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Abstract 

Studying polysaccharide-protein interactions under physiological conditions by 

conventional techniques is challenging. Ideally, macromolecules could be followed by both 

in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a 

proper comparison of results over these different scales but, often, this is not feasible. The 

cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack 

groups that can be detected selectively in the biological milieu. The introduction of 19F 

labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the 

heparin-binding protein, antithrombin, employing 19F NMR spectroscopy is followed. 

Furthermore, the ability of 19F labelled GAGs to be imaged using CARS microscopy is 

demonstrated. 19F labelled GAGs enable both 19F NMR protein-GAG binding studies in 

solution at the molecular level and non-linear microscopy at a microscopic scale to be 

conducted on the same material, essentially free of background signals. 
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Introduction 

An understanding of the biological processes that determine cell-cell signalling, hence coordinate 

cellular responses and maintain healthy growth and development, must encompass a detailed 

appreciation of interactions between proteins and extracellular matrix (ECM) polysaccharides [1-3]. 

Moreover, the network of interactions that defines healthy homeostasis is also relevant to disease 

processes, many of which involve some modification to this network [1]. One practical challenge is 

how to study phenomena, particularly interactions, that correlate with natural or disease processes, 

but which range in scale from the dimensions of molecules to the macroscopic level of tissues and 

organisms. Current approaches at the molecular level include spectroscopic and crystallographic 

techniques, which allow investigation at the level of ensembles of molecules, while various forms of 

(mainly) optical microscopy allow tissues to be examined in detail at the macroscopic level. 

However, few techniques or tools have the ability to work across these scales. Each approach also 

tends to employ distinct and largely incompatible labelling procedures and detection techniques, 

hence, it can be difficult to interpret them together, or extrapolate results from one technique to the 

other and, consequently, to relate the observations to the biological processes under investigation. 

Clearly, it would be advantageous if it were possible to utilise the same materials throughout. 
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 Studying interactions between proteins and polysaccharides in solution presents a number 

of further challenges. There are several reasons why conventional techniques for the detailed 

study of proteins, either in the solid state employing crystallography, or in solution using NMR, are 

often unsuitable when the protein to be studied is bound to a polysaccharide ligand. First, it is not 

usually possible to crystallise a protein in the presence of a polysaccharide and, especially in the 

case of extracellular polysaccharides such as the glycosaminoglycans (GAGs), the polysaccharide 

is frequently a complex and heterogeneous mixture of sequences and chain dimensions. The 

problem has been managed in several crystallographic and NMR studies by employing short 

oligosaccharide fragments acting as proxies for their parent polysaccharide and this has revealed 

some structural details of their interactions [4-9]. The use of oligosaccharide fragments as a stand-

in for the polysaccharide is widespread, although there are differences in binding properties which 

have their origins in the distinct conformational and motional behaviour of oligo- compared to 

polysaccharides but, possibly, also in the different numbers of potential binding sites in the two 

cases [10]. In the case of 1H and 13C NMR, the size and low mobility of protein-polysaccharide 

complexes in solution can lead to line broadening. Additional techniques with which to follow the 

interactions between proteins and GAGs are therefore required. One possibility is solid state NMR, 

which has been used to obtain detailed information in aggregates consisting of peptides and GAGs 

[11,12] but, it would also be desirable to be able to follow the location of GAGs in tissues by 

microscopy. One family of emerging techniques, based on Raman Spectroscopy, involves the 

selective observation of chemical groups that are particular to the molecules of interest. 

Unfortunately, there are no obvious Raman signals which are unique to GAGs. Their characteristic 

carboxylate, amine, acetyl and sulfate groups are also present to some extent in other biological 

molecules. With these considerations in mind, we have sought a label which has desirable 

characteristics both in terms of sensitivity in microscopy and NMR, exhibits very low or no 

background signal in biological systems and that can be informative as regards changes in its 

environment. The 19F nucleus fulfils many of these criteria and here, we investigate the possibility 

of employing 19F labelling of GAG poly- and oligosaccharides as a route to unambiguous 

information concerning protein-polysaccharide interactions using NMR spectroscopy, and as a 

potential means of following events in tissues employing non-linear (CARS) microscopy.  

The 19F nucleus constitutes 100% of the fluorine occurring naturally and, with nuclear spin 

½, presents readily-interpretable NMR signals, which are sensitive to the surrounding chemical 

environment owing to the lone pair electrons in the outer shell of the 19F atom. A strong 

paramagnetic component dominates the chemical shift and, usefully, also provides good signal 

dispersion. 19F NMR spectra in biological systems are very clean since almost no 19F is present in 

biology naturally [13] and is particularly useful in systems whose size, immobility and/or complexity 

precludes conventional NMR approaches, such as transmembrane proteins and macromolecular 

complexes. The sensitivity of the 19F nucleus to its immediate environment, including to solvent 

water or deuterium oxide (in D2O compared to D2O/H2O 80:20, v/v, Δδ = 0.13 ppm), also makes it 

suitable for studies involving site-specific labelling, denaturation experiments [14] and for 

identifying interactions at protein interfaces. In addition, the temperature dependence of 19F NMR 

signal line widths renders it sensitive to mobility, from which information relating to both binding 

and stability can be deduced. Although not investigated here, the chemistry employed to introduce 
19F into biomolecules is also suitable for 18F, opening-up the possibility of conducting positron 

emission tomography (PET). Labelling of proteins with 18F [15], as well as of sugars during their 

chemical synthesis has been reported [16,17] and the chemical labelling of amino acid side chains 

with fluorine via a range of amino acid side chains (aliphatic, aromatic and cysteine) has also been 

achieved [18]. Such labels can have effects on the structure of the protein however, and one 

approach that has been explored to minimise this problem is to conduct partial substitution [19,20]. 
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The attachment of suitable 19F containing groups to glycosaminoglycan (GAG) 

polysaccharides would extend many of the advantages exploited for proteins to the GAG class of 

molecules, thereby opening-up the study of polysaccharide-protein interactions. The choice of label 

made here; N-trifluoroacetyl, which is readily introduced to free amino groups of glucosamine 

residues within the polysaccharide chains, and trifluoroalkylamines, (either 2,2,2-

trifluoroethylamine (TFEA) or 3,3,3 trifluoropropylamine (TFPA)), which can be introduced through 

amide formation onto the former carboxylate groups of uronic acids via the 1-ethyl-3(3-

dimethylaminopropyl) carbodiimide (EDC)-activated ester, both contain a terminal -CF3 group. 

These provide a clean signal in 19F NMR, owing to short T1 relaxation times and low chemical shift 

anisotropy but, usefully, also provide distinct Raman transitions, exploitable in coherent Anti-

Stokes Raman Scattering (CARS) and other, non-linear microscopy techniques. Signals arising 

from C-F bond stretching are also unambiguous, there being effectively no background signals. 

Labelling GAG macromolecules with 19F using -CF3 groups can therefore provide both a suitable 

NMR signal with favourable spectroscopic properties capable of providing information regarding 

molecular interactions in vitro, but also in tissues [14], as well as a signal that can be used in non-

linear microscopy (such as CARS), which is free of background and interference from water, 

allowing direct chemical imaging. Two straightforward methods of introducing 19F into GAG 

polysaccharides (denoted (i) and (ii) below) are reported. Illustrative examples of their use as 

probes of molecular interactions in solution using 19F NMR spectroscopy and the ability to image 

them using CARS microscopy are demonstrated. 

Methods 

(i) Preparation of trifluoroacetylated glycosaminoglycan polysaccharides (1):- The first procedure is 

based on O-acylation using acetic anhydride, in which iodine has been proposed to act as a Lewis 

acid catalyst [21]. The free amino groups of glucosamine residues in heparin (used widely as an 

experimental proxy for the more scarce, naturally occurring ligand, heparan sulfate) polysaccharide 

derivatives, in which free amino groups had been introduced [22], was labelled selectively using 

trifluoroacetic anhydride with iodine as catalyst. With this class of large, anionic polysaccharides, 

however, the reaction was found to be highly selective for the free amino groups of the 

glucosamine residues of the polysaccharides, forming trifluoroacetamido-derivatives. De-N-

sulfated heparin polysaccharide (25 mg, ~40 μmol of disaccharide equivalents) was added as a 

solid to trifluoroacetic anhydride (9.5 mmol), with solid iodine flakes (0.2 mmol) and stirred at room 

temperature. The reactants were then precipitated in ice-cold ethanol (200 mL) and filtered, 

washed with ethanol, any large iodine grains were removed and the filtrate was washed until any 

remaining iodine had been removed (brown colour subsides: n.b. iodine in the wash was 

neutralised by the addition of solid sodium metabisulfite until a clear iodide containing solution had 

been obtained and was then disposed of). The recovered GAG compounds; N-trifluoroacetyl 

heparin (1) was dialysed (7 kDa cut-off dialysis membrane (SpectraPore, USA)) 3 times against 2 

L of distilled water, the dialysate was recovered, then subjected to gel permeation chromatography 

(Sephadex G-25) and characterised by 19F [Table 1] and 13C NMR spectroscopy [Supp. Fig. 1] 

prior to being employed in experiments.  

(ii) Introduction of trifluoroalkyl groups at carboxylate groups of uronic acids of heparin and the 

heparin-derived pentasaccharide, ArixtraTM, via EDC activation (2), (3) and (4):- The second 

method involved attachment of the 19F label via the carboxylate groups of uronate residues in 

GAGs. The carboxylate groups were activated using 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC, Pearce) in 50 mM HEPES buffer and the resulting EDC ester reacted with an 

alkylamine; either 2,2,2 trifluoethylamine (TFEA) or 3,3,3 trifluoropropylamine (TFPA), both 

convenient water soluble fluoroamines, of moderate volatility (b.p. 36-37 and 67.5-68 °C 

respectively), to form the corresponding fluoroamides. [Note: - If EDC is added before the 
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alkylamine to the GAG solution, a side-product persists, evident in 13C and 1H NMR, thought to 

originate from a rearrangement of the isourea adduct [23]. This provides an alternative labelling 

method, acting specifically on the carboxylate groups of the uronic acids. The method was applied 

to both GAG polysaccharides (described in (a) below) and to the pentasaccharide antithrombotic 

drug ArixtraTM, whose systematic name, [α-D-Glucopyranoside, methyl O-2- deoxy-6-O-sulfo-2-

(sulfoamino) -α-D-glucopyranosyl-(14)-O-β-D-glucopyranuronosyl-(14)-O-2-deoxy-3,6-di-O-

sulfo -2-(sulfoamino)-α-D-glucopyranosyl-(14)- O-2-O-sulfo-α-L- idopyranuronosyl- (14) -2-

deoxy-2-(sulfoamino)-6-(hydrogen sulfate), sodium salt], is abbreviated to ‘AGAIA’, and described 

in (b).  

(a). Derivatisation of Ido-2-de-sulfated heparin and heparin with TFEA (2) and (3):- The ido-2-de-O-

sulfated porcine mucosal heparin20 (for the preparation of (2)) or porcine mucosal heparin (for the 

preparation of (3)) (25 mg) was dissolved in 50 mM HEPES buffer (0.50 mL, pH 6.8), TFEA (61 

µmol) added, followed by EDC (26 μmol). The reaction mixture was then stirred at room 

temperature (30 mins) and the products ((2) or (3)) were dialysed (7 kDa cut-off dialysis membrane 

(SpectraPore, USA)) 3 times against 2 L of distilled water, the dialysate recovered, subjected to gel 

permeation chromatography (Sephadex G-25) and employed in experiments.     

 

(b). Derivatisation of AGAIA pentasaccharide with TFPA (4):- The pentasaccharide, AGAIA 

(ArixtraTM) (2.5. mg, 1.7 umol in 0.5 mL 137 mM NaCl) was mixed with HEPES buffer (0.5 mL, 50 

mM, pH 6.8) and TFPA (2 μL, 22 μmol) were added, followed by EDC (1 mg, 5.2 μmol) and shaken 

for 10 mins at room temperature. The products were then desalted by gel permeation 

chromatography using Sephadex G-25, freeze dried and characterised by 19F NMR (Table 1) 

before being employed in binding experiments. 

 

(iii). 19F NMR investigation of GAG interaction with antithrombin in solution:- Decoupled 19F NMR 

experiments were conducted on a Bruker Avance III 500 MHz spectrometer (UNICAMP, Instituto 

de Quimica, Campinas, Brazil) using antithrombin (AT; 100 μL, 15 mg/mL in PBS containing D2O) 

and additions of (4), (500 μL, 1 mg/mL) or heparin (500 μL, 5 mg/mL) [Fig. 1]. 

(iv). Selective Detection of 19F labelled heparin-derived polysaccharides using Non-linear (CARS) 

Microscopy:- The form of Raman microscopy used here is based on a non-linear Raman technique 

termed coherent anti-Stokes Raman scattering (CARS). This technique can generate coherent 

signals up to 105 times stronger than conventional Raman and relies on the use of light as a pump 

to alter the populations of vibrational states, then to probe, providing anti-Stokes light emission of 

higher energy (i.e. lower wavelength) than that of the pump [24]. The 19F labelled heparin 

derivatives (1) to (3) were used in CARS Raman microscopy experiments, in which the Raman 

signal from the CF3 group provided a means of detecting selectively a film of the polysaccharide by 

means of its CARS signal [Fig. 2]. 

Results and Discussion 

The fluorinated products were first characterised by 19F NMR to provide a range of 

complementary probes, suitable for GAG-protein interactions studies and non-linear spectroscopy 

[Table 1]. The reaction was also applied to the antithrombin (AT) binding pentasaccharide, 

(AGAIA) and was found, surprisingly, to label selectively the GlcA carboxylate group [Supp. Fig. 

2]. This product was then shown by 19F NMR spectroscopy to bind AT in solution [Fig. 1A; lower 

panel (unbound) and middle panel (bound)] by virtue of a change in chemical shift position 

downfield of unreacted TFPA and binding was confirmed using fluorescence shift assay [Fig. 1B]. 
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The binding of (4) to AT in solution was then disrupted by the addition of excess unlabelled heparin 

[Fig. 1A; upper panel]. Furthermore, the 19F labelled AGAIA pentasaccharide was able to stabilise 

AT to an extent comparable to the unmodified form [Fig. 1B] confirming its interaction with 

antithrombin [23].  

Images (1.16 mm x 1.16 mm) were recorded in the forward CARS (F-CARS) mode on a 

Leica TSC-SP8 CARS instrument (Wetzler, Germany), employing pump lasers (the first pump 

laser selected at 928.2 nm and the second CARS laser, fixed, at 1064.5 nm) both at 46 % power. 

Images, detected at 1379 cm-1 pre-determined to offer useful C-F derived Raman signals [25] were 

recorded at 0.05 frames/s with 1.20 µs dwell time per pixel, a gain of 850.82 V and at 10 x 

magnification. Five µL of compounds (1), (2) and (3) were dried from solutions (1 mg/mL in H2O) 

on a glass slide and imaged [Fig. 2A, 2B and 2C]. As a control, the second laser (1064.5 nm) was 

then switched-off and no image was observed, confirming that the images were CARS-derived 

(Fig. 2D).  

Both methods of labelling heparin and other GAG derivatives are suitable for conducting NMR and 

microscopy studies and this will allow the same reagent to be used to examine events on scales 

ranging from those of molecules to tissues, providing more readily interpretable data. There are 

many other types of selective labelling that could be exploited to allow 19F NMR and non-linear 

microscopy with other classes of macromolecules, such as proteins. One example would be to 

incorporate 19F labelled Trp residues, which can be achieved biosynthetically through either 5- or 

6- fluorouridine. In this way, it will also be possible to follow proteins in tissues and the GAG 

polysaccharides with which they interact, as well as to study exactly the same interactions in vitro 

using 19F NMR. One interesting finding was that, in contrast to the situation observed for heparin 

polysaccharides, the reaction of TFPA with the pentasaccharide, AGAIA, did provide highly 

selective reaction with the carboxylate group of the GlcA residue over those of IdoA [Supp. Fig. 2] 

perhaps reflecting its more accessible, equatorial conformation. The use of CARS microscopy to 

study molecular interactions in tissues is in its infancy but, promises to be able to investigate 

complex assemblies by virtue of its ability to selectively observe a range of chemical groups, 

whether they be naturally occurring, or have been introduced deliberately. This paper proposes a 

number of 19F-labelled GAG probes which can also be used in both NMR and CARS microscopy 

applications. 
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Figure 1. 19F labelled GAGs can be used as probes of protein binding and of solution 

environment. 19F NMR spectra of: A. (lower) 19F-labelled AGAIA pentasaccharide (4) alone, 

(middle) bound 19F-labelled AGAIA pentasaccharide in the presence of antithrombin (AT) and 19F-

labelled AGAIA pentasaccharide in the presence of antithrombin plus added heparin to compete-

off the ligand, (upper) returning to a distinct chemical shift position, demonstrating the sensitivity of 

the 19F label to the solution environment. B. Differential scanning fluorimetry showing that the 19F 

labelled AGAIA pentasaccharide (4) stabilised AT (red curve, compared to AT alone, blue curve) to 

an extent comparable to the unlabelled pentasaccharide (gold curve). 19FG; 3,3,3-

trifluoropropylamine labelled AGAIA on glucuronic acid. 

19FG 

3,3,3-trifluoropropylamine 
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Figure 2. CARS images of dried films of 19F labelled GAG (heparin) derivatives. A. Compound 

(1), B. Compound (2), C. Compound (3), D. Control experiment with the 1064.5 nm CARS laser 

switched-off, showing no image and confirming that the images in A-C are derived from CARS. 

Images were recorded at 10 x magnification and correspond to a field size of 1.16 mm x 1.16 mm.  

 

Table 1. 19F NMR chemical shifts for (1) to (4). 

 

Name      Compound    19F /ppm 

N-Trifluoroacetyl porcine mucosal heparin  (1)  -75.58a 

Trifluorethylamido-Ido-2-de-O-sulfated heparin  (2)  -72.2a 

Trifluorethylamido-heparin    (3)  -72.3a 

AGAIA (ArixtraTM pentasaccharide)   (4)  -64.8b 

a. Recorded at 298 K on a 500 MHz Bruker Avance III HD NMR spectrometer with 5-mm BBO probe. Chemical 

shift values reported relative to TFA in D2O at ( 19F), -75.61ppm. The chemical shift of (1) was also measured for 

a range of temperatures from 288 to 333 K, showing good linearity (Data not shown). 
b. Recorded at 300 K relative to trifluoroethylamine (TFEA) at  ( 19F), -65.12 ppm.  
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Supplementary Figure 1 

 

 

 

 

 

 

 

 

 

 

 

Supp. Fig. 1. 13C NMR spectrum of N-trifluoracetyl heparin (1) at 50º C in D2O/H2O. G, glucuronic 

acid; A, N-trifluoroacetyl glucosamine; CH3*, Residual N-acetyl; 
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Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

Supp. Fig. 2. 1H NMR spectra of AGAIA (bottom) and AGAIA-CF3 (top) at 30 ºC in D2O. A, 

Glucosamine; A*, N-Sulfo,3,6-O-Sulfated Glucosamine; NR, reducing end, I2S, 2-O-Sulfated 

Iduronic Acida; R. end, Reducing end; G1, Glucoronic Acid. Signals are labelled according to 

reference J. Phys. Chem. B, 2015, 119 (38), pp 12397–12409. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


