Frame 50 of “Coastguard”, (b) predicted frame using DS, (c) predicted 

frame using ARPS, (d) predicted frame using MPBM, (e) the difference error between 

frame 50 and its reference frame 48, (f) the difference error between frame 50 and its 

predicted frame using DS, (g) the difference error between frame 50 and its predicted 

frame using ARPS and (h) the difference error between frame 50 and its predicted frame 

using the proposed MPBM   
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6.4 Simulation Results of Applying Partial Distortion Elimination 

Technique to Existing Fast Block Matching Estimation 

This section shows the simulation results of applying PDE to some of the existing fast 

block matching estimation techniques including Diamond Search and New Three Step 

Search, which are called PDE Diamond Search (PDEDS) and PDE New Three Step 

Search (PDENTSS) respectively [Ahmed et al., 2011a]. This has been done to enhance 

the time needed for processing without affecting the resolution of the predicted frames 

that have been built by these algorithms. The time needed to process these new 

techniques and the MPBM algorithm are shown in Table ‎6.11 while mean PSNR is 

shown in Table ‎6.12. 

Table ‎6.11: The simulation results of average time in seconds needed to process 50 

frames 

Sequence Format DS PDEDS NTSS PDENTSS MPBM 

Claire QCIF 0.04 0.04 0.032 0.021 0.015 

Akiyo QCIF 0.03 0.03 0.029 0.011 0.006 

Carphone QCIF 0.04 0.05 0.035 0.027 0.033 

News CIF 0.16 0.14 0.137 0.075 0.079 

Stefan CIF 0.25 0.34 0.221 0.203 0.139 

Coastguard CIF 0.25 0.33 0.230 0.2 0.14 

Table ‎6.12: The simulation results of mean PSNR for 50 frames 

Sequence Format DS PDEDS NTSS PDENTSS MPBM 

Claire QCIF 38.94 38.94 38.94 38.94 38.94 

Akiyo QCIF 39.61 39.61 39.61 39.61 39.61 

Carphone QCIF 30.69 30.69 30.7 30.7 30.6 

News CIF 33.45 33.45 33.63 33.63 33.56 

Stefan CIF 21.49 21.49 21.81 21.81 21.93 

Coastguard CIF 25.98 25.98 26.05 26.05 26.11 
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As can be noted from Table 6-10, PDE enhanced the processing time when used for 

NTSS, and had an approximately similar processing time when applied to DS. This is 

due to the condition statements used in the PDE algorithm to stop the research early and 

hence enhance the time; however, if the global minimum matching MBl is not detected 

early in the search, this will lead to longer processing time. On the other hand, the 

proposed MPBM algorithm provides the best time and resolution values in comparison 

to PDEDS and PDENTSS for slow and fast motion activity video sequences, as 

demonstrated in Table ‎6.11 and Table ‎6.12. 

 

6.5 Enhanced Mean Predictive Block Matching Algorithm (EMPBM)  

This section illustrates the performance of the EMPBM technique with the MPBM and 

the six standard algorithms as shown in section 6.3.Video frames are divided into 4×4 

MBls since the edge detection method required 4×4 MBl to work effectively. The same 

search range of ±7 is utilised. The SAD and MAD are both used as the BDMs.  

The results of the computational complexity measured by the average number of search 

points required to detect each motion vector are shown in Table ‎6.13 and the average 

time needed for processing is shown in Table ‎6.14. The simulation results of mean of 

MAD and mean PSNR are explained in Table ‎6.15 and Table ‎6.16, respectively.  

The simulation results of this algorithm show improvement in computational 

complexity when compared with the MPBM. Also, the resolution of the predicted frame 

using EMPBMA is nearly the same as for the one using MPBMA.  

These results show that the motion activity of video sequences did not affect the 

computational complexity of the proposed algorithm or the resolution of the predicted 

frames in comparison to MPBM. This is due to the similarity between these two 

algorithms.  

Figure ‎6.31 to Figure ‎6.36 illustrate the frame-by-frame comparison of average number 

of search points per MBl, PSNR performance and MAD of EMPBM, MPBM, ES, and 

ARPS for 23 frames of the tested videos, respectively.  

For each video sequence, the visual images illustrated from Figure ‎6.37 to Figure ‎6.42 

describe the performance of the proposed technique at frame 50and its predicted frame 
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from reference frame 48 using the block matching motion estimation EMPBM, MPBM, 

ES, and ARPS. In each figure, image (a) represents frame 50 while images (b), (c) and 

(d) represent the prediction of frame 50 from frame 48 as a reference frame by using FS, 

MPBM and EMPBM, respectively. 

Table ‎6.13: Average number of search points per MBl of size 4 ×4 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM EMPBM 

Claire QCIF 210.1 15.64 19.2 18.3 16.74 8.188 2.49 1.95 

Akiyo QCIF 210.1 12.76 16.66 16.51 17.5 5.195 1.86 1.74 

Carphone QCIF 210.1 16.22 21.16 19.02 16.66 8.655 7.3 6.3 

News CIF 217.49 13.99 18.4 17.58 17.43 6.373 3.72 3.21 

Stefan CIF 217.49 18.18 24.25 20.49 16.44 10.18 9.67 8.54 

Coastguard CIF 217.49 19.06 27.97 20.92 16.66 10.65 10.4 9.25 

Table ‎6.14: The simulation results of average time in seconds needed to process 50 

frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM EMPBM 

Claire QCIF 3.32 0.55 0.36 0.35 0.34 0.44 0.16 0.12 

Akiyo QCIF 3.23 0.38 0.29 0.29 0.34 0.27 0.07 0.05 

Carphone QCIF 3.22 0.49 0.37 0.34 0.33 0.4 0.32 0.3 

News CIF 13.3 1.7 1.3 1.25 1.33 1.31 0.74 0.69 

Stefan CIF 13.2 2.51 1.91 1.57 1.3 1.77 1.56 1.53 

Coastguard CIF 13.5 2.5 2.11 1.62 1.34 1.96 1.86 1.85 

Table ‎6.15: The simulation results of mean MAD for 50 frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM EMPBM 

Claire QCIF 0.91 0.96 0.952 0.984 1.02 0.97 1.01 1.02 

Akiyo QCIF 0.69 0.71 0.7 0.73 0.75 0.71 0.71 0.71 

Carphone QCIF 2.39 2.61 2.586 2.794 16.7 2.68 2.64 2.65 

News CIF 1.09 1.17 1.18 1.207 1.28 1.21 1.19 1.21 

Stefan CIF 7.08 9.32 8.541 9.447 10.5 8.61 8.27 8.31 

Coastguard CIF 5.63 7.17 6.44 7.031 7.37 6.47 6.33 6.33 
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Table ‎6.16: The simulation results of mean PSNR for 50 frames 

Sequence Format FS DS NTSS 4SS SESTSS ARPS MPBM EMPBM 

Claire QCIF 40.61 40.34 40.43 39.83 39.2 40.3 40.3 40.3 

Akiyo QCIF 41.73 41.41 41.49 40.93 40.44 41.4 41.4 41.4 

Carphone QCIF 34.12 33.35 33.51 32.73 31.82 33 33.2 33.2 

News CIF 38.21 37.09 37.18 36.87 35.86 36.7 37 36.8 

Stefan CIF 26.26 23.52 24.71 23.73 22.74 24.6 25 25 

Coastguard CIF 29.46 27.05 28.03 27.24 26.71 28.1 28.3 28.4 
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Figure ‎6.31: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “Claire” video sequence of 23 frames 
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Figure ‎6.32: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “Akiyo” video sequence of 23 frames  
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Figure ‎6.33: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “Carphone” video sequence of 23 frames 
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Figure ‎6.34: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “News” video sequence of 23 frames 



Chapter 6: Experimental Results and Analysis 

132 

 

Figure ‎6.35: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “Stefan” video sequence of 23 frames  
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Figure ‎6.36: Average number of search points per MBl, PSNR performance and MAD of 

EMPBM , MPBM, ES, and ARPS in “Coastguard” video sequence of 23 frames 
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Figure ‎6.37: MBl size 4×4 (a) Frame 50 of “Claire”, (b) predicted frame using FS, (c) 

predicted frame using MPBM, (d) predicted frame using EMPBM, (e) the difference error 

between frame 50 and its reference frame 48, (f) the difference error between frame 50 

and its predicted frame using FS, (g) the difference error between frame 50 and its 

predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM  
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Figure ‎6.38: MBl size 4×4 (a) Frame 50 of “Akiyo”, (b) predicted frame using FS, (c) 

predicted frame using MPBM, (d) predicted frame using EMPBM, (e) the difference error 

between frame 50 and its reference frame 48, (f) the difference error between frame 50 

and its predicted frame using FS, (g) the difference error between frame 50 and its 

predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM   
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Figure ‎6.39: MBl size 4×4 (a) Frame 50 of “Carphone”, (b) predicted frame using FS, (c) 

predicted frame using MPBM, (d) predicted frame using EMPBM, (e) the difference error 

between frame 50 and its reference frame 48, (f) the difference error between frame 50 

and its predicted frame using FS, (g) the difference error between frame 50 and its 

predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM   
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Figure ‎6.40: MBl size 4×4 (a) Frame 50 of “News”, (b) predicted frame using FS, (c) predicted frame using 

MPBM, (d) predicted frame using EMPBM, (e) the difference error between frame 50 and its reference frame 

48, (f) the difference error between frame 50 and its predicted frame using FS, (g) the difference error between 

frame 50 and its predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM  
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Figure ‎6.41: MBl size 4×4 (a) Frame 50 of “Stefan”, (b) predicted frame using FS, (c) predicted frame using 

MPBM, (d) predicted frame using EMPBM, (e) the difference error between frame 50 and its reference frame 

48, (f) the difference error between frame 50 and its predicted frame using FS, (g) the difference error between 

frame 50 and its predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM 
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Figure ‎6.42: MBl size 4×4 (a) Frame 50 of “Coastguard”, (b) predicted frame using FS, (c) 

predicted frame using MPBM, (d) predicted frame using EMPBM, (e) the difference error 

between frame 50 and its reference frame 48, (f) the difference error between frame 50 
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and its predicted frame using FS, (g) the difference error between frame 50 and its 

predicted frame using MPBM, (h) the difference error between frame 50 and its predicted 

frame using the proposed EMPBM  

6.6 Chapter Summary  

This chapter introduced the simulation results for the proposed algorithms. The 

simulations indicate that, for lossless BMA, the novel technique Fast Computations of 

Full Search Block Matching Motion Estimation reduces the search time of the 

macroblock matching, while keeping the resolution of the predicted frames the same as 

the one predicted using full search. Moreover, this technique is more effective if the 

video sequences have lower motion activity and vice versa. This is due to using two 

previous neighbours to predict the dimension of the new search window which has a 

high probability to contain the global matching MBl.  

For lossy BMA, the simulation results indicated that the Mean Predictive Block 

Matching Algorithm shows improvement in the computational complexity; also, it tries 

to keep or reduce the error between the current and compensated frames when 

benchmarked with the standard BMA. For low motion activity video sequences, the 

resolution of the predicted frame is close to the ones predicted by full search and there is 

enhancement in the computational complexity; while for medium and high motion 

activity video sequences, the improvement of the computational complexity and the 

resolution of the predicted frame are acceptable in comparison with other fast block 

matching algorithms. Moreover, the simulation result of applying partial distortion 

elimination to two selected standard algorithms, which are DS and NTSS, indicated that 

the proposed techniques EDS and ENTSS improve the processing time needed without 

affecting the resolution of the predicted frames that have been built by these algorithms. 

Also, these algorithms show improvement for the medium motion activity video 

sequences in comparison to MPBM, but the resolution of the predicted frames built by 

these algorithms is not as much as for the one built by MPBM; while, for the low and 

high motion activity video sequences, MPBM still gives the best results.  

Finally, the simulations of the Enhanced Mean Predictive Block Matching algorithm 

indicate that using edge detection could improve computational complexity when 

compared with the MPBM. Also, it should be noted that the resolution of compensated 
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frames built by the proposed technique attempts to be the same as the one built by 

MPBM or is sometimes enhanced. The motion activity of video sequences did not affect 

the computational complexity of the proposed algorithm and the resolution of the 

predicted frames built by it.  
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7CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

The main idea of video compression techniques is to remove the redundant information 

that exists in video sequences in order to be stored or transmitted. Inter-frame encoding 

is the main coding tool for removing temporal redundancy in video sequences. In inter-

frame encoding the current frame can be predicted from the reference frames. Motion 

estimation is the technique used to estimate the motion of the moving objects from one 

location in the current frame to another in the reference frame. Block Matching 

Algorithm (BMA) is a practical and widely used method to carry out frame prediction. 

It is the most computationally intensive part in video compression. Therefore, 

decreasing this complexity has caught the attention of many researchers.  Various 

techniques of Fast Block Matching algorithms (FBMAs) that reduce the huge 

computational complexity are reviewed in this thesis. These techniques are classified 

into lossy and lossless block matching algorithms. 

The aim of this research work is to develop novel algorithms for the purpose of 

improving the computational complexity of FBMA in comparison to the existing 

FBMA.   

In this chapter, the conclusions about this research work including the contributions and 

future research directions will be demonstrated.  

7.1 Research Contributions 

This thesis makes a number of research contributions related to fast block matching 

algorithms. Novel algorithms were developed to improve the computational complexity 

of both lossless and lossy block matching algorithms. Key contributions of this research 

work can be summarised as:  

 Using the mean value of two motion vectors which are the above and the left 

neighbouring macroblocks: the proposed video compression techniques take 

advantage of the fact that the general motion in any video frame is usually 

coherent [Barjatya, 2004]. This coherent nature of the video frames dictates a 

probability of a macroblock having the same direction of motion as the 

macroblocks surrounding it. Therefore, two previous neighbouring MBls (above 
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and left) have been used to predict the first step of the search process. The aim 

of using these neighbouring MBls is to speed up the process of finding the 

global matching MBl and to avoid unnecessary computations related to choosing 

three previous neighbouring MBls. To aid their initial calculations, the proposed 

techniques use the mean value of the motion vectors of these macroblocks.  

 

 The Partial Distortion Elimination algorithm is used to reduce the search time: 

using the predictor MVs led to increasing the probability of finding the global 

minimum in the first search. Hence, the Partial Distortion Elimination algorithm 

is used to enhance and improve the time needed for processing.  

Also, the Partial Distortion Elimination algorithm technique has been used to 

improve the time needed for processing two standard fast block matching 

algorithms without affecting the quality of the compensated frames. 

 

 For the lossless BMA, the performance of the proposed Fast Computations of 

Full Search is evaluated using the initial calculation to determine the new search 

window. The new search window will contain the global minimum, hence, 

applying the Partial Distortion Elimination algorithm speeds up the search 

process. Moreover, the rest of the main search windows will be ignored when 

the error of the matching macroblock from this search is small. 

 

 For the lossy BMA, two novel techniques, Mean Predictive Block Matching and 

Enhanced Mean Predictive Block Matching algorithms, are illustrated. The first 

technique combines three types of fast block matching algorithm: predictive 

search technique, fixed set of search patterns, and partial distortion elimination 

algorithm. This algorithm uses previous neighbouring macroblocks to determine 

the initial step size search pattern. Seven positions will be examined in the first 

step and five positions later in which the partial distortion elimination algorithm 

is applied.  

The second technique attempts to improve the Mean Predictive Block Matching 

algorithm by classifying the current macroblock into shade and edge. The shade 

macroblock has a probability to move in the same direction as its neighbouring 

macroblocks. This has led to examining only the motion vectors of the 

neighbouring macroblocks and ignoring other motion vectors that were utilised 
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in the first search step of the Mean Predictive Block Matching algorithm. For the 

edge macroblock, the proposed technique uses the same approach that was used 

in the Mean Predictive Block Matching algorithm.  

 The edge detection technique used to classify MBls has been built in as simple a 

way as possible to avoid more computations. In spite of this algorithm making 

an improvement to MPBM, the performance of this technique needs to be 

compared with the existing one. 

 The simulation results of various video sequence types indicated that the novel 

techniques showed improved results in comparison to the benchmarked lossless 

and lossy block matching algorithms. This improvement is measured in terms of 

the processing time for lossless block matching algorithm; while, for lossy block 

matching algorithms, the novel techniques decrease both the average number of 

search points required per macroblock for the videos and the residual prediction 

error in comparison to the standard fixed set of search pattern of block matching 

algorithms.  

 

7.2 Future Research Directions  

This section considers a number of possible future directions to improve the 

performance of the proposed techniques and extend their application. The research work 

achieved for this thesis could be continued by investigating the following items:  

 The efficiency of the proposed architecture is determined by using the mean 

value of the two motion vectors for the above and left previous neighbouring 

macroblocks. This process has been designed to support the initial search, hence 

improving the computational complexity of BMAs. One of the possible areas of 

future research is related to the use of this process to enhance the performance of 

the existing fast BMAs and then compare their efficiency. Moreover, since the 

VBSME has become the default of video coding standards, therefore, the 

efficiency will be more effective if the best algorithm determines the MVs using 

the VBSME instead of the FBSME that was used in this research work.  



Chapter 7: Conclusions and Future Work 

145 

 There are two outputs from ME and MCP: RPE, which is the difference between 

the current frame and the predicted frame, and the MVs. These outputs are sent 

to the decoder to reconstruct MCP. The efficient compression could be satisfied 

by decreasing the RPE, which is another direction for future research. This could 

be achieved by rotating the best matching MBl in different directions if the error 

between current and best matching MBl is more than the threshold. The best 

matching MBl will be rotated with a degree of ±10º, ±20º, ±30º, and ±45º and 

can be compared with the current MBl. Each angle is represented by 

corresponding symbol. The symbol that represents the best matching rotated 

MBls should be sent to the decoder with the MV of the current MBl. This 

method can be useful by decreasing the transmitted error; hence high 

compression ratio will be achieved. This could also be used to enhance the 

resolution of the decompressed frame.  

 In the proposed algorithms, each pixel in a luminance frame is represented with 

eight-bit resolution. To represent pixels with a single bit-plane, a one-bit 

transform (1BT) bit plane could be used [Jian et al., 1995]. It uses the mean of 

MBl as a threshold value to indicate whether a pixel is edge or not, as follows: 

 
 (   ) = {

     (   )     

  
0          

}   

where     is the threshold value that is set equal to the MBl mean,  (   ) shows 

the (   )   pixel of the image frame and  (   ) shows the corresponding bit-

plane value. 

Moreover, the error between current and candidate MBls will be calculated as 

the number of non-matching points (NNMP), which is measured by the 

exclusive-or (XOR) operation instead of MAD or SAD as in equation (4.5). A 

suggested research direction could be the idea of using a single bit-plane with 

the proposed fast BMAs as a search pattern instead of FS, to enhance the 

computational time of the BMAs.  
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 Using existing edge detection algorithms such as Canny edge detection or Sobel 

edge detection [Sharifi et al., 2002] to classify the MBls in EMPBM and 

compare the results.  
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