
Autonomic SLA-aware Service
Virtualization for Distributed Systems

Attila Kertész, Gábor Kecskeméti
Computer and Automation Research Institute

MTA SZTAKI
H-1518 Budapest, P.O. Box 63, Hungary

attila.kertesz, kecskemeti@sztaki.hu

Ivona Brandic
Distributed Systems Group

Vienna University of Technology
1040 Vienna, Argentinierstr. 8/181-1, Austria

ivona@infosys.tuwien.ac.at

Abstract—Cloud Computing builds on the latest achieve-
ments of diverse research areas, such as Grid Computing,
Service-oriented computing, business processes and virtual-
ization. Managing such heterogeneous environments requires
sophisticated interoperation of adaptive coordinating compo-
nents. In this paper we introduce an SLA-aware Service Virtu-
alization architecture that provides non-functional guarantees
in the form of Service Level Agreements and consists of a three-
layered infrastructure including agreement negotiation, service
brokering and on demand deployment. In order to avoid costly
SLA violations, flexible and adaptive SLA attainment strategies
are used with a failure propagation approach. We demonstrate
the advantages of our proposed solution with a biochemical
case study in a Cloud simulation environment.

Keywords-Cloud Computing; SLA-negotiation; Service Bro-
kering; On-demand deployment;

I. INTRODUCTION

Cloud Computing [6] builds on the latest achievements
of diverse research areas, such as Grid Computing, Service-
oriented computing, business processes and virtualization.
Both Grids and Service Based Applications (SBAs) al-
ready provide solutions for executing complex user tasks,
but they are still lacking non-functional guarantees. The
newly emerging demands of users and researchers call for
expanding service models with business-oriented utilization
(agreement handling) and support for human-provided and
computation-intensive services [6]. Providing guarantees in
the form of Service Level Agreements (SLAs) are highly
studied in Grid Computing [18]. Nevertheless in Clouds,
infrastructures are also represented as a service that are not
only used but also installed, deployed or replicated with the
help of virtualization. These services can appear in complex
business processes, which further complicates the fulfillment
of SLAs in Clouds. For example, due to changing com-
ponents, workload and external conditions, hardware and
software failures, already established SLAs may be violated.
Frequent user interactions with the system during SLA nego-
tiation and service executions (which are usually necessary
in case of failures), might turn out to be an obstacle for
the success of Cloud Computing. Thus, there is demand
for the development of SLA-aware Cloud middleware, and

application of appropriate strategies for autonomic SLA
attainment. Despite cloud computing’s business-orientation,
the applicability of Service-level agreements in the Cloud
middleware is rarely studied, yet [23]. Most of the existing
work address provision of SLA guarantees to the consumer
and not necessarily the SLA-based management of loosely
coupled Cloud infrastructure. In such systems it is hard to
localize where the failures have happen exactly, what the
reason is for the failure and which reaction should be taken
to solve the problem. Such systems are implemented in a
proprietary way, making it almost impossible to exchange
the components (e.g. use another version of the broker).

Autonomic Computing is one of the candidate technolo-
gies for the implementation of SLA attainment strategies.
Autonomic systems require high-level guidance from hu-
mans and decide, which steps need to be done to keep the
system stable [10]. Such systems constantly adapt them-
selves to changing environmental conditions. Similar to
biological systems (e.g. human body) autonomic systems
maintain their state and adjust operations considering chang-
ing components, workload, external conditions, hardware
and software failures. An important characteristic of an
autonomic system is an intelligent closed loop of control.
The Autonomic Manager (AM) manages the element’s state
and behaviour. It is able to sense state changes of the
managed resources and to invoke appropriate set of actions
to maintain some desired system state. Typically control
loops are implemented as MAPE (monitoring, analysis,
planning, and execution) functions [10]. The monitor col-
lects state information and prepares it for the analysis.
If deviations to the desired state are discovered during
the analysis, the planner elaborates change plans, which
are passed to the executor. However, for the successful
implementation of the autonomic principles loosely coupled
SLA-based Cloud middleware is required. In such system
failure source should be identified based on violated SLAs
and located exactly considering different components of
a Cloud middleware (virtualization, brokering, negotiation,
etc. components). Thus, once the failure is identified Service
Level Objectives (SLOs) can be used as a guideline for the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/74236847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


autonomic reactions.
In this paper we introduce a novel architecture consid-

ering resource provision using a virtualization approach
and combining it with the business-oriented utilization used
for the SLA agreement handling. Thus, we provide an
SLA-coupled infrastructure for on-demand service provision
based on SLAs (called SLA-based Service Virtualization –
SSV). We also exemplify how autonomic behaviour appears
in the architecture in order to cope with changing user
requirements and on demand failure handling. The main
contributions of this paper include: (i) the presentation of
the novel loosely coupled architecture for the SLA-based
Service virtualization and on-demand resource provision, (ii)
description of the architecture including meta-negotiation,
meta-brokering, brokering and automatic service deployment
with respect to its autonomic behaviour, and (iii) the valida-
tion of the SSV architecture with a biochemical case study
in a Cloud simulation environment.

II. RELATED WORK

Though Cloud Computing is highly studied and a large
body of work has been done trying to define and envision
the boundaries of this new area, despite business-orientation,
the applicability of Service-level agreements in the Cloud
middleware is rarely studied, yet [23]. The envisioned frame-
work in [7] proposes a solution to extend the web service
model by introducing and using semantic web services.
The need for SLA handling, brokering and deployment also
appears in this vision, but they focus on using ontology
and knowledge-based approaches. Most of related works
consider either virtualization approaches [8] without taking
care of agreements or concentrate on SLA management
neglecting the appropriate resource virtualizations [21]. The
work by Van et. al. [22] studied the applicability of the
autonomic computing to Cloud-like systems, but they al-
most exclusively focus on virtualization issues like Virtual
Machine (VM) packing and placement.

Comparing the currently available solutions, autonomic
principles are not implemented in a adequate way because
of they are lacking an SLA-coupled Cloud infrastructure,
where failures and malfunctions can be identified using
well defined SLA contracts. Work presented in this paper
is the first attempt to develop an SLA-coupled autonomic
Cloud infrastructure in an adequate way. Works presented
in [19], [17] discuss incorporation of SLA-based resource
brokering into existing Grid systems, but they do not deal
with virtualization. The Rudder framework [15] facilitates
automatic Grid service composition based on semantic ser-
vice discovery and space based computing. Venugopal et
al. propose a negotiation mechanism for advance resource
reservation using the alternate offers protocol [26], however,
it is assumed that both partners understand the alternate
offers protocol.

Current deployment solutions do not leverage their ben-
efits on higher level. For example the Workspace Service
(WS) [8] as a Globus incubator project supports wide range
of scenarios involving virtual workspaces, virtual clusters
and service deployment from installing a large service stack
to deploy a single WSRF service if the Virtual Machine
image of the service is available. It is designed to support
several virtual machines. The XenoServer open platform
[20] is an open distributed architecture based on the XEN
virtualization technique aiming at global public computing.
The platform provides services for server lookup, registry,
distributed storage and a widely available virtualization
server. Also the VMPlants [14] project proposes an auto-
mated virtual machine configuration and creation service
which is heavily dependent on software dependency graphs,
but this project stays within cluster boundaries.

Figure 1. The SSV architecture.

III. THE AUTONOMIC, SLA-BASED SERVICE
VIRTUALIZATION (SSV) ARCHITECTURE

In this section we present a unified service architecture
that builds on three main areas: agreement negotiation,
brokering and service deployment using virtualization (more
detailed descriptions on the architecture can be read in
[11]). We suppose that service providers and service con-
sumers meet on demand and usually do not know about
the negotiation protocols, document languages or required
infrastructure of the potential partners. Figure 1 shows our



Meta 
negotiatior 

(MN)
Meta broker

(MB)
Automatic 

Service 
Deployer (ASD)

Autonomic 
Service 

Instance (S)

Autonomic 
Manager (AM)

Sensor

Job Management
Negotiation

Self 
Management

Sensor

Sensor

Actuator: 
VieSLAF 

framework

Figure 2. Autonomic components in the SSV.

proposed, general architecture. The main components of the
architecture and their roles are gathered in Table I, while the
sequence diagram in Figure 3 reveals the interactions of the
components and the utilization steps of the architecture:

Agreement negotiation. First the user starts a negotiation
for executing a service with certain QoS requirements (spec-
ified in a Service Description (SD) with an SLA). Then
the Meta-Negotiator (MN) asks the Meta-Broker (MB), if
it could execute the service with the specified requirements.
Later on MB matches the requirements to the properties of
the available brokers and replies with an acceptance or a
different offer for renegotiation. After this phase the MN
replies with the answer of MB. These initial steps may
continue for renegotiations, until both sides agree on the
terms.

Service request. After the agreement has been established
the user calls the service with the SD and SLA. Then the
MN passes SD and the transformed SLA (to the protocol
the selected broker (B) understands) to the MB. In the next
phase the MB calls the selected Broker with SLA and a
possibly translated SD (to the language of the Broker). Then
the broker executes the service with respect to the terms of
the SLA (if needed deploys the service before execution).
Finally the result of the execution is reported to the Broker,
the MB, the MN, finally to the User (or workflow engine).

Information collection. While serving requests the archi-
tecture also processes background tasks that are not in the
ideal execution path, these are also presented on Figure
3. The following background tasks are information collect-
ing procedures that provide accurate information about the
current state of the infrastructure up to the meta-broker

level. In “step a” the Automatic Service Deployer (ASD)
monitors the states of the virtual resources and deployed
services. Then in “step b” ASD reports service availability
and properties to its Broker. Finally at “step c” all Brokers
report available service properties to the MB.

A. Autonomic behaviour in the SSV architecture

The sequence diagram of Figure 3 represents the ideal
execution flow of the SSV architecture, therefore it does not
reflect cases when unexpected events occur during the oper-
ation of each component. The SSV architecture targets these
events with the autonomic management interfaces introduced
on Figure 2. We distinguish three types of interfaces in our
architecture: the job management interface, the negotiation
interface and the self-management interface. Negotiation
interfaces are typically used by the monitoring processes of
brokers and meta-broker during the negotiation phases of the
service deployment process. Self-management is needed to
re-negotiate established SLAs during service execution. Job
management interfaces are necessary for the manipulation
of services during execution, for example for the upload
of input data, or for the download of output data, and for
starting or canceling service executions.

The Autonomic manager in the SSV architecture is an
abstract component that specifies how self-management is
carried out. The manager can be implemented in the different
layers of the architecture in order to handle the different
unexpected situations. For the identification of failures we
use case-based reasoning with a knowledge database, since
the identification of failure sources (done by sensors) and
mapping failures to appropriate reactions (done by actuators)



Meta Negotiator Meta Broker Broker Automatic 
Service Deployer

Service Instance 
A

Service Instance 
B

User

loop (renegotiation needed)

QoS Reqs

QoS Reqs
Check
broker
props

Renegotiation

Target broker

alt
[QoS reqs can't be met]

[else]

Translate
Reqs

Service Req

Service Req

Service Req
Service response

Deploy req

Completed
Service Req

Service response

alt
[available service]

[else]

Resource

step a)
step b)step c)

Information
System

Dataflows

Figure 3. Component interactions in the SSV architecture.

are trivial tasks, and they are part of our ongoing work
[1]. However the discussion of the knowledge database
and layered notifications is out of scope of this paper,
therefore here we mention three typical reactive actions
we support in our SSV: namely negotiation bootstrapping,
broker breakdown and self-initiated deployment. Negotiation
bootstrapping occurs when the architecture needs to select a
new negotiation strategy. Broker breakdowns are handled by
the Meta-Broker component by initiating renegotiation on an
already executed service call. Finally a service instance can
guarantee the negotiated SLAs by deploying another service
instance and redirecting the calls causing the unexpected
service behaviour (more details on these failures and reactive
actions can be read in [12]). An example software actuator
used for the meta-negotiations is the VieSLAF framework
[3], which bridges between the incompatible SLA templates
by executing the predefined SLA mappings.

B. Dependencies between the SSV components

During the negotiation process the MB interacts with MN:
it receives a service request with the service description and
SLA terms, and looks for a deployed service reachable by
some broker that is able to fulfil the specified terms. If a
service is found, the SLA will be accepted and the and

MN notified, otherwise the SLA will be rejected. If the
service requirements are matched and only the terms cannot
be fulfilled, it could continue the negotiation by modifying
the terms and wait for user approval or further modifications.

The Information Collector (IC) component of MB stores
the data of the reachable brokers and historical data of the
previous submissions. It also communicates with the ASDs,
and receives up-to-date data about the available services and
predicted invocation times (that might also include service
deployment before the actual invocation). This information
shows whether the chosen broker is available, or how reliable
its services are.

Finally service brokers could instruct ASDs to deploy
a new service instance. However, deployments could also
occur independently from the brokers as explained in the
following. After these deployments the ASD has to notify
the corresponding service brokers about the infrastructure
changes. This notification is required, because the IC caches
the state of the SBA for scalability. Thus even though a
service has just been deployed on a new site, the broker will
not direct service requests there. This is especially needed
when the deployment was initiated to avoid an SLA violation
(e.g. self-initiated deployment).



Table I
ROLES IN SSV ARCHITECTURE

Acronym Role Description
U User A person, who wants to use a

service
MN Meta-Negotiator A component that manages

Service-level agreements. It
mediates between the user
and the Meta-Broker, se-
lects appropriate protocols for
agreements; negotiates SLA
creation, handles fulfilment
and violation ([2]).

MB Meta-Broker Its role is to select a bro-
ker that is capable of ex-
ecuting/deploying a service
with the specified user re-
quirements ([13]).

B Broker It interacts with virtual or
physical resources, and in
case the required service
needs to be deployed it inter-
acts directly with the ASD.

ASD Automatic It installs the required service
Service on the selected resource

Deployment on demand ([9]).
S Service The service that users want to

deploy and/or execute
R Resource Physical machines, on which

virtual machines can be de-
ployed/installed.

IV. EVALUATION OF THE SSV ARCHITECTURE WITH
CLOUDSIM

In order to evaluate our proposed SSV solution, we use
a typical biochemical application as a case study called
TINKER Conformer Generator application [24], gridified
and tested on production Grids. The application generates
conformers by unconstrained molecular dynamics at high
temperature to overcome conformational bias then finishes
each conformer by simulated annealing and energy mini-
mization to obtain reliable structures. Its aim is to obtain
conformation ensembles to be evaluated by multivariate
statistical modeling.

The execution of the application consists of three phases:
The first one is performed by a generator service responsible
for the generation of input data for parameter studies (PS)
in the next phase. The second phase consist of a PS sub-
workflow, in which three PS services are defined for ex-
ecuting three different algorithms (dynamics, minimization
and simulated annealing – we refer to these services and
the generator service as TINKERALG), and an additional
PS task that collects the outputs of the three threads and
compresses them (COLL). Finally in the third phase, a
collector service gathers the output files of the PS sub-
workflows and uploads them in a single compressed file
to the remote storage (UPLOAD). These phases contain 6

services, out of which four are parameter study tasks that
are executed 50 times. Therefore the execution of the whole
workflow means 202 service calls. We set up the simulation
environment for executing a similar workflow.

For the evaluation, we have created a general simulation
environment, in which all stages of service execution in
the SSV architecture can be simulated and coordinated. We
have created the simulation environment with the help of the
CloudSim toolkit [4] (that includes and extends GridSim).
It supports modeling and simulation of large scale Cloud
computing infrastructure, including data centers, service
brokers and provide scheduling and allocations policies. Our
general simulation architecture that builds both on GridSim
and on CloudSim, can be seen in Figure 4. On the left-
bottom part we can see the GridSim components used for
the simulated Grid infrastructures, and on the right-bottom
part we can find CloudSim components. Grid resources
can be defined with different Grid types, they consist of
more machines, to which workloads can be set, while Cloud
resources are organized into Datacenters, on which Virtual
machines can be deployed. Here service requests are called
as cloudlets, which can be executed on virtual machines.
On top of this simulated Grid and Cloud infrastructures
we can set up brokers. Grid brokers can be connected to
one or more resources, on which they can execute so-called
gridlets (ie. service requests). Different properties can be set
to these brokers and various scheduling policies can also
be defined. A Cloud broker can be connected to a data
center with one or more virtual machines, and it is able to
create and destroy virtual machines during simulation, and
execute cloudlets on these virtual machines. The Simulator
class is a CloudSim entity that can generate a requested
number of service requests with different properties, start
and run time. It is connected to the created brokers and able
to submit these requests to them (so is acts as a user or
workflow engine). It is also connected to the Grid Meta-
Broker Service through its web service interface and able to
call its matchmaking service for broker selection.

We submitted the simulated workflow in three phases:
in the first round 61 service requests for input generation,
then 90 for executing various TINKER algorithms, finally
in the third round 51 calls for output preparation. The
simulation environment was set up similarly to the real Grid
environment we used for testing the TINKER workflow
application. Estimating the real sizes of these distributed
environments, we set up four simulated Grids (GILDA,
VOCE, SEEGRID and BIOMED [5]) with 2, 4, 6 and 8
resources (each of them had 4 machines). Out of the 202
jobs 151 had special requirements: they use the TINKER
library available in the last three Grids, which means these
calls need to be submitted to these environments, or to Cloud
resources (with pre-deployed TINKER environments). The
simulated execution time of the 150 parameter study services
were set to 30 minutes, the first generator service to 90



Figure 4. Simulation architecture with CloudSim.

minutes, and the other 51 were set to 10 minutes. All of the
four brokers (set to each simulated Grid one-by-one) used
random resource selection policy, and all the resources had
background workload, for which the traces were taken from
the Grid Workloads Archive (GWA) [25] (we used the GWA-
T-11 LCG Grid log file). In our simulation architecture we
used 20 nodes (called resources in the simulation), therefore
we partitioned the logs and created 20 workload files (out
of the possible 170 according to the number of nodes in the
log). The sorting of the job data to files from the original log
file were done continuously, and their arrival times have not
been modified, and the run time of the jobs also remained
the same. According to these workload files the load of the
simulated environments are shown in Figure 5 (which are
also similar to the load experienced on the real Grids). One
Cloud broker has also been set up. It managed four virtual
machines deployed on a data center with four hosts of dual-
core CPUs. In each simulation all the jobs were sent to the
Meta-Broker to select an available broker for submission.
It takes into account the actual background load and the
previous performance results of the brokers for selection.
If the selected Grid broker had a background load that
exceeded a predefined threshold value, it selected the Cloud
broker instead.

Out of the 202 workflow services 150 use TINKER bina-
ries (three different algorithms are executed 50 times). These
requirements can be formulated in SLA terms, therefore each
service of the workflow has an SLA request. If one of these
requests are sent to the Cloud broker, it has to check if a
virtual machine (VM) has already been created that is able

to fulfil this request. If there is no such VM, it deploys one
on-the-fly. For the evaluation we used three different Cloud
broker configurations: in the first one four pre-deployed VMs
are used – one for each TINKER algorithm (TINKERALG)
and one for data collecting (capable for both COLL and
UPLOAD, used by the last 51 jobs). In the second case we
used only one pre-deployed VM, and deployed the rest on-
the-fly, when the first call arrived with an SLA. Finally in the
third case, when a VM received more then 15 requests the
Cloud broker duplicated it (in order to minimize the overall
execution time).

Figure 5. Workload of simulated Grids.

Regarding on-demand deployment, we have created 4
virtual appliances encapsulating the four different services



our TINKER workflow is based on (namely TINKERALG,
COLL and UPLOAD – we defined them in the beginning of
this section). Then we have reduced the size of the created
appliances with ASD’s virtual appliance optimization facil-
ity. Finally we have deployed each service 50 times on an
8 node (32 CPU) Eucalyptus [16] cluster, and measured the
interval between the deployment request and the service’s
first availability. Table II shows the measurement results
for the TINKERALG, COLL and UPLOAD images. These
latencies were also applied in the simulation environment
within the Cloud broker.

Table II
DEPLOYMENT TIMES OF THE DIFFERENT SERVICES IN THE TINKER

APPLICATION.

Service Average deployment time Standard deviation
GEN 8.2 sec 1.34 sec

TINKERALG 8.3 sec 1.48 sec
COLL 6.9 sec 0.84 sec

UPLOAD 6.9 sec 1.21 sec

In order to evaluate the performance of our proposed
SSV solution we compare it to a general meta-brokering
architecture used in Grid environments. Using this approach
we created four simulations: in the first one we use only grid
brokers by the Meta-Broker (denoted by MB in the figures)
to reach grid resources of the simulated Grids. In the second,
third and fourth case we extend the matchmaking of the
Meta-Broker (in order to simulate the whole SSV): when the
background load of the selected grid broker exceeds 113%,
it selects the Cloud broker instead. In the second case the
Cloud broker has four pre-deployed VMs (4VMs), while
in the third case only one, and later creates three more as
described before (1+3VMs), and in the fourth it has one pre-
deployed and creates 7 more on demand (1+3+4VMs). In
Figure 6 and 7 we can see the evaluation results denoting the
average and detailed execution times of the service requests
respectively.

Figure 6. Average request run times.

From these results we can clearly see that the simulated
SSV architecture overperforms the former (purely) Grid

meta-brokering solution. Comparing the different deploy-
ment strategies we can see that on demand deployment
introduces some overhead (4VMs was faster then 1+3VMs),
but service duplication (1+3+4VMs) can enhance the perfor-
mance and help to avoid SLA violations with additional VM
deployment costs.

Figure 7. Detailed run times of requests.

V. CONCLUSION

In heterogeneous, distributed service-based environments
such as Grids and Clouds, there is an emerging need for
transparent, business-oriented autonomic service execution.
In the future more and more companies will face the problem
of unforeseen, occasional demand for a high number of
computing resources. In this paper we have investigated how
such problems could arise, and proposed a novel approach
called Service-level agreement-based Service Virtualization
(SSV). The presented general, conceptual architecture is
built on three main components: the Meta-Negotiator re-
sponsible for agreement negotiations, the Meta-Broker for
selecting the proper execution environment, and the Auto-
matic Service Deployer for service virtualization and on-
demand deployment. We have also discussed how the prin-
ciples of autonomic computing are incorporated to the SSV
architecture to cope with the error-prone virtualization envi-
ronments. The proposed service virtualization architecture is
validated in a simulation environment based on CloudSim,
using a general biochemical application as a case study. The
evaluation results clearly fulfill the expected utilization gains
compared to a less heterogeneous Grid solution.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube), and from EGI-InSPIRE project (contract number
RI-261323) and the Vienna Science and Technology Fund



(WWTF) under agreement ICT08-018, FoSII – Foundations
of Self-governing ICT Infrastructures.

REFERENCES

[1] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Acs, A. Kertesz,
G. Kecskemeti, S. Dustdar. LAYSI: A Layered Approach for
SLA-Violation Propagation in Self-manageable Cloud Infras-
tructures. In Proc. of the First IEEE International Workshop
on Emerging Applications for Cloud Computing, Seoul, Korea,
2010.

[2] I. Brandic, D. Music, S. Dustdar. Service Mediation and Ne-
gotiation Bootstrapping as First Achievements Towards Self-
adaptable Grid and Cloud Services. In Proceedings of Grids
meet Autonomic Computing Workshop. ACM. 2009.

[3] I. Brandic, D. Music, P. Leitner, S. Dustdar. VieSLAF Frame-
work: Enabling Adaptive and Versatile SLA-Management.
In the 6th International Workshop on Grid Economics and
Business Models 2009 (Gecon09), 2009.

[4] R. Buyya, R. Ranjan and R. N. Calheiros, Modeling and
Simulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities, in proc.
of the 7th High Performance Computing and Simulation Con-
ference, 2009.

[5] Enabling Grids for E-sciencE (EGEE) project website:
http://public.eu-egee.org/

[6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 2009.

[7] R. Howard and L. Kerschberg. A knowledge-based framework
for dynamic semantic web services brokering and management.
In DEXA ’04: Proceedings of the Database and Expert Systems
Applications, 15th International Workshop, pp. 174–178, IEEE
Computer Society, 2004.

[8] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life
in the grid. Sci. Program., 13(4):265–275, 2005.

[9] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, T. De-
laitre. Automatic service deployment using virtualisation. In
Proc. of 16th Euromicro International Conference on Parallel,
Distributed and network-based Processing. IEEE Computer
Society. 2008.

[10] J.O. Kephart, D.M. Chess. The vision of autonomic comput-
ing. Computer . 36:(1) pp. 41-50, Jan 2003.

[11] A. Kertesz, G. Kecskemeti, and I. Brandic. An SLA-based
resource virtualization approach for on-demand service provi-
sion. In Proceedings of the 3rd international Workshop on Vir-
tualization Technologies in Distributed Computing (Barcelona,
Spain, June 15 - 15, 2009). ACM, New York, pp. 27-34, 2009.

[12] A. Kertesz, G. Kecskemeti, and I. Brandic. Autonomic Re-
source Virtualization in Cloud-like Environments. In Technical
Report, TUV-1841-2009-04. Distributed Systems Group, Insti-
tute for Information Systems, Vienna University of Technology,
2009.

[13] A. Kertesz and P. Kacsuk. GMBS: A New Middleware
Service for Making Grids Interoperable. Future Generation
Computer Systems, Volume 26, Issue 4, pp. 542–553, 2010.

[14] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Z. Li and M. Parashar. An infrastructure for dynamic
composition of grid services. In GRID ’06: Proceedings of the
7th IEEE/ACM International Conference on Grid Computing,
pages 315–316, Washington, DC, USA, 2006. IEEE Computer
Society.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In CCGRID, pages 124–131. IEEE
Computer Society, 2009.

[17] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and
K. Krishnakumar. A multi-agent infrastructure and a service
level agreement negotiation protocol for robust scheduling in
grid computing. In Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), February 2005.

[18] M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch. Chal-
lenges in eu grid contracts. In Proceedings of the 4th eChal-
lenges Conference, pp. 67–75, 2006.

[19] D. M. Quan and J. Altmann. Mapping a group of jobs
in the error recovery of the grid-based workflow within sla
context. Advanced Information Networking and Applications,
International Conference on, 0:986–993, 2007.

[20] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: Accountable execution of untrusted programs. In
In Workshop on Hot Topics in Operating Systems, pages 136–
141, 1999.

[21] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska. Experi-
ences with gria – industrial applications on a web services grid.
In E-SCIENCE ’05: Proc. of the First International Conference
on e-Science and Grid Computing, pp. 98–105, 2005. IEEE
Computer Society.

[22] H. N. Van, F. D. Tran, and J. Menaud. Autonomic vir-
tual resource management for service hosting platforms. In
Proceedings of the ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pages 1–8, 2009.

[23] C. A. Yfoulis, and A. Gounaris. Honoring SLAs on cloud
computing services: a control perspective. In Proceedings of
the European Control Conference, 2009.

[24] TINKER Conformer Generator workflow:
http://www.lpds.sztaki.hu/gasuc/index.php?m=6&r=12

[25] The Grid Workloads Archive website:
http://gwa.ewi.tudelft.nl

[26] S. Venugopal, R. Buyya, and L. Winton. A grid service
broker for scheduling e-science applications on global data
grids. Concurrency and Computation: Practice and Experi-
ence, 18(6):685–699, 2006.


