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Abstract 

 The need to develop advanced wheelchairs especially for improving better 

mobility and comfort to help disabled people has led to an investigation into 

spherical inverted pendulum wheelchair concept. The wheelchair's concept is 

based around the dynamic and control of spherical inverted pendulum. 

 The investigation starts with the stabilisation of the inverted pendulum 

using some various control strategies and command tracking capabilities also 

evaluated. Several different type control strategies are evaluated. These include (1) 

pole placement (2) PID and (3) Linear Quadratic Regulator (LQR). The 

stabilisation and tracking command performance of each control strategy is 

examined through simulation. The result shows all these three control strategies 

are capable to control the inverted pendulum system. But as the spherical inverted 

pendulum system is a MIMO system which has eight states and two inputs the 

LQR control strategy is more convenient to use for controlling the spherical 

inverted pendulum wheelchair. 

The dynamic equation for the spherical inverted pendulum wheelchair is 

presented and the modelling in SimMechanics also developed. The model is 

controlled by feedback control using LQR. The simulation shows that the body 

which represents the chair and the occupant is balanced on a spherical ball 

through four rollers (two driven and two idler) successfully. Thus the new 

wheelchair concept based upon the dynamic and control of spherical inverted 

pendulum has the potential to offer improved mobility compared with existing 

wheelchairs in the market place.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. Background 

 

Robotics is a branch of engineering science that deals with design, 

modelling, control and utilisation of robots. Robots are widely used for assisting 

human life for example to automate mass production and to a lesser extent to 

provide assistance to help human in everyday life activities, etc.  

Robotics technologies have the potential to improve lifestyle of people 

suffering from some forms of incapacity or individuals with disabilities by 

restoring their functional abilities that have been reduced or even lost. Mobility is 

one such ability that can be restored by utilising a wheelchair (Simpson, 2005). A 

wheelchair is a mechanical device that uses wheels and mechanical support to 

overcome or to provide mobility for the elderly, disabled and patients. Wheelchair 

technologies have been developed as mobile robots to create modern electric 

powered wheelchairs by researchers in recent decades (Pei et al., 2007). These 

endeavours are aimed to create smart wheelchairs with advanced abilities to 

accomplish more complex tasks like sense information and respond in useful 

ways based upon traditional wheelchair mechanical configurations. 

 However, there are still many challenges that may be overcome by 

applying novel technologies to develop advanced wheelchairs especially for 
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improving adequately mobility and comfort for many certain users. Improvements 

in technologies on advanced or smart wheelchairs are needed to accommodate 

some people with disabilities and they can expand their ability to drive 

independently and to enhance driving safety (Ju et al., 2009).   

In this research the conceptual design and simulation of a new wheelchair 

concept with novel motion capabilities is studied. The crux of this concept is to 

help disabled people by providing a wheelchair type transport to provide 

significantly better mobility. The wheelchair's concept is based around the 

dynamic and control of spherical inverted pendulum. This design arrangement 

consists of a ball acting as spherical wheel for the wheelchair, this arrangement 

enables the wheel chair to translate in any direction and rotate. The wheelchair is 

balanced by driving the ball, using four rollers, such that the wheelchair does not 

fall over but remain stables and moves via spherical inverted pendulum control 

concept to the author’s knowledge this arrangement has not been investigated 

before. 

 

1.2. Aims and Objectives of the Research  

  

In the introduction background it was explained that need to be 

investigated to create a new wheelchair with improvement capabilities in motion 

to help the disable people to improve their mobility and maneuverability in 

everyday life environment.    

Thus the aim of this research is to create a conceptual design and to 
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simulate a new wheelchair that can provide improvement in mobility and 

maneuverability. The wheelchair concept is based upon the control of spherical 

inverted pendulum control. This concept has the potential to offer improved 

mobility and maneuverability compared with existing wheelchairs because in this 

concept the need of caster wheels to balance existing wheelchair can be 

eliminated. Without casters, wheelchair is able to moves in any direction thus the 

improvement in mobility can be achieved.  

The technical challenge of the work is such that in this research is focused 

solely on the simulation techniques of the new wheelchair based on spherical 

inverted pendulum control. Under this aim, the following objectives are proposed 

to be achieved in this project: 

• To investigate various controls for the inverted pendulum system can be 

applied such as pole placement, PID and linear quadratic regulator (LQR). 

• To develop an alternative inverted pendulum design that consists of two 

carts (bottom cart (vehicle), top cart with inverted pendulum) as it design 

gives possibility to control the bottom cart (vehicle) to get better 

characteristic on set point tracking while another cart moving on top to 

stabilise the inverted pendulum.  

• To create design and simulation of a spherical inverted pendulum 

wheelchair that is designed and simulated in SimMechanics with state 

feedback control using LQR control strategy.  

The development of this a new wheelchair concept based upon spherical 

inverted pendulum will make contributions to the inverted pendulum application 



 

4 

 

knowledge base including: 

• Developing simulation in stabilisation of the inverted pendulum system 

using various control strategies in both Matlab Simulink and 

SimMechanics.  

• Proposing the new alternative inverted pendulum design construction with 

two carts (bottom cart (vehicle), top cart with inverted pendulum) for 

improving characteristic on the command tracking. 

• Modelling and controlling a new concept wheelchair, the spherical 

inverted pendulum wheelchair (SIPW), for improving mobility to help 

wheelchair user. 

 

 1.3. Thesis Organisation 

 

The thesis proposes conceptual design and simulation of a spherical 

inverted pendulum wheelchair (SIPW). It consists of nine chapters and is 

organised as follows. After an introduction in this Chapter the wheelchair history, 

inverted pendulum applications and the simulation techniques are presented in 

Chapter 2. The history of the wheelchair from the beginning until now days is 

described briefly, then the application of the inverted pendulum especially in the 

robotic fields in term of improving the motion capability of the wheelchair also 

described and the simulation techniques that can be used for dynamics system 

simulation also discussed briefly. Chapter 3 provides the mathematical modelling 

of the two DoF inverted pendulum. The dynamics of this inverted pendulum can 
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be presented in the form of transfer function equation and in the form of state 

space model. This mathematic model then is used to design the control strategy 

for stabilising the inverted pendulum. Chapter 4 presents the simulation of the two 

DoF inverted pendulum using SimMechanics and Simulink modelling with some 

various control strategies which are based on the mathematical modelling 

developed in the previous chapter. This work is to investigate and to demonstrate 

some various control methods of two DoF inverted pendulum system can be 

applied. Chapter 5 proposes a new an alternative inverted pendulum design. The 

alternative inverted pendulum design that consists of two carts which gives 

possibility to get better characteristic on set point tracking is simulated and 

discussed. Chapter 6 presents how to simulate the spherical inverted pendulum, a 

dynamics of multibody system, in slide mode which is designed with 

SimMechanics. Moreover this chapter also shows the advantages of the use 

SimMechanics for multibody dynamics simulation, especially for the non-experts. 

Chapter 7 describes the mathematical modelling development, the control design 

and the SimMechaincs modelling for the new proposed wheelchair concept 

(SIPW) based upon spherical inverted pendulum control. This chapter also shows 

and demonstrates that the SIPW which is a dynamics of multibody system is 

successfully designed within SimMechanics modelling that is stabilised using the 

LQR feedback method with 8 state variables. Chapter 8 discusses the 

contributions and the research results in sight of previous chapters. In Chapter 9 

the conclusions drawn from the project work are presented and also number of 

potential projects for future work is listed.    
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1. Wheelchair History 

 

Wheelchairs are widely used as assistive devices to help provide mobility 

for the elderly, disabled and patients. There are three basic types of wheelchairs: 

manual wheelchairs, scooters and electric powered wheelchairs (EPW) (Cooper et 

al., 2006). Manual wheelchairs are not electric powered which are mainly used by 

those who still have upper body strength to provide a force. EPW are powered 

with electric motors and provide mobility for those who do not have the capability 

such as due to poor health, weak upper bodies and some other incapacity.    

The creation of a wheeled chair for helping elderly and disabilities people 

mobility started in Europe at sixteenth century (Kamenetz, 1969). In this period 

the wheelchair was a manual device and the technology advancement was very 

slow. The first electric powered wheelchair was created in 1940 with manual on-

off switch and a single speed.  The last twenty years since the early of 1990 has 

seen the fastest development in wheelchair technologies when researchers began 

to use technologies originally developed for mobile robots to create modern 

electric powered wheelchairs or smart wheelchairs (Simpson, 2005). 

Commonly there are many elderly and mildly disabled users may have 

been satisfied for helping their mobility by using traditional manual or electric 
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powered wheelchairs. However there are some disabled people who find it 

difficult or even impossible to use wheelchairs independently. They have some 

severe disabilities such as low vision, cognitive deficit, suffering from physical 

dexterity and coordination, visual field reduction, cerebral spasticity, tremors, 

paraplegia that causes them lack independent mobility and need carer to assist 

them (Simpson, 2005). Therefore it becomes a challenge for researchers to 

develop wheelchair technologies to provide a certain degree of safe autonomy for 

them and the idea of a smart wheelchair have started to gain support (Fehr, 

Langbien, and Skaar, 2000). 

A smart wheelchair is an electric powered wheelchair that is equipped 

with a set of controllers and sensors to provide an independent mobility device for 

people with severe disabilities in a safe and interactive way and has additional 

functionality (Matsumoto, Ino and Ogasawara, 2001). People with severe 

disabilities usually have little or even no abilities to express their wishes, make 

choices and therefore cannot drive a wheelchair independently. Therefore, the 

current development of advanced or smart wheelchairs attempts to deal with this 

problem. Smart wheelchairs have used some alternative input methods instead of 

a joystick. Voice recognition for example has been used in NavChair (Levine et 

al., 1999), SENARIO (Katevas et al., 1997), TetraNauta (Cagigas and Abascal, 

2004). However this work still has many difficulties, some voice control 

applications prove very difficult to implement in term of protection from 

misrecognized voice commands (McGuire, 1999), (Simpson and Levine, 2002). 

Other more advanced alternative inputs that have been applied are detection of 
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sight path of user in a Wheeleseley Robotic Wheelchair (Cooper et al., 2002) and 

detection of position and orientation of a user’s head in Osaka University 

Wheelchairs (Kuno, Shimada and Shirai, 2003), Watson (Matsumoto, Ino and 

Ogasawara, 2001). Sensors are used in smart wheelchairs to perceive their 

surrounding for avoiding obstacles. For examples VAHM (Bouris et al., 1993), 

OMNI (Borgolte et al., 1998), Rolland (Lankenau and Rofer, 2001) has applied 

infrared and sonar (Simpson, 2005). While cameras are used for landmark 

detection like in Rolland, MAid (Katevas et.al., 1996) and as a mean of head-eye 

tracking for wheelchair control like in Watson, Mr. HURRY (Moon et al., 2003), 

Siamo (Mazo, 2001). Some wheelchairs are operated autonomously where the 

user only gives a final destination and then the wheelchair will plan and go to the 

target location, like TetraNauta. This wheelchair category is proper for people 

who has severe disabilities and very less ability to plan and execute a path to 

destination and spends the same environment of their everyday life activities.  

However the current state of development of advanced wheelchairs does 

not meet adequately mobility and comfort for many certain users (Ding and 

Cooper, 2005). There are still many challenges that novel technological 

development can potentially overcome. Improvements in technologies on 

advanced or smart wheelchairs are needed to accommodate some people with 

severe disabilities and they can expand their ability to drive independently and to 

enhance driving safety.   

Therefore in this research the design and simulation a new wheelchair 

concept with novel motion capabilities to help disabled young people will be 
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investigated. The young people are selected as generally a lot lighter than older 

people. The wheelchairs motion will be based upon the dynamic and control of a 

driven cart mounted inverted pendulum concept. This concept has been selected 

as it has the potential to offer much improved mobility compared with exiting 

wheelchairs. To the author knowledge the type of wheelchair based on spherical 

inverted pendulum configuration is a novel idea.  

 

2.2. The Inverted Pendulum Applications 

 

Wheelchair users often face access difficulties in daily life when they have 

to pass through over obstacles such as curbs, steps, and irregular terrains and 

getting in and out of cars. An improved wheelchair design is needed to overcome 

these problems and to increase both mobility and manoeuvrability of the 

wheelchairs. An inverse pendulum mounted upon moveable cart model applied to 

a wheelchair will give the user greater manoeuvrability (Nawawi, Ahmad and 

Osman, 2006) and increase mobility (Adam and Robert, 2004). These 

improvements are accomplished because stabilising small front wheels needed in 

conventional wheelchair can be eliminated. Except the inverted pendulum 

technology can be applied to keep larger rear wheels in balance and have greater 

ability to roll over some obstacles (Akihiro and Toshiyuki, 2009). 

A cart mounted inverted pendulum is relatively simple mechanical system 

which is inherently unstable and defined by highly nonlinear dynamic equations 

(Hauser, Alessandro, and Ruggero, 2005). The inverted pendulum model has been 
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widely used as a teaching aid and in research experiments around the world. As a 

teaching aid, the inverted pendulum used because it’s an imaginable unstable 

nonlinear dynamics problem commonly discussed in control engineering (Hauser 

et al., 2005), and various control algorithms, ranging from conventional through 

to intelligent control algorithms, has been applied and evaluated (Jung and Kim, 

2008). There are a number of associated control problems that can be derived 

from the inverted pendulum models such as rocket control, the dynamic balance 

of skiing, bicycle/motorcycle dynamics (Hauser et al., 2005). Recently, a mobile 

inverted pendulum model with two wheels has been applied to various robotic 

problems such as designing walking or legged humanoid robot, robotic 

wheelchairs and personal transport systems (Kim et al., 2006).  

The application of the wheeled inverted pendulum in robotic engineering 

has the goal of improving mobility such as running, steering and trajectory 

following (Seong and Takayuki, 2007). Several investigations using the inverted 

pendulum concept have been applied to wheelchairs to improve its adaptability 

have been conducted. SST (Sitting-Standing Transporter) is a self-balancing 

wheelchair that has capability of supporting a person or wheelchair occupant in 

the sitting and standing position with only two parallel wheels (Adam and Robert, 

2004). The SST is based on the inverted pendulum with counter balance. Another 

application of inverted pendulum in wheelchair that can be used to help a 

wheelchair bound person to climb over steps without caregiver assistance has 

been proposed at Kanagawa Institute of Technology (Yoshihiko et al., 2008). In 

this proposed robotic wheelchair, the inverted pendulum control has been 
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conducted successfully and the user can move forward to the step although the 

rider felt a small shock. Another application is PADO (Pitch Angle Disturbance 

Observer) (Akihiro & Toshiyuki, 2009). PADO has proven that it is possible to 

stabilize the wheelchair motion and remove the casters. Without casters, the 

wheelchair is able to achieve sophisticated mobility like a short turn motion, go 

over steps and so on.       

 

2.3. Simulation Techniques for Dynamic Systems 

 

Simulation is the imitation by using a mathematical model of the operation 

of a real-world process or system over time (Banks, 1999). Thus simulation is to 

represent the behaviour of a system through a certain model performing an 

experiment on the system is attainable. The advantages of simulation method are 

it can shorten development time, reduce cost and explore a range of alternatives 

designs. However, the use of simulation method has some disadvantages such as 

level of model accuracy, the assumptions and constraints have to be defined 

carefully in order to get valid simulation result. 

There are two dynamic system models: continuous time and discrete time 

models. Continuous time models have variable values changing continuously over 

time whereas discrete time models only change their variable values at certain 

instances in time.  In general, such models can be modelled using differential 

algebraic equations (DAEs) (Ascher and Petzold, 1998).  Many modelling and 

simulation languages have been developed, and in earliest simulation languages 
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was based on CSSL (Continuous System Simulation Language) (Strauss et.al., 

1967). They were procedural and provided a low-level description of a system in 

terms of ordinary differential equations. From these languages emerged two 

important developments: equation-based or graph based modelling, and object-

oriented modelling.  

   Graph based modelling have been used or developed in three paradigms: 

bond graphs, linear graphs and block diagrams. Bond graph modelling is based on 

junctions that transform elements through bonds (Rossenberg and Karnopp, 

1983). The bonds represent power flow between modelling elements. Bond graphs 

are domain independent but they are not convenient for 3D mechanics and 

continuous hybrid systems. Linear graph modelling is similar to bond graphs, 

these linear graphs represent the energy flow through the system, expressed by 

through and across variables (also called terminal variables) (Durfee et.al., 1991). 

Linear graphs are domain independent and, unlike bond graphs, they can be easily 

extended to model 3D mechanics and hybrid system. The third modelling 

technique is based on block diagrams, as in Simulink. Block diagrams modelling 

are specified by connecting inputs and outputs of primitive models such as 

integrators, multipliers, or adders.  

 Object-oriented based on modelling is the latest development. Object-

oriented modelling has benefits of simplified model creation and maintenance. An 

important principle of object-oriented modelling is that of information hiding: an 

object can only be accessed through its public interface, which is independent of 

the underlying implementation (Calderon, Paredish and Khosla, 2000). The same 
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principle can be applied to modelling by making a clear distinction between the 

physical interactions of an object with its environment (interface) and its internal 

behaviour (implementation). Object oriented model design results in a hierarchical 

organization of models and simplifies the tasks of reusing, maintaining, and 

extending families of simulation models. The most comprehensive support for 

object oriented principles is Modelica and SimMechanics. 

 

2.4. Summary 

 

This chapter describes the background of the research. As explained 

above, this project the conceptual design and simulation of a new wheelchair 

concept is studied as the need of improvement of the wheelchair mobility. The 

crux of this concept is to provide better mobility of wheelchair compared to the 

existing wheelchair available in the market. The wheelchair's concept is based 

around the dynamic and control of spherical inverted pendulum and simulated 

using SimMechanics. 
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CHAPTER 3 

MATHEMATICAL MODELLING OF THE TWO DOF 

INVERTED PENDULUM 

 

 

3.1. Introduction 

 

 In the design of the spherical inverted pendulum wheelchair (SIPW), to 

understand fundamental building system is started by undertaking the simulation 

of common or classic inverted pendulum system as shown in Figure 3.1. The 

SIPW has four DoF while this model system is simpler as it only has two DoF: 

one DoF rotation moving of the pendulum and one DoF horizontally moving of 

the cart. A fundamental of this works is to investigate and demonstrate the use of 

SimMechanics/Matlab to support simulation and understanding of the various 

dynamics systems and control strategies. Thus in this chapter will derived 

mathematical modelling of the inverted pendulum with two DoF as the starts of 

the works in the design of the Spherical Inverted Pendulum Wheelchair (SIPW)   

 

3.2. Inverted Pendulum 

 

The inverted pendulum system is a classic control problem that has been 

widely used as a teaching aid and in research experiments around the world 
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(Hauser et al., 2005). It is a suitable process to test prototype controllers due to its 

high non-linearities and lack of stability (Hauser et al., 2005). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Free body diagram of the inverted pendulum system 

 

The system as shown in Figure 3.1 consists of a pendulum with mass m, 

hinged by an angle θ from vertical axis on a cart with mass M, which is free to 

move in the x direction. A force Fh, is required to push the cart horizontally and 

dynamic equations relationship between the cart and inverted pendulum are 

required so that it is possible to keep the pendulum upright stable while the cart 

moves by following a set reference of velocity point or desired path.   

M 

m 
θ 

x 

Fh 

Ɩ 
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3.3. Mathematical Modelling  

 

To derive the dynamic equations or mathematical model for an inverted 

pendulum system, the free body diagram shown in Figure 3.2 is considered: 

 

 

 

 

 

 

 

 

Figure 3.2 Free body diagram of the system 

 

Summing forces of the cart in horizontal direction based on the Newton law gets: 

hn FFxxM =++ &&& µ     (3.1) 

Summing forces of the pendulum in horizontal direction gives: 

nFmlmlxm =−+ θθθθ sincos 2&&&&&    (3.2) 

M 

x 

Fh 

Ɩ

Fv Fn 

    µƖ 
friction 
 

θ 

2θ&I  

mg 
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Fv 

θ&&I  

Fn 
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Substituting Fn in equation (3.2) into equation (3.1), the first dynamic equation for 

the system becomes: 

( ) hFmlmlxxmM =−+++ θθθθµ sincos 2&&&&&&   (3.3) 

Summing forces perpendicular to the pendulum gets: 

θθθθθ cossincossin xmmlmgFF nv &&&& +=−+   (3.4) 

Summing moments around CG of the pendulum gives: 

θθθ IlFlF nv =−− cossin     (3.5) 

Combining equations (3.4) and (3.5), the second dynamic equation for the system 

becomes: 

( ) θθθ cossin2 xmlmglmlI &&&& −=++    (3.6) 

Since the inverted pendulum must be kept on vertical position, therefore it is 

assumed that ( )tθ  and ( )tθ&  are very small quantities such 

that θθ ≈sin , 1cos −=θ , and 0=θθ & . Thus dynamic equations above will 

become (where u represent input): 

( ) xmlmglmlI &&&& =−+ θθ2     (3.7) 

( ) umlxxmM =−++ θµ &&&&&     (3.8) 
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3.3.1. Transfer Function Modelling 

 

To get transfer function model form of the two DoF inverted pendulum 

system, the dynamic equations (3.7) and (3.8) need to be represented in the form 

of Laplace transform equations as below: 

( ) ( ) ( ) ( ) 222 ssmlxsmglssmlI =−+ θθ    (3.9) 

( ) ( ) ( ) ( ) ( )sussmlssxssxmM =−++ 22 θµ   (3.10) 

Solve the first equation, gets: 

( ) ( ) ( )s
s

g

ml

mlI
sx θ








−+=

2

2

    (3.11) 

Substituting equation (3.11) into (3.10): 

( ) ( ) ( ) ( ) ( ) ( )sussml
s

g

ml

mlI
ss

s

g

ml

mlI
mM =−








−++








+++ 2

2
2

2

θµθ  (3.12) 

Rearranging, gives: 

( )
( ) ( ) ( )

s
q

mgl
s

q

mglmM
s

q

mlI
s

s
q

ml

su

s

µµ
θ

−+−++
=

23
2

4

2

   (3.13) 

Where,         ( )( ) ( )[ ]22 mlmlImMq −++=  

Transfer functions with displacement of cart as output x(s) can be derived in 

similar technique gives the following: 

( )
( )

( )

( ) ( )
s

q

mgl
s

q

mglmM
s

q

mlI
s

q

gmlsmlI

su

sx

µµ −+−++

−+

=
23

2
4

22

   (3.14) 



 

19 

 

3.3.2. State Space Modelling 

 

To build state space modelling of the system, the task is to derive the 

elements of the matrices, and to write the system model in the standard form: 

 

Ɩ = Ax + Bu  

y = Cx + Du 

 

The matrices A and B are properties of the system and are determined by the 

system structure and elements. The output equation matrices C and D are 

determined by the particular choice of output variables.  

To get state space model form of the inverted pendulum system, it 

required to eliminate θ&&  from dynamic equations (3.7) and (3.8) to get equation 

for x&&  and vice versa as shown below: 

Eliminating θ&&  from equations (3.7) and (3.8) gives: 

 

( )
( ) ( ) ( ) u

MmlmMI

mlI

MmlmMI

glm
x

MmlmMI

mlI
x

2

2

2

22

2

2

++
++

++
+

++
+−= θµ

&&&  (3.15) 

 

Eliminating x&&  from equations (3.7) and (3.8) gives: 

 

( )
( )

( ) ( ) u
MmlmMI

ml

MmlmMI

mMmgl
x

MmlmMI

ml
222 ++

+
++
++

++
−= θµθ &&&  (3.16) 
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Define the state variables as: 

xx =1   

xx &=2  

θ=3x  

θ&=4x  

 

The state space equation then can be obtained from equations (3.15) and (3.16) as 

follows: 

 

21 xx =&  

 

( )
( ) ( ) ( ) u

MmlmMI

mlI
x

MmlmMI

glm
x

MmlmMI

mlI
x

2

2

32

22

22

2

2 ++
++

++
+

++
+−= µ

&  

 

43 xx =&  

 

( )
( )

( ) ( ) u
MmlmMI

ml
x

MmlmMI

mMmgl
x

MmlmMI

ml
x

232224 ++
+

++
++

++
−= µ

&  
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Then the state space equations can be presented in the vector matrices form as: 

 

( )
( ) ( )
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( )
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   (3.17) 
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Thus, 
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3.4. Summary 

 

 This chapter discusses and shows how the mathematic modelling of two 

DoF inverted pendulum can be developed. The dynamics of this inverted 

pendulum can be presented in the form of transfer function equation and in the 

form of state space model. This mathematic model then is used to design the 

control strategy for stabilising the inverted pendulum. Thus in the next chapter 4 

simulation of the two DoF inverted pendulum is presented using SimMechanics 

and Simulink with some various control strategies, which are based on the 

mathematic modelling developed in this chapter.  
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CHAPTER 4 

CONTROL OF THE TWO DOF INVERTED 

PENDULUM 

 

 

4.1. Introduction 

   

 The conventional or classical control theory is based on the input-output 

relationship, or transfer function. Therefore, a primary disadvantage of the 

classical control strategy is that there is only a single free feedback controller, K, 

which can be adjusted. Modern control theory is based on the description of 

system equations in terms of ‘n’ first-order differential equations, which may be 

combined into a first-order vector-matrix differential equation, or state space. It 

should allow more freedom in adjusting N control variables for an Nth order 

system.  

For the two DoF inverted pendulum system, the pendulum angle and the 

cart velocity or position need to be controlled and thus requires a multi-output 

system which is relatively simple to solve using the state space method such as 

discussed in the previous chapter. This chapter 4 discusses a state space with pole 

placement, linear quadratic regulator (LQR), and PID control techniques for 

controlling the cart’s velocity to follow on the desired velocity while maintaining 

the angle of the pendulum as 0° (upright pendulum position).     
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4.2. Pole Placement Control 

 

Control of the pendulum system can be designed by using the controller 

design of the pole placement or the pole assignment control strategy. The pole 

placement control is designed to put the poles of the closed loop system on the 

desired location by the state feedback through the appropriate state feedback gain 

matrix if the given system is perfectly controllable. When the system model is 

given as shown in the formula: 

BuAxx +=&      (4.1) 

 

The state feedback controller is as:  

 

Kxu −=      (4.2) 

 

This form is called state feedback. The state feedback gain matrix K has 

dimension 1×n where n is the number of the state. Substituting equation (4.1) into 

equation (4.2) gives result as: 

 

( ) ( ) ( )txBKAtx −=&     (4.3) 

 

The solution of this equation is given by: 

 

( ) ( ) ( )0xetx tBKA−=     (4.4) 
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Where, x(0) is the initial state caused by external disturbances. The 

stability and transient response characteristics are determined by the eigenvalues 

of matrix A - BK. If matrix K is chosen properly, the matrix A - BK can be made 

an asymptotically stable matrix, and for all x(0) ≠ 0, it is possible to make x(t) 

approach 0 as t approaches infinity. A schematic block diagram of this type of 

control system is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic block diagram for closed loop control system in state space  

         form (Ogata,2002) 

 

In this work to simulate the two DoF inverted pendulum system, let 

assuming the two DoF inverted pendulum properties values are the same as 

physical properties provided by the inverted pendulum Solidworks model, as 

shown in Figure 4.7 developed as:  
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M  mass of the cart    13.26  (kg) 

m  mass of the pendulum       2.88  (kg) 

µ  friction of the cart       0.0  

l  length to pendulum CG      0.21 (m) 

I  Moment Inertia of the pendulum    0.04 (kg*m^2) 

 

In this simulation the friction between the cart and the ground is assumed to be 

zero to give sliding moves on surface for the cart. 

Substituting all the inverted pendulum parameter values given above into 

state space equation derived in chapter 3: equations (3.17) and (3.18) and 

considering the cart position as outputs to the inverted pendulum state space 

model becomes: 
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    (4.9) 

 

[ ] u
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      (4.10) 

 

Using Matlab command (appendix 1) shows the poles of this model are: 
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p = 

         0 

         0 

    6.4079 

   -6.4079  

As can be seen there is a one pole laying in the right hand plane at 6.4079 

thus the system is open loop unstable. To stabilise the dynamics of the inverted 

pendulum plant obviously requires some of feedback controllers to be designed. 

This problem can be solved by finding a suitable K matrix using a full state 

feedback type 1 servo system. The schematic block diagram of this control is as 

shown in Figure 4.2 below.      

 

 

 

 

 

 

 

 

 

  

Figure 4.2 Full state feedback type 1 servo system (Ogata,2002)  
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Where r represents the reference input signal to the cart. The four states 

( )4321 ,,, xxxx  represent position of the cart, velocity of the cart, pendulum’s angle 

and angular velocity of the pendulum and y represents the output signal. A 

controller have to be designed so that when reference input is given to the system, 

the pendulum should be displaced, but eventually return to zero (upright) and the 

cart should move with its position or velocity as commanded in the reference 

input.  

 In the pole placement control, pole locations can be arbitrarily placed if 

and only if the inverted pendulum plant is controllable. Therefore the 

controllability matrix of the plant is determined first before calculating the 

feedback gain matrix K. The controllability matrix is given as: 

  

[ ]BABAABBM n
c

12 .... −=      (4.11) 

If Mc is nonzero the plant is controllable 

From the equation (4.9) the state space model we get: 
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Since the controllability matrix Mc is given by: 

 

[ ]


















==

06597.1002596.0

6597.1002596.00

03994.000717.0

3994.000717.00

32 BABAABBM c   

 

And the determinant solution gives that |Mc| = 0.4362, thus the inverted pendulum 

plant is controllable and arbitrary pole placement is possible.  

 Referring to Figure 4.2 the state feedback control law for the inverted 

pendulum with set point or tracking is: 

 

ξIkKxu +−=     (4.12) 

 

yr −=ξ&      (4.13) 

 

In which r is the input signal reference to be tracked by y, thus ξ represents 

integral of the tracking error. For type servo system 1 state error equations is 

given as: 

 

euBeAe ˆˆ +=&      (4.14) 

 

Where, 

 



 

30 

 























−

=







=

00001

0041.061700

01000

001.538700

00010

0-

0ˆ
X

A
A ,          

 























=







=

0

2596.0

0

0717.0

0

0
 ˆ B

 B  

 

The control signal is given by equation: 

 

eKue
ˆ−=      (4.15) 

Where, 

[ ] [ ]ii KkkkkKKK −=−= 4321
ˆ  

 

In order to get a reasonable speed and damping in the response of the designed 

inverted pendulum plant system, the desired closed-loop poles were chosen to be 

at: 

 � = pi (�=1,2,3,4.5),  

where:  

p1 = −7 + 7i,     p2 = −7 − 7i,     p3 = −7,     p4 = −7,     p5= −7  
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And the state-feedback gain matrix is calculated by using the Ackerman command 

of MATLAB and the MATLAB program to calculate the state feedback gain 

matrix K is as attached in appendix 2. The program gives result as: 

K = 

  1.0e+003 * 

   -4.7142   -1.5334    3.3472    0.5583    6.5957 

Thus, we get the feedback gains to control the designed inverted pendulum system 

are: 

[ ] [ ]3.5582.33474.15332.47144321 −−== kkkkK  

And 

7.6595=iK  

 

These feedback gains will be used in the simulation of designed two DoF inverted 

pendulum using Simulink model and SimMechanics model as discussed below:  

 

4.2.1. Simulink Model of the Two DoF Inverted Pendulum with Pole          

Placement Control  

 

Simulink is a tool for simulation that is based on block diagram modelling. 

Its primary interface is a graphical block diagramming tool and a customisable set 

of block libraries. Simulink is widely used in control theory and design. It can be 
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used to simulate and analyse dynamic systems as well such as the inverted 

pendulum. The inverted pendulum in state space using Simulink modelling is as 

shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The two DoF inverted pendulum in state space using simulink 

 

Choosing the state variables as ( )θθ && ==== 4321 ,,, xxxxxx  and will 

require four state variables in the feedback controller. The system parameters are 

variables defined in the MATLAB workspace. Applying the state space inverted 

pendulum model, discussed in previous chapter 4.2 i.e. equation 4.9, and the 

feedback controller gains which were calculated using pole placement method and 

the Matlab M-file script to produce the gains can be seen in appendix 2. The gains 

calculation result is: 

[ ] [ ] [ ]7.65953.5582.33474.15332.4714,,,,,ˆ
4321 −−=== ii KkkkkKKK  
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The simulation result for step response is shown in Figure 4.4. The graph 

shows that the pendulum rod can be stabilised at zero point at about 2 seconds 

while the cart can be stabilised successfully as well and reaches the new position 

as the reference input at 1 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Simulink state variables step response 

 

When the cart is given a prescribed velocity, the state variables response 

result is as shown in Figure 4.5. 
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Figure 4.5 Simulink state variables result for cart velocity reference 

 

This graph shows that the cart velocity lags about 0.5 seconds from the cart 

velocity reference. However the cart velocity can be controlled successfully to 

track the reference given while at same time stabilised the angle pendulum rod.  
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4.2.2. SimMechanics Model of the Two DoF Inverted Pendulum with Pole         

Placement Control   

 

SimMechanics is a toolbox in Simulink-Matlab which can be used to 

simulate the dynamics of multibody systems which is a problem commonly found 

in mechanical engineering science. SimMechanics is based on an object oriented 

modelling and the plants or mechanical systems are modelled by connected block 

diagrams. SimMechanics blocks represent physical components and geometric 

and kinematic relationships directly. However, SimMechanics model can be 

interfaced seamlessly with ordinary Simulink block diagrams. Thus, it becomes 

possible to design a SimMechanics model operating under Simulink control 

system in one common environment. The SimMechanics modelling for the 

inverted pendulum is shown as Figure 4.6 below.   
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Figure 4.6 An Inverted pendulum model in SimMechanics 

 

The model in Figure 4.6 consists of block libraries for bodies, joints, 

sensors and actuators elements. Each body represent a part or component of 

inverted pendulum assembly. Modelling such a component in traditional ways can 

become quite difficult. Standard Simulink blocks have distinct input and output 

ports. The connections between those blocks are called signal lines, and represent 

inputs to and outputs from the mathematical functions. SimMechanics offers four 

ways to visualise and animate machines:  

� use machine default body geometry 

� convex hull from body CS location  

� equivalent ellipsoid from mass properties  

� external graphics file.  
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External graphics files can be used to visualise the inverted pendulum 

SimMechanics model since this provides more realistic visualisation than the 

others. The two DoF inverted pendulum assembly was built in Solidwork and then 

CAD assembly in Solidworks was imported to SimMechanics. The visualisation 

of the two DoF inverted pendulum physical model in SimMechanics model is 

shown in Figure 4.7. 

 

 

Figure 4.7 The two DoF Inverted pendulum SimMechanics model visualisation 
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As already mentioned, the SimMechanics blocks of two DoF inverted 

pendulum model can be interfaced with Simulink block diagrams. Thus, it 

possible to design a SimMechanics model system whereas control system is in 

Simulink blocks diagram as shown in Figure 4.8 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 The Inverted pendulum control in SimMechanics-Simulink 

 

As seen from the Figure 4.8 the inverted pendulum vehicle is modelled 

using SimMechanics and controlled by feedback controller. The feedback 

controller gains matrix was calculated using pole placement control strategy: 
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Figure 4.9 SimMechanics state variables result for step response  

 

The state variables result to step response can be seen in Figure 4.9. The 

graph is shown that the pendulum rod can be stabilised at zero point at about 2.5 

seconds while the cart can be stabilised successfully as well and reaches the new 

position as the reference input at 1 m. Compared with Simulink model result, 

SimMechanics model need a longer time of about 0.5 second to stabilise the 
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system. It can be seen from the Figure 4.9 that the pendulum is stable at 0.14 

radian after running 2.5 seconds whereas the Simulink model the pendulum stable 

at 0 radian after 2 seconds. However the result demonstrates that response 

between SimMechanics model and state space model in Simulink are very close. 

When the cart is given a prescribed velocity, the state variables response 

result is as shown in Figure 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 SimMechanics state variables result for cart velocity reference 
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The graph shows that the cart velocity lags about 0.5 seconds from the cart 

velocity input reference. However the cart velocity can be controlled successfully 

to track the reference input given while at same time stabilized the angle 

pendulum rod.  

 

4.3. Linear Quadratic Regulator (LQR) Control  

 

Another way to choose the feedback gains to control the two DoF inverted 

pendulum system is the quadratic optimal control method to minimize a quadratic 

cost function. One of the most common optimal controllers is the LQR (Linear 

Quadratic Regulator) controller. The quadratic criterion to be minimized is: 

 

( )∫
∞

+=
0

dtRuuQxxJ TT    (4.16) 

 

Cost function J can be interpreted as energy function, x is the state variables of the 

systems which is weighted by Q and u is control input of the systems which is 

weighted by R. In LQR, the gain matrix K for the state feedback controller law as 

equation (4.2) is found by minimising this cost function. Minimisation the cost 

function J, results in moving x to zero via little control energy and in turn 

guarantees that the systems will be stable. The two weighting matrices Q > 0 and 

R > 0, are symmetric and positive definite gain matrices and should be selected.  

The gain K (matrix) is determined by first solving the algebraic Riccati equation: 
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01 =+−+ − QPBPBQPAPA TT   (4.17) 

 

Then K can be calculated as: 

 

PBQK T1−=      (4.18) 

 

This calculation can be difficult by hand. However the MATLAB lqr 

command can be used.  The Matlab lqr command solves for the gain vector K 

given A, B, Q, and R. This approach is used in all LQR designs and simplest way 

is to assume as: 
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w

w
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Q  

 

R = l,   

 

The element in the (1,1) position will be used to weight the cart's position 

and the element in the (3,3) position will be used to weight the pendulum's angle 

and denoted as xw  and yw weighting variables. Then K matrix will be produced an 

optimal controller could be found by using K = lqr (A,B,Q,R), the m-file code in 

Matlab can be seen in appendix 3.  
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The weighting xw and yw variables could be changed to see the various 

responses. If xw and yw are increased even higher, improvement to the response 

should be found. But, in order to satisfy the design requirements of keeping xw and 

yw as small as possible since in this problem the values of x and y have been used 

to describe the relative weight of the tracking error in the cart's position and 

pendulum's angle versus the control effort. The higher the values of xw and yw, the 

more control effort will be required, but the smaller the tracking error. Using all 

parameter values of the two DoF inverted pendulum and by trial and error 

choosing the weighting values as xw = 10000 and yw = 1000, the following values 

for controller gains K matrix are determined:  

 

K = 

 -100.0000  -88.8858  545.3054   87.6982 

 

And the reference gain is 

 

Kr = 

 -100.0000 

 

These feedback gains will be used in the simulation of the designed two DoF 

inverted pendulum using state space Simulink model and SimMechanics model 

and will be discussed in 4.3.1 and 4.3.2.  
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4.3.1. Simulink Model of the Two DoF Inverted Pendulum with LQR Control   

 

The inverted pendulum in state space with feedback controller using LQR 

in Simulink modelling is as shown in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 The inverted pendulum LQR feedback control in state space using  

                       simulink 

 

The state space model and the LQR feedback control is shown in Figure 

4.11. Applying the state space inverted pendulum model, discussed in previous 

chapter i.e. equation 4.9, and the feedback controller gains which were calculated 

using LQR method as in appendix 3 that is: 
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produced results as shown in Figure 4.12. The graph shows that the pendulum rod 

can be stabilised at zero point at about 3 seconds while the cart can be stabilised 

successfully as well and reaches the new position as the reference input at 1 m. 

There is small overshoot only about 5 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Simulink LQR control state variables result for step response  

 

When the cart is given a prescribed velocity, the state variables response 

result is as shown in Figure 4.13. 
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Figure 4.13 Simulink LQR control state variables result for cart velocity reference 

 

The graph above is shown that the cart velocity lags about 1 second from 

the cart velocity reference. However the cart velocity can be controlled 

successfully to track the reference input given while at same time stabilised the 

angle pendulum rod.  
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4.3.2. SimMechanics Model of the Two DoF Inverted Pendulum with LQR 

Control   

 

The SimMechanics modelling for the two DoF inverted pendulum using 

LQR control is shown as Figure 4.14 below. 

   

 

 

 

 

 

 

 

 

 

Figure 4.14 The inverted pendulum LQR feedback control in SimMechanics 

 

As can be seen from Figure 4.14 the inverted pendulum vehicle discussed 

previously is modelled using SimMechanics and controlled by using LQR 

feedback controller. The feedback controller gains matrix was calculated using 

linear quadratic regulator (LQR) method that is: 

 

[ ] [ ] [ ]0.1007.873.5459.880.100,,,,, 4321 −−−== rr kkkkkkK  

SIMMECHANICS INVERTED PENDULUM CONTROL
USING LQR WITH SET POINT TRACKING 

Signal 1

V Velocity Ref

t

To Workspace5

rf

To Workspace4

Step1

x4

Pendulum Angular Velocity

x3

Pendulum Angle

Manual Switch

-K-

Kr

K*u

K from LQR

Torque

Cart Position

Cart Velocity

Pendulum Angle

Pendulum Angular Velocity

Inverted Pendulum Vehicle

1
s

Integrator2

Clock

x2

Cart Velocity

x1

Cart Position



 

48 

 

The state variables result to step response input is as Figure 4.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Simmechanics with LQR control state variables result for step  

                   response  

 

The graph is shown that the pendulum rod can be stabilized at zero point at 

about 3.5 seconds while the cart can be stabilised successfully as well and reaches 

the new position as the reference input at 1 m. Again compared with Simulink 
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model result, SimMechanics model needs 0.5 seconds longer to stabilise the 

system. It can be seen from the Figure 4.15 that pendulum stable at 0.14 radian 

after running 3.5 seconds whereas the Simulink model stable at 0 point after 3 

seconds. However the result demonstrates that there is little substantial difference 

between SimMechanics model and state space Simulink model.  

When the cart is given a prescribed velocity input, the state variables result 

is as Figure 4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 SimMechanics with LQR control result for cart velocity reference 
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The result as can be seen in Figure 4.16 shows that the cart velocity lags 

about 1 second from the cart velocity reference. However the cart velocity can be 

controlled successfully to track the reference input given while at same time 

stabilized the angle pendulum rod.  

 

4.4. PID Control 

 

PID (Proportional-Integral-Derivative) control is the widest type of 

automatic control used in industry. PID control has survived many changes in 

technology, from mechanics and pneumatics to microprocessors. The 

microprocessor has had a dramatic influence on the PID controller. Practically all 

PID controllers made today are based on microprocessors. This has given 

opportunities to provide additional features like automatic tuning, gain scheduling 

and continuous adaptation.  

PID controller will correct the error between the output and the desired 

input or set point. PID controller has the general form as: 

 

∫ ++=
dt

de
KedtKeKu dip    (5.1) 

 

Where Kp is proportional gain, Ki is the integral gain, and Kd is the derivative gain. 

The variable e represents tracking error, the difference between desired input (set 

point) and actual output. This error signal e will be sent to the PID controller and 

the controller will do calculation (algorithm) involves three separate parameters; 
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the Proportional, the Integral and Derivative values. The Proportional value 

determines the reaction to the current error, the Integral determines the reaction 

based on the sum of recent error and the Derivative determines the reaction to the 

rate at which the error has been changing. Then the new signal u will be sent to 

the plant or inverted pendulum system in my case and new output will be sent 

again to find new error signal e. The controller takes this new error signal and 

computes again. This process goes on and on during the simulation. 

Effects of Proportional, Integral and Derivative action on the plant or 

inverted pendulum system are:  

1. Proportional controller (Kp) will have the effect of reducing the rise time and 

steady state error, but never eliminate it. 

2. Integral controller (Ki) will have the effect of eliminating the steady-state error, 

but it may make the transient response worse.  

3. Derivative control (Kd) will have the effect of increasing the stability of the 

system, reducing the overshoot, and improving the transient response.  

Effects of each controllers Kp, Ki, and Kd on a closed-loop system are summarized 

in the Figure 5.1 shown below. 

 

Controller Rise Time Overshoot Settling Time SS Error 

Kp Decrease Increase Small change Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small change Decrease Decrease Small change 

Figure 4.17 The effects of Kp, Ki, and Kd to the dynamic system 
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 There are several methods to obtain the values or gains of Kp, Ki, and Kd, 

one of those methods is that proposed by Ziegler and Nichols in 1940’s (Astrom 

et al, 1995). The method first applied to open loop plant a step input and then 

observes the open loop response. This traditional tuning tended to provide a 

dynamic system with poor performance. Thus automatic tuning strategy was 

selected as it can give fast and useable gains for PID control blocks. A key 

method for auto tuning is to use relay feedback (Astrom, 1988). By using this 

technique can tune to obtain gain parameters with good performance and ideal 

response time. Therefore the author used PID auto tuner from the Simulink block 

to get the best performance of inverted pendulum dynamic system. The procedure 

to obtain PID gains controller using auto tuning in Simulink PID block is as 

follows:  

� Launch the PID tuner to compute a linear plant. 

� Tune the controller in PID tuner by adjusting the response time and the 

PID tuner calculates the gains that can stabilise the system. 

� Export the gains values to the PID control block and simulate the 

performance in Simulink.     
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4.4.1. Simulink Model of the Two DoF Inverted Pendulum with PID Control  

 

As the objective is to control the pendulum's position, which should 

remain to the vertical position or at 0 point radian, therefore the reference signal 

for the pendulum’s angle position should be zero. The force applied to the cart is 

added as a disturbance to the inverted pendulum system that causes the pendulum 

unstable. Then the PID controller will be used to stabilise the pendulum’s angle at 

upright position or zero while the cart is controlled by another PID to move to the 

new desired position. Thus the author proposes to control the two DoF inverted 

pendulum system using two PID controllers for controlling both cart and the 

pendulum respectively. 

The block diagram of the two DoF inverted pendulum plant in Simulink 

state space model with two different PID controllers is shown as in Figure 4.18. It 

can be seen from the Figure there are 2 different PID controllers. The ‘PID Cart’ 

is used to control state variable x1 that is cart position and ‘PID Pendulum’ is used 

to control state variable x3 that is pendulum angle.  
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Figure 4.18 Simulink inverted pendulum state space model with two PID  

                           controllers 

 

Applying inverted pendulum state space model as equation (4.9) and by 

using PID tuner the controller gains used inside for ‘PID Cart’ which controls cart 

as shown in Figure 4.19 are as 

 

Kp = -414.8, Ki = -5.1, and Kd = -467.4 

 

The gains inside ‘PID Pendulum’ which controls pendulum as shown in Figure 

4.20 are as: 

 

Kp = 4157.3, Ki = 3539.5, and Kd = 443.3 
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Figure 4.19 PID Cart to control cart position  

 

 

Figure 4.20 PID Pendulum to control pendulum angle  
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The simulation result of step responses for two PID controllers with 

consideration to stabilise the pendulum angle and cart position is as shown in 

Figure 4.21.   

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Figure 4.21 Step response of the system in Simulink using two PID controllers 
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(a) Cart Position x1 (b) Cart Velocity x2 

(c) Pendulum Angle x3 
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From Figure 4.21, it can be seen that by applying two PID controllers to 

the two DoF inverted pendulum system, all the state variables of the inverted 

pendulum system can be stabilised successfully with rise time about 1 second, 

settling time about 4 seconds and overshoot about 5 %. ‘PID Cart’ and ‘PID 

Pendulum’ were used to control the position of the cart and the angle of the 

pendulum respectively. As a conclusion, the model of two DoF inverted 

pendulum system can be stabilized successfully by applying two PID controllers 

simultaneously if they are tuned properly.  

Moreover using the same PID values as Figure 4.19 for ‘PID Cart’ and 

Figure 4.20 for ‘PID Pendulum’, when the cart is given a prescribed velocity, the 

state variables result is shown in Figure 5.22. The graph shows that the cart 

velocity clearly follows the prescribed velocity although there is a lags about 0.5 

seconds from the cart velocity input reference. However it can be concluded that 

cart velocity can be controlled successfully to track the reference input given 

while at same time stabilised the angle pendulum rod remain on vertical position 

by using two PID controllers. 
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Figure 4.22 Result Simulink model controlled with two PID for velocity  

                            reference 
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4.4.2. SimMechanics Model of the Two DoF Inverted Pendulum with PID 

Control  

 

A SimMechanics model with the same inverted pendulum parameter 

values is shown in Figure 4.23.  

     

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Simmechanics two DoF inverted pendulum model with two PID  

                        controllers 

 

To determine the controller gains the Matlab PID tuner was used. The 

controller gains used inside ‘PID Cart’ which controls cart as shown in Figure 

4.24 are as: 

Kp = -2084.1, Ki = -64.4, and Kd = -823.8 
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The gains inside ‘PID Pendulum’ which controls pendulum as shown in Figure 

4.25 are as: 

 

Kp = 4136.6, Ki = 3534.8, and Kd = 439.5 

 

These gains are successfully controlling the inverted pendulum system using 

SimMechanics as a diagram shown in Figure 5.13. 

 

 

 

Figure 4.24 PID tuner for cart position  
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Figure 4.25 PID tuner for pendulum’s angle control  

 

The simulation result of the cart performing a prescribed velocity 

reference input for two PID controllers is shown in Figure 4.26. The graph shows 

that the cart velocity is very close to the reference input given. There is a lagging 

but only less than 0.5 seconds from the cart velocity input reference. However the 

cart velocity can be controlled successfully to track the reference input given 

while at same time stabilised the angle pendulum rod. 
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Figure 4.26 Result SimMechanics model controlled with two PID for velocity  

                     reference 
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(a) Cart Position x1 (b) Cart Velocity x2 

(c) Pendulum Angle x3 (d) Pendulum Angular Velocity x4 
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4.5. Summary 

 

Progress to date of the design and simulation of spherical inverted 

pendulum wheelchair (SIPW) work is reported, which has demonstrated some 

various control methods of two DoF inverted pendulum system can be applied. 

Three control methods, pole placement, LQR and PID are capable of controlling 

the two DoF inverted pendulum's angle and the cart's position or velocity of the 

both Simulink model and SimMechanics model.  

In this work, the two DoF inverted pendulum is modelled and simulated in 

both ways Simulink model and SimMechanics model. A SimMechanics model 

differs significantly from a Simulink model in how it represents the two DoF 

inverted pendulum system. A Simulink model represents mathematics of the two 

DoF inverted pendulum motion, i.e., the differential equations that predict 

the inverted pendulum system future state from its present state. The mathematical 

model enables Simulink to simulate the system. In contrast, a SimMechanics 

model represents a physical structure of the inverted pendulum, the geometric and 

kinematic relationships of its component bodies. Thus mathematical model no 

longer needed to be developed as SimMechanics converts this structural 

representation to an internal, equivalent mathematical model. The inverted 

pendulum is represented by connected block diagrams. The Physical modelling 

environment SimMechanics makes the task easier than the Simulink one where 

the dynamic system equation should be developed first before building the block 

diagram of the system.  
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Based on simulation results, it can be said that the pole placement method 

can be useful to design controllers for the two DoF inverted pendulums with 

satisfactory performance. Another alternative technique, LQR also provides 

satisfactory result in controlling the two DoF inverted pendulum. Compared with 

the pole placement method, the LQR result gives time to stabilise the system 

about one second slower but LQR use smaller gains controller of K matrix. It 

means that the system uses lesser effort or energy to stabilise the system. This is 

the advantage to use LQR method the poles are placed in such way through the 

cost function to get optimal gains for not only in stabilising the system but also in 

controlling effort. The conventional controller such as PID is implemented to 

control the two DoF inverted pendulum in this work. The PID controller widely 

known is a good controller to control the single-input-single-output (SISO) 

system. Thus with only one PID controller cannot be used to control the cart and 

the pendulum simultaneously as the two DoF inverted pendulum is a multi-input-

multi-output (MIMO) system. Therefore in this work is implemented to use two 

PID controllers to control the two DoF inverted pendulum as can be seen in 

Figure 4.18. ‘PID Cart’ is used to control the cart whereas ‘PID Pendulum’ is used 

to control the pendulum. And the result shows that although there exists a lagging 

for less than one second but the cart is able to follow the cart prescribed velocity 

or on another word that the model of two DoF inverted pendulum system can be 

stabilized successfully by applying two PID controllers simultaneously if they are 

tuned properly. 
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CHAPTER 5 

DOUBLE CARTS INVERTED PENDULUM CLOSED 

LOOP PID CONTROL 

 

 

5.1. Introduction 

 

In the previous chapter, it was shown that all three of control methods of 

the conventional controllers (pole placement, LQR and PID) are capable of 

controlling the two DoF inverted pendulum's angle and the cart's position or 

velocity of the both Simulink model and SimMechanics model. The PID control 

approach that was proposed to use two PID controllers solves the problem to 

control inverted pendulum system which is MIMO system successfully. But a 

problem still exists when the two DoF inverted pendulum system is given a 

prescribed velocity this leads to the cart’s velocity lagging the input by about 0.5 

second. To overcome this problem, the author proposed an alternative inverted 

pendulum design that consists of two carts as seen in Figure 5.1. This means an 

inverted pendulum on cart system moving on top of another cart. This design 

gives possibility to control the bottom cart (vehicle) to get better characteristic on 

set point tracking while another cart moving on top to stabilise the inverted 

pendulum. Thus the author expects to get better characteristic for the system to 

track the set point such cart velocity reference input.  
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Figure 5.1 Double carts inverted pendulum model 3D visualisation using  

                         Solidworks in SimMechanics  

                            

5.2. SimMechanics Modelling of Double Carts Inverted Pendulum 

 

To simulate this design, a SimMechanics model was developed. The 

Simmechanics block diagram for the top cart of double carts inverted pendulum is 

as shown in the Figure 5.2 below. 
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Figure 5.2 The SimMechanics block diagram for top cart of double carts inverted  

                   pendulum 

 

The bottom cart or vehicle SimMechanics block diagram can be seen in Figure 5.3 

below that structurally consists of a cart or vehicle body, two shafts and four 

wheels that totally have mass as 8.51 kg.  
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Figure 5.3 The SimMechanics block diagram for bottom cart or vehicle 

 

5.3. Physical Properties of Double Carts Inverted Pendulum 

 

As discussed in previous chapter SimMechanics offers four ways to 

visualise and animate machines:  

� Use machine default body geometry  

� Convex hull from body CS location  

� Equivalent ellipsoid from mass properties  

� External graphics file  
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The author used external graphics files to visualise this design the double 

carts inverted pendulum SimMechanics model because this one is more realistic 

visualisation than the others. Furthermore by using Solidworks can be got 

physical properties needed to simulate the systems.  

The double carts inverted pendulum assembly was built in Solidwork first 

and then CAD assembly in Solidworks was imported to SimMechanics trough 

SimMechanics Link that converts Solidworks assembly document into XML 

document. The 3D visualisation of the double carts inverted pendulum physical 

model in SimMechanics model is as shown in Figure 5.1. 

The Solidworks model provides the physical properties of the double carts 

inverted pendulum model as follows: 

 

M  Mass of the top cart       0.37  (kg) 

m  Mass of the pendulum       0.98  (kg) 

k  Spring constant of cart friction            10 (N/m) 

b  Damper constant of cart friction  1 (N*sec/m)  

l  Length to pendulum CG      0.08 (m) 

I  Moment Inertia of the pendulum     0.01 (kg*m^2) 

Mv  Total mass of the vehicle (bottom cart) 8.51 (kg) 
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5.4. Control Design 

 

To stabilise the double carts inverted pendulum system in SimMechanics 

model and to make possible the control of both carts and the pendulum, 3 PID 

controllers are proposed to control the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 The double carts inverted pendulum with three PID controllers in  

                      SimMechanics 

SIMMECHANICS DOUBLE CARTS INVERTED PENDULUM 
USING PID CONTROLLERS

x5

Vehicle Velocity

V
eh

ic
le

 T
or

qu
e

V
eh

ic
le

 V
el

oc
ity

Jo
in

t
F

ric
tio

n

Vehicle

Signal 1

V Vel Ref

x2

Top Cart Velocity

x1

Top Cart Position

rf

To Workspace4

t

To Workspace1

0

TC Pos Ref

Scope

x4

Pendulum Angular Velocity

x3

Pendulum Angle

PID(s)

PID Vehicle

PID(s)

PID Pendulum 

PID(s)

PID Cart

0

PA Ref

C
ha

rt
 T

or
qu

e

S
 C

ar
t 

P
os

iti
on

S
 C

ar
t 

V
el

oc
ity

P
en

du
lu

m
 A

ng
le

P
en

d 
A

 V
el

oc
ity

Jo
in

t

F
ric

tio
n

Inverted Pendulum

Clock

 



 

71 

 

The Simmulink-SimMechanics block diagram with three different PID 

controllers strategy is shown as in Figure 5.4. The three PIDs are the ‘PID Cart’ 

which is used to control state variable x1 that is top cart position, the ‘PID 

Pendulum’ which is used to control state variable x3 that is pendulum angle and 

the ‘PID Vehicle’ which is used to control state variable x5 that is bottom cart or 

vehicle velocity.  

Again to determine the controller gains the Matlab PID tuner was applied. 

The controller gains used inside ‘PID Vehicle’ which controls bottom cart or 

vehicle velocity is as Figure 5.5 below. From step respond of PID tuning in the 

Figure 5.5 can be got parameter values inside the ‘PID Vehicle’ are as: 

 

Kp = 617.9, Ki = 0.6, and Kd = 0.  

 

From the Figure 5.5, it can be seen that the vehicle velocity of the double carts 

inverted pendulum system can be controlled and satisfy. The settling time is about 

0.06 s and the rise time is about 0.02 s.  
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Figure 5.5 PID tuners for bottom cart or vehicle control  

 

The controller gain used inside ‘PID Pendulum’ which controls 

pendulum’s angle is as Figure 5.6 below. From step respond of PID tuning in the 

Figure 5.6 can be got parameter values inside the ‘PID Pendulum’ are as: 

 

Kp = -346.7, Ki = 1.4, and Kd = 0.07  

 

From the Figure 5.6, it can be seen that the pendulum angle of the double carts 

inverted pendulum system can be controlled and satisfy. The settling time is about 

1.07 s and the rise time is about 0.01 s.  
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Figure 5.6 PID tuners for pendulum’s angle control  

 

The controller gain used inside ‘PID Cart’ which controls top cart’s 

position is as Figure 5.7 below. From step respond of PID tuning in the Figure 5.7 

can be got parameter values inside the ‘PID Cart’ are as: 

 

Kp = -82.7, Ki = 12.2, and Kd = 0  

 

From the Figure 5.7, it can be seen that the cart position of the double carts 

inverted pendulum system can be controlled and satisfy. The settling time is about 

1.04 s and the rise time is about 0.03 s with the position constrains of the top cart 

movement  0.3 ≤ x1 ≤ 0.3.  
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Figure 5.7 PID tuners for top cart position or velocity control  

 

5.5. Simulation Result 

 

The control strategy of using three PID controllers with the determined 

gain values hailed to successfully controlling the double carts inverted pendulum 

system using SimMechanics model as can be seen a diagram in Figure 5.8.   

The 10 seconds simulation with vehicle velocity reference input as shown 

in Figure 5.8 shows that the design strategy by creating two carts inverted 

pendulum system gives very satisfying result. As we can see from the result that 

the bottom cart or vehicle velocity is perfectly tracking the reference input given 

while the top cart is moving on top of the vehicle and successfully stabilising the 

pendulum rod remain at about 0 radian.  
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Figure 5.8 SimMechanics double carts inverted pendulum with three PID 

                         controllers and bottom cart or vehicle velocity reference input 
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5.6. Summary 

 

An alternative inverted pendulum design that consists of two carts (bottom 

cart (vehicle), top cart) and pendulum which is controlled using PID is presented 

in this chapter 5. This design gives possibility to control the bottom cart (vehicle) 

to get better characteristic on set point tracking while another cart moving on top 

to stabilise the pendulum stand upright. Three PID controllers are used to control 

both carts and the pendulum as can be seen in figure 5.4. ‘PID Vehicle’ is used to 

control bottom cart or vehicle velocity, ‘PID Pendulum’ is used to control 

pendulum angle and the ‘PID Cart’ is used to control top cart position or velocity. 

The simulation result shows that the system can be stabilised successfully while 

the vehicle follows the prescribed velocity. The vehicle is able to follow the 

reference very satisfactory with no lagging. From the result also shows that the 

sudden change of acceleration can lead to instability of the system.  

The advantage of the two carts design is the system can follow the 

prescribed velocity given very satisfactory, with no lagging. This is because the 

velocity of the system is no longer associated with the pendulum. However, there 

is disadvantage in this design. As the pendulum is stabilised by the moving second 

or top cart on the vehicle or bottom cart, thus the movement of the top cart is 

constrained by the long dimension of the bottom cart. As a result the capability of 

the system to stabilise the pendulum is highly depend on the long dimension of 

the bottom cart. If the top cart need to move exceed the long dimension constrain 

when stabilising the pendulum, the design will fail to stabilise the system. Thus 
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this design has limitation in stabilising the systems. The next chapter will 

investigate and discuss the more complex design i.e. the spherical inverted 

pendulum design in sliding mode as the cart moves sliding not rolling which has 

four DoF i.e. two DoF rotation moving of the pendulum in x-axis and z-axis and 

two DoF horizontally moving of the cart in x-axis direction and z-axis direction.  
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CHAPTER 6 

SPHERICAL INVERTED PENDULUM SLIDE MODE 

WITH SIMMECHANICS SIMULATION 

 

 

6.1. Introduction 

 

The SIPW is designed based on spherical inverted pendulum concept 

which has four DoF i.e. two DoF rotation moving of the pendulum in x-axis and z-

axis and two DoF horizontally moving of the cart in x-axis direction and z-axis 

direction. In this chapter discusses how to develop and simulate the spherical 

inverted pendulum in slide mode i.e. the cart move sliding not rolling while 

stabilising the pendulum using SimMechanics. The schematics diagram of the 

spherical inverted pendulum in slide mode is shown in Figure 6.1. This spherical 

inverted pendulum slide mode is discussed first to get fundamental understanding 

of the spherical pendulum concept knowledge and control using SimMechanics 

before continuing to the design of the SIPW that based on rolling mode which is 

discussed in chapter 7.  

A cart mounted inverted pendulum is relatively simple mechanical system 

which is inherently unstable and defined by highly nonlinear dynamic equations. 

The inverted pendulum model has been widely used as a teaching aid and in 

research experiments around the world because it’s an imaginable unstable 
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nonlinear dynamics problem commonly discussed in control engineering (Hauser 

et al., 2005),  It is well established benchmark problem that provides many 

challenging problems to control design. Most of the researches focused on two 

types of inverted pendulum modelling and control: linear and rotational. For 

example, the swing-up and balancing problems were studied in (Chan, 2004) and 

(Liao, 2005) and the inverted-pendulum control problem of the multi-joint was 

studied in (Tsai, 2006) and etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Schematic diagram of the spherical inverted pendulum in slide mode 

system with state variables geometry 
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Some researchers recently have considerable attention in investigating 

two-dimensional or spherical inverted pendulum problems. Generally speaking, 

aside from balancing control problem, the trajectory tracking control of such 

pendulums is also included due to an x-y mobile base. A mathematical modelling 

was proposed and then constructed a stable controller for a spherical inverted 

pendulum in (Liu et. al. 2007). In addition, there were some approaches 

developed for stabilising control of spherical inverted-pendulum systems, 

examples were based on PID controllers by (Wang, 2011), based on LQR by 

(Vicente, 2007), the cursive least-squares estimation (RLS) by (Yang et. al. 2000), 

decoupled neural network reference compensation technique by (Jung and Cho, 

2004) and etc. Although a lot of control algorithms are researched in the systems 

control design, PID and LQR are still the common control approaches to 

overcome the problem and most widely used controller structure in the realization 

of a control system. As the spherical inverted pendulum system as a MIMO and 

LQR is easier to design than PID for MIMO system thus in this design the author 

has used a Linear Quadratic Regulator (LQR) Control strategy to stabilise the 

spherical inverted pendulum slide mode system.  
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6.2. Modelling of Spherical Inverted Pendulum Slide Mode 

 

The spherical inverted pendulum model is developed by using Matlab-

SimMechanics software. This software is permits to build models easily using 

drag and drop, and then visualise, animate and simulate them.  

 

6.2.1. SimMechanics Modelling of Spherical Inverted Pendulum Slide Mode 

  

 As it has been explained above in SimMechanics, the dynamics system is 

made based on physic system. Physic system for the spherical inverted pendulum 

model that considers the dynamic of the pendulum and the cart motion consists of:  

• 2 prismatic actuators (motor x and motor z), which represent motion of the 

cart in x-direction and z-direction. 

• 1 custom joint that consist of 2 prismatic in x-direction and z-direction, 

which represent two DOFs of the cart motion. 

• 1 custom joint that consist of 2 revolute around x-axis and z-axis, which 

represent two DOFs of the pendulum rotation. 

• 2 bodies, which represent the cart and the pendulum 

• 1 join initial condition, which is to set the initial angular position of both 

degrees of freedom of the pendulum 

• 8 sensors which are to measure cart linear position and velocity in x-

direction and z-direction, angular position and velocity of both degrees of 

freedom of the pendulum 
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• 2 input ports (Ux and Uz), to connect input signals to system 

• 8 output ports (x1-TX, x2-TZ, x3-TXAV, x4-TZAV, x5-CPX, x6-CPZ, 

x7-CVX and x8-CVZ), to read output signals from system 

• Reference systems that consist of machine environment, root ground, weld 

and root part. 

The completed SimMechanics block diagrams of the spherical inverted pendulum 

system is as shown in Figure 6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Simmechanics model of spherical inverted pendulum slide mode  
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As SimMechanics offers visualisation tool thus the spherical inverted 

pendulum system can be visualised in a more realistic model by using external 

graphics files. The spherical inverted pendulum assembly was built in Solidwork 

and then CAD assembly in Solidworks was imported to SimMechanics. The 

SimMechanics visualisation window display of the spherical inverted pendulum 

slide mode physically can be seen in Figure 6.3. 

 

 

 

Figure 6.3 SimMechanics visualisation window display of the spherical inverted 

pendulum in slide mode system  
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6.2.2. Physical Geometry and Parameters of the Spherical Inverted 

Pendulum Slide Mode 

 

The physical geometry description of the four DoF spherical inverted 

pendulum slide mode can be seen in the schematic diagram of the systems with all 

state variables geometry as in Figure 6.1. This model has 8 state variables. The 

physical geometry describing all 8 state variables of the systems model are 

defined as follows: 

 

θx =  Pendulum angle that rotates around z-axis  (rad) 

xθ&  = Pendulum angular velocity around z-axis  (rad/s) 

θz = Pendulum angle that rotates around x-axis  (rad) 

zθ&  = Pendulum angular velocity around x-axis  (rad/s) 

x = Cart position on x-axis direction   (m) 

x&  = Cart velocity on x-axis direction   (m/s) 

z = Cart position on z-axis direction   (m) 

z&  = Cart velocity on z-axis direction   (m/s) 

 

The four DoF inverted pendulum slide mode parameter values used for the 

simulation are the same as physical properties provided by the SolidWorks model, 

as shown in Figure 6.3 developed as:   

Pendulum :  m = 65.5 (Kg)    

Ix = Iy = Iz = 1.7 (Kg.m2)  
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Cart  :  M = 20 (Kg)    

Ix = Iz = 0.51 (Kg.m2)  

Iy = 0.83 (Kg.m2) 

Gravity :  g = -9.8 (m/s2)  

Distance between Pendulum’s CG to Cart’s CG :  l = 1 (m) 

 

Dynamic behaviour of the system then can be seen by means of 

SimMechanics Simulation. But the system would be unstable as there is still no 

controller. For working with the stable system, it needs to calculate a controller 

which will need a mathematical model of it. Besides, that model must be linear. 

Thus at the next step in 6.2.3 and 6.2.4 will get a linear mathematical model. 

 

6.2.3.  Linearisation of Dynamic Model 

 

By using Simulink-Matlab control design tool can be got a representation of 

system from the SimMechanics model directly into LTI state space model in the 

form: 

 

( ) ( ) ( )tButAxtx +=&  

( ) ( ) ( )tDutCxty +=  

 

where x is the model’s state vector, y is outputs and u is inputs. 
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The system’s state vector in SimMechanics model as shown in Figure 6.2 was 

ordered as in Figure 6.4. : 

 

 

Figure 6.4 State variables of the spherical inverted pendulum slide mode ordering 

This ordering implies that [ ]Tzxzx zxzxx &&&& θθθθ=  and 

[ ]T
zx uuu = , where θx is the angle between pendulum and projected line of 

pendulum into x-y plane, θz is the angle between pendulum and projected line of 

pendulum into z-y plane, x is the cart position in the x direction and z is the cart 

position in the z direction (as can be seen in Figure 6.3). Since the pendulum must 
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be kept on vertical position, therefore the system model will be linearised near 

zero or θx ≈ 0, θz ≈ 0 thus pendulum initially angles position set to zero. After 

executing Simulink control design tool will get all necessary information to make 

a state space model of the system as presented in 6.2.3. 

 

6.2.4. Mathematical Model 

 

After executing Simulink control design tool the result of the system 

linearisation around θx = 0 and θz = 0 gave properties matrices of the state space 

model, A and B, as:  

 

A =   
               x1         x2      x3      x4      x5      x6      x7      x8  
   x1          0           0        1        0        0        0        0        0  
   x2          0           0        0        1        0        0        0        0  
   x3   37.89           0        0        0        0        0        0        0  
   x4          0    37.89        0        0        0        0        0        0  
   x5          0           0        0        0        0        0        1        0  
   x6          0           0        0        0        0        0        0        1  
   x7   29.02           0        0        0        0        0        0        0  
   x8          0   -29.02        0        0        0        0        0        0  

 

B =   
                   u1              u2  
   x1              0                0  
   x2              0                0  
   x3   0.04517                0  
   x4              0   -0.04517  
   x5              0                0  
   x6              0                0  
   x7   0.04629                0  
   x8               0    0.04629 
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The spherical inverted pendulum sliding mode also can be presented in 

state space using Simulink modelling as shown in Figure 6.5 and the matrices A 

and B put into the gain parameters A and B in the model. 

 

 

 

 

 

Figure 6.5 The state space model of the spherical inverted pendulum                   

 

6.3. Control Design 

 

One of the most common optimal controllers is the LQR (Linear Quadratic 

Regulator) controller. The quadratic criterion or cost function to be minimized is 

as equation (4.16) i.e :  

( )∫
∞

+=
0

dtRuuQxxJ TT  

 

And the gain matrix K to minimise this cost function need to be found. 

Minimisation the cost function J, results in moving x to zero via little control 

energy and state distance from origin as possible. The matrices Q > 0 and R > 0, 
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are symmetric and positive definite gain matrices. The gain K (matrix) is 

determined by first solving the algebraic Riccati equation (4.17) i.e.:  

 

01 =+−+ − QPBPBQPAPA TT  

 

Then K can be calculated as equation (4.18) i.e.:  

 

PBQK T1−=  

 

This calculation can be difficult by hand. However the MATLAB lqr command 

can be used. The Matlab lqr command solves for the gain vector K given A, B, Q, 

and R. This approach is used in our LQR design and simplest way is to assume as:  

 

































=

10000000
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00100000
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00000010
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Q  

 









=

00001.00
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R  
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Then K matrix will be produced an optimal controller could be found by 

using code K = lqr (A, B, Q, R), m-file code in Matlab. Using all parameter values 

of the spherical inverted pendulum and choosing Q and R as above, the following 

controller gains K matrix was determined as: 










−−−−
−−

=
5.56602.31607.119601.42660

05.56602.31607.119601.4266
K

  

This feedback controller gain was used in the simulation of the spherical 

inverted pendulum SimMechanics model that will be discussed in next section. 

The Simulink block diagram of model with feedback control using LQR method 

is as Figure 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 The spherical inverted pendulum with LQR feedback control 
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6.4. Simulation Result  

 

As discussed in modelling section the spherical inverted pendulum 

SimMechanics model produces 8 outputs i.e. x1-TX, x2-TZ, x3-TXAV, x4-

TZAV, x5-CPX, x6-CPZ, x7-CVX and x8-CVZ which represent system’s state 

variables [ ]Tzxzx zxzxx &&&& θθθθ= .  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Pendulum of the System Responses 
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(a) Angle Position of θx 
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(b) Angular Velocity of θx 
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(c) Angle Position of θz 
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(d) Angular Velocity of θz 
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For simulation the system is set an initial condition of the pendulum as θx 

at 0.1 rad and θz at 0.2 rad. It means that the cart needs to move at the same time 

to eliminate the pendulum angles θx and θz to zero radians so that the pendulum is 

on vertically straight position and make the stabilisation of the system. The 

pendulum systems responses can be seen in Figure 6.7 and the cart responses can 

be seen in Figure 6.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Cart of the System Responses 

(c) Cart Position in Z (d) Cart Velocity in Z 
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(a) Cart Position in X (b) Cart Velocity in X 
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It can be seen that LQR controller can realise stabilisation of spherical 

inverted pendulum with good robustness. Figures show the performance of the 

spherical inverted pendulum with LQR controller has settling time about 4 

seconds and the percentage overshoot about 1 %. The displacements of the cart 

when the initial condition of the pendulum applied as θx = 0.1 rad and θz = 0.2 rad 

to the system are -0.2 meter in x-axis direction and 0.4 meter in z-axis direction. 

Thus the LQR controller is able to stabilise the spherical inverted pendulum low 

percentage overshoot. In term of steady state error the controller had shown very 

outstanding performance by giving zero error at time 5 seconds and more. The 

spherical inverted pendulum slide model which is developed using SimMechanics 

and using LQR control gives very satisfactory simulation result. 

 

6.5. Summary 

 

This chapter has described how to simulate the spherical inverted 

pendulum, a dynamics of multibody system, in sliding mode which is successfully 

designed with SimMechanics. The control strategy used is based on the LQR 

feedback control for the stabilisation of the spherical inverted pendulum system. 

The simulation result study has been done in Simulink environment shows that 

LQR control strategy is capable to control multi input and multi output of 

spherical inverted pendulum system successfully and gives satisfy of controlling 

the spherical inverted pendulum system.  
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Moreover this chapter also shows that the use of SimMechanics is an 

interesting and important add-on to the simulation environment Simulink. It 

allows to include the SimMechanics spherical inverted pendulum model 

subsystems into Simulink models. Furthermore especially for non-experts will 

benefit from the visualisation tools provided in SimMechanics that it can facilitate 

the modelling and the interpretation of results. Using SimMechanics was 

impressive to realise the spherical inverted pendulum modelling. It can be say in 

another words that SimMechanics proved to be a very suitable tool for multibody 

dynamics simulation. Thus in the next chapter 7 the author discusses the 

development of the SIPW design and simulation using SimMechanics with LQR 

feedback control strategy.  
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CHAPTER 7 

SPHERICAL INVERTED PENDULUM WHEELCHAIR 

 

 

7.1. Introduction 

 

In this chapter discusses the development of the Spherical Inverted 

Pendulum Wheelchair (SIPW) design and simulation using SimMechanics with 

LQR feedback control method. The wheelchair concept is based upon the control 

of spherical inverted pendulum concept is a robot that is balanced on a ball as 

shown in Figure 7.1. The upper cylindrical tube represents simplify wheelchair 

occupant. The two plates supported by four columns represent physical properties 

of the wheelchair. The ball is the method of creating traction between the SIPW 

and the ground. 

 

Figure 7.1 The SIPW concept 
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 This design arrangement with ball acts as spherical wheel for the 

wheelchair, allowing the wheelchair moves in any direction. The wheelchair is 

balanced by driving the ball such that the wheelchair does not fall over but moves. 

This can be done by using mouse ball drive mechanism concept. This driving 

mechanism is via actuated rollers which drive the ball to produce motion. The 

mouse ball drive mechanism construction is considered as can be seen in Figure 

7.2. The arrangements of ball and rollers are as orthogonal fixed four rollers at 

ball centre axis.  The rollers consist of two driven rollers (coloured in red) and two 

idler rollers (coloured in blue). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Mouse ball driving mechanism concepts 

 

  

Side View Top View 
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7.2. Modelling of Spherical Inverted Pendulum Wheelchair  

 

 This section describes the derivation of dynamic modelling of spherical 

inverted pendulum wheelchair (SIPW) required as basis for stabilising controller 

design development. This starts with making some assumptions to create 

simplified model of SIPW which consists of seven rigid bodies i.e. the ground, the 

ball, the body, and four rollers. The Lagrangian method is used to derive SIPW 

model equation of motion.  

 

7.2.1. Assumptions and Parameters 

  

The dynamics of the actual SIPW are very complex and difficult to 

develop, thus here is a need to create a simplified dynamic model. The following 

assumptions are used to simplify the SIPW model made in one planar system 

model which dynamic modelling can be derived using Lagrangian approach: 

� No deformations happen on all parts of SIPW: the ball, the four rollers, the 

body and the ground are assumed as rigid bodies. 

� No slip happens between the ball and the rollers and between the ball and 

the ground. 

� The friction between the ball and the ground and between the rollers and 

the ball are modelled as viscous damping. 

� The control inputs are as torques that applied to the body and the ball. 

� The motion is decoupled in two separate planar models (in x-y plane and z-
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y plane) and that equations of motion in these two planes are assumed 

identical.  

� The body angle and roller angle (= motor angle) can be measured directly. 

� The ball moves only horizontally and does not move in the vertical 

direction thus this model is designed to move on flat floor without steep 

inclination.  

The sketch of the simplified SIPW in one planar model in x-y plane showing the 

coordinates and measured parameters i.e. the body angle and the roller angle is 

shown in Figure 7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Sketch of the simplified SIPW in the x-y plane model 
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The physical parameters describing the simplified SIPW model which are 

used to derive the mathematical dynamics modelling for one planar i.e. in x-y 

plane are defined as follows: 

MB =  Mass of the body     = 37.342 (Kg) 

Mb =  Mass of the ball     =   2.353 (Kg) 

l  = Distance between  ball CG and body CG  =   0.737 (m) 

Rb = Radius of the ball    =   0.200 (m) 

Rr = Radius of the roller (motor)   =   0.030 (m) 

n = Gear ratio = Rr/Rb     

Ib = Inertia Moment of the ball    =   0.061 (Kgm2) 

IBx = Inertia Moment of the body about x-axis =   3.800 (Kgm2) 

IBz = Inertia Moment of the body about z-axis =   3.800 (Kgm2) 

IMx = Inertia Moment of the roller/motor in x-axis = 0.4x10-4(Kgm2) 

IMz = Inertia Moment of the roller/motor in z-axis = 0.4x10-4(Kgm2) 

µBb = Friction coefficient between body and ball = 0.2 

µbg = Friction coefficient between ball and ground = 0.2 

 

7.2.2.  Derivation of Mathematical Model 

 

 The dynamics modelling of the simplified SIPW as has been explained 

above that only developed in one planar model i.e. in x-y plane using Lagrangian 

approach. The code that is used can be seen as in appendices 5-8. Another one 

planar model i.e. in z-y plane is assumed to be identical dynamics model.  
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 The development of the mathematical model of the simplified SIPW using 

Lagrangian approach starts with determining the energy of the dynamics systems 

i.e. the energy of the body, the ball, and the motor (roller). Each these parts have 

kinetic energy and potential energy as follows:  

The ball energy: 

The ball angle position = 

xx nϕθ +      (7.1) 

The ball position in x direction = 

( )xxbb nRx ϕθ +=     (7.2) 

Angular velocity of the ball =  

xx nϕθ && +      (7.3) 

Linear velocity of the ball in x direction = 

( )xxbb nRx ϕθ &&& +=     (7.4) 

Thus, 

Linear kinetic energy of the ball is: 

( )
2

22
xxbb

lkb

nRM
T

ϕθ && +
=    (7.5) 

Rotational kinetic energy of the ball is: 

( )
2

2

xxb
rkb

nI
T

ϕθ && +
=     (7.6) 

As assumed that there is no vertical movement of the SIPW thus the potential 

energy of the ball should be,  

0=bV       (7.7) 
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The body energy: 

The body angle position = 

xθ       (7.8) 

The body position in x direction = 

( )xbB lxx θsin+=     (7.9) 

The body position in y direction = 

( )xB ly θcos=      (7.10) 

Angular velocity of the body =  

xθ&       (7.11) 

Linear velocity of the body in x direction = 

( ) xxbB lxx θθ &&& cos+=     (7.12) 

Linear velocity of the body in y direction = 

( ) xxB ly θθ && sin−=     (7.13) 

Thus, 

Linear kinetic energy of the body is: 

( )( )
2

cos
2

xxbB
lkB

lxM
T

θθ && +
=    (7.14) 

Substitute bx&  with equation (7.4) and solve the equation will get: 

 

( ) ( )( )
2

2cos2cos2 222222222
xbxxbxbxbxxxbxxB

lkB

RnRRnlRnlRlM
T

θθϕϕθθθϕθθ &&&&&&&& +++++
=

 

(7.15) 
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Rotational kinetic energy of the body is, 

2

2
xBx

rkB

I
T

θ&
=      (7.16) 

The potential energy of the body is,  

( )xBB glMV θcos=     (7.17) 

The motor energy: 

Motor position = 

xx ϕθ +      (7.18) 

Motor angular velocity = 

xx ϕθ && +      (7.19) 

Thus, 

Angular kinetic energy of the motor is, 

( )
2

2

xxMx
rkm

I
T

ϕθ && +
=     (7.20) 

Then, 

The Lagrangian L is the total kinetic energy minus the total potential energy: 

VTL −=         

BbrkBlkBrkblkb VVTTTTL +++++=    (7.21) 

And the Lagrangian equation dictates as:  

Fi
q

L

q

L

dt

d

ii

=
∂
∂−

∂
∂
&

    (7.22) 

Where, 









=

x

xq
ϕ
θ
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And the force F matrix is determined by: 

- The effects of the viscous friction between ball and ground : 

xbgbgx θµτ &−=  

 

- The torque applied to the ball by the roller (motor): 

The model of voltage controlled DC motor torque with negligible 

inductance is as (Yamamoto, 2008): 

   
( )

m

xbxt
mx R

KEK ϕτ
&+

=  

 Where E is motor voltage, Kt is the motor torque constant, Kb is the motor 

back emf constant and Rm is the motor resistance. 

 

- The effects of the viscous friction between ball and body: 

xBbBbx ϕµτ &−=  

Thus the force matrix is determined as: 










+
=

Bbxmx

bgxF
ττ

τ
 

 

Evaluating equation (7.22) using Matlab symbolic package and rearranging gets 

the equation of motion in the following form: 

        

  ( ) ( ) ),,(,, xxxx vqqFqqRqqqM &&&&& =+    (7.23) 

Where, 
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Mx is the 2x2 mass matrix with columns, Mx(:,1) and Mx(:,2) as: 

 

( ) ( )
( ) 









++++
++++++

=
xBbbbBbbMx

xBbbbBbBbMxBx
x

MnlRMnRMnRnII

MlRMRMRMlIII
M

θ
θ

cos

cos2
1:,

22

222

 

 

( ) ( )









+++
++++

=
bbBbbMx

xBbbbBbbMx
x

MRnMRnnII

MlRMnRMnRnII
M

22222

22 cos
2:,

θ
 

 

Rx is the 2x1 remainder matrix as: 

 

( ) ( )
( ) 









−
−−

=
xxBb

xBxxBb
x

MnlR

glMMlR
R

θθ
θθθ

sin

sincos
2

2

&

&

 

 

Fx is the 2x1 force matrix as: 










+
=

Bbxmx

bgx
xF

ττ
τ

 

 

The equation (7.23) can be rearranged to be: 

( )xxx RFMq −+= −1
&&     (7.24) 

And this equation can be written in nonlinear state space standard form as: 

( )xfx =&        (7.25) 

Where, 

[ ]Txxxxx ϕθϕθ &&=  
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7.2.3.   Linearisation of Dynamic Model  

         

 As this SIPW design uses LQR control method thus it requires that the 

equation model of the SIPW system be linear. The nonlinear state space equation 

(7.25) is linearised using a first order approximation as follows: 

( ) ( )xxJxfx ˆˆ +=&      (7.26) 

Where, 

x̂  is the linearised state = [ ]Tqq &  

x  is the point which linearise about = [ ]Tx 000 ϕ  

( )xJ  is the Jacobian at the point which linearise about  

Taking x̂  to be the state vector x, so that the equation (7.26) can be rewritten in 

standard linear state space form as follows: 

BuAxx +=&      (7.27) 

Where by using Matlab symbolic package for the x-y plane gets the following 

matrices: 
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Where, 
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And, 
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( ) ( )
DR

MlRMRMRMlIIIK
B

m

BbbbBbBbMxBxt
x

2
1,4

222 ++++++
=  

 

Where, 
 
 

bMxbBMxbBMxMxbbBxMxbMxbMxBx MIRMIRMIlIInIInInIIIIID 222222 +++++−+=
 bMxbbBxbBMxbBBxbBb MIRnMIRnMIRnMIRnMIln 2222222222 +++++  

BMxbbBbbMxbBMxbBMxb MInlRMMRlnMInRMInRMIlR 2222 22222 −+−−+  

 

 

7.2.4.   Complete Mathematical Model     

 

The dynamics modelling of the simplified SIPW as has been explained 

previously in chapter 7.2.1 that both planar models in x-y plane and in z-y plane 

are assumed to be identical. Therefore the derivation is only repeated for the 

dynamic planar model in z-y plane. Then the completed equations of the SIPW is 

combination between the x-y planar model and z-y planar model into one set of 

linear state space matrices with state vector as the following: 

    

[ ]Tzzzzxxxxx ϕθϕθϕθϕθ &&&&=  

 

And the matrices are as: 
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( ) ( ) ( )
( ) ( )
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Where Az values are the same as the Ax values as defined previously in 7.2.3 with 

the same physical parameters for the z-y plane. 

And, 
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Where Bz values are the same as the Bx values as defined previously in 7.2.3 with 

the same physical parameters for the z-y plane. 

These the complete mathematical model for the SIPW in linear state space form 

that is used as basis to find the gain matrix controller. 
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7.3. Control Design        

 

 There are a number of controller options that may be able to stabilise the 

SIPW system, but in this project as mentioned previously in chapter 6 gains 

controller calculated using LQR control strategy is selected to control the system. 

The LQR control strategy has been discussed in previous chapters. It is based 

upon state feedback law which is the control signal for the system based on the 

desired state reference xref  and actual state of the system x such as: 

( )xxKu ref −=     (7.28)  

In the SIPW system, the control signal input vector 

[ ]TBbzmzbgzBbxmxbgxu ττττττ ++= is torque that applied to the ball and the 

state vector of the system [ ]Tzzzzxxxxx ϕθϕθϕθϕθ &&&&= . The LQR 

find gain controller matrix K which optimises the control signal input by 

minimalising the cost function ( )∫
∞

+=
0

dtRuuQxxJ TT  near linearised point. 

Where Q is 8x8 matrix of weight for the state and R is the weight for the applied 

torque. The diagonal terms in the Q matrix correspond to the body angle relative 

to vertical in the x-y plane xθ , the roller angle relative to the body in the x-y 

plane xϕ , the body angle relative to vertical in the z-y plane zθ , the roller angle 

relative to the body in the z-y plane zϕ , the angular velocity of the body in the x-y 

plane xθ& , the angular velocity of the roller in the x-y plane xϕ& , the angular velocity 

of the body in the z-y plane zθ& , the angular velocity of the roller in the z-y 
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plane zϕ& . The matrices Q and R used to obtain the control gain matrix K for 

stabilising the SIPW system are: 

































=

10000000

01000000

00100000

000600000000

00001000

00000100

00000010

000000060000

Q  

And, 









=

10

01
R  

These weighting values were selected and assumed by trial and error only 

for reasonable balancing the systems and not to achieve a certain goal. These 

choosing are also intended to give high importance to the body and the ball 

position and low importance to the torque used. Then K matrix will be found for 

the SIPW system by using code K = lqr (A, B, Q, R), m-file code in Matlab. Using 

all parameter values of the SIPW system and choosing Q and R as discussed above, 

the following controller gains K matrix was determined as: 

 










−−−−
−−−−

=
20478527150000

00002047852715
K  

 

This feedback gain matrix then is used in the simulation of the SIPW in 

SimMechanics modelling. It will be discussed in the next section 7.4 and 7.5.  
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7.4. SimMechanics Block Diagram of SIPW Modelling    

  

 The modelling of SIPW in SimMechanics as a block diagram modelling is 

shown in Figure 7.4. The model consists of: 

• Seven rigid bodies, which represent the ground, the ball, the body 

(represent chair and occupant), and four rollers. 

• A custom joint connects the ground and the ball. The joint consist of 2 

prismatic in x-direction and z-direction, 2 revolute in x-axis and z-axis 

which represent ball motion. 

• A custom joint connects the ball and the body that consist of 2 revolute 

around x-axis and z-axis, which represent body motion. 

• Four revolute joints connect the body to four rollers (x1 roller, x2 roller, z1 

roller, and z2 roller). 

• A joint initial condition, which is to set the initial angular position of body. 

• The ball rolling constraint block is to give constraint for relative motion of 

the ball respect to the ground.  

• The roller constraint block is to give constraint for relative motion of the 

rollers and the ball 

• The sensors block is to sense position and velocity of the ball and the 

body, and to give input signals to system. 

• The controller block is to control the SIPW system. 

• The actuator block is to apply torques to the rollers. 
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Figure 7.4 SIPW in SimMechanic block diagram modelling 

 

 The ball rolling constraint block gives limitation of the ball motion. As it 

mentioned previously in section 7.2.1 that in this SIPW design the ball moves 

only horizontally and does not move in the vertical direction thus the constraint 

equation for the ball motion is defined as:   
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R
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v

v

v

ω

ω
0     (7.29) 

 

Where bv is the linear velocity of the ball, bω is the angular velocity of the ball, 

bR is the ball radius, x and z are axes that are parallel to the ground, and y is axis 

that is vertical to the ground. The constraint makes the ball moves by rolling on 

the ground without slipping and cannot move in the vertical direction. Figure 7.5 

shows the contents inside the ball rolling constraint block. 

 

 

 

 

 

 

 

 

 

Figure 7.5 The ball rolling constraint 
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ball to meet with assumption mentioned previously in section 7.2.1 that in the 

SIPW design assumed to be no slip happens between the ball and the rollers. The 

constraint equation for the ball motion relative to the ball is defined as:   
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   (7.30) 

 

Where x1r and x2r refer to the rollers that rotate about z-axis, z1r and z2r refer to 

the rollers that rotate about x-axis. The constraint also makes the rollers and the 

ball rotate in correct direction. Figure 7.6 shows inside the roller constraint block. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 The roller constraint 
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Figure 7.7 shows inside the sensor block diagram in Figure 7.4. The block 

contains input signals block and state variables sensor blocks. The XB sensor 

block in top-left side of the figure senses the custom joint connecting the body and 

the ball in x-plane. The sensor measures relative angular position and velocity of 

the body respect to the ball in x-plane, Bbxω . Below the XB sensor is the Xb 

sensor block which senses angular position and velocity of the ball in x-plane, bxω . 

The next is continuous angle and add blocks to obtain the body position in 

continuous angle (the top blocks) and velocity of the body (the lower blocks) in x-

plane to implement bxBbxBx ωωω += . Below the Xb sensor is the input signals 

block. It gives reference inputs or signals desired for the system i.e. 

zzxxzzxx ϕθϕθϕθϕθ &&&&   or they named as state vector in previous 

section 7.3 discussion. Below the input signals block is the ZB sensor block in 

which senses the custom joint connecting the body and the ball in z-plane. The 

sensor measures relative angular position and velocity of the body respect to the 

ball in z-plane, Bbzω . Below the ZB sensor is the Zb sensor block which senses 

angular position and velocity of the ball in z-plane, bzω . The next is an add block 

to obtain the angular position (top add block) and velocity (the lower add block) 

in x-plane of the body to implement bzBbzBz ωωω += . Thus the sensor block 

outputs send signals of reference state variables and actual state variables in x-y 

plane and in z-y plane to the controller block. 
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Figure 7.7 Inside sensor block 

 

 Figure 7.8 is inside the controller block in Figure 7.4. The block gets all 

the sensor data described above i.e. the reference state variables and the actual 
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state variables. They put into two identical controllers, the top one in x direction 

and below one in z direction. The outputs of this block are torques that will be 

applied to the ball. These ball torques is then converted to roller torques in 

actuator block.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Controller block 
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Figure 7.9 is inside of the actuator block in Figure 7.4. This block contains 

two motor blocks and body actuator blocks. This actuator block is used to convert 

the ball torques sent by the controller block to be rollers torques. Then these roller 

torques are applied to the rollers for both in x-y plane and in z-y plane.  

 

 

 

 

 

 

 

 

 

 

Figure 7.9 The inside of the actuator block 

 

7.5. Simulation Result 

 

The visualisation window of the SIPW modelling in SimMechanics is 

shown in Figure 7.10.  
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Figure 7.10 SimMechanics visualisation window of the SIPW  

 

Then for simulation the SIPW system modelling in SimMechanics is set 

initially by placed the body angle θx at 0.1 rad from the vertical. This means that 

the SIPW needs to move to eliminate the body angle θx position to zero radians so 

that the body that represent chair and people is on vertically straight position and 

make the stabilisation of the SIPW system. The simulation operates and is shown 

in the x-plane only as the controller operates in the same way in both planes. The 

result can be seen in Figure 7.11. 
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Figure 7.11 Stabilisation of the SIPW  

 

The simulation result in Figure 7.11 shows that the controller using LQR 

method can stabilise the SIPW system. The graph shows that the body which was 

initially placed at 0.1 rad from vertical can be stabilised to zero point at about 3 

seconds while the roller also can reach steady state error to zero and with small 
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overshoot only about 2 %. Thus the LQR controller is able to stabilise the 

spherical inverted pendulum low percentage overshoot 

When the system is given a prescribed velocity, the simulation result or 

the body and the ball responses are as shown in Figure 7.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12 The SIPW with command tracking  

The result with prescribed velocity as can be seen in Figure 7.12 shows 

that the SIPW systems using LQR controller method has rollers angular velocity 
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lagging about less than 1 second from the velocity input reference given. However 

it can be said that the SIPW can be controlled successfully to track the reference 

input given while at same time stabilized the body which is represent the chair and 

the people.  

 

7.6. Summary 

 

This chapter has discussed how to derive the mathematical modelling of 

the Spherical Inverted Pendulum Wheelchair (SIPW) in state space model which 

is then used to obtain the gains controller for the system. The SIPW is a concept 

of a wheelchair on spherical based upon inverted pendulum control. In the SIPW 

concept the wheelchair and the occupant are ride and balance on a ball. Driving 

the ball and balancing the system is provided through four rollers which is based 

on mouse ball driving mechanism concept. Thus the SIPW can move in any 

direction with rotation. The simulation of the SIPW is carried out in 3D 

simulation in SimMechanics.  

Moreover, the chapter also shows and demonstrates that the SIPW which 

is a dynamics of multibody system is successfully designed within SimMechanics 

modelling. The SIPW system is stabilised using the LQR feedback method with 8 

state variables. The simulation result study of the SIPW shows that LQR control 

strategy is capable to control multi input and multi output of the systems 

successfully and gives satisfy of controlling the SIPW. It has shown that the 

control is capable in stabilising the SIPW and prescribed tracking capabilities. 
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CHAPTER 8 

DISCUSSION 

 

 

The Spherical Inverted Pendulum Wheelchair (SIPW) is based upon the 

dynamic and control of spherical inverted pendulum concept which has four DoF 

i.e. two DoF rotation moving of the pendulum (body which is represent the chair 

and the user) in x-axis and z-axis and two DoF horizontally moving of the ball in 

x-axis direction and z-axis direction. This spherical inverted pendulum concept is 

chosen to design and simulate the SIPW as it has the potential to offer improving 

mobility and maneuverability compared with existing wheelchairs. Thus the 

outcome of the work is a new wheelchair concept with novel motion capabilities 

that can provide improvement in mobility and maneuverability.  

There are two types of previous work on mobile robot based on inverted 

pendulum is a two-wheeled robot, like Segway (Nguyen et.al., 2004) and a single 

spherical wheel robot, like ballbot (Lauwers, Kantor and Hollis, 2006). As the 

single spherical inverted pendulum is able to move in any direction without 

changing orientation so the SIPW design proposed is based on a single spherical 

wheel. Thus the new wheelchair concept on a single spherical wheel, the SIPW, 

can provide improvement in its mobility and manoeuvrability than on four wheels 

which is commonly wheelchair designed and operated.  
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To investigate the dynamic of the SIPW which is designed and simulated 

based upon spherical inverted pendulum concept some various control methods of 

inverted pendulum works is reported in this project. The work has demonstrated 

that three control strategies i.e. pole placement, LQR and PID can be applied and 

are capable of controlling the inverted pendulum's angular position and the cart's 

linear position or velocity of the both Simulink model and SimMechanics model 

in two DoF inverted pendulum.  

As stability and control performance of the two DoF inverted pendulum 

system largely depend on pole locations thus the pole-placement in system design 

is very important. Therefore, the pole placement control strategy was used to 

place the poles of the two DoF inverted pendulum closed-loop system in the 

desired positions by state feedback or output feedback. There are two main steps 

to carry out. The first step is the placement or assignment of poles and the second 

step is the identification of the feedback gain matrix. By placing the two DoF 

inverted pendulum’s poles at S1=-7+7i, S2=-7-7i, S3=-7, S4=-7, S5=-7, the state 

feedback gain matrix is given as (K,ki)=(-4714.2 -1533.4 3347.2 558.3 6595.7). 

The simulation result can be seen in Figure 4.4. The result shows that the settling 

time for controller based on state space pole placement control strategy is about 

one and half second i.e. the controller can stabilise the pendulum within one and 

half second and has no overshoot. When applying a prescribed velocity input, the 

inverted pendulum is able to follow it while keep the pendulum stable although 

there exists a small lagging only about a half second as shown in Figure 4.5. 

Therefore, based on simulation results, it can be said that the pole placement 



 

125 

 

control strategy can be useful to design controllers for the two DoF inverted 

pendulum with satisfactory performance.  

 Another alternative technique such as LQR control strategy also provides 

satisfactory result in controlling the two DoF inverted pendulum system. In a 

LQR design, the gain matrix K for a state feedback control law u = -Kx is found 

by minimizing a quadratic cost function in the form equation 4.16, where Q and R 

is weighting parameter. The weighting parameters chosen in the inverted 

pendulum of the state feedback controller are:  
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Q  and R = l 

The element in the (1,1) position will be used to weight the cart's linear position 

and the element in the (3,3) position will be used to weight the pendulum's 

angular position and denoted as xw and yw weighting variables. The weighting xw 

and yw variables could be changed to see the various responses. If xw and yw are 

increased even higher, improvement to the response should be found. But, in 

order to satisfy the design requirements of keeping xw and yw as small as possible 

since in this problem the values of xw and yw have been used to describe the 

relative weight of the tracking error in the cart's linear position and pendulum's 

angular position versus the control effort. The higher the values of xw and yw, the 

more control effort will be required, but the smaller the tracking error. Using all 

parameter values of the inverted pendulum and choosing xw = 10000 and yw = 

1000, the following values for controller gains K matrix are determined:  
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The simulation result can be seen in Figure 4.12. The result shows that the settling 

time for controller based on LQR control strategy is about one and half second i.e. 

the controller can stabilise the pendulum within two and half second and has 

overshoot about 5 %. When applying a prescribed velocity input, the two DoF 

inverted pendulum system is able to follow it while keep the pendulum stable 

although there exists a lagging for about one second as can be seen in Figure 4.13. 

Compared with the pole placement method, the LQR result gives time to stabilise 

the system about one second slower but LQR use smaller gains of K matrix. It 

means that the system uses lesser effort or energy for stabilising the system. This 

is the advantage to use LQR control strategy the poles are placed in such way 

through the cost function to get optimal gains for not only in stabilising the system 

but also in controlling effort. Therefore, based on simulation results, it can be said 

that the LQR control strategy can be useful to determine controller gain values for 

the two DoF inverted pendulum system with optimal performance.  

The conventional controller such as PID is implemented and reported to 

control the two DoF inverted pendulum in this work. The PID controller is 

commonly known a good controller to control the single-input-single-output 

(SISO) system. Thus with only one PID controller cannot be used to control the 

two DoF inverted pendulum i.e. the cart horizontally moving  and the pendulum 

rotation moving simultaneously at the same time. In another word can be said that 

single PID cannot control a multi-input-multi-output (MIMO) system like the two 

DoF inverted pendulum system. Thus there are needed two PID controllers to 
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control the two DoF inverted pendulum system as can be seen in Figure 4.18.   By 

using two PID controllers are able to control both outputs such the pendulum 

angular position and the cart linear position at the same time. ‘PID Cart’ is used to 

control the cart whereas ‘PID Pendulum’ is used to control the pendulum. 

Applying the controller gains for ‘PID Cart’ as Kp = -414.8, Ki = -5.1, and Kd = -

467.4 and for ‘PID Pendulum’ as Kp = 4157.3, Ki = 3539.5, and Kd = 443.3 gives 

result as shown in Figure 4.21. The simulation result shows that the two DoF 

inverted pendulum can be stabilised successfully with rise time about 1 second, 

settling time about 4 seconds and overshoot about 5 %. Furthermore, when 

applying a prescribed velocity input, the two DoF inverted pendulum is 

successfully to follow the prescribed velocity while keep the pendulum stable on 

upright position.  Although there exists a lagging for less than one second but the 

cart is able to follow the prescribed velocity as shown in Figure 4.22. Thus it can 

be said that the model of two DoF inverted pendulum system can be stabilised 

successfully by applying two PID controllers simultaneously if they are tuned 

properly.  

An alternative inverted pendulum design that consists of two carts (bottom 

cart (vehicle) and top cart) and a pendulum which is controlled using PID has also 

been investigated and presented in this thesis. This design gives possibility to 

control the bottom cart (vehicle) to get better characteristic on set point tracking 

while another cart moving on top to stabilise the pendulum stand upright. Three 

PID controllers are used to control both carts and the pendulum as can be seen in 

Figure 5.4. ‘PID Vehicle’ is used to control bottom cart or vehicle linear position 
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or velocity, ‘PID Pendulum’ is used to control the pendulum angular position or 

velocity and the ‘PID Cart’ is used to control the top cart linear position or 

velocity. Applying the controller gains for ‘PID Vehicle’ as Kp = 617.9, Ki = 0.6, 

and Kd = 0, for ‘PID Pendulum’ as Kp = -346.7, Ki = 1.4, and Kd = 0.07 and for 

‘PID Cart’ as Kp = -82.7, Ki = 12.2, and Kd = 0 gets a result as shown in Figure 

5.8. The graph shows that the system can be stabilised successfully while the 

vehicle follows the prescribed velocity. The vehicle is able to follow the reference 

very satisfactory with no lagging. From the graph also can be seen that the sudden 

change of acceleration can lead to instability of the system.  

The advantage of the two carts design is the system can follow the 

prescribed velocity given very satisfactory, with no lagging. This is because the 

velocity of the system is no longer associated with the pendulum. However, there 

is disadvantage in this design. As the pendulum is stabilised by the moving second 

or top cart on the vehicle or bottom cart, thus the movement of the top cart is 

constrained by the long dimension of the bottom cart. As a result the capability of 

the system to stabilise the pendulum is highly depend on the long dimension of 

the bottom cart. If the top cart need to move exceed the length dimension 

constrain when stabilising the pendulum, the design will fail to stabilise the 

pendulum.       

In this work, the two DoF inverted pendulum is modelled and simulated in 

both ways Simulink model and SimMechanics model. A SimMechanics model 

differs significantly from a Simulink model in how it represents the inverted 

pendulum system. A Simulink model represents mathematics of the inverted 
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pendulum motion, i.e., the differential equations that predict the inverted 

pendulum system future state from its present state. The mathematical model 

enables Simulink to simulate the system. In contrast, a SimMechanics model 

represents a physical structure of the two DoF inverted pendulum, the geometric 

and kinematic relationships of its component bodies. Thus mathematical model no 

longer needed to be developed as SimMechanics converts this structural 

representation to an internal, equivalent mathematical model. The two DoF 

inverted pendulum is represented by connected block diagrams. The Physical 

modelling environment SimMechanics makes the task easier than the Simulink 

one where the dynamic system equation should be developed first before building 

the block diagram of the system.  

Figure 4.6 is represents the two DoF inverted pendulum model in 

SimMechanics. From the Figure can be seen obviously, every block corresponds 

to one mechanical component of the two DoF inverted pendulum. The properties 

of the blocks can be entered by double-clicking on them. The position, velocity, 

and acceleration variables of the two DoF inverted pendulum system can be 

measured by adding sensor blocks. The forces and torques transmitted by the 

joints can be sensed, too. The simulation results of both models are identical, 

although the numerical errors may differ slightly as we can see from Figure 4.12 

which is simulation result of Simulink model and Figure 4.15 which is simulation 

result of SimMechanics model. The differences in the computation time are more 

obvious. Simulation with SimMechanics takes longer, it maybe because of the 

mathematical model has to be derived by the software before the integration of the 
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ODE system can begin. With this model and external graphics visualisation 

facility of SimMechanics it is possible to import Solidworks assembly model and 

can animate the motion of the pendulum and the cart more realistic as can be seen 

in Figure 4.7 while this is not possible in only Simulink environment. 

  The spherical inverted pendulum wheelchair (SIPW) is modelled and 

simulated in SimMechanics model in this project. The state feedback control with 

gains control calculated trough LQR method is used to stabilise the SIPW. This 

control method is selected as from the three methods experienced in this report 

shows that LQR is capable to stabilise the MIMO systems such as the two DoF 

inverted pendulum system and also has command tracking capabilities when the 

system wanted to follow the desired input. As discussed in chapter 7 the SIPW 

has 8 state variables with two input, thus it is a MIMO system obviously which is 

the LQR method suitable to be applied. 

 The simulation result shows that LQR technique can provide satisfactory 

result in controlling the SIPW system. In a LQR design, the gain controller matrix 

K for the state feedback controller law as equation 4.28, ( )xxKu ref −=  where xref  

is the desired state reference and x is actual state of the SIPW, can be found by 

minimizing a quadratic cost function in the form ( )∫
∞

+=
0

dtRuuQxxJ TT . This 

cost function J can be interpreted as energy function, x is the state variable which 

is weighted by Q and u is control input which is weighted by R. Minimisation the 

cost function J, results in moving x to zero via little control energy and in turn 

guarantees that the systems will be stable. In the SIPW system, the control signal 
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input vector [ ]TBbzmzbgzBbxmxbgxu ττττττ ++=  is torque that applied to the 

ball and the state vector of the system[ ]Tzzzzxxxxx ϕθϕθϕθϕθ &&&&= . 

The matrices Q and R used to obtain the control gain matrix K for stabilising the 

SIPW system are: 

































=

10000000

01000000

00100000

000600000000

00001000

00000100

00000010

000000060000

Q And, 







=

10

01
R  

These weighting values were selected and assumed only for reasonable balancing 

the systems and not to achieve a certain goal. These choosing are also intended to 

give high importance to the body and the ball position and low importance to the 

torque used. Using all parameter values of the SIPW system as discussed in chapter 

7, the following controller gains K matrix was determined as: 










−−−−
−−−−

=
20478527150000

00002047852715
K  

The simulation result can be seen in Figure 7.11. The result shows that the 

controller using LQR method can stabilise the SIPW system. The graph shows 

that the body which was initially placed at 0.1 rad from vertical can be stabilised 

to zero point at about 3 seconds while the roller also can reach steady state error to 

zero and with small overshoot only about 2 %. When applying a prescribed 

velocity input the SIPW system is able to follow it and at the same time keeps the 
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body remain stable on upright position although there exists a small lagging about 

less than 1 second from the velocity input reference given. Thus the LQR 

controller is capable to stabilise the SIPW successfully and has prescribed 

tracking capabilities. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

 

9.1. Conclusions 

 

The design and simulation of the new concept of wheelchair based upon 

spherical inverted pendulum control i.e. the SIPW is reported in this thesis. The 

thesis has demonstrated some various control strategies of inverted pendulum 

system can be applied. Three control strategies, pole placement, LQR and PID are 

capable of controlling the two DoF inverted pendulum's angle and the cart's 

position of the both Simulink model and SimMechanics model. The PID control 

approach that was proposed to use two PID controllers solves the problem to 

control inverted pendulum system which is MIMO system successfully. An 

alternative inverted pendulum design that consists of two carts (bottom cart 

(vehicle), top cart with inverted pendulum) is presented in this report. This design 

gives possibility to control the bottom cart (vehicle) to get better characteristic on 

set point tracking while another cart moving on top to stabilise the inverted 

pendulum. The final objective of the project in establishing the design and 

simulation of a spherical inverted pendulum wheelchair can be realised. The 

wheelchair on spherical based upon inverted pendulum control is designed and 
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simulated in SimMechanics with state feedback control using LQR control 

strategy to find the gain matrix controller. The simulation shows that the body 

which represent the chair and the occupant is balanced on a spherical ball through 

four rollers (two driven and two idler) successfully. Thus the new wheelchair 

concept based upon the dynamic and control of spherical inverted pendulum 

which has the potential to offer improved mobility compared with exiting 

wheelchairs in the market can be achieved.  

 The development of this a new wheelchair concept based have made 

contributions to the inverted pendulum application knowledge base including: 

developing simulation for stabilisation of the inverted pendulum system using 

various control strategies in both Matlab Simulink and SimMechanics, proposing 

the new alternative inverted pendulum design construction with two carts (bottom 

cart (vehicle), top cart with inverted pendulum) for improving characteristic on 

the command tracking and modelling and controlling conceptual wheelchair, the 

spherical inverted pendulum wheelchair (SIPW), for improving mobility to help 

wheelchair user. 

 

9.2. Recommendations for Future Work 

 

For future work need to investigate the application of an adaptive 

suspension system which will be modelled and integrated into the SIPW 

simulation and the SIPW dynamics investigation in terms of comfort and safety. 

In term of safety need to be investigated the dynamic of the SIPW on inclined 



 

135 

 

surface. And in term of comfort improvement need to be designed an optimised 

package for providing optimal seat performance for the SIPW, to be investigated 

the driving control of the SIPW trough a mobile phone, and maybe also need to 

designed turntable mechanism under the seat to provide more degree of freedom 

to the wheelchair system. Finally need to be determined and developed the 

parameters of the SIPW systems including the suspension system experimentally. 

Run test for the SIPW prototype to tune or maybe optimise the physical 

parameters so that can meet with the real spherical inverted pendulum wheelchair 

application. 
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APPENDICES 
 
Appendix 1. 
 
Publication: Journal Paper  
 
Modelling and Simulation of Spherical Inverted Pendulum Based on LQR Control 
with SimMechanics, Applied Mechanics and Material, Vol. 391 (2013) pp 163-
167, Trans Tech Publications, Switzerland. 
doi:10.4028/www.scientific.net/AMM.391.163 
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Appendix 2. 

Script M-file to determine matrices of state space and poles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clear all ;  
clc;  
M = 13.26;  
m = 2.88;  
b = 0;  
i = 0.04;  
g = 9.8;  
l = 0.21;  
q=i*(M+m)+M*m*l^2; %denominator for the A and B matricies  
A=(0      1              0           0;  
   0 -(i+m*l^2)*b/q  (m^2*g*l^2)/q   0;  
   0      0              0           1;  
   0 -(m*l*b)/q       m*g*l*(M+m)/q  0)  
B=(     0;  
     (i+m*l^2)/q; 
          0;  
        m*l/q)  
C=(1 0 0 0;  
   0 0 1 0)  
D=(0;  
   0) 
p=eig(A);  
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Appendix 3. 

Script M-file to calculate feedback gains using pole placement method 
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clear all ;  
clc;  
M = 13.26;  
m = 2.88;  
b = 0;  
i = 0.04;  
g = 9.8;  
l = 0.21;  
q=i*(M+m)+M*m*l^2; %denominator for the A and B matricies  
A=(0       1             0         0;  
   0 -(i+m*l^2)*b/q (m^2*g*l^2)/q  0;  
   0       0             0         1;  
   0 -(m*l*b)/q      m*g*l*(M+m)/q 0);  
B=(0;(i+m*l^2)/q;0;m*l/q);  
C=(1 0 0 0);  
D=(0);  
Ah=(A zeros(4,1);-C 0);  
Bh=(B;0);  
pl=(-7+i*7 -7-i*7 -7 -7 -7);  
Kh=acker(Ah,Bh,pl);  
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Appendix 4. 

Script M-file to produce optimal controller using LQR method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clear all ;  
clc;  
M = 13.26;  
m = 2.88;  
b = 0;  
i = 0.04;  
g = 9.8;  
l = 0.21;  
q=i*(M+m)+M*m*l^2; %denominator for the A and B matricies  
A=(0      1              0           0;  
   0 -(i+m*l^2)*b/q  (m^2*g*l^2)/q   0;  
   0      0              0           1;  
   0 -(m*l*b)/q       m*g*l*(M+m)/q  0)  
B=(     0;  
     (i+m*l^2)/q;  
          0;  
        m*l/q)  
C=(1 0 0 0;  
   0 0 1 0)  
D=(0;  
   0)  
p=eig(A);  
R=1;  
x=10000; %input ('chart position weighting = ...');  
y=1000; %input ('pendulum angel = weighting= ...');  
Q=(x 0 0 0;  
   0 1 0 0;  
   0 0 y 0;  
   0 0 0 1);  
K=lqr(A,B,Q,R)  
te=inv(-A+B*K);  
l=C*te*B;  
Kr=1/l  
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Appendix 5. 

Script M-file to derive Euler-Lagrangian equation of the SIPW and the result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Generating dynamic of the SIPW system using Euler- Lagrangian 
Equation  
clear all  
clc  
syms Rb L Mb MB Ib  IBx  IBy  IBz  IM G N...    
    thtx  phix  thtxdot  phixdot  thtxddot  phixddot ;  
%Rb=ball radius,L=height of body CG,Mb MB=mass of ( ball,body)  
%Ib IBx IBy IBz IM=momen inertia of (ball,body(x,y, z),motor)  
%G=momen inertia, N=gear ratio(Rb/Rr(rollerradius))  
  
%%%ball energy  
syms balx  balxdot  Tlbalx  Trbalx  Vbalx  
  
balx(1)=Rb*(thtx+N*phix);  
balx(2)=0;  
balx(3)=0;  
  
balxdot(1)=diff(balx(1),thtx)*thtxdot+diff(balx(1), phix)*phixdot  
balxdot(2)=diff(balx(2),thtx)*thtxdot+diff(balx(2), phix)*phixdot  
balxdot(3)=diff(balx(3),thtx)*thtxdot+diff(balx(3), phix)*phixdot  
  
Tlbalx=simple(Mb/2*(balxdot(1)^2+balxdot(2)^2+balxd ot(3)^2))  
Trbalx=simple(Ib/2*(thtxdot+N*phixdot)^2)  
Vbalx=0  
  
%%%body energy  
syms bodix  bodixdot  bodiosx  Tlbodix  Trbodix  Vbodix  
  
bodiosx(1)=L*sin(thtx);  
bodiosx(2)=0;  
bodiosx(3)=L*cos(thtx);  
  
bodix(1)=balx(1)+bodiosx(1);  
bodix(2)=balx(2)+bodiosx(2);  
bodix(3)=balx(3)+bodiosx(3);  
  
bodixdot(1)=simple(diff(bodix(1),thtx)*thtxdot ...   
    +diff(bodix(1),phix)*phixdot);  
bodixdot(2)=simple(diff(bodix(2),thtx)*thtxdot ...   
    +diff(bodix(2),phix)*phixdot);  
bodixdot(3)=simple(diff(bodix(3),thtx)*thtxdot ...   
    +diff(bodix(3),phix)*phixdot);  
  
Tlbodix=simple(expand(simple((MB/2*(bodixdot(1)^2+b odixdot(2)^2+ ...  
    bodixdot(3)^2)))))  
Trbodix=simple(expand(simple((IBx/2*(thtxdot)^2))))  
Vbodix=simple(MB*G*bodix(3))  
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 balxdot = 

 Rb*thtxdot + N*Rb*phixdot 

  

 balxdot = 

 [ Rb*thtxdot + N*Rb*phixdot, 0] 

  

 balxdot = 

 [ Rb*thtxdot + N*Rb*phixdot, 0, 0] 

%%%motor energy  
syms Trmotx  
  
Trmotx=simple(IM/2*(thtxdot+phixdot)^2)  
  
%%%Lagrangian function  
syms dLthtx  dLphix  dLdthtxdot  dLdphixdot  ddLdthtxdotdt  
ddLdphixdotdt  
syms ELthtx  ELphix  
  
Lagrangianx=simple(Tlbalx+Trbalx+Tlbodix+Trbodix+Tr motx-Vbalx-
Vbodix)  
  
%Euler-Lagrangian motion equation  
%thetax  
dLdthtxdot=simple(expand(simple(diff(Lagrangianx,th txdot))));  
ddLdthtxdotdt=simple(expand(simple( ...  
    diff(dLdthtxdot,thtxdot)*thtxddot ...  
    +diff(dLdthtxdot,phixdot)*phixddot ...  
    +diff(dLdthtxdot,thtx)*thtxdot ...  
    +diff(dLdthtxdot,phix)*phixdot)));  
dLdthtx=simple(expand(simple(diff(Lagrangianx,thtx) )));  
ELthtx=simple(expand(simple(ddLdthtxdotdt-dLdthtx)) )  
  
%phix  
dLdphixdot=simple(expand(simple(diff(Lagrangianx,ph ixdot))));  
ddLdphixdotdt=simple(expand(simple( ...  
    diff(dLdphixdot,thtxdot)*thtxddot ...  
    +diff(dLdphixdot,phixdot)*phixddot ...  
    +diff(dLdphixdot,thtx)*thtxdot ...  
    +diff(dLdphixdot,phix)*phixdot)));  
dLdphix=simple(expand(simple(diff(Lagrangianx,phix) )));  
ELphix=simple(expand(simple(ddLdphixdotdt-dLdphix)) )  
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 Tlbalx = 

 (Mb*Rb^2*(thtxdot + N*phixdot)^2)/2 

   

Trbalx = 

 (Ib*(thtxdot + N*phixdot)^2)/2 

  

Vbalx = 

     0 

 

Tlbodix = 

(MB*(L^2*thtxdot^2 + 2*cos(thtx)*L*N*Rb*phixdot*thtxdot + 
2*cos(thtx)*L*Rb*thtxdot^2 + N^2*Rb^2*phixdot^2 + 
2*N*Rb^2*phixdot*thtxdot + Rb^2*thtxdot^2))/2 

  

Trbodix = 

(IBx*thtxdot^2)/2 

  

 Vbodix = 

G*L*MB*cos(thtx) 

  

Trmotx = 

(IM*(phixdot + thtxdot)^2)/2 

  

Lagrangianx = 
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(IM*(phixdot + thtxdot)^2)/2 + (MB*(L^2*thtxdot^2 + 
2*cos(thtx)*L*N*Rb*phixdot*thtxdot + 2*cos(thtx)*L*Rb*thtxdot^2 + 
N^2*Rb^2*phixdot^2 + 2*N*Rb^2*phixdot*thtxdot + Rb2̂*thtxdot^2))/2 + 
(IBx*thtxdot^2)/2 + (Ib*(thtxdot + N*phixdot)^2)/2 + (Mb*Rb^2*(thtxdot + 
N*phixdot)^2)/2 - G*L*MB*cos(thtx) 

  

ELthtx = 

IM*phixddot + IBx*thtxddot + IM*thtxddot + Ib*thtxddot + Ib*N*phixddot + 
L^2*MB*thtxddot + MB*Rb^2*thtxddot + Mb*Rb^2*thtxddot + 
MB*N*Rb^2*phixddot + Mb*N*Rb^2*phixddot - G*L*MB*si n(thtx) - 
L*MB*Rb*thtxdot^2*sin(thtx) + 2*L*MB*Rb*thtxddot*cos(thtx) + 
L*MB*N*Rb*phixddot*cos(thtx) 

  

ELphix = 

IM*phixddot + IM*thtxddot + Ib*N*thtxddot + Ib*N^2*phixddot + 
MB*N*Rb^2*thtxddot + Mb*N*Rb^2*thtxddot + MB*N^2*Rb̂ 2*phixddot + 
Mb*N^2*Rb^2*phixddot - L*MB*N*Rb*thtxdot^2*sin(thtx) + 
L*MB*N*Rb*thtxddot*cos(thtx) 
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Appendix 6. 

Script M-file to derive the SIPW equation of motion and the result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Generating SIPW dynamic equation in matrices form  
  
syms tec  Mx Rx Fx 
  
for  i=1:2  
    switch  i  
        case  1,  
            tec=ELthtx;  
        case  2,  
            tec=ELphix;  
    end  
    [c,t]=coeffs(tec,thtxddot);  
    Mx(i,1)=0;  
    rmd=0;  
    for  j=1:length(c)  
        if  t(j)==thtxddot  
            Mx(i,1)=c(j);  
        elseif  t(j)==1  
            rmd=c(j);  
        end  
    end  
    [c,t]=coeffs(rmd,phixddot);  
    Mx(i,2)=0;  
    Rx(i,1)=0;  
    for  j=1:length(c)  
        if  t(j)==phixddot  
            Mx(i,2)=c(j);  
        elseif  t(j)==1  
            Rx(i,1)=c(j);  
        end  
    end  
end  
Mx 
Rx  
  
%force matrix  
syms voltx  ix  Kt  Kb Rm FBbx FbGx 
%Kt Kb Rm=motor parameters(torque, back emf, resist ance)  
%FBbx=force friction body-ball (x) FbGx=force frict ion ball-
ground (x)  
  
%motor current dynamic  
ix=1/Rm*(voltx-Kb*phixdot);  
  
%force     
Fx=[-FBbx*thtxdot; ...  
    expand(Kt*ix-FbGx*phixdot)]  
  
syms noliqxddot  
noliqxddot=inv(Mx)*(Fx-Rx)  
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Mx = 

[ IBx + IM + Ib + L^2*MB + MB*Rb^2 + Mb*Rb^2 + 2*L*MB*Rb*cos(thtx), 
IM + Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + L*MB*N*Rb*cos(t htx)] 

[          IM + Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + L*MB*N*Rb*cos(thtx),                 
IM + Ib*N^2 + MB*N^2*Rb^2 + Mb*N^2*Rb^2] 

  

Rx = 

 - L*MB*Rb*sin(thtx)*thtxdot^2 - G*L*MB*sin(thtx) 

                   -L*MB*N*Rb*thtxdot^2*sin(thtx) 

  

Fx = 

                                     -FBbx*thtxdot 

 (Kt*voltx)/Rm - FbGx*phixdot - (Kb*Kt*phixdot)/Rm 

  

noliqxddot = 

                            ((L*MB*Rb*sin(thtx)*thtxdot^2 - FBbx*thtxdot + 
G*L*MB*sin(thtx))*(IM + Ib*N^2 + MB*N^2*Rb^2 + 
Mb*N^2*Rb^2))/(IBx*IM + IM*Ib - 2*IM*Ib*N + IBx*Ib* N^2 + IM*Ib*N^2 + 
IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 + L^2*MB^2*N^2* Rb^2 + 
Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + 
IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 - 2*IM*MB*N*Rb^2 -  
2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^2 - 
L^2*MB^2*N^2*Rb^2*cos(thtx)^2 + 2*IM*L*MB*Rb*cos(th tx) - 
2*IM*L*MB*N*Rb*cos(thtx)) + ((FbGx*phixdot - (Kt*vo ltx)/Rm + 
(Kb*Kt*phixdot)/Rm - L*MB*N*Rb*thtxdot^2*sin(thtx))*(IM + Ib*N + 
MB*N*Rb^2 + Mb*N*Rb^2 + L*MB*N*Rb*cos(thtx)))/(IBx* IM + IM*Ib - 
2*IM*Ib*N + IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2*MB + IM *MB*Rb^2 + 
IM*Mb*Rb^2 + L^2*MB^2*N^2*Rb^2 + Ib*L^2*MB*N^2 + 
IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + 
IM*Mb*N^2*Rb^2 - 2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + 
L^2*MB*Mb*N^2*Rb^2 - L^2*MB^2*N^2*Rb^2*cos(thtx)^2 + 
2*IM*L*MB*Rb*cos(thtx) - 2*IM*L*MB*N*Rb*cos(thtx)) 
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 - ((L*MB*Rb*sin(thtx)*thtxdot^2 - FBbx*thtxdot + G*L*MB*sin(thtx))*(IM + 
Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + L*MB*N*Rb*cos(thtx)) )/(IBx*IM + 
IM*Ib - 2*IM*Ib*N + IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2 *MB + 
IM*MB*Rb^2 + IM*Mb*Rb^2 + L^2*MB^2*N^2*Rb^2 + Ib*L^ 2*MB*N^2 + 
IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + 
IM*Mb*N^2*Rb^2 - 2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + 
L^2*MB*Mb*N^2*Rb^2 - L^2*MB^2*N^2*Rb^2*cos(thtx)^2 + 
2*IM*L*MB*Rb*cos(thtx) - 2*IM*L*MB*N*Rb*cos(thtx)) - ((FbGx*phixdot - 
(Kt*voltx)/Rm + (Kb*Kt*phixdot)/Rm - L*MB*N*Rb*thtx dot^2*sin(thtx))*(IBx 
+ IM + Ib + L^2*MB + MB*Rb^2 + Mb*Rb^2 + 
2*L*MB*Rb*cos(thtx)))/(IBx*IM + IM*Ib - 2*IM*Ib*N +  IBx*Ib*N^2 + 
IM*Ib*N^2 + IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 + 
L^2*MB^2*N^2*Rb^2 + Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2  + 
IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 -  
2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^ 2 - 
L^2*MB^2*N^2*Rb^2*cos(thtx)^2 + 2*IM*L*MB*Rb*cos(th tx) - 
2*IM*L*MB*N*Rb*cos(thtx)) 
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Appendix 7. 

Script M-file to linearise the SIPW equation of motion and the result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Linearising SIPW dynamic equation  
  
syms qx  qxdot  qxddot ...  
     x  xbar  nolissmatx  nolissmatxbar ...  
     jacobianmatx  jacobianmatxbar  liqxdot ;  
  
%nonlinear statespace     
qx=[thtx phix];  
qxdot=[thtxdot phixdot];  
qxddot=[thtxddot phixddot];  
  
x=[qx qxdot];  
xbar=[0,phix,0,0];  
  
nolissmatx=[ thtxdot; ...  
            phixdot; ...  
            noliqxddot];  
nolissmatxbar=subs(nolissmatx,x,xbar);  
  
jacobianmatx=jacobian(nolissmatx,x);  
jacobianmatxbar=subs(jacobianmatx,x,xbar);  
  
liqxdot= nolissmatxbar+jacobianmatxbar*(transpose(x ));  
  
%create State matrices  
%state is trans([qx qxdot])  
syms Ax Bx 
for  i=1:4  
    rmd=liqxdot(i);  
    for  j=1:4  
        [c,t]=coeffs(rmd,x(j));  
        Ax(i,j)=0;  
        for  k=1:length(c)  
            if  t(k)==1  
                rmd=c(k);  
            else  
                Ax(i,j)=c(k);  
            end  
        end  
    end  
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Ax = 

[                                                                                                                                                                                                                                                            
0, 0,                                                                                                                                                                                     
1,                                                                                                                                                                                                                                                       
0] 

[                                                                                                                                                                                                                                                                                        
0, 0,                                                                                                                                                                                                                 
0,                                                                                                                                                                                                                                                                             
1] 

[        (G*L*MB*(IM + Ib*N^2 + MB*N^2*Rb^2 + Mb*N^ 2*Rb^2))/(IBx*IM + 
IM*Ib - 2*IM*Ib*N + IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2 *MB + 
IM*MB*Rb^2 + IM*Mb*Rb^2 + Ib*L^2*MB*N^2 + IBx*MB*N^ 2*Rb^2 + 
IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 +  
2*IM*L*MB*Rb - 2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + 
L^2*MB*Mb*N^2*Rb^2 - 2*IM*L*MB*N*Rb), 0,      -(FBb x*(IM + Ib*N^2 + 
MB*N^2*Rb^2 + Mb*N^2*Rb^2))/(IBx*IM + IM*Ib - 2*IM* Ib*N + 
IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2*MB + IM*MB*Rb^2 + I M*Mb*Rb^2 + 
Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + 
IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 + 2*IM*L*MB*Rb - 
2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^ 2 - 
2*IM*L*MB*N*Rb),           ((FbGx + (Kb*Kt)/Rm)*(IM  + Ib*N + MB*N*Rb^2 
+ Mb*N*Rb^2 + L*MB*N*Rb))/(IBx*IM + IM*Ib - 2*IM*Ib *N + IBx*Ib*N^2 
+ IM*Ib*N^2 + IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 +  
Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + 
IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 + 2*IM*L*MB*Rb - 

[c,t]=coeffs(rmd,voltx);  
    Bx(i,1)=0;  
    rmd=0;  
    for  k=1:length(c)  
        if  t(k)==1  
            rmd=c(k);  
        else  
            Bx(i,1)=c(k);  
        end  
    end  
end  
Ax 
Bx 
rmd 
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2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^ 2 - 
2*IM*L*MB*N*Rb)] 

[ -(G*L*MB*(IM + Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + 
L*MB*N*Rb))/(IBx*IM + IM*Ib - 2*IM*Ib*N + IBx*Ib*N^ 2 + IM*Ib*N^2 + 
IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 + Ib*L^2*MB*N^2  + 
IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + 
IM*Mb*N^2*Rb^2 + 2*IM*L*MB*Rb - 2*IM*MB*N*Rb^2 - 
2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^2 - 2*IM*L*MB*N*R b), 0, 
(FBbx*(IM + Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + L*MB*N*R b))/(IBx*IM + 
IM*Ib - 2*IM*Ib*N + IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2 *MB + 
IM*MB*Rb^2 + IM*Mb*Rb^2 + Ib*L^2*MB*N^2 + IBx*MB*N^ 2*Rb^2 + 
IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 +  
2*IM*L*MB*Rb - 2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + 
L^2*MB*Mb*N^2*Rb^2 - 2*IM*L*MB*N*Rb), -((FbGx + (Kb *Kt)/Rm)*(IBx 
+ IM + Ib + L^2*MB + MB*Rb^2 + Mb*Rb^2 + 2*L*MB*Rb))/(IBx*IM + 
IM*Ib - 2*IM*Ib*N + IBx*Ib*N^2 + IM*Ib*N^2 + IM*L^2 *MB + 
IM*MB*Rb^2 + IM*Mb*Rb^2 + Ib*L^2*MB*N^2 + IBx*MB*N^ 2*Rb^2 + 
IM*MB*N^2*Rb^2 + IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 +  
2*IM*L*MB*Rb - 2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + 
L^2*MB*Mb*N^2*Rb^2 - 2*IM*L*MB*N*Rb)] 

  

Bx = 

                                                                                                                                                                                                                                         
0 

                                                                                                                                                                                  
0 

         -(Kt*(IM + Ib*N + MB*N*Rb^2 + Mb*N*Rb^2 + 
L*MB*N*Rb))/(Rm*(IBx*IM + IM*Ib - 2*IM*Ib*N + IBx*I b*N^2 + 
IM*Ib*N^2 + IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 + 
Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + 
IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 + 2*IM*L*MB*Rb - 
2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^ 2 - 
2*IM*L*MB*N*Rb)) 

 (Kt*(IBx + IM + Ib + L^2*MB + MB*Rb^2 + Mb*Rb^2 + 
2*L*MB*Rb))/(Rm*(IBx*IM + IM*Ib - 2*IM*Ib*N + IBx*I b*N^2 + 
IM*Ib*N^2 + IM*L^2*MB + IM*MB*Rb^2 + IM*Mb*Rb^2 + 



 

155 

 

Ib*L^2*MB*N^2 + IBx*MB*N^2*Rb^2 + IM*MB*N^2*Rb^2 + 
IBx*Mb*N^2*Rb^2 + IM*Mb*N^2*Rb^2 + 2*IM*L*MB*Rb - 
2*IM*MB*N*Rb^2 - 2*IM*Mb*N*Rb^2 + L^2*MB*Mb*N^2*Rb^ 2 - 
2*IM*L*MB*N*Rb)) 

  

rmd = 

 

     0 
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Appendix 8. 

Script M-file to derive gain controller K for the SIPW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Calculating the controller, Trying with parameter values  
  
%System parameters  
Rb=0.2;  
Mb=2.3529;  
Ib=0.0612;  
Rr=0.03;  
MB=37.3419;  
IBx=3.9002;  
L=0.7372;  
IM=0;  
G=9.81;  
FBbx=0;  
FbGx=0;  
Kb=0.4;  
Kt=0.3;  
Rm=6; 
  
  
Asub=subs(Ax);  
Bsub=subs(Bx);  
Csub=eye(4);  
Dsub=zeros(4,1);  
  
%Controllability  
con=ctrb(Asub,Bsub);  
uncost=length(Asub)-rank(con)  
kondis=cond(con)  
  
%tambah 2 reference states for thtx and thty  
c=[0 1 0 0];  
Abar=[Asub zeros(4,1); ...  
        c  zeros(1,1)];  
Bbar=[Bsub; ...  
      zeros(1,1)];  
con1=ctrb(Abar,Bbar);  
unconst1=length(Abar)-rank(con1)  
kondis1=cond(con1)  
  
%LQR control  
Q=eye(5);  
Q(1,1)=6e4;  
Q(5,5)=4e2;  
R=(1e3)*eye(1);  
K=lqr(Abar,Bbar,Q,R);     
Kf=K(1:4)  
Ki=K(5)  
  
olpoles=eig(Abar)  
clpoles=eig(Abar-Bbar*K)  
 


