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ABSTRACT- Physical Activity is a fundamental component for the maintenance of 

a healthy lifestyle. Recommendations for physical activity levels are issued by most 

governments as part of public health measures. Therefore, it is vital for regulatory 

purposes, that there are reliable measurements of physical activity. However, the 

techniques and protocols used in existing physical activity research, including 

laboratory-based measurement, have received increasingly critical scrutiny in recent 

times. Consequently, physical activity researchers have begun to explore the use of 

wearable sensing technology to capture large amounts of data and the use of 

machine learning techniques, specifically artificial neural networks, to produce 

classifications for specific physical activity events. This paper explores this idea 

further and presents a supervised machine learning approach that utilises data 

obtained from accelerometer sensors worn by children in free-living environments. 

The paper posits a rigorous data science approach that presents a set of activities 

and features suitable for measuring physical activity in children in free-living 

environments. A Multilayer Perceptron neural network is used to classify physical 

activities by activity type, using ecologically valid data from body worn accelerometer 

sensors. A rigorous reproducible data science methodology is presented for 

subsequent use in physical activity research. Our results show that it was possible to 

obtain an overall accuracy of 92% using the initial data set, and 99.8% using 

interpolated cases. 
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According to the recent McKinsey Global Institute report1, the global cost of 

obesity is comparable with combined costs of smoking and armed conflict, which are 

both greater than the collective costs of alcoholism and climate change. The report 

states that obesity costs £1.3tn, or 2.8% of annual global economic activity. In the 

UK, the cost is £47bn. The prevalence of overweight and obesity is alarming. With 

2.1bn people (30% of the world’s population) being overweight or obese. According 

to the World Health Organisation (WHO), at least 2.8 million people worldwide die 

from being overweight or obese.  It is also the cause of a further 35.8 million of 

global Disability-Adjusted Life Years (DALY)2. In the United Kingdom, data extracted 

from the Health Survey for England (HSE) in 2012 [1] reported that the percentage of 

obese children between the age of 2 and 15 has increased since 1995. Fourteen 

percent of boys and girls were classified as obese and 28% as either overweight or 

obese. In addition, 19% of children aged between 11 and 15 were more likely to be 

obese than children between 2-10 years.  

The physical condition of adults is strongly conditioned by the early stages of life. 

In this sense, the results provided by the HSE revealed that in 2012 almost a quarter 

of men, specifically 24%, and a quarter of women (25%) were obese, while 42% of 

men and 32 % of women were overweight. Therefore, an increase in levels of 

obesity and overweight in the UK is observed which depends, among other factors, 

on the lack of physical activity. This growing trend of obesity within the UK and other 

countries and its associated health risks are cause for national and international 

concern. 

Consequently, the accurate measurement of physical activity (PA) in children 

(particularly in free-living environments) is of great importance to health researchers 

and policy-makers [2]. One of the most reliable means of activity measurement in 

children can be captured using accelerometers to measure movement intensity and 

frequency [3]. This method offers the advantage of providing quantified values for 

activity intensity over time. However, methodological variations in data gathering and 

analysis methods used between studies have led to a growing saturation of 
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conflicting cut-points (the quantitative boundaries between PA intensity classes) in 

the literature [4].  

Consequently, several new research directions have been proposed that attempt 

to address this challenge. One such approach is the use of machine learning 

techniques for the prediction or detection of activity types and their associated 

intensity [5]-[7], [44], [45]. This paper builds on this growing research direction and 

previous works to present a rigorous data science methodology for predicting 

physical activity types and intensity using a dataset obtained via the field-based 

protocol described in the literature [8]. Exploratory data analysis is utilised to 

determine what activities and feature sets produce the best results when activity 

types are predicted using a Multilayer Perceptron (MLP).   

The structure, of the remainder, of this paper is as follows. Section 2 provides and 

analysis of the problem while Section 3 describes the methods used. Section 4 

presents the results before they are discussed in Section 5. The paper is concluded 

in Section 6.  

 

2. ANALYSIS  

2.1 Physical Activity 

Physical activity (PA) is defined as any bodily movement produced by skeletal 

muscles that results in energy expenditure [9] and is measured in Kilojoules (Kj). The 

measurement of physical activity has become a fundamental component in healthy 

lifestyle management. Recommendations for physical activity levels are issued by 

most governments as part of public health measures [10]. However, they tend to be 

quite frequently updated or adjusted due to external circumstances, such as changes 

in diet and food pricing [11], sedentary lifestyle [12], technology [13], the built 

environment [14], family structure [15] and social influences [16]. 

With frequent changes in these factors, it has become increasingly important from 

a public health policy-makers perspective to develop a means of reliably measuring 

physical activity intensity to public health guidelines. Since the mid-90’s, advances 

have been made in physical activity measurement, particularly with the proliferation 

of accelerometer-based measurement protocols that provides accurate data capture. 



  

This technological intervention has made it easier to estimate the frequency, duration 

and intensity of physical activity [17].  

There are three intensity levels that describe physical activity, “Light Physical 

Activity” (LPA), “Moderate Physical Activity” (MPA) and “Vigorous Physical Activity 

(VPA). These three levels are distinguished using cut-points; threshold levels derived 

using a single-regression equation or ROC curve analysis [18]. These are mainly 

used in laboratory-based physical activity research however, there is growing 

interest in the use of field-based protocols for ecologically valid, free-living physical 

activity intensity measurement [19]. Underpinning many of these studies is the use of 

accelerometers, activity monitoring logs and diaries, as a relatively unobtrusive 

means of obtaining additional data [20]. However, assessing children’s activities, 

which are generally regarded as being more difficult to classify than the free-living 

physical activities of adults, is difficult. This is primarily because children tend to 

possess high variability in their physical activity behaviours over time, which may be 

easily miscategorised, i.e. classifying short burst of MPA and VPA as inactivity [21]. 

In free-living environments, it is considered ecologically invalid to use multiple 

pieces of measurement hardware, due to weight and encumbrance constraints. This 

is a significant challenge in physical activity research, where V02 masks and heart 

rate monitors are standard measurement tools. Consequently, interest in the use of 

accelerometers, as an objective alternative, in current physical activity research has 

become common practice.  

2.2 Accelerometry and Cut Points 

Accelerometry allows the measurement and quantification of movement and has 

become a useful tool for estimating  activity intensity over time using cut-points [22]–

[24]. There is a degree of controversy surrounding the specification of cut-points 

[25][26]. The variation between cut-point sets is due to the use of different equations, 

where variables, such as age, are used. More importantly, cut-point definitions vary 

even between studies using the same equation. This is an important factor when 

creating many, significantly different, sets of cut-points [4], where age range and 

gender need to be clearly defined. This is typically achieved using either linear 

regression techniques to derive cut-points, or via the use of Receiver Operating 

Characteristics (ROC) analysis. The most common approach is to use linear 



  

regression techniques, however its validity has been questioned [27]. The use of 

ROC analysis has also been criticised as a noisy classification measure [28][29]. 

Consequently, this has led to the use of artificial neural networks (ANNs) and their 

potential to improve accuracy [8][30], which we will discuss later in the paper. 

Concerns have also been raised about the validity of intensity estimation, using 

accelerometers, across different activity types. Studies have shown their usefulness, 

but only when specific activities are used [31]. Consequently, the type of activities 

used may also cause variance in the accelerometer readings obtained. This 

variability may have significant consequences when considering field-based 

measurement; although variability may be high in controlled experimental conditions, 

measuring PA in free-living situations is more problematic, due to the broad range of 

behaviours and movement types [32]. Moreover, children’s activity is especially 

variable, due to the variable nature of children’s play activities [8]. As such, 

developing a reliable measure of children’s free-living physical activity is an ongoing 

research goal. 

 

2.3 Direct Observation 

The variable nature of accelerometer findings has led to a proliferation of varied 

and conflicting cut-points in the literature. Consequently, a need has been 

recognised for a more objective protocol for the determination of cut-points. 

Mackintosh et al. developed a field-calibration protocol, intended for use by 

researchers in generating objective and inexpensive, population-specific cut-points 

for sedentary time, MPA and VPA [8]. This field protocol comprises of two elements. 

The first is a broad set of structured and unstructured activities, representative of 

free-play situations. The second is the use of direct observation (DO) as a criterion 

measure for evaluating the subjects physical activity by a corresponding code [33]. 

DO is regarded as an important tool in PA research; being a direct measure of 

behaviour it requires little interpretation, having high internal validity [34]. Moreover, 

DO offers objective data on activity which may be intermittent or otherwise hard to 

monitor using accelerometers alone [35][36].  

 

 



  

 

2.4 Physical Activity Classification 

Artificial neural networks (ANN) have been used to classify physical activity in 

several studies, with good results [31]. In one such study, Staudenmayer et al. 

developed an ANN, which classified activity type in adults, using time windows, with 

88% overall accuracy and a consistently low Root Mean Squared Error (rMSE) 

measure [37]. In a study carried out by De Vries et al. a series of ANNs were 

developed to predict PA in children across a range of activity types. However, the 

results reported were significantly lower than those reported in Staudenmayer et al 

[37] with classification accuracies between 57.2% and 76.8% [30], [31].  

Trost et al. [5] conducted a rigorous study in which 90 ANN designs (different 

hidden layer and weight sizes) were developed and trained to predict PA type and 

intensity. Data from 100 children was used, comprising of data for 12 activities each 

of child performed. The best performing design was trained using features extracted 

from a range of time windows (10, 15, 20, 30 and 60 seconds). This rigorous 

methodology yielded particularly good results, with the most successful network able 

to predict PA type with 88.4% accuracy over a 60-second window. The classification 

of PA intensity was also successful, with the network able to classify moderate to 

vigorous intensity activities 93% of the time.  

While Trost’s study is one of the forerunners for artificial neural network usage in 

the classification of physical activity types and intensity, it does not fully investigate 

the full range of ANN techniques available. Crucially, the study does not explore the 

potential for using alternative algorithms or parameters to enhance the classification 

accuracy of the ANN. They discuss the shortcomings of their approach and point out 

their ANNs high error margins (as high as 44.6% in the case of sedentary activity), 

recommending that a combination of triaxial accelerometer use and different pattern 

recognition algorithms be used to generate more precise ANN outputs. 

 

3. METHODOLOGY 

Despite the advances made in laboratory-based physical activity classification and 

the use of artificial neural networks, more in-depth studies are required. This is 



  

especially true when compared to research in free-living environments. The aim of 

most studies, in physical activity classification and intensity measurement, has been 

to carry out measurements in controlled environments. However, the Mackintosh et 

al. study is different, as it involves the assessment of physical activity in young 

children in free-living environments [8].  

The Mackintosh et al. dataset contains records for twenty-eight children aged 

between 10 and 11 years old from a North-West England primary school. Children 

completed seven different physical activities performed in a randomised order, which 

took place in the school playground or classroom with 5 minutes seated rest 

between each activity. To capture both the sporadic nature of children’s activity [38] 

and locomotive movement best suited to accelerometers [39], the activities 

incorporated both intermittent and continuous (i.e., walking and jogging) movements 

representative of culturally-relevant-free-play situations. Sedentary activities were 

watching a DVD and drawing, which were consistent with those used previously [26]. 

In summary, the dataset contains 28 records of children, age11.4±0.3 years, height 

1.45±0.09 meters, body mass 42.4±9.9 kg, and BMI 20.0 ±4.7, where 46% of the 

population were male and 54% were female. The dataset also contains physical 

activity codes from the System for Observing Fitness Instruction Time (SOFIT) [33] 

to directly observe the children’s physical activity behaviours during the activities. 

The physical activity coding element of SOFIT uses momentary time sampling to 

quantify health-related physical activity where codes 1 to 3 represent participants’ 

body positions (lying down, sitting, standing), code 4 is walking, and code 5 (very 

active) is used for more intense activity than walking [33]. These DO physical activity 

codes have been validated with heart rate monitoring [40], oxygen consumption [40], 

[41], and accelerometry [42], [43] with preschool to 12th grade children, including 

those with development delays [34]. Throughout the protocol each child’s activity 

was coded every 10-s by a trained observer.  

Prior to observation of each child, ActiGraphs and a digital watch were 

synchronized to allow data alignment. The data was downloaded from the ActiGraph, 

and ActiLife 5.5.5 software was used to merge 5-s data to 10-s data in order to align 

mean activity counts with DO data. For each 10-2 accelerometer counts, DO codes 



  

of 1 and 2 were categorised as sedentary time, code 3 as light intensity activity 

(LPA), 4 as MPA, and 5 as VPA.  

An initial data capture process was performed, to obtain data for each of the 

subjects’ weight, height, gender, age, sitting height, leg length and waist. An 

additional feature of BMI was calculated using height and weight data. During the 

performance of activities, accelerometers and a DO protocol were used to obtain 

activity data. Subjects were supervised throughout the performance of each activity; 

each student was also observed by an observer using the SOFIT DO protocol. This 

observer assessed the recorded student DO values of 10-second intervals. During 

the performance of activities, left hand accelerometer count, right hand 

accelerometer count, left waist accelerometer count, right waist accelerometer count 

and direct observation values were captured. 

The accelerometer and DO values obtained during the recording and observation 

period were processed to generate mean values per epoch. Some values were 

subsequently used to approximate values for an additional set of features. This 

approximation was achieved via the use of established calculations for mean hand 

accelerometer count (HAC), mean waist accelerometer count (WAC), direct 

observation values (DO), body mass index (BMI), heart rate count (HR), moderate 

physical activity percentage (MPA%), vigorous physical activity percentage (VPA%), 

indirect calorimetry oxygen consumption (V02), and energy expenditure (EE). The 

dataset details are presented in Table 1, however, for a complete description of the 

dataset the reader is referred to Machkintosh et al [8]. 

 Attributes Types Descriptions 

1 ID Nominal Participant code 

2 Age Numeric  Age in years 

3 Weight Numeric Body mass weight in kg 

4 Height Numeric Height in meters 

5 Gender Binary Participant gender (1 for male and 2 for female) 

6 BMI Numeric Body mass index calculated according to World 

health organisation criteria 

7 Leg Length Numeric Leg length in meters 

8 Sitting Numeric Sitting height in meters 



  

Height 

9 Waist Numeric Waist in centimetre 

10 Accel RH Numeric Right hand accelerometer count 

11 Accel LH Numeric Left hand accelerometer count 

12 Accel RW Numeric Right waist accelerometer count 

13 Accel LW Numeric Left waist accelerometer count 

14 HR Numeric Heart rate count 

15 MPA Numeric Moderate physical activity percentage 

16 VPA Numeric Vigorous physical activity percentage 

17 DO Numeric Direct observation 

18 EE Numeric Energy expenditure 

19 VO2 Numeric Indirect calorimetric oxygen consumption 

20 Class Categorical Physical activities (i.e., resting, drawing, free 

play, DVD watching, playground activities, 

Jogging and walking). 

Table 1: Dataset attributes. 

3.1 Data Pre-Processing 

One notable concern with the dataset is that a significant number of values were 

missing. As previously described the study involved 28 participants. However, not all 

subjects performed every activity, and in some cases, values were missing for a 

number of features and/or activities. One subject who performed no activities and 

two subjects who performed only one activity were removed from the dataset. A 

further six subjects had a significant number of missing values for some or all of the 

features HR, MPA %, MPA time, VPA% and VPA time. Four of the six subjects were 

missing values for all activities and were therefore removed from the dataset. The 

remaining two subjects were missing values from three activities. Substitute values 

for these students were computed using cubic spline interpolation. For the features 

EE and V02, five subjects had missing values for some or all of the activities 

performed. As a result, these five records were removed, leaving a total dataset 

containing 16 cases per activity, with no missing or null values.  



  

A correlation analysis was performed on the four-accelerometer features contained 

in the dataset for each of the subjects. Figure one, shows that there is a perfect 

correlation between the values for right and left hand accelerometers, and a very 

high level of correlation (0.97) between the values for right and left waist 

accelerometers. The degree of correlation suggests that using both right and left 

hand accelerometers or both right and left waist accelerometers is redundant.   

 rh lh lw rw 

rh 1.0 1.0 0.9 0.9 

lh 1.0 1.00 0.9 0.9 

lw 0.9 0.9 1.00 0.97 

rw 0.9 0.9 0.97 1.00 

Table 2: Correlation Matrix Plot of Correlation Coefficients of Accelerometer 

Features: Left Hand, Right Hand, Left Waist and Right Waist. 

Consequently, the mean value of both hand accelerometers and similarly, the 

mean value of both waist accelerometers were adopted to reduce the dimensionality 

of the data set.  

3.2 Activity Selection 

The dataset contains seven activities; resting (Rest), drawing (Draw), free play 

(Free), DVD watching (DVD), playground activities (Play), Jogging (Jog), and 

walking (Walk). These activities were selected to capture a range of actions 

consistent with children’s activity, including both intermittent activities representative 

of free-play situations (e.g. Playground, Free Play), and continuous motions 

consistent with more typical activity situations (e.g. Walking, Jogging). Sedentary 

activities were also included, specifically drawing and DVD watching. The seventh 

activity, resting, was an additional sedentary activity, used to derive basal rates for 

features such as HR and V02.  

A statistical evaluation is performed to determine the differentiability between 

features. This step allows us to understand the level of overlap between activities. A 

more easily separable set of activities that contain reduced overlap between values 

from different activities, or clear patterns that differentiate classes from one another, 

will yield better results during the classification phase. This was achieved using data 



  

visualisation and trial classification tests using a Multi-Layer Perceptron (MLP) 

Neural Network. In each case, a subset of the feature set was used – specifically, 

the features HAC, WAC and DO. This subset contains the three gathered features, 

which vary by activity.  

Figure 1 shows the distribution of different feature values by activity. It is clear that 

values for a number of activities occupy coincident regions of the feature space. This 

is most pronounced in Drawing, DVD Watching and Resting. Drawing and DVD 

watching, in particular, show high overlap, while resting is distinguishable from 

others by lower DO values. The results suggest that a classification algorithm will 

find it difficult to make distinctions between drawing and DVD watching. The activity 

resting however may be easier to distinguish due to slightly differentiated DO values.  

 

 

Figure 1: Mean Hand, Waist Accelerometer and Direct Observation Values, subset 

by Activity 
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Figure 1 also shows some separation between values for the activities Jogging and 

Free Play, which should support high classification accuracy. However, there are 

slight or near overlaps between Free Play and Walking values, which may be 

sufficient to cause a small reduction in classification accuracy. Having used 

statistical analysis to identify these trends, the following section determines whether 

the concerns identified above translate to reduced classifier performance in MLP 

trials.  

3.2.1 MLP Classification Trial for Activity Selection 

The classifier trial uses the mean hand and waist accelerometers, BMI and Direct 

Observation. A four-class classification problem was performed using combinations 

of four activities from the initial seven activities. Thirty iterations of 35 permutations of 

the 4-class classification problem were performed, and in each case, sensitivity and 

specificity data for each activity class was obtained. Figure 2 provides the sensitivity 

and specificity data, respectively, for each of the seven activities across these trials.   

 

Figure 2: Mean Sensitivity and Specificity values for each activity across 30 MLP 

Classification Trials per 4-activity combination. 
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Play, Playground and other activities, as shown in Figure 2. Classification sensitivity 

(true positive rate) tends to be high for most activities, with mean values above 0.8 

for all activities except Free Play and Playground. While mean classification 

specificity (false positive rate) is very high (>0.95) for all activities except Free Play, 

Playground and Walking, the variance in classification specificity values is significant 

for all activities except DVD watching. Observations for Drawing, Resting and DVD 

watching were confused for one another, which lowered the sensitivity of both 

features. DVD watching was often mistaken for Drawing or Resting and vice versa, 

which led to DVD watching having far higher specificities than either Drawing or 

Resting.  

This analysis suggests that the activity set currently in use is not appropriate for 

ANN classification analysis. This is due to the presence of multiple classes whose 

observation cases occupy the same region of values. For this reason, only one of the 

three sedentary activities (Drawing, DVD Watching and Resting) is used. Despite the 

excellent sensitivity values for the activity Resting showed, it was decided that the 

activity Drawing would be used. The Resting activity was initially intended by 

Mackintosh et al. for use in calibrating basal rates for various features, and was not 

intended for classification analysis. Furthermore, a significant number of features 

(MPA, MPA time, VPA and VPA time) are missing from the Resting data, which 

would significantly complicate MLP analyses using those features. Conversely, both 

Drawing and DVD watching possess a full complement of feature data and were 

intended for use in classification of sedentary activities. The final dataset following 

this analysis contains four activities, Drawing, Free Play, Jogging, and Walking. This 

set covers a good breadth of activity intensities, while minimising the risk of value 

overlap or classification error. 

3.3 Feature Selection 

Using sets of faceted Kernel Density Estimation showed that the majority of 

features had an overlap in values between different activities, i.e. Jogging and Free 

Play, except for DO. This suggests that the input combinations that contain DO may 

classify with greater accuracy. One caveat to this is that a single outlying case of 

Jogging is likely to be misclassified as an instance of Free Play. The features HAC, 

WAC and DO show good distinction of classes, and generally possess normal 



  

distributions with minimal outliers. This suggests that these features will perform well 

in classification analysis. The features MPA and MPA time, and VPA and VPA time 

were sufficiently correlated (0.97 and 1 for each pair respectively) to render the use 

of all four features redundant. Therefore, the features MPA and VPA are used in 

subsequent analysis. The BMI feature is normally distributed and is appropriate for 

use in classification analysis. The feature HR and V02 show significant overlap 

between Free Play, Jogging and Walking, while EE shows slightly reduced overlap. 

This suggests that these three features may not be conducive to high-accuracy 

classification.  

Having carried out some exploratory data analysis of individual features, this study 

proceeded to develop a cross-feature, comparative analysis. This makes it possible 

to identify both features and feature combinations that potentially display 

relationships, which may be modelled by a machine-learning algorithm with less or 

greater difficultly.  

3.3.1 Statistical Comparison of Features 

Statistical comparison of features is performed on a per-activity basis. Figure 3 

shows the plots for the statistical analysis of our features. The feature BMI was 

retained for all four activities, although naturally the range and distribution of values 

is identical across all activities. This was done to establish a common scaling for all 

four plots. The stationary, sedentary nature of the drawing activity was intended to 

provide a resting comparison to the more vigorous activities used. As such, all 

features have values at or around the minimum value of -1. For the most part, this 

suggests that Drawing may be easily distinguished from the other three activities. 

Feature values show a broader spread for Free Play than for any other activity. 

The features HR, MPA, VPA, V02 and EE show significant coincidence between 

Free Play and Jogging, while some degree of coincidence between values for Free 

Play and Walking is present for almost every feature; suggesting that 

misclassification may occur at those class boundaries. The features HAC, WAC, and 

DO possess a small interquartile range, entailing that the majority of the data falls 

within a limited space of values. This is a positive finding for classification purposes, 

but one, which requires validation through MLP analysis.  



  

Conversely, the interquartile range of the features MPA and VPA varies greatly. 

These features are measures of what proportion of the activity time was spent at 

vigorous or moderate levels of physical activity. In some activities this leads to an 

unusual distribution of values for both features; if an activity is vigorous, for instance, 

the VPA value may be at the maximum value for all subjects, if an activity is not 

vigorous, the values for all subjects performing the activity may be at the minimum of 

-1. However, activities which may or may not be vigorous, or which alternate 

between vigorous and non-vigorous activity states, tend to contain a range of MPA 

or VPA values.  

 

Figure 3: Boxplots per activity for feature statistical analysis 
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with a mean value of -0.5, participants performing Free Play were classified as non-

MPA more often than as MPA.  

Nonetheless, the spread of values for both features is likely to cause significant 

classification problems when using VPA or MPA as features. This problem is 

particularly pronounced for VPA, where classification of Free Play using the feature 

is likely to be confused for any other feature with a similar, semi-vigorous profile.  

From this analysis, the features HAC, WAC and DO are likely to yield the best 

results during classification. However, the following section will evaluate several 

feature combinations and provide empirically evident feature sets and associated 

classification accuracies to demonstrate their usefulness in classifying activity types. 

   

4. RESULTS 

This section describes the classification of activity types using MLP analysis and 

different feature combinations. Input layer sizes between 1 and 4 features were 

considered. Results are also presented using a larger input data set, computed via 

cubic spline interpolation techniques.  

4.1 MLP Network Analysis Using 2-4-4 Architecture 

This evaluation uses feature pairs. The performance for the classifier is evaluated, 

using the mean accuracy of 30 simulations with each simulation comprising 

randomly selected training and test sets.  

4.1.1 Classifier Performance 

The first evaluation uses all the features in the data set to construct feature pairs. 

Table 3, shows the top 10 highest mean accuracies obtained over 30 simulations 

(the remainder were excluded because of their low accuracy values).  

 Feature One Feature Two Accuracy 

1 hr hac 74 
2 hac hr 74 
3 hr ee 67 
4 ee hr 67 
5 hac ee 61 
6 ee hac 61 
7 hr v02 60 
8 v02 hr 60 
9 hac do 59 



  

10 do hac 59 

Table 3: Mean Percentage Classification Correctness by Feature Pair 

Table 3 shows that the mean classification accuracy rarely exceeded 70% and in 

many cases was between 40 and 60%. Variance between classification accuracy 

during trials was also high, with some feature combinations. This combination of high 

variance and low classifier accuracy indicate that feature pairs are insufficiently 

consistent and insufficiently accurate for use in subsequent MLP analysis.  

4.2 MLP Network Analysis Using 3-4-4 Architecture 

The feature space was increased to triple feature combinations. The performance 

for the classifier is determined, using the mean accuracy obtained from 30 

simulations. The metric includes Sensitivity, Specificity and Kappa estimates. Again, 

randomly selected training and test sets are used for each simulation.  

4.1.1 Classifier Performance 

Using the triple feature combinations, Table 4, shows the top 10 highest mean 

accuracies, sensitivity, specificity and kappa values obtained from 30 simulations.  

 Features Accuracy Sensitivity Specificity Kappa 

1 wacbmido 96 0.95 0.99 0.94 
2 waceedo 96 0.95 0.99 0.94 
3 v02eedo 96 0.95 0.99 0.94 
4 hreedo 94 0.93 0.97 0.92 
5 bmieedo 94 0.94 0.97 0.91 
6 wacv02do 93 0.93 0.97 0.89 
7 bmiv02do 93 0.93 0.97 0.89 
8 hacv02do 92 0.95 0.97 0.89 
9 hacv02ee 91 0.88 0.92 0.87 
10 haceedo 90 0.91 0.94 0.86 

Table 4: Mean Percentage Classification Correctness by Three Features 

Table 4 shows that the classification accuracy using triple feature combinations 

improves the results significantly. While mean classifier accuracies in the low 60th 

percentile were observed in a number of cases, several cases displayed mean 

classification accuracies >90%. These findings are highly positive, suggesting that 

modification or sophistication of the classification techniques used may further 

improve classification accuracy. 

 



  

4.3 MLP Network Analysis Using 4-4-4 Architecture 

This set of results extends the feature space to four to determine whether further 

improvements can be made. Table 5 presents the results.  

4.3.1 Classifier Performance 

Using a combination of four features, Table 5 again, shows the top 10 highest 

mean accuracies, sensitivity, specificity and kappa values.  

 Features Accuracy Sensitivity Specificity Kappa 

1 bmiv02doee 96 0.95 0.99 0.94 
2 bmiv02wachac 96 0.95 0.99 0.94 
3 bmidoeewac 96 0.95 0.99 0.94 
4 v02doeewac 96 0.95 0.99 0.94 
5 v02doeehac 96 0.95 0.99 0.94 
6 doeewachac 96 0.95 0.99 0.94 
7 hrdoeewac 96 0.95 0.98 0.93 
8 bmiv02eehac 95 0.94 0.98 0.93 
9 bmieewachac 95 0.94 0.97 0.93 
10 v02dowachac 95 0.94 0.97 0.93 

Table 5: Mean Percentage Classification Correctness by Four Features 

The results show that 4-feature combinations improve the results further. Of all the 

combinations empirically tested no feature combination showed mean classification 

accuracies below 87%  

4.4 Interpolated Data and MLP Network Analysis Using 4-4-4 Architecture 

Having found larger input feature combinations yield improving classification 

accuracy and reduced variation, the results in this section considers interpolated 

data and 4-feature input combinations. The original dataset of 16 observations is 

extended to 64 using interpolation.  

4.4.1 Classifier Performance 

The design of MLP analysis trials using the interpolated data set and 4-feature 

input combinations is modelled on previous classification trials that used the un-

interpolated data set. The results are shown in Table 6. 

 Features Accuracy Sensitivity Specificity Kappa 

1 doeewachac 98 0.98 0.99 0.96 
2 hrdoeehac 97 0.98 0.99 0.95 
3 hrdoeewac 97 0.98 0.99 0.95 



  

4 bmidowachac 97 0.98 0.99 0.95 
5 v02dowachac 97 0.98 0.99 0.95 
6 bmiv02dohac 95 0.96 0.99 0.93 
7 bmiv02doee 95 0.96 0.99 0.93 
8 v02doeehac 95 0.95 0.98 0.93 
9 bmiv02dowac 95 0.96 0.99 0.93 
10 bmieewachac 95 0.96 0.99 0.93 

Table 6: Mean Percentage Classification Correctness by Four Features 

These results clearly show that the use of interpolation to generate an extended 

set of training cases has had a significant impact on classification accuracy across 

all feature combinations. A few feature combinations did show (which we found in 

our empirical evaluations) less than 90% accuracy. Strikingly, the 96% classification 

accuracy barrier seen in previous trials was exceeded, with the best performing 

feature combination (do, ee, hac, wac) showing 98% classification accuracy. A 

minority of feature combinations showed perfect classification of validation data in 

some trials.  

4.5 Interpolated Data and MLP Network Analysis Using 3 ecologically valid-4-4 

Architecture 

This set of results re-runs the previous interpolated experiment using ecologically 

valid triple-feature input combinations and the interpolated data set. The results are 

shown in Table 7.  

4.5.1 Classifier Performance 

 Features Accuracy Sensitivity Specificity Kappa Prev. Acc 

1 wachacdo 99.8 0.99 0.99 0.99 88 
2 wachacbmi 95.0 0.95 0.98 0.93 64 
3 wacbmido 95.0 0.95 0.98 0.92 96 
4 hacbmido 88.0 0.88 0.96 0.83 73 

Table 7: Classification Performance for Ecologically Valid 3-Feature Input 

Combinations Using Interpolated Data 

The result from this analysis is highly promising. Classification analysis for each 

ecologically valid triple-feature input combinations significantly improves the results 

compared with all previous evaluations. Moreover, MLP ANNs utilising the input 

feature combination HAC, WAC and DO achieved over 99% classification accuracy, 

with a Kappa, Sensitivity and Specificity value >0.99%. Classification error stemmed 



  

from the misclassification of two test cases in 10% (3 out of 30) trials. In 90% of 

trials, this feature combination classified test cases with 100% accuracy. 

4.6 Performance comparison 

Although MLP ANNs has achieved over 99% of classification accuracy using 

ecologically valid triple-feature input combinations, this section explores other 

supervised machine learning methods using the same combination of features. Four 

well-known machine learning methods have been targeted in this section, namely: 

Support vector machine (SVM), Decision tree (DT), Naïve Bayes (NB) and Nearest 

Neighbour (NN) methods. The following Table 8 shows their overall classification 

performance. 

 Methods Accuracy Sensitivity Specificity Kappa 

1 SVM 70.4 0.70 0.52 0.65 
2 DT 75.4 0.75 0.62 0.71 
3 NB 79.5 0.79 0.68 0.76 
4 NN  82.7 0.82 0.73 0.79 

Table 8: Classification Performance of Four machine learning methods Using 

Ecologically Valid 3-Feature Input Combinations 

Despite all the methods have achieved lower classification performance in 

comparison with MLP ANNs, they have obtained reasonably good results. Among 

them, NN method has achieved the highest overall performance with slightly less 

than 83% of classification accuracy and 0.82, 0.73 of sensitivity and specificity, 

respectively. NB has achieved the second highest overall performance with 

approximately 3% less than NN in classification accuracy, sensitivity and Kappa, 

followed by DT and SVM, which comes at the end of the list with 70% of accuracy 

and sensitivity. 

 

5. DISCUSSION 

The initial classifications on the dataset obtained a relatively low accuracy with HR 

and HAC providing the best pair of features. Heart rate, displayed higher 

classification accuracy across a number of feature combinations. While MPA and 

VPA failed to perform sufficiently well to justify their inclusion in further trials. These 

features followed different trends to other features. For example, MPA reached 



  

maximum values during the performance of activities such as walking and free play, 

where other features tended to show mid-range values. This is considered an 

advantage due to the potential additional information content of features with this 

pattern in conjunction with more normally distributed features. The preceding feature 

pair analysis demonstrates that neither MPA nor VPA provide useful classifications 

of activities by type and should thus be excluded from the feature set.  

Extending the feature space to three showed a marked improvement in classifier 

performance. In particular, it should be observed that classification accuracy peaked 

at 96%, with a maximum kappa value of 0.94. This value was seen consistently 

across all trials of a small number of feature combinations. This ceiling was due to 

the consistent misclassification of a single value; each of the network designs in 

question successfully classified all other values correctly across trials, but 

misclassified this single record on every occasion. Specifically, one record captured 

from participants performing the activity Jogging was consistently misclassified by 

the MLP networks as an instance of the activity Free play.  

However, what these findings show is that larger input feature combinations 

produce higher classification accuracy and reduce variance between MLP trial 

iterations. A logical extension of the proceeding analysis, was to extend the input 

feature combination to a total of four features. The results showed that the top end 

classifiers as seen in Table 5 continue to fail to classify certain data values. Only one 

input feature combination (HR, DO, EE, V02) enabled perfect classification of the 

dataset, and perfect classification occurred in less than 7% of the cases (2/30). 

However, these instances of perfect classification do demonstrate that improved 

classification accuracy is attainable although it may not be achievable without the 

use of new techniques.  

One option was to alter the dataset to allow the ANN architecture to classify the 

difficult-to-classify cases. This alteration was performed by adding interpolated 

training cases. This allowed the ANN to identify trends in data features, yielding 

improved overall classification accuracy as can be seen in Table 6. However, despite 

the excellent results yielded by this data set, all of the four-feature input 

combinations used in preceding analyses raised at least one of the following 

concerns. Some of the features used contain entirely generated values, for instance 



  

EE, HR, and V02, which contain computed values derived from observed data 

features. This generation of features was necessitated by the low-encumbrance 

nature of the field-based protocol under examination in the Mackintosh et al. study. 

However, this practice led to the creation of a set of features calculated based on the 

values of other features, and furthermore introduces questions regarding statistical 

validity.  

Furthermore, in order to capture data for each of the computed features, the use of 

specialised techniques and equipment (for instance oxygen masks) would be 

required. However, the use of such equipment and techniques is deemed to pose a 

burden on participants, which is incompatible with low-encumbrance activity. This is 

especially true in studies involving youth, who have lower encumbrance limits. As a 

result, it became apparent that the collection of ecologically valid data for the full 

range of features used in the preceding analysis is not feasible within the 

requirements of the field-based study. In short, there are significant theoretical 

concerns with the ecological validity of including certain combinations of the data 

features as inputs to preceding analyses. At the same time, there are feature 

combinations that may be gathered within the confines of a free-living study. These 

features are WAC, HAC, DO, and BMI.  

Excluding 2-feature combinations (due to having previously demonstrated low 

classification accuracy), there are five potential combinations of these features, 

WAC, HAC, DO, BMI; WAC, HAC, DO; WAC, HAC, BMI; HAC, DO, BMI; and WAC, 

DO, BMI. The single 4-feature input combination, which utilised these features on an 

interpolation extended data set, showed strong classification accuracy of 97%. The 

3-feature combinations, when used as inputs to analyse un-interpolated data, 

showed classification accuracies between 96 and 64%. 

Therefore, in the final evaluation using the ecologically valid triple feature 

combinations WAC, HAC and DO, the results were highly positive. A low-

encumbrance set of data features, which may be gathered in an ecologically valid 

way, demonstrate that good classification accuracy in classifying activity types is 

possible. However, there is still a concern about the use of interpolated training 

cases computed from the limited initial sample. Any deviation or outliers in the initial 

data sample will be expanded in the interpolated data set. Without the collection of a 



  

larger set of real PA data using the same protocol, for comparison purposes, it is not 

possible to guarantee that the data used for training and classification is 

representative of children’s PA. At the same time, it is unlikely that the data set 

obtained is wholly or even largely misrepresentative of children’s PA; outliers do not 

invalidate the entire data set. This means, at worst, that the data used is largely (but 

not wholly) representative of the distribution and statistical properties of feature data 

obtained during children’s performance. 

 

6. CONCLUSIONS AND FUTURE WORK 

This study used an existing dataset from recent research into physical activity in 

youth to classify activity data by the type of activity engaged upon. The dataset was 

analysed using rigorous data science techniques, which led to an improved 

understanding of activity types and features. Data items whose properties impeded 

classification were removed. This did affect the size of the dataset and consequently, 

interpolation techniques were applied to generate an extended set of training cases.   

A series of machine learning analyses were performed. A range of classifier types, 

input feature combinations and architectural parameters were employed and refined 

to develop improved classification accuracy. Upon developing a set of parameters 

compatible with high-accuracy classification, MLP, analysis was performed using a 

specific subset of ecologically valid data features. Classification using an MLP 

architecture and imputed dataset, using the input feature combination WAC, HAC, 

and DO yielded a classification accuracy of 99.8%. 

While the results show, specific activities and features tailored around a machine 

learning approach are promising, a great deal of research remains. Further 

development of Data Science techniques will help provide a varied and broad range 

of possibilities, particularly validating the preceding results using a substantial non-

interpolated data set. While this study focused on youth, it would be interesting to 

look at other population groups, such as adults and the elderly. Finally, one 

important point would be to standardise the use of activities and cut points in PA 

research that is underpinned with strong Data Science evidence and advanced 

machine learning techniques. 
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