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Abstract: In this paper, the potential of standard genetic algorithms (SGAs) are presented to optimise 

the discrete PID parameters for multivariable glass furnace. Control oriented models of each multivariable 
glass furnace; glass temperature and excess oxygen are used to optimise the discrete controller with 
personalised cost function and adjusted boundaries by SGAs, individually. Well optimised discrete PID 
parameters by control oriented model are applied to realistic multivariable model by decentralised method.  
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 INTRODUCTION 
Glass manufacturing processes have really long dynamics and are complex 

processes with high energy usage. Especially, large furnaces with multiple port burners 
cause the glass manufacturing industries to consume high energies in glass production. 
Most glass industries are operating at maximum daily through-put to fulfil the market 
requirement. Therefore, glass furnace operations are facing great challenges in reduction 
of fuel consumption by applying well tuned control strategies. Apart from high energy 
consumption, undesirable emission from glass industries is another setback to consider as 
the entire world is greatly concerned about green house effects. Tight environmental 
regulations are now applied to reduce gases and particles that are undesirable emissions 
associated with burning fossil fuels.  

Generally, the glass industries are operating within the emission guideline which was 
regulated by environmental agencies [1]. Thus, most glass industries are not emphasising 
on continuous monitoring and control strategies for emissions. At maximum operating 
conditions, the percentage of producing undesirable emission is high. If there is any 
occurrence of sudden undesirable disturbances this can result in more problems for 
existing furnaces which is already operating in poor thermal conditions around the world. 
For such a complex multivariable process, the decentralised controls strategy is generally 
applied and has always been in the attention of many researchers for developing a precise 
control strategy to enhance the performance of multivariable processes. However, 
difficulties are encountered in designing the decentralised control due to the loop 
interactions. 

A literature search reveals that there are several classified tuning methods suggested 
to tune decentralised controllers for multivariable processes such as Detuning method [2], 
Sequential design method [3], and Iterative method [4]. These tuning methods have 
achieved a certain degree of success in the design approach. However, these tuning 
methods do exhibit weaknesses and can suffer in compensating the couplings between 
loop-interactions of a multivariable system. To improve the compensation of loop-
interactions, the effective open-loop method (EOP) was introduced [5]. But, the EOP 
method produces model approximation error due to the mathematical complications as the 
model dimensions increased. In recent years, to improve the entire control performance 
and robust stability, a systematical approach based on the generalised IMC-PID design 
method [6] and the reduced effective transfer function (RETF) by inverse response 
behaviour method [7] is introduced for multivariable process. But, both methods involve a 
complex mathematical approach to design the decentralised controllers.           
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However, a question always arises about the wellness of control optimisation and the 
flexibility due to the application constraints by those design methods. Standard Genetic 
algorithms   (SGAs)   are   global   search   method   by   genetics   evolution   with   higher 
performance in control optimization over traditional methods. Due to its superior self-
adjustable ability, SGAs have been applied extensively in tuning the PID parameters for 
single-input single-output (SISO) systems [8], curve fitting [9], and fuzzy optimisation [10]. 
On the other hand, multiple-input multiple-output (MIMO) system is still an open research 
topic for optimising control parameters by SGAs. A promising decentralised controller by 
SGAs was proposed for multivariable process [11]. The controller performance was 
defined by closed-loop response in terms of time-domain bounds for both reference 
following and loop interactions. An integrity theorem with SGAs to enhance the closed-loop 
system stability when certain loops are failing or break down was proposed [12].  

This paper explores the potential of SGAs in optimising the discrete PID parameters 
by decentralised control technique for a multivariable process without further tuning 
required. Further, the minimisation of fuel consumption for multivariable glass furnace is 
analysed by decentralised technique while maintaining a desired glass temperature. The 
structure of this paper is as followed; first, a brief introduction is given about the identified 
control oriented and realistic models of the considered multivariable glass furnace.  
Second, a discussion of discrete PID parameter optimisation by decentralised technique 
by SGAs with boundary constraints and personalised cost function. Third, a discussion of 
applying decentralising control technique on a realistic model. The proposed methods are 
developed and tested in simulations based on Matlab/Simulink models. 

 
 INTRODUCTION OF MULTIVARIABLE GLASS PROCESS 

Figure 1 illustrates the block diagram 
of multivariable glass furnace which 
consists of a 24 state-space furnace model 
with feedback-loop and excess oxygen 
model. f1 and f2 are algebraic expressions, 
f1 includes controller output and saturation, 
f2 includes specific heat (Cp) and lower heat 
value (LHV) for determining the combustion 
energy, Cg is glass control, TSET is primary 
temperature setting, AFR is air-fuel ratio, 
Tamb is ambient temperature, u is control 

output,    is fuel flow, Tg is glass 
temperature and EO2 is excess oxygen.    

The realistic glass furnace model that identified and applied for further research here 
is representing a real plant of combustion chamber from Fenton Art Glass Company, USA 
[13]. This is an extended research work of radiative zone method by Holladay [14] and was 
identified to develop 24 state space variables (zones) model. The linearised energy 
balance equation is applied and modified with respective 24 state variables for each zones 
corresponding to temperatures. 

Literature survey reveals that there is no EO2 realistic model for a glass furnace 
available for research. The realistic EO2 model designed for research here was developed 
using collected numerical data from an industrial furnace by open-loop step response 
technique. SGAs were applied for identification of a higher order transfer function (3rd 
order) as a realistic model for EO2, and control oriented models for both glass temperature 
and EO2 models for control optimisation. The identified transfer functions by GAs are; 
 For EO2 Realistic Model,  
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Figure 1: Block diagram of multivariable 
glass furnace 
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 For EO2 Control Oriented Model,  
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 For Glass Temperature Control Oriented Model, 
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 DISCRETE PID PARAMETERS OPTIMISATION BY SGAs 

In general, a discrete PID controller can be described by an input–output relation 
expressed as [15], 
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where T is the sampling time, and Kc, Ti and Td denote the proportional gain, the integral 
gain and derivative gain, respectively. Equation (4) is expressed in the position form of the 
algorithm by applying finite difference approximations. For more accurate approximations 
the trapezoidal and backward rules are applied here to develop the discrete expressions 
for integral and derivative, respectively.  

As illustrated in flowchart (Figure 2) and theories of the SGAs, at initial state, the 
chromosomes of an array of variable values to be optimised are defined: 
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The coding selection was done based on the mutation rate (Mrate). According to [16], 
the binary code converges faster when Mrate > 0.6. Thus, the binary coding was selected to 
encode the discrete controller parameters into binary string to generate the initial 
population randomly in the beginning. The length of chromosome is determined based on 
the binary precision: 

  12102 41
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m
ab                   (6) 

where mj is the number of bits, bj is the upper boundary and aj is the lower boundary of 
individual chromosome’s searching parameter. Each chromosome’s binary string is 
converted into an associated real value of PID parameters to propagate to the discrete PID 
controller. The decoding process into real value is done as; 
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where xj is the respective real 
value of chromosome and Dec 
is decimal value of respective 
binary string. A complete 
simulated system response of 
each PID set and its initial 
fitness value is evaluated by 
using defined objective function.  

According to the 
chromosome’s fitness value by 
a defined objective function, a 
new generation (offspring) is 
produced by the process of 
genetic operators. The genetic 
operators manipulate the binary 
strings of the chromosomes 
directly, by means of selection 

Figure 2: Flow chart of control optimisation by SGAs 
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rate (Srate), crossover (Xrate) and mutation (Mrate) to produce a fitter chromosome for the 
next generation.  

After the completion of genetic operator process, the new set binary string of each 
chromosome in the population is required to be decoded into real values and propagated 
again to the discrete PID 
controller to evaluate for a 
new fitness value. This 
process will be repeated 
until the end generation 
where the optimal fitness 
is attained. Since no 
previous information of 
genetic operator exists for 
Tg and EO2 control optimisation, the dynamic random variations of genetic operators were 
tested for enhancing searching mechanism, individually. Table 1 illustrates the selected 
genetic operator parameters for both Tg and EO2.  
 
  PERFORMANCE CRITERION FORMULATION 
 The performance criterion for both Tg and EO2 are formulated individually under 
closed-loop SISO control based on desired response characteristics.   

i. For Tg; Overshoot ˂ 2%, Settling time (TS) ≈ 5hrs. 
ii. For EO2; Overshoot ˂ 2%, Settling time (TS) ≈ 7min. 

 Standard objective functions (ISE and IAE) are insufficient to attain the desired 
response characteristics. Thus, to improve the searching mechanism, the boundary 
constraint is introduced by improved bound. For better selection of improved bound 
values, the conventional (Ziegler-Nichols and Direct Synthesis) tuning methods are 
analysed to identify PID values. With identified PID values, the bj and aj are adjusted 
accordingly to ensure an optimal solution for desired response characteristics.   
 Figure 3 and table 2 illustrate that the SGAs with parameter vectors of improved 
bound PID,      50:0,01.0:0,1:0  DIP KKK  of EO2 has better dynamic response and 

higher degree of accuracy 
while reducing the 
performance criterion by 
adapting the fitness value. 
Initial optimisation of PID 
parameters using 
conventional techniques 
provides better suggestion 
of improved bound range 
than assigning the bound 
range randomly. By limiting 
the bj of KP, the SGA 
consolidates well within the 
boundary constraint with KI 
to converge to the global 
minima. 
 However, figure 
4 and table 4 
illustrate an 
overshoot of 10% 
(1555oK) occurred in 
the transient 

Table 2: PID parameters for EO2 by tuning methods  
Tuning Methods KP KI KD ISE IAE Ts (2%) 

Ziegler-Nichols 1.38 0.0038 65.88 - - 14min 

Direct Synthesis 1.137 0.0034 74 - - 14.5min 

Random Bound SGAs 2 0 36.67 119.8 355.6 - 

Improved Bound SGAs 0.7685 0.0043 32.27 83.26 187.7 7.1min 

 

Table 1: Selected genetic operators of Tg and EO2 
Genetic Operators Tg  (

o
K) EO2 (%) 

No. of individuals 50 50 
Max. No. of Generation 30 50 

Generation Gap 0.6 0.7 
Precision of Binary Rep. 4 4 

Selection SUS SUS 
Crossover Single Point, 0.6 Single Point, 0.7 
Mutation Binary Rep., 0.7/Lind Binary Rep., 0.7/Lind 

 

 
Figure 3:  SGA’s random and improved boundaries of EO2 

responses with conventional techniques. 
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response with long settling time of 30hrs for Tg with improved boundaries. SGAs optimise 
closest to the bj to attain the desired response characteristics, but failed to achieve global 
minima. To enhance the searching mechanism for the control parameters and achieve 
global minima the personalised cost function is applied. The weighting factor (λ) is added 
with input term of cost function to minimise the fast rising effect of transient response. The 
personalised cost functions applied is given by relation,   

  dtutYoutNISUIAEJ

t

t

i .1550)()(

max

0

2






                      (8) 

where YoutN(t) is the model output 
and u is the controller output. The 
selection of optimal value of λ is 
done by trial and error technique. 
As illustrates in table 3, the 
weighting factor associated with the 
desired response characteristics 
was set to be λ = 400 to give more 
emphasis to the set point tracking 
objectives. 
 Simulation 
results (Figure 4 
and Table 4) 
illustrate that the 
SGAs with 
personalised cost 
function, IAE + λISU 
(equ. 8) has higher level of 
optimisation mechanism and 
better dynamic response than 
improved bound. The application 
of λ with ISU has suppressed the 
oscillatory behaviour of glass 
temperature response by 
smoothes the controlled variable 
responses. Overall desired 
response characteristics, which 
are reduction of set-point error, 
overshoot and settling time, are 
achieved with the IAE + λISU.   
 
 DISCRETE CONTROL STRATEGIES ON REALISTIC MODEL BY 
 DECENTRALISED TECHNIQUE 
 Discrete PID controllers would 
be applied in loop interactions 
associated with the 2x2 multivariable 
glass furnace processes as shown in 
figure 5. Individually optimised 
discrete control parameters by SGAs 
with the respective control oriented 
models are applied in the 
decentralising control scheme at the 
multivariable realistic models. By 
applying closed-loop step input on 
both EO2 and TSET will be tested to 

Table 3: Weighting factor identification  
λ Set-Point Error IAE λISU TS (2%) 

100 1.847e4 8.783e2 1.759e4 1.9hrs 

250 4.456e4 1.510e3 4.306e4 3.7hrs 

350 6.173e4 1.799e3 5.993e4 4.6hrs 

400 7.029e4 1.922e3 6.836e4 4.9hrs 

550 9.585e4 2.324e3 9.352e4 6.2hrs 

850 1.467e5 2.918e3 1.438e5 7.6hrs 

1000 1.721e5 3.192e3 1.689e5 8.3hrs 

 
Table 4: PID parameters for Tg by tuning methods 

Tuning Methods KP KI KD 
Set-point  

Error 
Ts (2%) 

Direct Synthesis 2.235e-3 5.15e-5 3.563 1.981e
5 

40hrs 

Improved Bound SGAs 3.675e-3 2.54e-5 6.322 8.438e
4 

30hrs
 

Weighting Factor SGAs 9.863e-3 9.461e-6 7.358 7.029e
4
 4.9hrs 

 

 
 

Figure 5: 2-input, 2-output multivariable glass 
furnace under closed-loop discrete PID controller 

 

 
Figure 4: SGA’s improved boundaries and λ of Tg 

responses with conventional Techniques. 
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analyse the affect of loop interaction within the realistic models on fuel consumption and 
thermal efficiency. Under closed-loop steady-state glass temperature (TSET = 1550oK), air 
ratio 17.2 (0.05028 kg/s) and the fuel consumption is 0.002923 kg/s.   

Simulation results of figure 6 and 7 illustrates that, under closed-loop step input of 
multivariable loop interaction are elaborated as follows: 

1. EO2 (2.45%) constant; TSET = 1550oK to 1580oK – The fuel consumption is increased 
to 0.003034kg/s as an increase in TSET. To obey an increase in fuel ratio, the air ratio 
is increased to 0.05218kg/s while maintaining AFR (17.2) and EO2.   

2. EO2 (2.45%) constant; TSET = 1550oK to 1530oK – The fuel consumption is decreased 
to 0.002811kg/s as a decrease in TSET. To obey a decrease in fuel ratio, the air ratio 
is decreased to 0.04834kg/s while maintaining AFR (17.2) and EO2.  

3. TSET (1550oK) constant; EO2 = 2.45% to 3% – The AFR is increased to 17.78 as an 
increases in EO2. To obey an increase in AFR, the air ratio and fuel ratio are 
increased to 0.0531kg/s and 0.002987kg/s while maintaining TSET.   

4. TSET (1550oK) constant; EO2 = 2.45% to 2% – The AFR is decreased to 16.75 as a 
decreases in EO2. To obey a decrease in AFR, the air ratio and fuel ratio are 
decreased to 0.04732 kg/s and 0.002824kg/s while maintaining TSET.   

Simulation results reveals 
that any change in TSET is 
varying the fuel consumption 
and excess air accordingly while 
sustaining the EO2. As shown in 
figure 6, the both closed-loop 
step-up and step-down 
responses of EO2 completely 
overlapped and describes that 
the responses are not affected 
at all by loop interaction of Cg as 
illustrated in figure 1. But, the 
m  loop interaction is still 

needed to EO2 model for AFR 
synchronisation.  

On other hand, any 
variations in EO2 have an 
insignificant affect glass 
furnace process. According to 
realistic glass furnace model in 
figure 1, the AFR has a weak 
loop interaction with glass 
temperature model through 
nonlinear algebraic expression 
of f1. Simulation results as in 
figure 7 reveals that when step 
inputs of EO2 are changed at 
16.67hrs, the Tg response is 
varies about 1oK under close-
looped condition. Due to 
nonlinearity effect of f1 and 
long dynamic responses the AFR, air ratio and fuel ratio are changed accordingly to 
sustain the Tg after 2hrs of step inputs. 

Under open-loop condition, an increase and a decrease in air ratio is appeared a 
reduction and a rise in glass temperature, respectively. In actual condition, high excess air 

 

 
 

    Figure 6: Closed-loop transient responses of EO2 
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Figure 7: Closed-loop transient responses of Tg 
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ratio will blow-away the heat 
from combustion chamber [17]. 
Simulation results of figure 8 
and table 5 illustrates that by 
reducing the EO2, the overall 
steady-state fuel consumption 
is reduced about 3.4% while 
sustaining the glass 
temperature set-point at 
1550oK. 

 According to the 
environmental agencies 
combustion guideline, the 
maximum permitted level of 
EO2 is 3%. The optimum 
thermal efficiency of 

combustion process is 
within the range of 1.5% 
to 3% of EO2, which is 
equivalent about 10% to 
20% of excess air. 
Thus, reducing the EO2 
within the optimum 
region and automatic monitoring of excess oxygen model will be beneficial for minimising 
the undesirable emissions and fuel consumption while sustaining the thermal efficiency of 
combustion.   
 
 CONCLUSIONS AND FUTURE WORK 

An application of SGAs in optimising the discrete PID controllers for realistic 
multivariable glass furnace has been demonstrated. According to the desired response 
characteristics, the control parameters optimisation is enhanced with personalised cost 
function and improved searching boundaries. The loop interaction within realistic 
multivariable glass furnace is compensated with well optimised PID parameters by SGAs 
in decentralised technique. An automatic continuous monitoring of EO2 would enhance the 
overall performance of multivariable glass furnace. Future work will be carried out in 
optimising discrete controller for the extended multivariable realistic model in multistage 
model by SGAs. 
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