

Abstract�In order to improve reliability and to deal with the

high complexity of existing middleware solutions, today�s
production Grid systems restrict the services to be deployed on
their resources. On the other hand end-users require a wide
range of value added services to fully utilize these resources. This
paper describes a solution how legacy code support is offered as
third party service for production Grids. The introduced
solution, based on the Grid Execution Management for Legacy
Code Architecture (GEMLCA), do not require the deployment of
additional applications on the Grid resources, or any extra effort
from Grid system administrators. The implemented solution was
successfully connected to and demonstrated on the UK National
Grid Service.

Index Terms�Grid portal, Grid service, legacy code,
production Grid

I. INTRODUCTION

he vision of Grid computing is to enable anyone to offer
resources to be utilised by others via the network. This
original aim, however, has not been fulfilled so far.

Today�s production Grid systems, like the EGEE Grid, the
NorduGrid or the UK National Grid Service (NGS) apply very
strict rules towards service providers, hence restricting the
number of sites and resources in the Grid. The reason for this
is the very high complexity to install and maintain existing
Grid middleware solutions. In a production Grid environment
strong guarantees are needed that system administrators keep
the resources up and running. In order to offer reliable service
only a limited range of software is allowed to be deployed on
the resources.

On the other hand these Grid systems aim to serve a large
and diverse user community with different needs and goals.
These users require a wide range of tools in order to make it
easier to create and run Grid-enabled applications. As system
administrators are reluctant to install any software on the
production Grid that could compromise reliability, the only
way to make these utilities available for users is to offer them
as third-party services. These services are running on external
resources, maintained by external organisations, and they are
not integral part of the production Grid system. However,
users can freely select and utilise these additional services
based on their requirements and experience with the service.

Manuscript received June 3, 2005. This research work is carried out under

the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

T. Kiss, G. Terstyanszky, G. Kecskemeti, Sz. Illes, T. Delaittre and S.
Winter are with the University of Westminster, 115 New Cavendish Street,
London, W1W 6UW, email: gemlca-discuss@cpc.wmin.ac.uk

P. Kacsuk and G. Sipos are with the MTA SZTAKI Lab. of Parallel and
Distributed Systems, H-1518 Budapest, P.O. Box 63, Hungary

This previously described scenario was utilised to connect
GEMLCA (Grid Execution Management for Legacy Code
Architecture) [1] to the UK National Grid Service. GEMLCA
enables legacy code programs written in any source language
(Fortran, C, Java, etc.) to be easily deployed as a Grid Service
without significant user effort. A user-level understanding,
describing the necessary input and output parameters and
environmental values such as the number of processors or the
job manager used, is all that is required to port the legacy
application binary onto the Grid. GEMLCA does not require
any modification of, or even access to, the original source
code. The architecture is also integrated with the P-GRADE
portal and workflow [2] solutions to offer a user friendly
interface, and create complex applications including legacy
and non-legacy components.

In order to connect GEMLCA to the NGS two main tasks
have been completed:
� First, a portal server has been set up at University of

Westminster running the P-GRADE Grid portal and
offering access to the NGS resources for authenticated
and authorised users. With the help of their Grid
certificates and NGS accounts portal users can utilise
NGS resources in a much more convenient and user-
friendly way than previously.

� Second, the GEMLCA architecture has been redesigned
in order to support the third-party service provider
scenario. There is no need to install GEMLCA on any
NGS resource. The architecture is deployed centrally on
the portal server but still offers the same legacy code
functionally as the original solution: users can easily
deploy legacy applications as Grid services, can access
these services from the portal interface, and can create,
execute and visualise complex Grid workflows.

This paper describes two different scenarios how GEMLCA
is redesigned in order to support a production Grid system.
The first scenario supports the traditional job submission like
task execution, and the second offers the legacy codes as pre-
deployed services on the appropriate resources. In both cases
GEMLCA runs on an external server, and neither compromise
the reliability of the production Grid system, nor requires
extra effort from the Grid system administrators. The service
is transparent from the Grid operator�s point of view but
offers essential functionality for the end-users.

II. THE UK NATIONAL GRID SERVICE (NGS)

The National Grid Service (NGS) is the UK production Grid
operated by the Grid Operation Support Centre (GOSC). It
offers a stable highly-available production quality Grid
service to the UK research community providing compute and
storage resources for users. The core NGS infrastructure
consists of four cluster nodes at Cambridge, CCLRC-RAL,

Legacy Code Support for Production Grids

T. Kiss, G. Terstyanszky, G. Kecskemeti, Sz. Illes, T. Delaittre, S. Winter, P. Kacsuk, G. Sipos

T

Grid Computing Workshop 20050-7803-9493-3/05/$20.00 2005 IEEE 278

Leeds and Manchester, and two national High Performance
Computing (HPC) services: HPCx and CSAR. NGS provides
compute resources for compute Grid through compute clusters
at Leeds and Oxford, and storage resources for data Grid
through data clusters at CCLRC-RAL and Manchester. This
core NGS infrastructure has recently been extended with two
further Grid nodes at Bristol and Cardiff, and will be further
extended by incorporating UK e-Science Centres through
separate Service Level Agreements (SLA).
NGS is based on GT2 middleware. Its security is built on
Globus Grid Security Infrastructure (GSI) [3], which supports
authentication, authorization and single sign-on. NGS uses
GridFTP to transfer input and output files to and from nodes,
and Storage Resource Broker (RSB) [4] with OGSA-DAI [5]
to provide access to data on NGS nodes. It uses the Globus
Monitoring and Discovery Service (MDS) [6] to handle
information of NGS nodes. Ganglia [7], Grid Integration Test
Script (GITS) [8] and Nagios [9] are used to monitor both the
NGS and its nodes. Nagios checks nodes and services while
GITS monitors communication among NGS nodes. Ganglia
collects and processes information provided by Nagios and
GITS in order to generate NGS-level view.

NGS uses a centralised user registration model. Users have
to obtain certificates and open accounts to be able to use any
NGS service. The certificates are issued by the UK Core
Programme Certification Authority (e-Science certificate) or
by other CAs. NGS accounts are allocated from a central pool
of generic user accounts to enable users to register with all
NGS nodes at the same time. User management is based on
Virtual Organisation Membership Service (VOMS) [10].
VOMS supports central management of user registration and
authorisation taking into consideration local policies on
resource access and usage.

III. GRID EXECUTION MANAGEMENT FOR LEGACY CODE ARCHITECTURE

The Grid computing environment requires special Grid
enabled applications capable of utilising the underlying Grid
middleware and infrastructure. Most Grid projects so far have
either developed new applications from scratch, or
significantly re-engineered existing ones in order to be run on
their platforms. However, as the Grid becomes commonplace
in both scientific and industrial settings, the demand for
porting a vast legacy of applications onto the new platform
will emerge. Companies and institutions can ill afford to
throw such applications away for the sake of a new
technology, and there is a clear business imperative for them
to be migrated onto the Grid with the least possible effort and
cost. The Grid Execution Management for Legacy Code
Architecture (GEMLCA) enables legacy code programs
written in any source language (Fortran, C, Java, etc.) to be
easily deployed as a Grid Service without significant user
effort. In this chapter the original GEMLCA architecture is
outlined. This architecture has been modified, as described in
chapters 4 and 5, in order to create a centralised version for
production Grids.

GEMLCA represents a general architecture for deploying
legacy applications as Grid services without re-engineering

the code or even requiring access to the source files. The high-
level GEMLCA conceptual architecture is represented on
Figure 1.

As shown in the figure, there are four basic components in
the architecture:
1) The Compute Server is a single or multiple processor

computing system on which several legacy codes are
already implemented and available. The goal of
GEMLCA is to turn these legacy codes into Grid services
that can be accessed by Grid users.

2) The Grid Host Environment implements a service-
oriented OGSA-based Grid layer, such as GT3 or GT4.
This layer is a pre-requisite for connecting the Compute
Server into an OGSA-built Grid.

3) The GEMLCA Resource layer provides a set of Grid
services which expose legacy codes as Grid services.

4) The fourth component is the GEMLCA Client that can
be installed on any client machine through which a user
would like to access the GEMLCA resources.

The novelty of the GEMLCA concept compared to other
similar solutions like [13] or [14] is that it requires minimal
effort from both Compute Server administrators and end-users
of the Grid. The Compute Server administrator should install
the GEMLCA Resource layer on top of an available OGSA
layer (GT3/GT4). It is also their task to deploy existing legacy
applications on the Compute Servers as Grid services, and to
make them accessible for the whole Grid community. End-
users do not have to do any installation or deployment work if
a GEMLCA portal is available for the Grid and they only need
those legacy code services that were previously deployed by
the Compute Server administrators. In such a case end-users
can immediately use all these legacy code services - provided
they have access to the GEMLCA Grid resources. If they
would like to deploy legacy code services on GEMLCA Grid
resources they can do so, but these services cannot be
accessed by other Grid users. As a last resort, if no GEMLCA
portal is available for the Grid, a user must install the
GEMLCA Client on their client machine. However, since it
requires some IT skills to do this, it is recommended that a
GEMLCA portal is installed on every Grid where GEMLCA
Grid resources are deployed.

The deployment of a GEMLCA legacy code service
assumes that the legacy application runs in its native
environment on a Compute Server. It is the task of the
GEMLCA Resource layer to present the legacy application as
a Grid service to the user, to communicate with the Grid client
and to hide the legacy nature of the application. The

Figure 1 GEMLCA Conceptual Architecture

279

deployment process of a GEMLCA legacy code service
requires only a user-level understanding of the legacy
application, i.e., to know what the parameters of the legacy
code are and what kind of environment is needed to run the
code (e.g. multiprocessor environment with �n� processors).
The deployment defines the execution environment and the
parameter set for the legacy application in an XML-based
Legacy Code Interface Description (LCID) file that should be
stored in a pre-defined location. This file is used by the
GEMLCA Resource layer to handle the legacy application as
a Grid service.

GEMLCA provides the capability to convert legacy codes
into Grid services just by describing the legacy parameters
and environment values in the XML-based LCID file.
However, an end-user without specialist computing skills still
requires a user-friendly Web interface (portal) to access the
GEMLCA functionalities: to deploy, execute and retrieve
results from legacy applications. Instead of developing a new
custom Grid portal, GEMLCA was integrated with the
workflow-oriented P-GRADE Grid portal extending its
functionalities with new portlets.

Following this integration, end-users can easily construct
workflow applications built from legacy code services running
on different GEMLCA Grid resources. The workflow
manager of the portal contacts the selected GEMLCA
Resources, passes them the actual parameter values of the
legacy code, and then it is the task of the GEMLCA Resource
to execute the legacy code with the actual parameter values.
The other important task of the GEMLCA Resource is to
deliver the results of the legacy code service back to the
portal.

IV. CONNECTING GEMLCA TO THE NGS

Two different scenarios were identified in order to execute
legacy code applications on NGS sites. In each scenario both
GEMLCA and the P-GRADE portal are installed on the
Parsifal cluster of the University of Westminster. As a result,
there is no need to deploy any GEMLCA or P-GRADE portal
code on the NGS resources.

scenario 1: legacy codes are stored in a central repository
and GEMLCA submits these codes as jobs to NGS sites,

scenario 2: legacy codes are installed on NGS sites and
executed through GEMLCA.

The two scenarios are supporting different user needs, and
each of them increases the usability of the NGS in different
ways for end-users. The GEMLCA research team has
implemented the first scenario in May 2005, and currently
working on the implementation of the second scenario.

This chapter briefly describes these two different scenarios,
and the next chapter explains in detail the design and
implementation aspects of the first already implemented
solution. As the design and implementation of the second
scenario is currently work is progress, its detailed description
will be the subject of a future publication.

A. Scenario 1: Legacy Code Repository for NGS

There are several legacy applications that would be useful
for users within the NGS community. These applications were
developed by different institutions and currently not available
for other members of the community. According to this
scenario legacy codes can be uploaded into a central
repository and made available for authorised users through a
Grid portal. The solution extends the usability of NGS as
users can submit not only their own applications but can also
utilise other legacy codes stored in the repository.

Users can access the central repository, managed by
GEMLCA, through the P-GRADE portal and upload their
applications into this repository. After uploading legacy
applications users with valid certificates and existing NGS
accounts can select and execute legacy codes through the P-
GRADE portal on different NGS sites. In this scenario the
binary codes of legacy applications are transferred from the

GEMLCA server to the NGS sites, and executed as jobs.

B. Scenario 2: Pre-deployed Legacy Code Services

This solution extends the NGS Grid towards the service-
oriented Grid concept. Users cannot only submit and execute
jobs on the resources but can also access legacy applications
deployed on NGS and include these in their workflows. This
scenario is the logical extension of the original GEMLCA

concept in order to use it with NGS. In this scenario the
legacy codes are already deployed on the NGS sites and only
parameters (input or output) are submitted.

Users contact the central GEMLCA resource through the P-
GRADE portal, and can access the legacy codes that are
deployed on the NGS sites. In this scenario the NGS system
administrators have full control of legacy codes that they
deploy on their own resources.

NGS site1
(GT2)

NGS site2

(GT2)

NGS siten
(GT2)

P-Grade
Portal

user

job
submission

GEMLCA
resource

(GT4 +
GEMLCA

classes)

Central repository
legacy code1
legacy code2

�.
legacy coden

Workflow
definition

Figure 3: Scenario 1 - Legacy Code Repository for NGS

 NGS site1
(GT2)

PG
Portal

user

Execution
request

GEMLCA
resource

(GT4 +
GEMLCA

classes)

NGS site2
(GT2)

NGS siten
(GT2)

legacy
codes

legacy
codes

legacy
codes

Workflow
definition

Figure 4: Scenario 2 � Pre-Deployed Legacy Code on NGS Sites

280

V. LEGACY CODE REPOSITORY FOR THE NGS

A. Design objectives

The currently implemented solution that enables users to
deploy, browse and execute legacy code applications on the
NGS sites is based on scenario 1, as described in the previous
chapter. This solution utilises the original GEMLCA
architecture with the necessary modifications in order to
execute the tasks on the NGS resources.

The primary aims of the solution are the following:
� The owners of legacy applications can publish their codes

in the central repository making it available for other
authorised users within the UK e-Science community.
The publication is not different from the original method
used in GEMLCA, and it is supported by the
administration Grid portlet of the P-GRADE portal, as
described in [11]. After publication the code is available
for other non-computer specialist end-users.

� Authorised users can browse the repository, select the
necessary legacy codes, set their input parameters, and
can even create workflows from compatible components.
These workflows can then be mapped onto the NGS
resources, submitted and the execution visualised.

� The deployment of a new legacy application requires
some high level understanding of the code (like name and
types input and output parameters) and its execution
environment (e.g. supported job managers, maximum
number of processors). However, once the code is
deployed end-users with no Grid specific knowledge can
easily execute it, and analyse the results using the portal
interface.

As GEMLCA is integrated with the P-GRADE Grid portal,
NGS users have two different options in order to execute their
applications. They can submit their own code directly, without
the described publication process, using the original facilities
offered by the portal. This solution is suggested if the
execution is only on an ad-hoc basis when the publication puts
too much overhead on the process. However, if they would
like to make their code available for a larger community, and
would like make the execution simple enough for any end-
user, they can publish the code with GEMLCA in the
repository.

In order to execute a legacy code on an NGS site, users
should have a valid user certificate, for example an e-Science
certificate, an NGS account and also an account for the P-
GRADE portal running at Westminster. After logging in the

 Figure 5 Comparison of the Original and the NGS GEMLCA Concept

281

portal they download their user certificate from an appropriate
myProxy server. The legacy code, submitted to the NGS site,
utilise this certificate to authenticate users.

B. Implementation of the Solution

To fulfil these objectives some modifications and
extensions of the original GEMLCA architecture were
necessary. Figure 5 compares the original and the extended
GEMLCA architectures. As it is shown in the figure, an
additional layer, representing the remote NGS resource where
the code is executed, appears. The deployment of a legacy
code is not different from the original GEMLCA concept;
however, the execution has changed significantly in the NGS
version. To transfer the executable and the input parameters to
the NGS site, and to instruct the remote GT2 GRAM to
execute the jobs, required the modification of the GEMLCA
architecture, including the development of a special script that
interfaces with Condor G.

The major challenge when connecting GEMLCA to the
NGS was that NGS sites use Globus Toolkit version 2 (GT2),
however the current GEMLCA implementations are based on
service-oriented Grid middleware, namely GT3 and GT4. The
interfacing between the different middleware platforms is
supported by a script, called NGS script, that provides
additional functionality required for executing legacy codes
on NGS sites. Legacy codes and input files are stored in the
central repository but executed on the remote NGS sites. To
execute the code on a remote site first the NGS script,
executed as a GEMLCA legacy code, instructs the portal to
copy the binary and input files from the central repository to

the NGS site. Next, the NGS script, using Condor-G, submits
the legacy code as a job to the remote site.

The other major part of the architecture where
modifications were required is the �config.xml� file and its
related Java classes. GEMLCA uses an XML-based
description file, called �config.xml, in order to describe the
environmental parameters of the legacy code. This file had to
be extended and modified in order to take into consideration a
second-level job manager, namely the job manager used on

the remote NGS site. The �config.xml� should also notify the
GEMLCA resource that it has to submit the NGS script
instead of a legacy code to GT4 MMJFS (Master Managed
Job Factory Service) when the user wants to execute the code
on an NGS site. The implementation of these changes also
required the modification of the GEMLCA core layer.

In order to utilise the new GEMLCA NGS solution:
1) The owner of the legacy application deploys the code as a

GEMLCA legacy code in the central repository.
2) The end-user selects and executes the appropriate legacy

applications on the NGS sites.
As the deployment process is virtually identical to the one

used by the original GEMLCA solution here we concentrate
on the second step, the code execution. The following steps
are performed by GEMLCA when executing a legacy code on
the NGS sites (Fig. 6):
1) The user selects the appropriate legacy codes from the

portal, defines input files and parameters, and submits an
�execute a legacy code on an NGS site� request.

2) The GEMLCA portal transfers the input files to the NGS
site.

3) The GEMLCA portal forwards the user�s request to a
GEMLCA Resource.

4) The GEMLCA resource creates and submits the NGS
script as a GEMLCA job to the MMJFS.

5) The MMJFS starts the NGS script
6) Condor-G contacts the remote GT2 GRAM, sends the

binary of the legacy code and its parameters to the NGS
site, and submits the legacy code as a job to the NGS site
job manager.

When the job has been completed on the NGS site the
results are transferred from the NGS site to the user in the
same way.

VI. RESULTS - TRAFFIC SIMULATION ON THE NGS

A working prototype of the described solution has been
implemented and tested creating and executing a traffic
simulation workflow on the different NGS resources. The
workflow consists of three types of components:
1) The Manhattan legacy code is an application to generate

inputs for the MadCity simulator: a road network file and
a turn file. The MadCity road network file is a sequence
of numbers, representing a road topology of a road
network. The MadCity turn file describes the junction
manoeuvres available in a given road network. Traffic
light details are also included in this file.

2) MadCity [12] is a discrete-time microscopic traffic
simulator that simulates traffic on a road network at the
level of individual vehicles behaviour on roads and at
junctions. After completing the simulation, a macroscopic
trace file, representing the total dynamic behaviour of
vehicles throughout the simulation run, is created.

3) Finally a traffic density analyser compares the traffic
congestion of several runs of the simulator on a given
network, with different initial road traffic conditions
specified as input parameters. The component presents

Figure 6: Execution of Legacy Codes on an NGS Site

Portal
Host

Grid Host
Environment

NGS Site

3

MMJFS

6

legacy
code job

GT2
GRAM

6

4

NGS
script job

5

GEMLCA
Resource Host

2

GEMLCA

portal
legacy

code user

1

GEMLCA
resource

central
repository

282

the results of the analysis graphically.
Each of these applications was published in the central

repository at Westminster as GEMLCA legacy code. The
publication was done using the administration portlet of the
GEMLCA � P-GRADE portal. During this process the type of
input and output parameters, and environmental values, like
job managers and maximum number of processors used for
parallel execution, were set. Once published the codes are
ready to be used by end-users even with very limited
computing knowledge.

When creating the workflow the end-user selected the
appropriate application from the repository, set input
parameters and mapped the execution to the available NGS
resources.

During execution the NGS script run, contacted the remote
GT2 GRAM, and instructed the portal to pass executables and
input parameters to the remote site. When finishing the
execution the output files were transferred back to
Westminster and were made available for the user.

VII. CONCLUSION AND FUTURE WORK

The implemented solution successfully demonstrated that
additional services, like legacy code support, run and
maintained by third party service providers can be added to
production Grid systems. The major advantage of this solution
is that the reliability of the core Grid infrastructure is not
compromised, and no additional effort is required from Grid
system administrators. On the other hand, utilizing these
services the usability of these Grids can be significantly
improved.

Utilising and re-engineering the GEMLCA legacy code
solution two different scenarios were identified to provide
legacy code support for the UK NGS. The first, providing a
legacy code repository functionality, and allowing the
submission of legacy applications as jobs to NGS resources
was successfully implemented and demonstrated. The final
production version of this architecture and its official release
for NGS users is scheduled for June 2005.

The second scenario, that extends the NGS with pre-
deployed legacy code services, is currently in the design
phase. Challenges are identified concerning its
implementation, especially the creation and management of
virtual organizations that could utilize these pre-deployed
services.

REFERENCES
[1] P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas, T. Boczko,

�High-level Grid Application Environment to Use Legacy Codes as
OGSA Grid Services�, Conf. Proc. of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 428-435, November 8, 2004,
Pittsburgh, USA

[2] Cs. Nemeth, G. Dozsa, R. Lovas, P. Kacsuk, �The P-GRADE Grid
portal�, In: Computational Science and Its Applications - ICCSA 2004:
International Conference, Assisi, Italy, 2004, LNCS 3044, pp. 10-19.

[3] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J.
Gawor, C. Kesselman, S. Meder, L. Pearlman, S. Tuecke, �Security for
Grid Services� Twelfth International Symposium on High Performance

Distributed Computing (HPDC-12), IEEE Press, June 2003.
http://www.globus.org/Security/GSI3/GT3-Security-HPDC.pdf

[4] Baru, C., R, Moore, A. Rajasekar, M. Wan: �The SDSC Storage
Resource Broker,� Proc.CASCON'98 Conference, Nov.30-Dec.3, 1998,
Toronto, Canada.

[5] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley,
Neil P Chue, Hong, Brian Collins, Neil Hardman, Ally Hume, Alan
Knox, Mike Jackson, Amy Krause, Simon Laws, James Magowan,
Norman W Paton, Dave Pearson, Tom Sugden, Paul Watson and Martin
Westhead: �The Design and Implementation of Grid Database Services
in OGSA-DAI�, Concurrency and Computation: Practice and
Experience, vol. 17, 2005 pp. 357-376

[6] Karl Czajkowski, Steven Fitzgerald, Ian Foster and Carl Kesselman.
�Grid Information Services for Distributed Resource Sharing�
Proceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, August
2001. www.globus.org/research/papers/MDS-HPDC.pdf

[7] Matthew L. Massie, Brent N. Chun, David E. Culler: �The Ganglia
Distributed Monitoring System: Design, Implementation, and
Experience�, Parallel Computing, Vol. 30, Issue 7, July 2004

[8] David Baker, Mark Baker, Hong Ong and Helen Xiang: �Integration and
operational monitoring tools for the emerging UK e-Science Grid
infrastructure�, Proceedings of the UK e-Science All Hands Meeting
(AHM 2004), East Midlands Conference Centre, Nottingham, from 31st
August - 3rd September 2004

[9] S. Andreozzi, S. Fantinel, D. Rebatto, L. Vaccarossa, G. Tortone: �A
monitoring tool for a GRID operation center�, CHEP 2003, La Jolla,
California, March 24-28 2003

[10] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell�Agnello, A. Frohner, A.
Gianoli, K. Lorentey, and F. Spata: �VOMS, an Authorization System
for Virtual Organizations�,

 http://infnforge.cnaf.infn.it/voms/VOMS-Santiago.pdf
[11] A. Goyeneche, T. Kiss, G. Terstyanszky, G. Kecskemeti, T. Delaitre, P.

Kacsuk, S.C. Winter, Experiences with Deploying Legacy Code
Applications as Grid Services using GEMLCA, Conf. Proc. of the
European Grid Conference, February 14 -16, 2005, Science Park
Amsterdam, The Netherlands, Volume editors: P.M.A. Sloot, A.G.
Hoekstra, T. Priol, A. Reinefeld, M. Bubak, pp 851-860, LNCS 3470

[12] A. Gourgoulis, G. Terstyansky, P. Kacsuk, S.C. Winter, �Creating
Scalable Traffic Simulation on Clusters�, PDP2004. Conference
Proceedings of the 12th Euromicro Conference on Parallel, Distributed
and Network based Processing, La Coruna, Spain, 11-13th February,
2004.

[13] Y. Huang, I. Taylor, D. W. Walker, �Wrapping Legacy Codes for Grid-
Based Applications�, Proceedings of the 17th International Parallel and
Distributed Processing Symposium, workshop on Java for HPC), 22-26
April 2003, Nice, France. ISBN 0-7695-1926-1

[14] B. Balis, M. Bubak, and M. Wegiel, �A Solution for Adapting Legacy
Code as Web Services, in �Component Models and Systems for Grid
Applications� edited by V. Getov and T. Kiellmann, Springer, 2005, pp
57-75, ISBN 0-387-23351-2

283

