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The paper presents a systematic study of dispersive waves in an elastic chiral lattice. Chirality is intro-
duced through gyroscopes embedded into the junctions of a doubly periodic lattice. Bloch–Floquet waves
are assumed to satisfy the quasi-periodicity conditions on the elementary cell. New features of the sys-
tem include degeneracy due to the rotational action of the built-in gyroscopes and polarisation leading to
the dominance of shear waves within a certain range of values of the constant characterising the rota-
tional action of the gyroscopes. Special attention is given to the analysis of Bloch–Floquet waves in the
neighbourhoods of critical points of the dispersion surfaces, where standing waves of different types
occur. The theoretical model is accompanied by numerical simulations demonstrating directional local-
isation and dynamic anisotropy of the system.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Propagation of waves in periodic discrete media has received
increasing attention in recent years, although the first studies date
back several decades (Brillouin, 1953; Kittel, 1956). Considerable
effort has been devoted to elastic lattices (Marder and Liu, 1993;
Slepyan, 2002; Brun et al., 2010; Colquitt et al., 2011; Colquitt
et al., 2012), arrays of point masses connected by elastic rods or
beams. Waves propagating in lattices are dispersive, even if the lat-
tice is monatomic with uniform stiffness. Special properties, such
as wave beaming and occurrence of band gaps, are achieved by
varying periodically the stiffness and the density of the lattice
components.

Some lattices, with appropriately designed configurations, are
characterised by an asymmetric property known as ‘‘chirality’’.
This term was first used by Thomson (1894), according to whom
an object is chiral ‘‘if its image in a plane mirror, ideally realised,
cannot be brought to coincide with itself.’’

Chirality is exploited in electromagnetism to produce negative
refraction (Pendry, 2004; Chern, 2013). In elasticity, Spadoni
et al. (2009) analysed wave propagation in hexagonal chiral lattices
proposed by Prall and Lakes (1997), investigating in particular the
features of band gaps and the anisotropy of the medium at high
frequencies, manifested in wave directionality. Brun et al. (2012)
proposed a novel active chiral model, in which a system of gyro-
scopes (or gyros) was incorporated into both monatomic and
biatomic lattices. The chirality derives from the micro-rotations
of the lattice masses, transmitted by the motion of the gyroscopes.
Numerical illustrations reveal that this chiral structure can be used
as a cloak guiding waves around a defect.

Vector problems of in-plane elasticity are more challenging
than scalar problems, typical of electromagnetic systems and of
elastic media subjected to out-of-plane shear loading. The diffi-
culty arises from the co-existence of two types of waves within
in-plane elasticity. Martinsson and Movchan (2003) analysed free
vibrations of vector lattices and provided a general tool to tune
the lattice properties such that band gaps appear in prescribed
intervals of frequency.

The study by Brun et al. (2012) introduced monatomic and
biatomic lattice systems with embedded gyros. This was a novel
idea leading to unusual degeneracies and a coupling mechanism
between shear and pressure waves. A homogenised chiral medium
showed exciting filtering properties for frequency response prob-
lems. It remained a challenge to model forced lattice systems with
built-in gyros in the high frequency regime. This challenge is ad-
dressed in the present paper to the extent that the critical points
have been fully classified and the important effects of dynamic
anisotropy have been studied.
oi.org/
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The geometry of the model and the vectorial equations of mo-
tion are presented in Section 2. By employing Bloch–Floquet condi-
tions, the dispersion relation of the medium is also derived, and its
dispersive properties are examined in great detail in Section 3.
More specifically, Section 3 contains a thorough description of
the dispersion surfaces of the chiral lattice and their asymptotic
approximations for the degenerate case when the value of the
spinner constant, describing the effect of the gyros, is close to the
value of the lattice masses. In addition, the wave polarisation, in-
duced by the gyros, is quantified, thus addressing the challenges
raised by the qualitative work by Brun et al. (2012). Furthermore,
the strong dynamic anisotropy of the medium at high frequencies
is investigated by analysing standing waves at saddle points. Final-
ly, Section 4 presents simulations of frequency response problems
for a chiral discrete system, which validate the conclusions drawn
in Section 3. These computations focus, in particular, on illustra-
tions of properties of the dynamic response of the system for fre-
quencies chosen in the neighbourhoods of critical points of the
dispersion surfaces. For these frequencies, classical homogenisa-
tion approximations are not applicable, as shown by Movchan
and Slepyan (2013). We note that the same frequency may corre-
spond to several critical points on the dispersion surfaces. Special
attention is given to directional preference and localisation
induced by the rotational action of the gyros embedded in the
lattice.

2. Structure and governing equations of the chiral medium

We consider a two-dimensional triangular lattice, consisting of
equal particles of mass m connected by elastic links of length l,
stiffness c and negligible mass. The chirality property is conferred
on the medium by a system of gyros attached to the lattice parti-
cles, as shown in Fig. 1(a). The axis of each gyro, which is perpen-
dicular to the lattice plane in the initial configuration, changes its
orientation when the particle to which it is connected moves in
the x1x2-plane. As a consequence, the gyro exerts on the particle
a force that is orthogonal to the particle displacement, thus origi-
nating a vortex-type phenomenon.

The periodicity of the triangular lattice is defined by the vectors

t1 ¼ l;0ð ÞT and t2 ¼ l=2;
ffiffiffi
3
p

l=2
� �T

; ð1Þ

which are collected in the matrix

T ¼ t1; t2� �
¼

l l=2
0

ffiffiffi
3
p

l=2

� �
: ð2Þ

Each particle of the lattice is identified by the multi-index
n ¼ n1;n2ð ÞT. Hence, its position in the x1x2-plane is given by
(a)

Fig. 1. (a) Monatomic triangular lattice, connected to a system
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xn ¼ x0 þ Tn ¼ x0 þ n1t1 þ n2t2: ð3Þ

As shown in Fig. 1(b), the six directions of the lattice links are spec-
ified by the unit vectors

a1 ¼ 1;0ð ÞT; a2 ¼ 1=2;
ffiffiffi
3
p

=2
� �T

; a3 ¼ �1=2;
ffiffiffi
3
p

=2
� �T

;

a4 ¼ �1;0ð ÞT ¼ �a1; a5 ¼ �1=2;�
ffiffiffi
3
p

=2
� �T

¼ �a2;

a6 ¼ 1=2;�
ffiffiffi
3
p

=2
� �T

¼ �a3:

ð4Þ

In the following, it is assumed that the in-plane displacement of
each particle of the lattice is time-harmonic, that is Uðx; tÞ ¼ uneixt ,
with x being the radian frequency. Therefore, the equation of mo-
tion for each particle is

�mx2un ¼ c
X6

j¼1

aj � unþDn � un
� �	 


aj þ iax2R un: ð5Þ

Here, Dn represents the difference between the multi-index of a
generic node connected to node n and the multi-index n (refer to
Fig. 1(b)), while R is the rotation matrix

R ¼
0 1
�1 0

� �
ð6Þ

describing the vorticity effect induced by the gyros. The quantity a
appearing in Eq. (5) is the spinner constant. It was determined by
Brun et al. (2012) under the assumption that the nutation angle
of the gyro varies harmonically in time with the same frequency
x as the lattice.

Bloch–Floquet conditions require that

u xþ n1t1 þ n2t2� �
¼ u xð Þei k�Tn; ð7Þ

where k ¼ k1; k2ð ÞT is the Bloch (or wave) vector. The introduction
of Eq. (7) into Eq. (5) leads to

�mx2un ¼ c
X6

j¼1

aj � aj
� �

un ei k�TDn � 1
� �

þ iax2R un; ð8Þ

where the symbol � stands for the dyadic vector product.
Eq. (8) has a non-trivial solution provided that

m2 � a2� �
x4 �m trðCÞx2 þ detðCÞ ¼ 0; ð9Þ

where C is the ‘‘reduced’’ stiffness matrix

C ¼ c
3� 2 cosðk1lÞ � cosðfÞþcosðnÞ

2

ffiffi
3
p

cosðnÞ�cosðfÞ½ �
2ffiffi

3
p

cosðnÞ�cosðfÞ½ �
2 3� 3 cosðfÞþcosðnÞ½ �

2

0
@

1
A; ð10Þ
(b)

of gyroscopes; (b) plane representation of a lattice cell.
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with

f ¼ k1l=2þ
ffiffiffi
3
p

k2l=2 and n ¼ k1l=2�
ffiffiffi
3
p

k2l=2: ð11Þ

Eq. (9) is the dispersion relation of the chiral medium, and it is ana-
lysed in detail in the next section.

3. Dispersion properties

Since c;m and a are real positive quantities, the biquadratic
Eq. (9) in x admits two positive solutions (which define two dis-
persion surfaces) if a < m. The lower and upper dispersion surfaces
are denoted by x1ðkÞ and x2ðkÞ, respectively. On the other hand, if
a > m Eq. (9) yields a single real positive solution (x1ðkÞ), while
the second solution (x2ðkÞ) is imaginary. The regimes a < m and
a > m will henceforth be designated ‘‘subcritical’’ and ‘‘supercriti-
cal’’, respectively.

In the following, all the physical quantities will be normalised
by the natural units of the system, which will be assigned unit val-
ues: m ¼ 1; c ¼ 1; l ¼ 1. Accordingly, physical units of measure-
ment will not be shown.

3.1. Dispersion surfaces

The explicit expressions of the dispersion surfaces obtained
from Eq. (9) are the following:
(a)

(b)

(c)

Fig. 2. Dispersion surfaces (a–c) and relative cross-sections for k2 ¼ 0 (d–f) for diff
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x1ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2ðCÞ � 4ð1� a2ÞdetðCÞ

q
2ð1� a2Þ

vuut
; ð12aÞ
x2ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2ðCÞ � 4ð1� a2ÞdetðCÞ

q
2ð1� a2Þ

vuut
: ð12bÞ

In a non-chiral lattice, x1ðkÞ and x2ðkÞ are associated with pure
shear and pure pressure waves, respectively. If a system of gyros
is introduced, the waves are polarised, as discussed in Section 3.3.

The dispersion surfaces are plotted in Fig. 2(a)–(c) for different
values of the spinner constant a. More specifically, Fig. 2(a) and (b)
refer to the subcritical regime (a ¼ 0:3;0:6), while Fig. 2(c) shows a
case in the supercritical regime (a ¼ 2:0). Fig. 2(d)–(f) represent
the cross-sections, for k2 ¼ 0, of the dispersion surfaces drawn in
Fig. 2(a)–(c).

Fig. 2 shows that, in the subcritical regime (a < 1), x2 extends
to higher values as a increases, while x1 slightly flattens. As
a! 1;x2 !1. In the supercritical regime (a > 1), the dispersion
surface x2 does not exist and only x1 remains (see Fig. 2(c) and
(f)); hence, the waves are of the shear type. This can be explained
physically by considering that the precession of the gyros trans-
forms the longitudinal motion of the lattice junctions into rota-
tional motion. Such polarisation is particularly evident in the
modes described later in Figs. 9 and 10 (see also Video1–Video12
(d)

(e)

(f)

erent values of the spinner constant: a ¼ 0:3 (a,d); a ¼ 0:6 (b,e); a ¼ 2:0 (c, f).
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(a) (b)

Fig. 3. Phase velocities in the neighbourhood of the origin of the irreducible Brillouin zone as a function of the spinner constant a. Results correspond to dispersion surfaces
x1 (a) and x2 (b). Note the different ranges of the variables in the two figures.

Fig. 4. Positions of the stationary points in the k1k2-plane for a ¼ 0:45 (the crosses
indicate fixed points, while the dots represent points moving with a).

Table 1
Stationary points relative to the lower dispersion surface x1.

Class Point k1 k2 x1 Type (for any a)

I A �2p 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

s
Saddle points

B 0 � 2pffiffiffi
3
p

C �p � pffiffiffi
3
p

II D �4p
3

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9
2ð1þ aÞ

s
Maxima

E �2p
3

� 2pffiffiffi
3
p
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included as supplementary material in the online version of the
paper). Finally, when a!1; the dispersion surface x1 becomes
flat and tends to zero for every wave vector k.

In order to better understand the properties of x1 and x2, the
phase velocities for both the dispersion surfaces are determined
near the origin (k! 0), where the medium does not behave in a
dispersive way. In a neighbourhood of k ¼ 0 the asymptotic
expressions of the phase velocities are

cph
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p� �

8 1� a2ð Þ

vuut
; ð13aÞ

cph
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p� �

8 1� a2ð Þ

vuut
: ð13bÞ

The above functions of a are plotted in Fig. 3. The phase velocity cph
1

associated with x1 decreases for increasing values of a, thus exhib-
iting a ‘‘softening’’ behaviour of the medium. On the other hand, cph

2

is augmented by increasing a, until it tends to infinity as a! 1.
Therefore, one of the main effects of the system of gyros is to ‘‘stif-
fen’’ the lattice with respect to the propagation of waves dominated
by pressure. This feature of the chiral lattice may have important
implications in practical applications, as this vortex-type medium
can be used as a ‘‘pressure wave accelerator’’.

3.2. Stationary points of the dispersion surfaces

In this section, the stationary points of the dispersion surfaces
are determined and classified according to their type. The values
of the dispersion surfaces at the stationary points correspond to
the frequencies of the standing waves of the model.

The positions of the stationary points in the reciprocal space are
shown in Fig. 4. Points A–E (represented by crosses) stay fixed in
the k1k2-plane as the spinner constant a is varied, while points F
and G (indicated by dots) change their positions at increasing a.
In particular, for a < 1=3, F is located between O and D, while G
is between E and V; for a ¼ 1=3, F coincides with D, while G
coincides with E; for 1=3 < a <

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
, F is found between D and

A, while G is between B and E; finally, for a P
ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
F and G

coincide with A and B, respectively.
The stationary points of the lower dispersion surface x1 are the

points A–E. These points can be classified into two types, as
detailed in Table 1, where their coordinates in the reciprocal space
are also reported. In the lower dispersion surface x1 each station-
ary point remains of the same type, either saddle point or maxi-
mum, as a varies. The cross-sections of x1 along the path ODAV
(shown in Fig. 4) are plotted in Fig. 5 for different values of a.
The curves show stationary points representative of classes I and II.
Please cite this article in press as: Carta, G., et al. Dispersion properties of vor
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For the upper dispersion surface x2, the type of the stationary
points A–E varies with a, as specified in Table 2. Two additional
stationary points F and G appear. These are saddle points having
a position in the reciprocal space changing with a and detailed in
Table 2. The cross-sections of x2 along the path ODAV are plotted
in Fig. 6 for different values of a. The curves show stationary points
representative of classes III–V.
3.3. Polarisation

In the two-dimensional triangular lattice without gyros (a ¼ 0),
the dispersion relation (12a) represents pure shear waves, polarised
tex-type monatomic lattices. Int. J. Solids Struct. (2014), http://dx.doi.org/
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Fig. 5. Sections of the lower dispersion surface x1 along the path ODAV, shown in
Fig. 4, determined for different values of a.

Fig. 6. Sections of the upper dispersion surface x2 along the path ODAV, shown in
Fig. 4, obtained for different values of a.
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orthogonal to the wave vector k. On the other hand, dispersion rela-
tion (12b) describes pure pressure waves, because the eigenvector
corresponding to the eigenvalue x2 is polarised parallel to the wave
vector k. The system of gyros affects the polarisation, and the dis-
persion relations (12) when a – 0 do not represent pure shear
and pure pressure waves, as discussed in the following.

The vector equation of motion (8), for m ¼ 1; c ¼ 1; l ¼ 1, can be
written explicitly as the following system of scalar equations:

x2 � 3þ 2 cosðk1Þ þ
cosðfÞ þ cosðnÞ

2

� �
u1

þ
ffiffiffi
3
p cosðfÞ � cosðnÞ

2
þ iax2

� �
u2 ¼ 0; ð14aÞ

ffiffiffi
3
p cosðfÞ � cosðnÞ

2
� iax2

� �
u1

þ x2 � 3þ 3
cosðfÞ þ cosðnÞ

2

� �
u2 ¼ 0: ð14bÞ

The quantities f and n in the system above have been defined in Eq.
(11).

In the low frequency limit, and hence for small values of k, Eqs.
(14) reduce to

x2 � 9
8

k2
1 �

3
8

k2
2

� �
u1 �

3
4

k1k2 � iax2
� �

u2 ¼ 0; ð15aÞ

� 3
4

k1k2 þ iax2
� �

u1 þ x2 � 3
8

k2
1 �

9
8

k2
2

� �
u2 ¼ 0: ð15bÞ
Table 2
Stationary points of the upper dispersion surface x2.

Class Point k1 k2

III A �2p 0

B 0 � 2pffiffiffi
3
p

C �p � pffiffiffi
3
p

IV D �4p
3

0

E �2p
3

� 2pffiffiffi
3
p

V F 4 arccos 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� 27a2
p� �

; �2p 0

G 4 arccos 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p� �

; 0 � 2pffiffiffi
3
p
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The eigenvector u, corresponding to either x1 or x2, can be ex-
pressed as ð1;WÞT, where W ¼ u2=u1.

In order to define quantitatively the polarisation induced by the
gyros, the angles c1 and c2 are introduced. As shown in Fig. 7(a), c1

is the angle between the eigenvector u relative to x1 for a – 0 and
the normal to the wave vector k (which coincides with the direc-
tion of the eigenvector uðx1Þ when a ¼ 0). On the other hand, c2

represents the angle between the eigenvector uðx2Þ for a – 0
and the wave vector k (that is parallel to uðx2Þ when a ¼ 0), as
shown in Fig. 7(c). If k ¼ ðcosðbÞ; sinðbÞÞT, where b can vary
between 0 and 2p,

c1 ¼
p
2
� arccos

k1 þWðx1Þk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þWðx1Þ �Wðx1Þ

q


; ð16aÞ

c2 ¼ arccos
k1 þWðx2Þk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þWðx2Þ �Wðx2Þ
q


; ð16bÞ

where �W is the complex conjugate of W.
In the low frequency limit, both c1 and c2 do not change with

the orientation of the wave vector, defined by b. This is due to
the fact that, near the origin of the reciprocal space, the chiral lat-
tice behaves as an isotropic medium. The variations of c1 and c2

with the spinner constant a are shown in Fig. 7(b) and (d), respec-
tively. It can be seen that, if a ¼ 0 (i.e. if the gyros are removed
from the lattice), c1 and c2 are both zero. Therefore the waves
x2 Type

a <
ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
a >

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

s
Maxima Saddle points

a < 1=3 a > 1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

2ð1� aÞ

s
Minima Maxima

a <
ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
a >

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
9
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2

p Saddle points � A

� B

tex-type monatomic lattices. Int. J. Solids Struct. (2014), http://dx.doi.org/
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(a) (b)

(c) (d)

Fig. 7. (a) Definition of the polarisation angle c1; (b) dependence of c1 on the spinner constant a; (c) definition of the polarisation angle c2; (d) dependence of c2 on a, where
the grey part of the diagram indicates that waves are evanescent in the supercritical regime a > 1.

(a) (b)

Fig. 8. (a) Slowness contours x1ðkÞ ¼ 1, obtained for a ¼ 0:9 (solid line) and a ¼ 0 (dashed line); (b) relations between polarisation angle c1 and wave vector angle b for
a ¼ 0:9 (solid line) and a ¼ 0 (dashed line), evaluated in the sector p=6 6 b 6 p=2.
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travelling in the medium are of pure shear and pressure types.
When the gyros are attached to the lattice particles, the waves
are polarised, since c1 and c2 become non zero. The angles c1 and
c2 increase monotonically with a. In the limit as a!1; c1 !
p=6, while c2 ! p=3, so that waves with frequencies x1 and x2

are aligned in this limit and polarised with an angle of p=3 with re-
spect to the direction of wave propagation. Actually, we point out
that the dispersion surface x2 corresponds to propagating waves
Please cite this article in press as: Carta, G., et al. Dispersion properties of vor
10.1016/j.ijsolstr.2014.02.026
only in the subcritical regime a < 1, and c2 ¼ p=4 at the critical re-
gime a ¼ 1. Finally, we observe that, for any given value of a; c2 is
larger than c1. Thus, the gyros act as ‘‘shear polarisers’’.

For large values of k, the eigenvector must be calculated by
using Eqs. (14) instead of Eqs. (15). At higher frequencies, the med-
ium exhibits a dynamic anisotropic behaviour. To clarify this point,
the slowness contours x1ðkÞ ¼ 1, calculated for a ¼ 0:9 (solid line)
and a ¼ 0 (dashed line), are plotted in Fig. 8(a) . The angle c1 varies
tex-type monatomic lattices. Int. J. Solids Struct. (2014), http://dx.doi.org/
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Fig. 9. (a) Slowness contour x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
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Þ
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for a ¼ 0:9; the crossing points represent the saddle points. (b–d) Standing modes at the saddle points A, C1 and C2,
specified in (a). The modes (in black) are shown together with the undeformed lattice (in grey).
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for a ¼ 0:9; the saddle points at this frequency are indicated by crossing points. (b–d) Standing modes at the saddle
points A, C1 and C2, specified in (a). The modes (in black) are shown together with the undeformed lattice (in grey).

G. Carta et al. / International Journal of Solids and Structures xxx (2014) xxx–xxx 7

Please cite this article in press as: Carta, G., et al. Dispersion properties of vortex-type monatomic lattices. Int. J. Solids Struct. (2014), http://dx.doi.org/
10.1016/j.ijsolstr.2014.02.026

http://dx.doi.org/10.1016/j.ijsolstr.2014.02.026
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.026


Fig. 11. Attenuation coefficient jrj versus frequency x2 for b ¼ 0þ np=3 ( rminj j) and
b ¼ p=6þ np=3 ( rmaxj j). The curves are given for � ¼ 0:1.
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with the angle b (which identifies the direction of wave propaga-
tion), as can be seen from Fig. 8(b) (here only the range
p=6 6 b 6 p=2 has been considered on the horizontal axis due to
the symmetry of the slowness contours). This anisotropy is ob-
served for both cases a ¼ 0:9 (solid line) and a ¼ 0 (dashed line).
However, for any a, the average value of c1 is close to the value
shown in Fig. 7(b), where it was obtained for k! 0. The compari-
son between the cases a ¼ 0:9 and a ¼ 0 shows that increasing a
not only leads to a change in the group velocity (see Fig. 5), but
it also results in the polarisation of waves. Similar considerations
can be applied to the dispersion surface x2ðkÞ.

3.4. Standing waves at the saddle points

Saddle points of the dispersion surfaces are associated with very
strong dynamic anisotropy. In fact, waves with a frequency close to
the frequency of the saddle points propagate along the preferential
directions defined by the geometry of the medium. In order to
visualise the preferential directions of the triangular lattice of
Fig. 1, the eigenmodes corresponding to the saddle points frequen-
cies of both x1 and x2 are shown. They can be obtained from
either of Eqs. (14).

Firstly, the lower dispersion surface x1ðkÞ is considered. The
slowness contour for a ¼ 0:9, determined at the frequency of the
saddle points A–C (belonging to class I of Table 1), is plotted in
Fig. 9(a), where the saddle points are indicated by dots. The unde-
formed and deformed cells at the saddle points A, C1 and C2 are
shown in Fig. 9(b)–(d), respectively.

The three preferential directions of the triangular lattice are
clearly visible from Fig. 9(b)–(d), which also show that the waves
are dominated by shear. The same preferential directions are
found in a non-chiral lattice (a ¼ 0), although at a different value
of the frequency (x ¼

ffiffiffi
2
p

). Nonetheless, the introduction of the
gyros generates an additional rotation of the points around their
initial positions, so that the total deformation is not of pure shear
type. This effect of the gyros can be seen from Fig. 9(c) and (d),
and it is better shown in the videos included in the electronic
supplementary material accompanying this paper (see Video1–
Video6).

For the upper dispersion surface x2ðkÞ, the slowness contour
for a ¼ 0:9, obtained at the frequency of the stationary points
A–C (class III of Table 2), is drawn in Fig. 10(a). The standing waves
at the saddle points A, C1 and C2 are represented in Fig. 10(b)–(d).
Also in this case, there are three preferential directions, but the
waves are of the pressure type. As in the case of x1, the gyros make
the lattice particles rotate around their positions, as can be better
seen in the supplementary material (see Video7–Video12).

3.5. Critical regime: asymptotic analysis for a ’ m

The degenerate case a ’ m is of particular interest. Let � define
a small quantity (0 < �� 1) such that a ¼ 1� � (m ¼ 1). If
a ¼ 1� � (subcritical regime), there are two dispersion surfaces,
which have the following asymptotic representations:

x1’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The lower dispersion surface x1 is independent of �. On the
other hand, the upper dispersion surface x2 is reciprocal to

ffiffiffi
�
p

,
which enables us to control the width of the band gap by changing
the parameter �. It must also be noted that the coefficientffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðCÞ=2
p

¼ 0 at k ¼ ð�2p;�2p=
ffiffiffi
3
p
ÞT.

If a ¼ 1þ � (supercritical regime), x1 is still expressed by Eq.
(17a), while x2 assumes imaginary values:

x2 ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
trðCÞ

2

r
1ffiffiffi
�
p : ð18Þ

In this regime, waves associated to x2 are evanescent, thus it is of
interest to determine the coefficient of attenuation. There is a solu-
tion of Eq. (18) where the frequency x2 is real and the wave vector
k ¼ i r ðcosðbÞ; sinðbÞÞT is purely imaginary, with b being the orienta-
tion of k relative to the coordinate axis x1 and r the coefficient of
attenuation. This real frequency x2 is found from the following
equation:

x2
2þ

1
�

3�cosh r cosðbÞ½ ��2cosh
r cosðbÞ

2

� �
cosh

ffiffiffi
3
p

r sinðbÞ
2

" #( )
¼0;

ð19Þ

which also gives the representation of r as a function of x2; � and b.
The dependence of the attenuation coefficient r on the orientation
of the wave vector b is due to the dynamic anisotropy of the lattice.

The relation between r and x2 is shown in Fig. 11 for � ¼ 0:1
and two different values of b. As b varies in the interval
½0;2pÞ; jrj varies between the lower limit

rminj j ¼ 2 arccosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 2�x2

2

q
� 1

2

0
@

1
A


 ð20Þ

at b ¼ 0þ np=3 (n integer) and the upper limit

rmaxj j ¼ 2ffiffiffi
3
p arccosh

2þ �x2
2

2

� �
 ð21Þ

at b ¼ p=6þ np=3 (n integer). Note that the absolute values of r
have been reported, since the sign of r depends on the angle be-
tween the position vector x and the direction of the wave propaga-
tion defined by k; in particular, the sign of r must satisfy proper
radiation conditions. The limiting expressions jrminj and jrmaxj as a
function of the frequency x2 are shown in Fig. 11, where the usual
inverse exponential dependence of the attenuation factor on the
frequency is shown.
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4. Simulations of frequency response problems for a chiral
discrete system

In this section, the response of an infinite chiral lattice under an
external harmonic excitation is analysed numerically. A finite ele-
ment code has been implemented in COMSOL Multiphysics, where
the gyroscopic term in the equation of motion (i.e. the last term in
Eq. (5)) is introduced in the model as an equivalent external force
applied to each node of the lattice with magnitude proportional to
the displacement magnitude.

In order to simulate an infinite lattice, a computational domain
consisting of 60 triangular elements in the horizontal direction and
68 elements in the vertical direction has been modelled. To avoid
reflections from the boundaries, the lattice links of the five layers
of elements closest to the boundaries are connected to viscous
dampers. In this way, waves are absorbed before impinging on
the boundaries and the viscous dampers play the role of ‘‘perfectly
matched layers’’, as in Carta et al. (2013). We note that the viscos-
ity coefficient of the dampers has been tuned in order to minimise
reflections.

The lattice is excited by a vertical or horizontal harmonic dis-
placement of unit amplitude applied at the central node of the
lattice.

Low frequency regime. Firstly, a low excitation frequency is
considered. In the low frequency range, the lattice behaves as an
isotropic medium. Fig. 12 shows the displacement amplitude fields
determined for different values of the spinner constant a, with
Fig. 12. Displacement magnitude fields produced by a vertical harmonic displacement of
fields are given for different values of the spinner constant: (a) a ¼ 0; (b) a ¼ 0:5; (c) a

Please cite this article in press as: Carta, G., et al. Dispersion properties of vor
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x ¼ 0:5. In particular, Fig. 12(a) and (b) refer to the subcritical re-
gime (a ¼ 0 and a ¼ 0:5, respectively), Fig. 12(c) considers the crit-
ical case (a ¼ 1), while Fig. 12(d) presents an example in the
supercritical regime (a ¼ 1:5).

Fig. 12(a) represents the typical low-frequency wave pattern
produced by a point source in a non-chiral medium (a ¼ 0). In
the direction of the excitation, waves are characterised by a larger
wavelength, thus they are of the pressure type. In the perpendicu-
lar direction waves present a shorter wavelength, hence they are
dominated by shear. In the presence of gyros, a vortex appears
around the point source; the directional preference of shear and
pressure waves is less evident, with shear waves being dominant,
as can be seen from Fig. 12(b) (a ¼ 0:5). In the critical case a ¼ 1,
the wave pattern is nearly isotropic, as shown by Fig. 12(c). Finally,
in the supercritical case a ¼ 1:5, waves are of the shear type, being
characterised by a small wavelength, as demonstrated by
Fig. 12(d).

The vortex-type phenomenon induced by the gyros can be ob-
served more clearly from the video files provided as the supple-
mentary material with this manuscript (see Video13–Video15).
Similar wave patterns have been observed for a continuous chiral
medium (see Fig. 8 of Brun et al. (2012)).

Effect of the spinner parameter a on stationary points.
Change in a influences substantially the dispersion properties of
the Bloch waves in the chiral lattice. Here we give several indica-
tive examples, which include the critical points on the dispersion
surface (i.e. those corresponding to standing waves) of both types:
low frequency x ¼ 0:5, imposed on the central node of the lattice. The displacement
¼ 1; (d) a ¼ 1:5.

tex-type monatomic lattices. Int. J. Solids Struct. (2014), http://dx.doi.org/
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Fig. 13. Displacement amplitudes as a result of an applied unit displacement varying harmonically at the stationary points frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ
q

(see Table 2,
class III). The subcritical spinner constant is: (a) a ¼ 0; (b) a ¼ 0:2; (c–d) a ¼ 0:9. (a), (b) and (c) correspond to an applied vertical displacement and (d) to an applied
horizontal one.

Fig. 14. Displacement amplitudes as a result of an applied vertical unit displacement vibrating harmonically at the stationary points frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ
q

. The
subcritical spinner constants are close to the transition value a ¼

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
: (a) a ¼

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
� 1=10; (b) a ¼

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
þ 1=10.
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the points of maximum and the saddle points, both associated with
the same Bloch vector in the reciprocal lattice. In particular, we
consider stationary points of class III in Table 2.

In Fig. 13(a) and (b), two regimes for a ¼ 0 and a subcritical
positive a are presented. The corresponding point on the
Please cite this article in press as: Carta, G., et al. Dispersion properties of vor
10.1016/j.ijsolstr.2014.02.026
dispersion diagram is a point of maximum. However, when a
forced vibration is initiated at the given frequency, the chiral case
is characterised by a larger region of influence and a weaker
localisation compared to the case of the non-chiral medium
(when a ¼ 0).
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Fig. 13(c) and (d) correspond to a saddle point. The spinner con-
stant a is equal to 0:9 and the lattice is excited by a vertical or a
horizontal unit displacement vibrating harmonically. The lattice
exhibits a dynamically anisotropic behaviour, namely waves tend
to propagate along preferential directions defined by the lattice
geometry, whereas propagation along the other directions is
suppressed. In Fig. 13(a) and (b), instead, the stationary point is a
maximum (see Table 2) and the dynamic behaviour of the lattice
is isotropic. In both Fig. 13(c) and (d), the three preferential
(a)

(b)

(d)

Fig. 15. (a) Dispersion curves x1 (in black) and x2 (in grey) along the path ODAV
corresponding to part (b–e) of the figure, respectively. (b–e) Displacement amplitudes i
x ¼ 1:27, represented in part (a) with a dashed line.
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directions of propagation are clearly visible. They coincide with
those obtained analytically in Section 3.4 (see Fig. 10). Similar
numerical results have been found by Colquitt et al. (2012) in a
non-chiral triangular lattice, in which the links are Euler–Bernoulli
beams (see Fig. 8 in the cited paper). However, in Colquitt et al.
(2012) the non-chiral medium responds differently to different
excitations, while here the differences between the diagrams in
Fig. 13(c) and (d) are negligibly small. Hence, in the chiral lattice
the direction of the applied force does not influence the vibration
(c)

(e)

indicated in Fig. 4. The curves are given for spinner constant a ¼ 0; 0:8; 1:2; 2:0
n the chiral lattice as a result of an applied vertical unit displacement at frequency
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pattern of the star-shaped wave form. In addition to the standard
anisotropy already discussed above, the saddle points indicate
the effect of negative refraction.

Critical regime for a in the transition region. With reference
to Table 2, we give illustrations for the cases when a is chosen in
the neighbourhood of

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
. The case a ¼

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
is important

for the upper dispersion surface dominated by pressure waves;
namely, the saddle points F and G shown in Fig. 4 coincide with
A and B, respectively, in the limit when a!

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
. Moreover,

the points A, B and C become the saddle points on the upper dis-
persion surface as a >

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
, and hence the dynamic anisotropy

may be observed in the neighbourhood of x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ
q

.

The next computations correspond to a small perturbation of
the spinner constant, which results in a dramatic change of the dy-
namic response of the elastic system. The vibrations are initiated
by a vertical unit displacement applied at the central nodal mass,

at the frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2
p

Þ
q

. Fig. 14(a) corresponds

to a point of maximum (for a <
ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
); the displacement field

does not represent a propagating wave, instead a localisation is ob-
served. Fig. 14(b) shows the case of the saddle point (for
a >

ffiffiffiffiffiffiffiffiffiffiffi
7=27

p
), and hence preferential directions of the wave propa-

gation are clearly identified. Again, the three preferential directions
visible on Fig. 14(b) are similar to the computations in Colquitt
et al. (2012), and these preferential directions are governed by
the slowness contour shown in Fig. 10(a).

Response influenced by change of a for a fixed frequency.
Finally, we set a frequency response simulation for a fixed fre-
quency, while the spinner constant changes its values. The norma-
lised radian frequency is chosen to be x ¼ 1:27, and it is
represented by the dashed horizontal line in Fig. 15(a) together
with the dispersion curves x1 and x2 represented for different val-
ues of a. While a ¼ 0, i.e. the lattice is non-chiral, the normalised
time-harmonic vertical displacement applied to the central nodal
mass generates the response shown in Fig. 15(b); the directional
preference of shear and pressure waves as in Fig. 12(a) is expected,
and the horizontal axis incorporates relatively large values of shear
stress. In addition, three preferential directions appear; this is due
to the fact that the frequency is close to the frequency of the saddle
point in A for x1, and in the neighbourhood of A the group velocity
magnitude is small. With the increase of the spinner constant to
the value a ¼ 0:8 we achieve the configuration corresponding to
a saddle point on the lower dispersion surface, as shown in
Fig. 15(a). The displacement magnitude is shown in Fig. 15(c),
and clearly indicates three preferential directions, consistent with
the slowness contour in Fig. 9(a). This represents the strong dy-
namic anisotropy discussed above. We note that the influence of
the rotational action is visible in the form of a blurred central re-
gion, where anisotropy is partially suppressed due to the coupling
between pressure and shear waves induced by the gyros. Further
increase in a leads to Fig. 15(d), where the region of influence of
vibrational source is substantially reduced. We note that this case
corresponds to a > 1, and hence strong polarisation to shear waves
is observed in the simulation. Fig. 15(e) corresponds to a suffi-
ciently large a, such that a strong exponential localisation around
the vibrational source is observed. Further increase in a will make
the localisation stronger, since the given frequency value is placed
in the stop band of the elastic system.
5. Conclusions

This work has demonstrated the effects of a system of
gyroscopes on the dynamic properties of a monatomic lattice.
The analytical findings concerning the dispersive properties of
Please cite this article in press as: Carta, G., et al. Dispersion properties of vor
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the medium have been confirmed by the illustrative numerical
simulations.

In a lattice containing gyros, denoted as ‘‘chiral’’, the formation
of vortices is observed. In addition, waves are polarised, meaning
that they cannot be considered as being of pure pressure or pure
shear, as in a non-chiral lattice. In particular, the study of standing
waves has revealed that the lattice particles do not translate, as in a
non-chiral medium, but rotate around their equilibrium positions.

At high frequencies, a monatomic lattice (with or without
gyros) is dynamically anisotropic, since waves tend to propagate
along the preferential directions defined by the lattice geometry.
These directions have been determined for both the chiral and
the non-chiral lattice from the eigenmodes calculated at the saddle
points of the dispersion surfaces of the medium, and have also
been retrieved from the numerical computations. The value of
the frequency at the stationary points depends on the spinner con-
stant. Accordingly, the propagation band of the medium varies
with the value of the spinner constant.

At low frequencies, the introduction of the gyros increases the
velocity of the waves dominated by pressure and slows down the
waves dominated by shear. The latter are the only waves that
can propagate in the medium if the spinner constant is larger than
the mass of the lattice particles.

Considering all the interesting properties described above, dis-
crete systems with gyros can be used in engineering applications
to design special dynamic systems, such as wave polarisers, accel-
erators and decelerators of waves, and devices to guide waves
along specific directions.

It remains a challenge to perform experimental tests on lattices
endowed with gyros. Such experiments, which could be useful to
validate the theoretical results reported in this paper, have not
been done yet, since the model described here is novel and recent.
However, gyros are already used in several fascinating applications
to stabilise or stiffen mechanical and electro-mechanical systems,
such as gyro compasses, attitude indicators, main guns of tanks
and Segways. In particular, Lit Motors engineers have designed
the scooter C-1, which is a two-wheeled self-balancing vehicle that
is completely stabilized by two electronically-controlled gyro-
scopes. The rotation of a gyro can be sustained both electrically
(as in the gyro compasses or in the Segways) or by means of a vac-
uum pump (as in some types of attitude indicators). The same
techniques could be implemented in the design of a lattice with
gyros.
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