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Scalable Daily Human Behavioral Pattern Mining
from Multivariate Temporal Data

Reza Rawassizadeh, Elaheh Momeni*, Chelsea Dobbins*, Joobin Gharibshah, and Michael Pazzani

Abstract—This work introduces a set of scalable algorithms to identify patterns of human daily behaviors. These patterns are
extracted from multivariate temporal data that have been collected from smartphones. We have exploited sensors that are available on
these devices, and have identified frequent behavioral patterns with a temporal granularity, which has been inspired by the way
individuals segment time into events. These patterns are helpful to both end-users and third parties who provide services based on this
information. We have demonstrated our approach on two real-world datasets and showed that our pattern identification algorithms are
scalable. This scalability makes analysis on resource constrained and small devices such as smartwatches feasible. Traditional data
analysis systems are usually operated in a remote system outside the device. This is largely due to the lack of scalability originating
from software and hardware restrictions of mobile/wearable devices. By analyzing the data on the device, the user has the control over

the data, i.e. privacy, and the network costs will also be removed.

Index Terms—Frequent Pattern Mining, Temporal Granularity, Multivariate Temporal Data, Human-Centric Data

1 INTRODUCTION

The computing and networking capabilities of mobile
and wearable devices, makes them appropriate tools for
obtaining and collecting information about user activities’
(mobile sensing). This has led to a significant expansion of
opportunities to study human behavior ranging from public
transport navigation [1] to well-being [2]. Moreover, the
advent of mobile and wearable devices enables researchers
to unobtrusively identify human behavior to an extent that
was not previously possible. Nevertheless, there is still a
lack of wide acceptance of mobile sensing applications in
real-world settings [3].

There are different reasons for this mismatch between
capability and acceptance. Firstly, the limitation of resources
and a lack of accuracy in the collected contextual data,
especially is a challenge with regard to the battery life [4].
Furthermore, the small size of sensors that are dealing with
radio frequency, i.e. Bluetooth, WiFi and GPS, affects the
quality of their data [5] (the smaller the device, the less
accurate the data). For instance, Figure 1 visualizes two
days of data from two users. As it can bee seen, the location
data (e), WiFi data (A) and other data objects are not
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available at all the time. The next reason is the proximity of
the smartphone to the user, because these devices are not
always carried by their owners [6]. However, smartwatches
and wearables are body-mounted and thus the proximity
problem is less challenging. Lastly, the operating system
restrictions of mobile devices, which removes background
services when the CPU is under a heavy load (in order to
preserve the battery life). As a result, there is no ideal data
collection approach that can sense and record individuals’
information 24/7 with no data loss or uncertainty.

Existing works that support a mobile data mining [7], [8],
[9], [10] have offered very promising results. However,
these studies employ specific hardware, which is known
for data quality among users [7], [8], or they analyze data
offline outside the device [9], [10]. We believe there is
lack of scalable data mining methods that can handle the
uncertainty. In this work, we introduce scalable algori‘chms1
that utilize a variety of sensors e.g. WiFi, location, etc. that are
available on the device. By leveraging collected multivariate
temporal data our algorithms can identify frequent human
behavioral patterns (FBP) with a time estimation (temporal
granularity), similar to the human perception of time.
We have tested our algorithms, and their scalability, on
two real-world datasets, and two small devices, ie. a
smartphone and smarwatch.

Identification of frequent patterns in human behavior
has applications in several domains, which vary from
recommendation systems to health care and transportation
optimization. For instance, a health care application can
monitor a user’s physical activity routine. However, if there
is a change in their routines, which is not recognized or

1.The UbiqLog dataset is available online at this link:
https://goo.gl/rXxfnu. Due to licensing constraints we cannot
make the Device Analyzer dataset available, but an access can be
requested here: https://deviceanalyzer.cl.cam.ac.uk. If the readers are
interested in the UbiqLog cleaning codes and visualization please
contact authors.
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Fig. 1: Two days visualization for the data of two different users. The top two belong to Userl and the bottom ones belongs to
User2. Location and WiFi logs from User1 between 7:00 to 8:00 and Activity logs from User 2 from 5:30 to 6:30 represent the small

temporal differences in human behavior. (best viewed in color)

notified by the user (such as depression related behaviors),
then the system can recognize this and notify care givers
about the change. Another use-case can be transportation
optimization. In order to arrive at the train station on time,
a system can learn the routine commuter patterns of a user,
and notify them about the appropriate time for leaving
toward the station. On the other hand, the scalability (in
terms of resource efficiency) enables on-device and online
analysis, and therefore removes both the network cost and
privacy risks of transferring personal data to the cloud.

The results of our algorithms are a set of identified
FBPs, which is a combination of time stamped
attribute/value (sensor/data) with a confidence level.
For instance, {confidence:60%; 15:00-16:00;
call:#951603XXXX; sms:#951603XXXX} is a user
profile that includes one FBP. This example shows two
repeated behaviors, which are (i) making or receiving a call
and (ii) sending or receiving a text message to 951603XXXX.
These two behaviors have been occurred 60% of the time,
between 15:00-16:00 everyday.

The followings are characteristics and contributions of this
research:

e Real-world Data: We have benefited from using two
real-world datasets. One is a human-centric lifelogging
dataset UbiqLog [11]. This dataset, in comparison with
other mobile sensing datasets [7], [8], has been created
using real-world settings. This is due to the variety of
devices and the users’ ability to turn on/off sensors. The
second dataset that has been used, Device Analyzer [12],
is hardware-centric. This is the largest real-world dataset,
which has been created from Android phones. It includes
timestamped hardware settings and operating system
level changes of phones. Our focus is on human-centric
behaviors. However, our algorithms can also be used to
extract FBP in multivariate temporal data. Therefore, we
have used the Device Analyzer dataset in our evaluations to
demonstrate our algorithms versatility and in-dependency
from the underlying data.

e Temporal Granularity: Unlike digital systems, human
understanding of time is not precise. Our daily behaviors
occur in time intervals. For instance, a person does not
arrive at work every day at exactly the same time, or eat
lunch at exactly the same time every day. A time interval
always exists for routine behaviors, even if it is only a
small break, e.g. five minutes. This is also true for precise
time scheduled tasks, such as a meeting. Therefore, it
is essential to have flexibility in temporal analysis. We
have implemented this dynamic of human behavior by
introducing a simple but novel human-centric femporal
granularity method. Our algorithms use this temporal
granularity instead of the original timestamp. Therefore, it
should not be categorized as a time series approach.

e  Scalability and Sensor Independence: A salient
advantage of our approach is its scalability. It is
lightweight and can be integrated into small devices
with limited computing capabilities, e.g. wearables.
Moreover, notwithstanding its temporal dependency, it
does not consider the type of the underlying sensor data.
We have converted heterogeneous sensor data into three
tuples, which includes sensor name, data and discrete time.
Such sensor independency makes the algorithm capable
of running in settings that include temporal multivariate
data, independent from any specific sensor. Furthermore,
employing a combination of sensors rather than focusing
on specific sensors, and using temporal granularity instead
of exact timestamps, allows us to mitigate uncertainty by
ignoring sensor data that is not available, and focusing
instead on the available data.

Algorithm proposed in this paper has been implemented in
the ”“insight for Wear”? an smartwatch app that is released
into the market and benefit from predictive analytic. At
the time of writing this paper, it is one of the top five
lifelogging, quantified-self app in the Google Play market.
The remainder of this paper is organized as follows: First

2. https:/ /play.google.com/store/apps/details?id=com.insight.insight



we start by formalizing the problem. Then, we describe
datasets that have been utilized. Next, we describe the
implementation of our algorithms; this is followed by the
experimental evaluation. Afterward, we explain related
work and conclude this paper.

2 DEFINITIONS & PROBLEM STATEMENT

We live in a spatio-temporal world and all of our behaviors
occur in a specific location and time [13]. Therefore, to
digitally quantify human behavior the target system should
sense both time and location. Since location sensors, such
as GPS, are not reliable (especially indoors) and it is not
possible to collect this type of data at all time (24/7), we can
only use time to link different information objects together.
We define the problem as follows:

Problem: Given timestamped activities of the user,
assuming they are occurring in a routine, the goal
is to efficiently create a profile, which summarizes
frequent behavioral patterns of a user.
To be able to formulate the problem first we describe our
definitions. Table 1 lists notations that we have used in this
section.

[ Notation | Description |

entity, is a tuple of < A, D, T > that presents a
fine-grained information unit

time interval of the entity based on temporal
granularity, e.g. 16:00-15:00, 12:25-12:30
attribute name of an entity.

value of an entity. In this model per sensor only
one data element will be used.

a set of similar entities (inside a window) that
repeat in a consecutive days.

minimum required number of entities between
the same time intervals of two or more days.
count the number of g appearances

among all days (for each person).

minimum number of repeats for a group to
consider this group in the profile.

a set of similar groups that have been repeated
more than A times.

TABLE 1: Notations and their descriptions.

o)

Wl

Q

)

count(g)

A

profile

Human behavior is composed of many daily activities that
are distinctive and recurring. Here, these types of activities
have been called “frequent behavioral patterns”.

Definition 1: Entity e, is assumed to be a fine-

grained unit of human behavior and consists of a

tuple of three e =< A, D, T >. Each entity contains

a timestamp (time interval), T, attribute name, A,

and attribute value (data) D.
For example, <“activity”,“walking”, 10:25-10:47> is an entity
and A is the “activity”. The first task of quantifying a
frequent behavior is to find entities that are occurring in
the same time interval, in a series of consecutive days. Time
intervals here refer to a normalized notion of the time, based
on the temporal granularity. For example, the given time
of 10:25-10:47 will be normalized to 10:00-11:00. In order
to check if two time intervals of two (or more than two)
days are similar. The number of equal entities in all time
intervals, should be equal or greater than a threshold, which
we call a minimum entities threshold, 6. In other words,
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is the minimum number of similar entities that should exists,
in a specific time interval between two or more consecutive
days. For example, assume 6 has been set to two and we are
comparing two days. In one day we may have <activity,
walking, 10:40-11:00>, <app, skype, 10:50-11:00> then for
the next day we have <activity, walking, 10:40-11:00>, <app,
whatsapp, 10:50-11:00>. Since 0 is set to two, at least two of
these entities should be completely similar between 10:30-
11:00. However, in the given example only one of them is
similar, because there are different data, i.e. D (whatsapp &
skype) for the “app” attribute A. Therefore, the 10:30-11:00
time interval, and its data, will not be counted as a frequent
pattern between two days. We have introduced 6 because
some sensors, such as WiFi, have significantly more records
than other sensors. Consequently, because of the similar
WiFi records, there will be too many similar entities in each
time interval, and not other sensors. Therefore, we define 6
as a filter to force the similarity calculation to operate with
better precision (more than one similar sensor). Here simi-
larity calculation returns “true” for exact equality, otherwise
“false” (not euclidean numerical similarity calculation).

Definition 2: Group ¢, is a collection of similar
entities, for a specific time interval, in a set of
consecutive days. Therefore, g = {e1,e2,...,ex} ,
e € g. In simple terms, if the number of entities
in a specific time interval are greater or equal than
0, then they will be collected in a set and this set
is being called group. T, is a time interval that is
constant among all entities of a group. In other
words, groups are FBPs and the notation of a group
is as follows: g = {Ve : e;(t) = T¢, Zf:o (e) > 6}

k is the number of entities, which is always greater or equal
to 0. e;(t) presents the time interval of the ith entity in the
group. After the groups have been identified, the window
moves to another set of days. To reduce the number of
comparisons windows are disjointed and do not overlap.
We can simply compare entities together without creating
groups. However, group based comparison avoids compu-
tational complexity. Comparing entities for all days together
(without groups) creates a huge burden on performance
O(2"), assuming n is the number of all days. To avoid
this complexity we use the sliding window approach. The
sliding window first compares m (window size) number of
days together, as shown in Figure 3 a. Then it compares
the windows’ results together, i.e. m’ (assuming there will
be m' number of windows). This means the complexity is
O((m)? +m’). m is the size of the window and it is signif-
icantly smaller than n, which is the number of all existing
days. At the end, all of the results from each sliding window
will be compared together to construct the profile that will
be explained later. Moreover, the results that came from
windows includes a fewer amount of entities than simply
comparing all existing entities of between days. Therefore,
the number of comparisons will be significantly reduced
and the computational complexity will become near linear.
We will demonstrate this impact in the evaluation section
later (section 5.2).

The next step is to identify similar groups that have been
repeated frequently among all days (compare results of
windows together). Our initial experiments have resulted a



large number of groups that have been created by compar-
ing between few number of all days. However, the lifetime
of these groups are too short, and thus we can not literally
call them a “frequent behavior”. To remove these groups
we have defined another threshold: lifetime confidence
threshold, A. If the number of identified groups, among all
days, is equal or greater than ), then they will be considered
as frequent patterns and will appear in the Profile. For
instance, within six days worth of data, a windows size of
two (two days will be compared together each time) has
been used and A of three. The result of each windows is as
follows: Window1:91,92, Window2:92,¢3,94, Window3:92,g3 .
Since this example uses A = 3, only g2 will be considered as
a frequent behavior, and all other groups will be neglected.
The profile is described as follows:

Definition 3: Profile, is characterized by a set
of repeated similar groups g which have been
identified more than or equal A times, ie.
Profile = {g1, g2, ..., gr - We can formalize iroﬁle

as: Profile = {Uf:o gi s if(count(g;) > \)

In other words, Profile is a container of groups (FBPs) for
a person or the union between £ number of groups. If the
count is greater or equal to ), then these groups stay in the
profile. The count(g;) function counts the occurrences of a
group g;, among other windows and stores this group in the
profile.

This process results in a single (or multiple if we do the
same for weekends or other specific days) profile for each
user. Each group in the profile has a confidence in per-
centage, similar to the example that has been used in the
introduction. The confidence presents the ratio of repeat for
the target group during the course of analysis. Using the
confidence enables the system to prioritize groups based on
their repeat frequency.

3 DATASET

As previously noted, the development and testing of our
work has benefited from access to two real-world datasets,
UbigLog [11] and Device Analyzer [12]. In contrast with pre-
viously considered smartphone datasets, i.e. Reality Mining
[7] (uses Nokia N6600) and Nokia’s Lausane data campaign
[8] (uses Nokia N95), these datasets were collected in real-
world settings, and have taken into account the device
variety of users. Moreover, in contrast to previous datasets,
they are both contemporary, and thus they consider the
recent trend in the heavy usage of smartphones.

UbiqLog: The open source® UbiqLog [11] application, has
been used to create the UbiqLog dataset. This application
relies on participants’ smartphones and has collected more
than two months of lifelogging data from each participant.
To preserve participants’ privacy, UbigLog is designed in
such a way that participants can disable or enable sensors
at any time. Participants have been asked to enable sensors
that have been listed in Table 2. Activity data have been
obtained from Google Play Services, Contact numbers in
Call and SMS were stored with pseudonymization and
SMS content was completely removed. The data collection

3. https:/ / github.com/rezar/ubiqlog
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process was performed in 2013 and 2014, on 35 partic-
ipants. More description about the UbiqLog dataset and
its participants’ characteristics is provided in [14]. Table

Num. of Num. of
Sensor Name Sensor
Instances Instances
— Name
Wil 8750111 WiEi 2,288,642
Location 725,560 —
Application 98,392,622
SMS 28,849
Call 99 002 Phone 15,719,384
Application ’ SMS 104,643
Usf o 45,803 Bluetooth 9,620
b Analytics 2,910
Proximity 117,236 Power 5,716,330
Activity State | 15,641 System 1,051,175
Audio 4,839,668
All Data 9,782,222 CPU 1143736
TABLE 2: UbiqLog dataset records —— T
ge 2,281,293
for each sensor. All records are -
. . Video 152,397
semantically rich and are human M
emorycard | 83,572
readable records. Therefore, there
. Net 232,954
is no raw sensor data, such as ac- 0 16687
celerometer data, in this dataset. Al Data 132.035.633
TABLE 3: 35 random

users’ records from De-
vice Analyzer dataset.

2 shows a general overview about the data that has been
collected from the participants. With the exception of WiFi
and Bluetooth, which were sampled every six minutes, all
other sensor data objects have been collected as they became
available. Figure 1 presents a visualization of four days of
data for two users, which we created to gain a high level
view of the data. This figure represents the small temporal
differences between user’s activities, within two consecutive
days and illustrates the need for temporal granularity.
Device Analyzer: Device Analyzer [12] is the largest dataset
available that contains hardware statuses and device config-
urations of Android smartphones. It collects data for about
23,000 users and it includes more than 10 billion records of
“raw” sensor data. This is a promising real-world dataset.
However, unlike the UbiqLog dataset, Device Analyzer’s
focus is on hardware-specific information collection and not
user-centric data. Therefore, we cannot perform user-centric
analysis, using this dataset. Nevertheless, since it includes
multi-variate timestamped data, we can use this dataset
to demonstrate the scalability of our approach on other
multivariate timestamped data. 35 random users (equal to
the number of UbiqLog participants) have been chosen for
our experiments. In total 132 million raw data records have
been processed. These data objects include timestamped
information about hardware-related data, such as network
usage, WiFi connections, system processes, high frequency
background services (HF), etc. Table 3 shows the number of
records that we have used in our analysis from 35 users of
the Device Analyzer dataset.

4 FREQUENT BEHAVIORAL PATTERN
IDENTIFICATION ALGORITHMS

In order to implement our algorithms for the problem de-
scribed above, firstly the data format should be converted
from heterogeneous data to machine-processable data, i.e.



the raw data needs to be converted to the previously de-
scribed entity format. As previously stated, the data has
been collected from heterogeneous sources. Some sensors
have multiple values, for instance WiFi has BSSID, SSID
and Capalities (WPA, PSK, etc.). Nevertheless, for each
sensor our model chooses only one value. In particular, each
sensor (attribute) A, requires a single data point (value) D.
Therefore, “BSSID” has been chosen for WiFi and Bluetooth,
the pseudonymized phone number for SMS and Calls,
“process name” for Application and tilting, in-vehicle, on-
bicycle, walking, still, and unknown for the activity sensors
(UbiqLog uses Google play services for activity recognition
and therefore there is no raw accelerometer data inside the
dataset). A similar approach has also been used for the
Device Analyzer dataset, which we do not report it here
to preserve space.

During the second step, we propose an algorithm that
identifies the movement (based on location changes) state,
which will be used to enrich the semantics of the data within
the notion of the location. In third step, we need to convert
the timestamp to a time similar to the human perception of
time. Afterward, in the fourth step we describe the behavior
similarity and FBP detection algorithms. Figure 2 presents
the flow of FBP detection from raw, heterogeneous sensor
data.

Location-State
Identification

Data

Transferation — Time Conversion —»

FBP Detection

Fig. 2: FBP extraction flow from raw hetregenous sensor data.

4.1 Location State Estimation

Red dots (e) in Figure 1 are not just GPS data. They could
also be a combination of Cell-ID, GPS, and any third party
service that provides geographical coordinates. Lamentably,
in a real-world setting, 24/7 geographical coordinates iden-
tification is not possible, especially in indoor environments
and due to battery limitations, GPS is usually turned off.
Cell-ID does provide geographical coordinates and it is
more frequently available, but it is too imprecise for location
recognition [15]. Figure 1 shows the uncertainty that has
been existed among all sensor data. On the other hand,
location state such as being in home, at work, etc. is widely
used for human behavior detection [7], [16], [17], [18].

Previously, there have been a few works [15], [19] that
focus on extracting location from a combination of different
data sources. In contrast, there are several other works
that focus on extracting location from a single source of
information [20], [21], [22], [23] and provide promising
results. Nevertheless, as it has been show in Figure 1 in
a real-world setting we have sparse set of geographical
coordinates but we can benefit from combination of sensors
(WiFi, GPS, CellID). Therefore, we need a novel algorithm
to transform these data to movement state, which could
be moving, stationary or umnknown. Our notion of location
(movement state) is more limited than other spatial based
research efforts, which consider the geographical locations
or trajectories of users. However, our definition has the
two advantages of simplicity and greater availability. The
contribution of location annotation in this work is to be as
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used as a supplementary element to improve the probability
of the FBP detection.

Occasionally, geographical coordinates is completely un-
available, as is the case with the Device Analyzer dataset. In
these cases, the WiFi data has been used for estimating the
location. Based on this description, the location estimation
algorithm must be able to identify location changes from
a combination of sensors (sensor fusion). Furthermore, it
is important to note that our focus is on the data that is
being collected from the users” device (user-centric) and not
a third party service, such as a call detail record (CDR) [24],
[25]. Algorithm 1 presents our location state estimate. The

Algorithm 1: Location state (based on movement) estimation
from different signals.

Data: entities,signalType
Result: results

1 if (isWiFi = signalType) then
2 forall the (locations in entities) do
3 moving < contDif f(locations);
4 if (moving != @) then
5 L results.add(moving) ;
6 else if ( moving = @ &
7 contSim(locations) = @ ) then
8 L results.add(stationary);
9 else
10 L results.add(unknown);
11 else
12 forall the (locations in entities) do
13 locstate < parseGPS(locations);
14 if (locstate = &) then
15 L locstate <— parseOtherSignals(locations);
16 if (locstate = moving) then
17 L results.add(moving) ;
18 else if ( locstate = stationary & contSim(locations) I= &
) then
19 L results.add(stationary);
20 else
21 L results.add(unknown);

22 return results;

algorithm receives a set of entities and a signal type as inputs,
and it returns a list of entities with a location state in the
results. Entities with location states include additional data,
which is the location state. Therefore we have a four tuple
entity.

As the first step, the algorithm checks signalType, line 1. If
the signal type is only WiFi, then it returns true; otherwise,
there is a combination of location signals, and the algorithm
continues from line 11. The contDif f method, at line 3,
searches for a sequence of continuous WiFi BSSIDs, which
have different names. If a sequence exists, and if no WiFi
BSSID has been repeated in the sequence, this is a sign of
a moving event. Therefore, a moving event is created and
appended to the results list (line 5). Otherwise, if there is a
sequence of WiFi BSSIDs, but at least one of them is repeated
(they are not unique), the contSim method returns them,
and a stationary event will be created and appended to the
event list (results) at line 8. For instance, in the sequence
w1, W2, W3, Wq, W1, ws includes two repeated elements, w;
and ws. In this case, the algorithm will create a stationary
event from this sequence. In line 10, if there is no WiFi signal
at all, then an unknown event will be created and appended
to the results list. In summary, the algorithm checks WiFi



BSSID data objects that have appeared sequentially and if
they are not unique, then it creates a stationary event. Oth-
erwise, if there are unique elements, the algorithm creates a
moving event, and if none of these cases exists, then it creates
an unknown event.

If geographical coordinates exist, then the status of the
location is easily recognized. To calculate location state from
geographical coordinates the algorithm checks the differ-
ences between two consecutive points and calculates the
state (if it is moving or stationary). Method parseGP.S, line
13, implements this scenario.

Nevertheless, occasionally the GPS might not be turned
on and so there will be very few GPS logs (mostly when
users are navigating). In the UbiqLog dataset, most location
logs will be from Cell-ID. As it has been described, it is
not possible to precisely identify if the user’s location has
changed or if the cell tower has been switched. Therefore,
the calculation should be flexible with 800 to 1000 meter
accuracy [20]. To cover this precision problem, instead of
calculating the distance between two consecutive points (ge-
ographical coordinates), we calculate the distance between
three consecutive points. If the distance between the first
and third point is more than 800 meters, then we can con-
clude the user is moving. Method parseOtherSignals, line
15, implements the location (movement state) calculation
from Cell-ID data objects.

The complexity of algorithm 1 is linear, O(n), because even
if we assume all coordinates are Cell-IDs there is no need for
a comparison between each element and its two previous
ones. Therefore, in a worst case scenario, we will have a 3n
comparison, which is still a linear complexity.

Afterward, a file is created for each user, which includes
their data. Each of these records contains four elements:
attribute name, timestamp and attribute data, which is a
presentation of a three-tuple entity and location.

4.2 Temporal Granularity

According to Poidevin [26], we do not perceive time in and
of itself, but rather, we perceive changes or events in time.
To be able to model human behavior, a precise machine
timestamp should be transferred to a format similar to
the way humans perceive time. In a more technical sense,
humans perceive events in relation to both location and
time [13]. In contrast to the location, all existing mobile and
wearable devices can record information with a timestamp.
In order to simulate the human perception of time temporal
granularity [27] (TG) will be used. Setting the TG is also
depends on the target application. Here we attempt to make
a TG for the daily behaviors. For instance, every evening a
user may make a phone call. However, it is unlikely that
s/he will call every day exactly at 5:00pm; s/he could call
one day at 5:21pm and another day at 4:53pm. As a result,
we define TGs based on common daily time scheduling, and a
use rounding algorithm to convert times based on the given
precision.

Algorithm 2 is the algorithm for calculating TG. It is simple
and deals only with a timestamp conversion, based on
given precision and predefined rules, thus its computational
complexity is also O(n). Since it could be read easily we save
space and do not describe it in detail. In short, it receive a
day, D;,, with all entities inside that day, and the precision
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for TG such as one hour, half an hour, etc. It then iterates
through time element entities for the given day, and creates
two normalized time (I'mpCeil and TmpFloor) based on
ceiling and flooring the given time. Next, it calculates the
distance between the original time, i.e. D;(T")y, and both
ceil and floor. Afterward, it returns the shortest one that is
either ceil or floor. The returned time objects now substitutes
the original time of the entity.

The TG creation algorithm, from the timestamp, can work

Algorithm 2: Temporal granularity calculation.

Data: D;,,, precision
Result: D¢
1 //iterate through entities of a date for (i=0; (¢ < D;n.e(length))) do
2 // read hour and minutes of current entity
3 TmpCeil < ceil(D;(T)m, precision) ;
4 TmpFloor < floor(D;(T)u,precision) ;
5 Tovs <+ distance(D;(T)u, TmpCeil, TmpFloor) ;
6 Di(T) + Tavs ;
7 Doyt.add(D;(T))
8

return D,q¢;

with different timeframes. However, in our experimental
evaluation, we define six time frames, which have been used
in daily communication: Five minutes (for time-sensitive
tasks such as attending a meeting), a quarter of an hour,
half an hour, an hour, one and half hours and two hours.
This temporal similarity transformation can handle uncer-
tainty by focusing on similar data in a perceptible time in-
terval (i.e. a quarter of an hour, half an hour, etc.). Therefore,
using TG reduces uncertainty originating from different
times of routine behaviors.

4.3 Frequent Behavioral Pattern Detection

After the data has been transformed and its timestamp
has been converted, then the similarity detection algorithm
starts to build groups of similar entities. First, we introduce
the group creation algorithms from similar entities, then we
describe the method that builds users” profiles by filtering
groups. Figure 3 visualizes algorithm 3 that we have

Algorithm 3: Group creation from similar entities.

Data: D;,, s, ws,0
Result: All Detected Groups in a Window

1 grpAll, grpPrev < & ;
2 entArr,entArrNext <+ @ ;
3 while ((D;ns.hasNext) < ws) do
4 / /reading entities of current day
5 entArr < D;,s.current.e;
6 / /reading entities of next day ;
7 entArrNext < D;ps.next.e;
8 / /compare and collect similar entities ;
9 entSimilar < compare(entArr, entArrNext,0) ;
10 // add similar entities into a group;
11 grpTmp.add(entSimilar) ;
12 if (grpPrevious.containsData()) then
13 grpPrevious < getSimilar(grpTmp, grpPrev);
14 grpAll.add(grpPrev) ;
15 else
16 L grpAll.add(grpPrev) ;

17 return groupAll ;

proposed for group creation. The window size is set to be
three (Figure 3 a), one day as a weekend (green boxes) will
be neglected*, and 6 is equal to two. Figure 3 b. shows that

4. The target city of the experiment only has a one-day weekends.



two entities, in each time frame will be compared between
two consecutive days. By comparing two days, D1,W1, with
D2,W2, two groups, G1 and G2, have been extracted. For
the sake of brevity, we have not visualized a comparison
between more than two days. Algorithm 3 receives the input
days, D;ns, window size ws, and minimum threshold 6. In
line 3, it iterates through the days, D;,s, and reads entities
for each day. It then compares the current entities to the
entities of the next day, using the compare method and
keeps the similar ones in a temporary group grpT'mp (lines
9 to 11). If a previous similarity group exists, grpPrev, then
it updates that group via the getSimilar method, in line
13. This process is repeated for the given learning days
and all similar groups in the given window size. Results
will be collected and returned in an array called grpAll.
In summary, each window returns a set of groups. Since

n number of days
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Fig. 3: Group creation based on similarities between entities.
‘D’ presents day and "W’ presents week. Figure a. presents a
sliding window with a size of three. Figure b. presents similar
entities that have been detected between two days; window
size and 6 both are equal to two.

behaviors are just combinations of groups, we can add them
all together to have one set that includes group objects.
This set will be called Profile. Algorithm 4 summarizes
the collected groups and returns the profile object. In line
3, it iterates through the objects of a given group array.
It increases the confidence of repeated group objects and
removes them from the array in line 5 to 8. Next, it calculates
an intersection between groups, and if the appearance of a
group is more than the A threshold (line 10), then this group
will be added to the user’s profile. At the end, it returns the
Profile object. Both algorithms 3 and 4 are linear (as it has
been described in section 2).

Existing works [9], [28] provide association rule mining to
identify correlation between contextual data. However, our
work aims to identify human behavior, instead of the unique
contextual data approach.

4.4 Algorithms Limitations

It is important to note that we still cannot map these
information objects onto all existing real-life events, such
as nested events, e.g. being at work includes drinking
coffee, using a printer, etc. Nevertheless, our work offers

Algorithm 4: Creating profile from groups.

Data: Groups, A

Result: Profile

Profile + @;

// finding similar groups ;

while (Groups.hasNext) do

// two groups are equal ;

if (Groups.next = Groups.current) then
// increase the confidence of the current group
Groups.current.confidence + 1 ;

7 // remove the repeated group ;

8 Groups <+ remove(Groups.next) ;

U WN =

9 // prune groups confidence based on A ;
10 while (Groups.hasNext) do
11 if (Groups.current.confidence > \) then
12 L Profile.add(Groups.current) ;

13 return Profile;

a significant step toward more intuitive understanding of
human behavior (especially with the TG we are using).
Moreover, our approach does not rely on a unique source
or sensor; therefore, data is extracted from multiple sources.
Therefore, if a single sensor fails, its impact is insignificant.
This helps mitigate the problem of uncertainty originates
from the nature of contextual data.

Another important issue with our approach is its behavioral
scope limitation. The model we have proposed here is
time dependent. This approach can identify daily consecutive
behaviors but not all routine behaviors.For instance, going
to the cinema every two or three months or going to a
campaign once a year, is not going to be identified by our
approach. These are routine behaviors, but our approach can
not identify them. A solution to that problem is to collect
all anomalous behaviors and apply the algorithm on the
collection of those behaviors. This solution has not been
explored in this work, because we focus on daily routine
behaviors.

Furthermore, if a behavior occurs in a sparse temporal
settings, such as calling a person every day, at different times
of the day, then it is not considered as a routine behavior.
The current version of our algorithm limits the behavior
comparison in a scope of the sliding window and temporal
granularity. In other word, the routineness of a behavior
should be within the scope of a temporal granularity. Never-
theless, based on the experiment described in [14] there are
very few daily routine behaviors that have sparse temporal
settings.

5 EXPERIMENTAL EVALUATION

The first step in our experimental evaluation is the creation
of a ground truth dataset that can help us in estimating
the accuracy of algorithms. In particular, we evaluate the
accuracy of the FBP identification algorithms based on (i)
different segments of the day, (ii) different TGs, and (iii) we
report about the accuracy of our approach in comparison
to other algorithms. We use Apriori [29], FP-Growth [30] as
a baseline, and MTK [31] and estDec+ [32] as state-of-the-
art algorithms. Apriori is a baseline algortihm for frequent
itemset mining; FP-Growth is a well-known baseline for fast
itemset mining. MTK (Memory-constraint Top-K frequent-
pattern mining) is scalable and can operate in limited
memory environments. estDec+ is a new fast and memory



efficient algorithm that uses a weighted-based approach for
item set mining, which is similar, but significantly more
advanced, than the weighted algorithm has been used by
MobileMiner.

The following experiments describe the next phase of our
evaluation and demonstrate the utility and efficiency of
our algorithms: Firstly, we demonstrate the scalability of
the FBP detection algorithm by analyzing the impact of
window size (WS) and grouping on the execution time.
Our FBP approach is lightweight enough to be used in
wearable and mobile devices. These devices have limited
resources [5], thus investigating the execution time is very
crucial in demonstrating if our approach is scalable on these
devices. Next, we report about the execution time of our
approach and compare it with other algorithms on both
mobile phones and smartwatches. Moreover, we compare
FBP battery and memory utilization with these algorithms.
We then report about the sensor impact on FBP identifica-
tion. This could assist us in identifying the most influential
device sensors that can be used to identify FBPs and remove
unnecessary sensor data collection to preserve disk space
and battery. Finally, we present a statistical overview of the
impact of changing the thresholds (i.e. A and 6), TGs and
sensors on the FBP identification. This can help developers
to identify boundaries to configure these variables so that
they are effective for the sensors.

It is important to note, the focus of this research is on end-
users” behavior and thus the device setting data are not
necessarily representing the users’ behavior. Nevertheless,
we have used the Device Analyzer dataset to demonstrate
the scalability of our algorithm on multivariate temporal
data.

5.1 Accuracy Analysis
5.1.1 Ground Truth Dataset

In order to evaluate the accuracy and quality of the identified
FBPs, we have created a ground truth dataset, which is com-
posed of more than 5,000 identified entities (that participate
in FBPs), from five users. It contains randomly identified
FBP data that has been labeled by the users as either true or
false. The number of identified entities in the profile objects
are different among users, but each user has labeled about
1,000 entities that belong to him /her self. Users were asked
to label if they agree (true) with each of their identified
entities in their profile or if they do not agree (false). Each
user only labels his or her entities and not other users’
behaviors (profile, groups, entities).

5.1.2 Accuracy of Identified FBPs

After collecting the labels, we carefully examined the ac-
curacy of our algorithms using three temporal segments of
the day: 0:00-07:59 (0-8), 08:00-15:59 (8-16) and 16:00-23:59
(16-24) and different TGs. This time based segmentation has
been inspired by similar work in mobile data mining [10],
but it is more accurate than the two divisions proposed by
Ma et al. [10].

The result of labeling shows that FBPs with more than
20% confidence were mostly labeled as positive results, and
lower than 20% confidence were labeled as negative results.
20% seems to be a low confidence level and we believe this
is because of the short lifetime of FBPs that have originated

Number of FBP

by the sparsity of the data.

Based on one hour TGs, Figure 4 shows two segments of
the day 0-8 and 8-16 and contains more accurately identified
FBPs than from the 16-24 segment. This could be attributed
to the fact that between 0-8 is usually a time when a user is
asleep (a very routine behavior) and 8-16 is usually the time
when a user is at work /school (also a routine behavior). Sur-
prisingly, 16-24 (leisure time), has a low likelihood of having
routine behaviors and its accuracy is lower than the other
segments. This is in contrast with our initial hypothesis that
8-16 might have the lowest number of routine behaviors
than the other two segments, because participants in the
UbiqLog dataset were students, and should not have a very
different behaviors from 16-24.

Table 4 reports about the accuracy of the identified FBPs,
based on labels, with different TGs and not using a TG at
all (baseline). The results of this analysis shows that FBP

350

590 - TG| Temporal Segment
300 True 0-8 816 1624 | All
250 oy LoFalse 0" [ 052 056 046 | 048
200 5 1066 062 064 | 062
150 151079 071 072 | 0.65
o0 s 30°] 0.84 0.74 0.70 | 0.69
55 64 60’ 0.84 0.76 0.71 | 0.77
50 n 90’ 0.80 0.75 0.71 | 0.75
0 120{ 0.81 0.73 0.70 | 0.75
0-8 8-16 16-24

Segment of Day

TABLE 4: FBP identification accura-
cy with different temporal segments

Fig. 4: Correct and incorre- o 4 day and different TGs. 0’ is the
ctly labeled FBPs based on p;seline.

time segment for TG=60".

identification accuracy is influenced by different values of
TG and the segmentation of the day. Table 4 shows that
identifying FBPs using “an hour” as the TG improves the
accuracy of the FBP identification, compared to other TGs.
In other words, one hour TG has the highest accuracy
among other TGs. Nevertheless, choosing 15" ,30" ,90" and
120" as TG performs almost the same or slightly lower than
60" but better than 5. The inaccuracy of five minutes is due
to the fact that this TG is too precise for an application to
model human behavior. We can conclude that most routine
human behaviors that can be identified from a smartphone
have a one hour approximation. Nevertheless, we should
consider that the sensitivity of TG is application specific.
For instance, an application can identify FBPs by using
smartwatch heart-rate and physical activity sensors. In this
instance, it should have a short TG so that it can recognize
anomalous hear-rate activities during a routine exercise.

Our other evaluation uses the same users to annotate the
results delivered by similar algorithms, and compares the
accuracy of our FBP algorithm with Apriori, FP-Growth,
MTK and estDec+. Table 5 shows the labeling results of
users. With no TG (baseline) or low (5’) and high (1207)
TG, other methods perform better than FBP. For the rest
of the TGs, FBP outperforms other methods. This accuracy
originates in the use of A and 6. Other algorithms are very
useful for the general problem domain. Nevertheless, for
multivariate temporal data, defining a minimum required
number of entities (#) and filtering noise based on the mini-
mum number of repeated groups (\), results in improved



accuracy. Unlike Apriori, both MTK and estDec+ apply
another level of filtering such as considering top frequent
itemsets by MTK or recent ones by estDec+. Therefore,
baseline algorithms that do not filter have superior accuracy.

[ TG [ Apri  FP-Growth MTK  estDec+ FBP |
0’ 0.55 0.54 0.55 0.51 0.48
5 0.66 0.62 0.62 0.67 0.63
15’ 0.58 0.60 0.63 0.62 0.65
30 0.65 0.63 0.66 0.67 0.69
60" 0.69 0.71 0.68 0.73 0.77
90’ 0.75 0.71 0.70 0.71 0.75
120" | 0.78 0.78 0.77 0.78 0.75

TABLE 5: Accuracy of our FBP algorithm in comparision to
Apriori, FP-Growth, MTK and estDec+ algorithms, with differ-
ent TGs.

5.2 Scalability

Our algorithms must be capable of being integrated into
small devices, which have restricted computational re-
sources compared to desktop computers. In order to demon-
strate that our algorithms are lightweight, we have mea-
sured the execution time, which is the representation of
scalabilty. Moreover, we have chosen to evaluate the exe-
cution time of our algorithm among Apriori and FP-Growth
as baseline algorithms and MTK and estDec+ as state-of-
the-art algorithms. Apriori is the well-known algorithm for
frequent itemset mining. It is not the fastest or most resource
efficient but we have chosen it as a baseline algorithm and
it has been used in other mobile data analysis works [9],
[28]. In contrast, FP-Growth is scalable and is known as a
baseline of the fastest frequent itemset mining algorithms.
Furthermore, MTK and estDec+ both also have been used
as state-of-the-art algorithms that are scalable and fast.

5.2.1 Sliding Window Impact on the Execution Time

Execution time is directly correlated to scalability and scal-
ability is a major contribution of this work. It has been
achieved through (i) the adoption of a sliding window and
(ii) the reduction of the number of comparisons via utilizing
a group based comparison. To demonstrate scalability, firstly

16000
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window, and it compares each day with all the other days.
Figure 5 summarizes these performance changes for both
the UbigLog and Device Analyzer datasets. The legend
on the top-left side in Figure 5 shows the window size
(WS). Since weekend behaviors are different than weekday
behaviors, we recommend to compare them separately from
the weekday data. In particular, we recommend not using
a window size larger than five or six days. However, this
depends on the weekend duration, i.e. if weekends are two
days or one day. Therefore, the upper bound could be the
number of the weekdays.

The results illustrate that increasing the window size signif-
icantly improves the execution time performance. In other
words, a smaller slope means better performance, and in-
creasing the window size decreases the slope significantly
in both datasets. Even increasing the number of days, does
not affect the performance of the FBP algorithm. The results
depicted in Figure 5 belong to one user, for 60 days, and
have been measured on a MacBook with Intel Core 2 Duo
2.4 GHz CPU and 8 GB RAM. Another factor that affects

Num UbiqLog Device Analyzer

Days | Ap. | FG | MTK eD+] FBP | Ap. | FG.| MTK eD+[ FBP
2 0.36] 0.25| 0.34 | 0.45] 047 | 0.33| 0.56] 0.46| 0.51] 0.60
4 0.57] 0.29] 0.35] 0.67] 053 | 0.44] 0.81] 0.76 | 0.57] 0.79
6 1.05] 0.64] 0.40 | 0.83] 0.98 | 1.19] 0.98] 0.88] 0.99] 1.21
8 1.81] 1.09] 0.57 | 093] 1.25 | 1.93] 1.47] 1.56| 1.26] 1.01
10 232] 1.40| 0.68 | 1.02| 1.81 | 2.17| 1.98] 1.69 | 1.34| 1.32
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Fig. 5: The effect of window size (WS) on the execution time
performance.

we have analyzed the execution time performance of the
FBP algorithm with different window sizes for 60 days.
This time frame has been utilized as it covers a significant
period of time so that the capability of the FBP algorithm
can be fully tested. Dealing with a large number of days
is an important requirement in Lifelogging systems, which
use small devices [33]. The baseline here is not using the

TABLE 6: Execution time (in seconds) of the five algorithms,
while “not” using the sliding window, on the Macbook.

the scalability is the use of grouping instead of simple
comparisons. FBPs are designed for multivariate temporal
data. Most of the similar algorithms to FBP are frequent
itemset mining algorithms.

Table 6 reports on the execution time differences (in seconds)
between the algorithms from 2 to 10 days on the same
MacBook machine, without using the sliding window. Our
algorithm outperforms Apriori (Ap.) but it is quite similar
to FP-Growth (FG). Nevertheless, MTK and estDec+ (eD+)
both outperform FBP. Note that the sliding window has
been disabled in this experiment. The next experiments
report with the sliding window enabled.

5.2.2 Comparison with Other Algorithms

We have compared the FBP execution time, memory and bat-
tery utilization of a sample of user data (one user from each
dataset) on both smartphones and smartwatches. Based on
default SPMF library settings [34] minimum support for
all algorithms have been set to two. A, § have been set to
two and a window size of three for FBP has been used.
To port these algorithms we have used the implementation
from SPMF [34], and we have adapted them for Android
devices. For the smartphone test we have used a Nexus 5,
with 2.26 GHz quad-core Krait 400 CPU with 2GB Ram. For
the smartwatch test, we have used a Sony S3, with four core
ARM Cortex-A7 1.2GHz CPU and 512MB Ram. However,
due to small RAM and CPU of smartwatches, a maximum
of 10 of days worth of data has been considered for the
analysis. Otherwise, similar to other resource intensive oper-
ating systems, the Android Wear timeouts the long running
process based on its resource preservation policy.
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Fig. 6: Execution time comparision between FBP and other
algorithms on the smartphone.
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Fig. 7: Execution time comparision between FBP and other
algorithms on the smartwatch.

Figure 6 shows the execution time of running FBP in com-
parison to other algorithms on the smartphone, within the
described settings. Figure 7 shows the execution time of
FBP in comparison to other algorithms on the smartwatch.
For more than six days of analysis, FBP execution time
performance is faster than other algorithms. This has been
highlighted especially as the number of days increases, the
FBP execution time does not change significantly and stays
at a near constant value. It has even outperformed state-of-
the-art algorithms, which are known to be fast and scalable
algorithms that operates on limited memory. However, for
a smaller amount of data, FBP does not perform better than
MTK or estDec+.

Table 7 shows the comparison between FBP and other
algorithms for battery utilization on the smartphone. Re-
spectively Table 8 shows the similar data on the smartwatch.
Table 7 and Table 8 show FBP battery utilization is lower
than all other algorithms, but only with larger than 10
days of data. In particular, for a small number of days
(less than 10 days), there is no significant battery utilization
differences between algorithms, and FBP does not perform
as efficient as others.

It could be argued that a fast execution time can be easily
achieved through increasing the memory usage, which is an
important resource. To demonstrate the scalability based on
memory use, Figure 8 shows the maximum allocated heap
used on the smartphone for both datasets, and it compares
FBP memory use with other algorithms. Respectively, Figure
9 shows FBP the maximum allocated heap memory on the
smartwatch. Figure 8 and Figure 9, show that when the
number of days increases FBP is more memory efficient than
other algorithms. When there are a small number of days
all other algorithms outperforms the FBP. Therefore, from
a memory usage perspective, when there are more than

20 255 | 218 | 225 | 218 | 215 | 625 | 262 | 231 | 234 | 239

30 247 | 234 | 232 | 218 | 220 | 861 | 347 | 352 | 368 | 303

40 285 | 228 | 239 | 221 | 221 911 | 389 | 399 | 413 | 329

50 318 | 268 | 251 | 226 | 227 | 1032| 428 | 417 | 489 | 337

60 346 | 271 | 263 | 240 | 236 1428| 445 | 470 | 519 | 349

TABLE 7: A comparison between battery utilization in micro-
Amper-hour (mAh) of the five algorithms on the smartphone,
for both datasets. Ap. stays for Apriori, FG for FP-Growth and
eD+ for estDec+.

Num UbiqLog Device Analyzer

Days Ap. [ FG [ MTK eD+] FBP | Ap. | FG | MTK eD+| FBP
2 0.03| 0.01] 0.02 | 0.10] 0.018 | 0.34] 0.02] 0.02 | 0.04] 0.05
4 0.03 | 0.03] 0.05| 0.12| 0.31 0.72| 0.06| 0.08 | 0.11] 0.07
6 0.04 | 0.09| 0.09 | 0.13] 0.73 0.81] 0.09] 0.11 | 0.12] 0.19
8 0.09 | 0.18] 0.14 | 0.16] 0.76 0.89] 0.14| 0.11| 0.16] 0.21
10 1.27| 0.23] 0.23 | 0.25| 0.79 094 0.19| 0.17 | 0.21]| 0.25

TABLE 8: A comparison between battery utilization in micro-
Amper-hour (mAh) of five algorithms on the smartwatch, for
both datasets. Ap. stays for Apriori, FG for FP-Growth and eD+
for estDec+.

10 days of data available, FBP is more efficient than other
algorithms. Nevertheless, similar to the battery utilization,
calculating for small number of days, shows that the mem-
ory usage for all algorithms is very insignificant and not
worth for further investigation.

These evaluations demonstrate the scalability of our al-
gorithms, while preserving accuracy. From a technical per-
spective, this superiority is because of: (i) using a sliding
window that filters most of the irrelevant entities, and thus
reduces comparisons significantly. (ii) theta and lambda that
propose two layers of hierarchical filtering and result in
both improving accuracy and reduction in the search space,
which overcomes the state-of-the-art methods [31], [32].

5.3 Users Characteristics

As it has previously been stated, resource utilization is
a challenge on small devices. To mitigate this issue, the
system should be prevented from continuously running our
algorithms. Instead, it is more important to know when the
most appropriate time to run the algorithms are. In partic-
ular, we should know the frequency that these algorithms
should be run. For instance, a group of users could have
routine behaviors during the evening and not many routine
behaviors during the day; if a system learns this, then it will
execute the algorithms only in the evening.

To achieve this goal, we have analyzed the temporal dif-
ferences among users in terms of their routine behaviors.
Identification of these temporal differences enables the tar-
get system to decide about the optimal execution time.

Figure 10 a. shows the distribution of FBPs detected in these
three temporal segments, for all 35 users. The stack bar plot
in Figure 10 a. has been ordered based on the number of
FBPs detected between 0-8. This figure does not visualize
FBP confidence. As previously stated, based on the users’
labels, FBPs that have more than 20% accuracy are highly
frequent behavioral patterns.

After this initial step, the second task is to identify if we can
generalize users’ characteristics on the described temporal
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Fig. 8: Maximum heap allocation memory size (in MB) compar-
ision between FBP and other algorithms on the smartphone.
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Fig. 9: Maximum heap allocation memory size (in MB) com-
parison between FBP and other algorithms on the smartwatch.

segment. In this instance, we have used a topic modeling
approach, latent semantic indexing (LSA) [35], to cluster
users based on their temporal FBPs, within their confidence.
Our approach assumes users as documents and numbers
of FBPs within their temporal segment plus confidence as
terms. These are terms: 0-8 & <20%, 0-8 & >20%, 8-16
& <20%,8-16 & >20%,16-24 & <20%,16-24 & >20%.
Figure 10 (b) shows a multidimensional scaling [36] that has
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Fig. 10: (a) FBP distribution among users in three temporal seg-
ments (0-8, 8-16, 16-24). (b) Multidimensional scaling of clusters
of users based on the temporal distribution of their FBPs. We
have colored the cluster elements based on the characteristics
of the users.

been performed on the results of our LSA clustering. The
two red dots on the top are outliers, which have significantly
different behaviors than other users. These results illustrates
three clusters. C3 presents higher density and it include
users who provide fewer FBPs during 16-24 with a larger
and higher confidence FBPs during 8-16. C2 illustrates users
who have an average number of FBPs (with both low and
high confidence) distributed among two segments: 8-16 and
16-24. C1 presents the third cluster. This cluster has more
identified FBPs at 0-8 temporal segment and fewer FBPs in
the other two segments.
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Understanding the temporal segment with the highest FBP
detection rate enables the system to identify the best execu-
tion time for FBP detection. The fist conclusion we can draw
is that our algorithms could be executed in the time segment
that users have more FBPs (based on the user cluster) and
not in two other time segments. Therefore, we preserve
resources by not executing these algorithms frequently. The
second conclusion is that, this clustering approach assists
the system to reduce the search space through filtering data
that is not being used for the FBP detection. In other words,
if a system knows the target user’s cluster, the FBP detection
algorithms can be applied to only the related temporal
segment(s) and not all of the segments.

5.4 Thresholds and Sensors Effects

This section first provides an overview about sensors effec-
tiveness in FBP detection, based on the time of the day.
Next, it reports about parameter sensitivities. Our approach
is multivariate and sensor independent, but continuously
collecting data and thus analyzing large amounts of infor-
mation is a resource intensive process. Therefore, identifying
the effective sensors in FBP detection, based on time of the
day, could assist us in trimming the data source and thus
not using all of the existing sources 24/7. To gain such
an overview we report on sensors that have participated
in FBPs, based on the time of day. Figure 11 a. shows the
distribution of sensor data based on the time of the day, in
the UbiqLog dataset. Since the number of WiFi and location
logs are significantly larger than other sensors, WiFi and
location have been shown separately in Figure 12 a. Figure
11 b. shows the identified FBPs based on the time of the day
and the number of sensor appearances in FBPs. Similarly,
Figure 12 (b) shows the number of WiFi and Location
records (extracted from Algorithm 1) that have participated
in the creation of FBPs.

For each sensor we have divided the quantity of that sensors
in the FBP logs by the overall number of that sensors in the
dataset. This provides us with the impact ratio (effective-
ness) of the sensor for FBP identification. For instance, the
effectiveness of the activity sensor for FBP detection can be
calculated as: 2,174+ 15,641 = 0.139. 2,174 are the number
of FBP logs that include activity sensors and 15,641 are the
overall number of activity sensor logs in the dataset. In the
UbiqLog dataset, Activity has the highest ratio, followed by
SMS, Location state or movement (based on Algorithm 1),
Application usage, Calls, WiFi and Bluetooth which has the
lowest ratio.

It is notable that the ratio that we have calculated considers
each sensor in abstract, with the creation of our FBPs being
based on a combination of different sources. Therefore, we
do not recommend focusing only on one sensor. Moreover,
we can not generalize these findings to all other ubiquitous
human-centric datasets. Bluetooth data collection, in the
UbiqLog dataset, is based on scanning the environment
every six minutes and logging all available Bluetooth prox-
imities, which might not be applicable in other datasets.
This Bluetooth data collection policy results in sparse Blue-
tooth logs, and thus Bluetooth data is ineffective in FBP
detection. Activity and SMS have a significant role in FBP
identification. At the time of running our data collection
experiment, not all devices were equipped with the Google
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Fig. 11: (a) collected sensor data based on the time of day. (b) identified

FBPs based on sensors and the time of the day.

Play API, which has been used for the activity recognition.
Nevertheless, a large number of FBPs have been created
because of activity data.

The second evaluation has analyzed the impact of variables
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Fig. 13: Average number of FBP (X Axis) for each temporal
granularities, based on different minimum entities threshold(6)
and lifetime confidences threshold()\) (Y axis).

on FBP detection. “Minimum entities threshold”, “lifetime
confidence threshold” and “temporal granularity” are three
configurable variables that have been used in our approach.
We have tested our FBP detection and profiling algorithms
within six different types of TGs: 5’, 15’, 30, 60’, 90, 120" and
0’, which is not using TG. Figure 13 shows the average num-
ber of detected FBPs for each TG, with different minimum
entities thresholds (#) and lifetime confidence threshold (\)
in the UbiqLog dataset. Figure 13 shows that increasing A
and 6 detects a fewer number of FBPs. Moreover, it shows
that the maximum limit for A is four and setting theta to
four is also leaning toward its maximum. Clearly, minimum
for both A and 6 is two, because one means that they are not
in use. As an example for setting these variables consider
a scenario where a system tries to quantify a user’s gym

(not original location).

attendance behavior. If only detecting the location is enough
then 6=1. However, the system may try to detect routine
activities of the user inside the gym. In this case, both
location and activity should be detected then 6=2).

However, results in Figure 13 show that increasing both A
and 6 to more than three reduces the chance of detecting any
FBPs. This is due to the fact that increasing these variables
increases the precision, but lowers the probability of FBP
identification. Based on the maximum number of identified
motifs (# =2) in Figure 13, we demonstrate that it is not
feasible to model and predict human behavior 24 hours a
day, via a smartphone. These findings are in line with [6],
which argues that the smartphone’s proximity to the user,
restricts a 24/7 behavior observation. In addition to this,
Figure 13 shows a possible maximum for the 6. Further-
more, there will be very few FBPs identified with a 0 larger
than three. The value of ) is associated with the number of
identified FBPs, and similar to 6 increasing the A reduces
the number of FBPs. Nevertheless, A is not as effective as 6.
Note that 6 depends on the number of available sensors on
the device. For instance, in the “insight for Wear” example
we have used 2 for . This means two equal sensors in each
temporal granularity represents a routine behavior. A is also
application dependent, we use 2 for A with window size 3,

to consider a behavior in a week as a routine behavior.
6 RELATED WORK

A major contribution of this research is a generic mobile data
mining system. We claim it is generic because of its multi-
sensor support and application independence. Our sec-
ondary contribution is frequent itemset mining algorithms
and their sub components such as analyzing the temporal
aspect of human behavior. Moreover, we discuss algorithms
for location estimation based on users” smartphone data.
Therefore, three categories of related works have been stud-
ied: mobile data mining efforts that focus on device data
collection (not 3rd party providers), frequent itemset mining
algorithms, and location estimation from smartphone data.

Fig. 12: (a) collected WiFi and Location logs (b) identified
FBPs based on WiFi alone and the identified location state



6.1 Mobile Data Mining

Research that relies on collecting data from users” mobile
devices is mostly application-specific and focuses on pre-
dicting one element of data (single sensor). For instance,
a category of research explores activity recognition from
accelerometer data [37], [38]. Recent approaches [37] have
tried to employ a data dictionary and use semi-supervised
learning to learn human activities. This makes the data
mining process lightweight as well as scalable for imple-
mentation on mobile devices. MobileMiner [28] and ACE [9]
are two works that are particularly relevant to our research.
Both studies are very similar and consider the co-occurrence
patterns in human behavior, via mobile phones, through
association rule mining. Their approach is realistic in terms
of deployment. However, they focus on co-occurrences of
more than one data object. In contrast, we have identified
FBPs and not just co-occurrences. Likewise, since we aim for
human behavior detection we benefit from the temporality
of behavior, and thus there is no need to have at least
two data objects available for prediction (one is enough
if the application uses = 1). Another similar work is
[10], which extracts users’ routine behavior by identifying
application usage correlation with time and location. This
work transforms geographical coordinates based on the
time of the day to “work” or “home”. Our location transfor-
mation (movement state estimation) is more accurate than
this transformation, and we include precise time of the day,
while transforming the location.

6.2 Frequent ltemset Mining and Temporal Granularity

As it has been previously stated, our work digitally maps
timestamps for human activities onto human temporal per-
ception. The work most similar to ours is [39], which fo-
cuses on mining users’ daily location patterns via trajectory
mining and defines the TG as a day. Another approach for
identifying daily behavior is within [10], who tries to match
the daily location of users to the applications that they use.
They converted a day into two segments (8:00-18:00 and
18:00-8:00) and model application usage in each of these
segments.

It is important to note that we are dealing with temporal
events that fit into the Allen’s interval algebra [40], and so it
is not about time series analysis [41]. Time series are dealing
with continuous sequences of precisely timestamped data.
For instance, [42] proposed a language for expressing tem-
poral knowledge in time interval. The authors proposed
TKSR (Time Series Knowledge Representation) represen-
tation as a resolution to resolve Allen’s logic limitations
such as handling the ambiguity that exists in overlaps of
Allen’s relation. This work proposes a five stage datamining
approach based on TSKR representation, i.e. (Time Series
Knowledge Mining) TSKM, which focuses on mining co-
incidences and partial orders. Our approach treats data in
a similar fashion but it has focuses on frequent behavior
mining.

Other scalable approaches which are fast and memory ef-
ficient. For instance, the DCI-CLOSED [43] algorithm uses
depth-first visits of the search space and adopts a vertical
bitmap representation of the dataset. The scope of our
behavior identification is a time interval of a temporal
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granularity, therefore our algorithms does not consider if
an itemset is a closed itemset, or not. Two other state-of-
the-art algorithms have also been used in our experimental
evaluation. MTK [31] is an itemset mining algorithm that
operates based on the given memory constraint. It resolves
the issue of creating the FP-Tree in the memory by providing
a customized search §-stair search, which limits the number
of candidates that are generated-and-tested in each database
scan. estDec+ [32] uses the compressible-prefix tree and to
stay memory efficient it keeps only recent frequent itemsets
and neglects the previous ones. Since it is both fast and
memory efficient we use it in our evaluation as one of the
state-of-the-art algorithms.

6.3 Location Estimation from Smartphone

There are several research benefits from utilizing smart-
phone location logs, i.e. GPS, WiFi and Cell-ID, to identify
locations of interest and daily movement patterns. Reality
mining [7], is one of the first efforts toward identifying be-
havior from smartphone contextual data. Their benchmark
location dataset has been used widely in other works [16],
[17], [18]. These works use Reality Mining location data to
identify daily location change patterns. However, recently,
the uncertainty of a realistic deployment has been taken
into account and there are some works have been trying
to support this uncertainty while mining for location data
that has originated from unreliable sensors [18]. Semanti-
cally, location is the most valuable piece of information in
digital human behavior identification, and therefore these
studies map location onto human behavior. However, we
believe that human behavior is not just based on changes in
location, and studies should also include activities that are
happening within the location. Therefore, our interpretation
of human behavior is different from other works. Since our
research can use all of the existing sensors on a device, it
can be extended to any type of human behavior analysis
application. In other words, we benefit from a combination
of sparse information sources and not just one information
source. There is another category of work, which uses trajec-
tory of location [44], [45] for movement pattern prediction
and classification. Since they use geographical coordinates
their notion of location is different than ours.

7 CONCLUSION & FUTURE WORK

In this paper, we have proposed a scalable approach for
daily behavioral pattern mining from multiple sensor in-
formation. This work has been benefited from two real-
world datasets and users who use different smartphone
brands. We use a novel temporal granularity transformation
algorithm that makes changes on timestamps to mirror the
human perception of time. Our frequent behavioral pattern
detection approach is generic and not dependent on a single
source of information; therefore, we have reduced the risk
of uncertainty by relying on a combination of information
sources to identify frequent behavioral patterns. Further-
more, our approach is lightweight enough that it can be run
on small devices, such as smartwatches, and thus reduces
the network and privacy cost of sending data to the cloud.
Results of the experimental evaluation shows our algorithm
outperforms the baseline and two state-of-the-art algorithms



in both execution time and accuracy. Moreover, convert-
ing raw timestamps to temporal granularities increase the
accuracy of the FBP identification, which is influenced by
different values of temporal granularity, the segment of the
day and the sensor type. These findings assist the system in
identifying the appropriate run time and sensor impact of
the behavioral pattern identification.

In our future work, we are trying to model concept drift
and its relation with forgetting or churn that is in the nature
of human behavior. Moreover, we plan to compare the
performance of the sliding window with the performance
of the damped window.
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