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Abstract. Modern time-domain astronomy is capable of collecting a stagger-

ingly large amount of data on millions of objects in real time. This makes it al-

most impossible for objects to be identified manually. Therefore the production 

of methods and systems for the automated classification of time-domain astro-

nomical objects is of great importance. The Liverpool Telescope has a number 

of wide-field image gathering instruments mounted upon its structure. These in-

struments have been in operation since March 2009 gathering data of multi-

degree sized areas of sky around the current field of view of the main telescope. 

Utilizing a Structured Query Language database established by a pre-processing 

operation upon the resultant images, which has identified millions of candidate 

variable stars with multiple time-varying magnitude observations, we applied a 

method designed to extract time-translation invariant features from the time-

series light curves of each object for future input into a classification system. 

These efforts were met with limited success due to noise and uneven sampling 

within the time-series data. Additionally, finely surveying these light curves is a 

processing intensive task. Fortunately, these algorithms are capable of multi-

threaded implementations based on available resources. Therefore we propose a 

new system designed to utilize multiple intelligent agents that distribute the data 

analysis across multiple machines whilst simultaneously a powerful intelligence 

service operates to constrain the light curves and eliminate false signals due to 

noise and local alias periods. This system will be highly scalable, capable of 

operating on a wide range of hardware whilst maintaining the production of ac-

curate features based on the fitting of harmonic models to the light curves with-

in the initial Structural Query Language database. 
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1 Introduction 

Astronomy is entering a period of unprecedented data gathering capability. Advances 

in observational, storage and data processing technologies have allowed for extended 

sky surveys such as the Sloan Digital Sky Survey (SDSS) to be conducted and ex-

ploited [1]. Within the next decade a number of even larger surveys are planned such 

as the Large Synoptic Survey Telescope (LSST) [2]. Technology is now at a point 

where it has become possible to gather data on wide regions of the sky repeatedly 

over variable time periods [3]. This data can be analyzed through the use of periodo-

grams to identify periodic structure. This periodic structure can then be used to create 

physical models by fitting weighted regression learning algorithms. These methods 

can provide us with valuable knowledge about the presence and classification of as-

tronomical objects that are periodically changing in time as well as identifying transi-

ent phenomena [4]. 

 

Time domain astronomy is a research area characterized by the large datasets gen-

erated by sky surveys containing time-series data [5]. Time-series data contains in-

formation on the temporal component of measurements and the whole time-series 

contains observations across multiple epochs. In many environments this time-series 

data can be gathered regularly and often. This simplifies the statistical analysis by 

supplying a large number of observations with consistent time intervals between indi-

vidual observations. However, in Time-Domain Astronomy, it is common for these 

observations to have a significantly uneven distribution in time with inconsistent in-

tervals between observations [6]. A major cause of this is weather limitations that can 

prevent telescope operation for uncertain periods of time. As a result, astronomy 

maintains a demand for data processing techniques capable of the automated pro-

cessing of time-series data on individual objects that can contain observations over 

the space of days followed by no additional observations for a period of months. 

 

In this paper we propose a new theoretical platform for the analysis of this vast 

quantity of time-domain astronomy data by introducing intelligent-agents. A typical 

agent is a type of computer system that is embedded in a type of environment that is 

capable of conducting an autonomous action within that environment in order to meet 

its objectives. An Intelligent Agent on the other hand is an extension of this approach 

with the ability to make decisions and adapt to its changing environment. 

 

The rest of this paper is structured as follows. In Section 2, the background of 

time-domain astronomy is discussed with reference made to the numerous classifiable 

objects. Section 3 introduces the Small Telescopes Installed at the Liverpool Tele-

scope (STILT) instruments, wide field imaging devices and the pre-processing pipe-

line used to construct an Structured Query Language (SQL) time-series database from 

the raw images. In Section 4, the feature extraction is discussed through using light 

curve model fitting resulting in the extraction of important, magnitude and phase in-

dependent, features. In Section 5, a system utilizing intelligent-agents is proposed for 
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the successful processing and classification of numerous light curves. The final con-

clusions and proposals of future work are provided within Section 6. 

2 Background 

Astronomical time-series data is generated through the production of wide-angle im-

ages of the sky. The intensity of the image pixels is determined by the activation of 

the Charge-Coupled Device (CCD) cameras pixels by incoming light from multiple 

astronomical objects with some background noise and detection bias from the camera 

[3]. As a result, each image contains important information about the brightness of the 

detected objects. By identifying objects in multiple images with different observation 

times, information on the change of the brightness of these objects can be determined. 

The resulting brightness-over-time data for each individual object is called the objects 

light curve [3, 7]. 

 

Many astronomical objects exhibit brightness variability due to a large number of 

differing physical processes that uniquely influence an object’s light curve. Therefore, 

the light curve can be used in the classification of variable objects based on the signa-

ture of these physical processes and the detection of unknown candidate objects or 

even unknown variability phenomena [8]. The first major type of variable astronomi-

cal phenomenon is Variable Stars [9]. Variable stars are unstable stars and undergo 

periods of pulsation where they grow and contract in size [10]. These size oscillations 

produce changes to the stars temperature and brightness resulting in a measurable 

change upon the light curves [3, 7]. Two common types of pulsating stars are Cepheid 

and RR Lyrae variables [10]. These different types of variability produce their own 

signature light curve profile. The light curves of these pulsating stars can be used to 

produce descriptive features. Models produced from these features can then be used to 

identify the class of candidate variable objects and the period of their oscillations. For 

certain classes of object which also exhibit a specific period-brightness relation, it can 

also be used to determine the object’s mass the distance it is located from Earth [7]. 

 

A second important type of variable object is the eclipsing binary [11]. In these 

systems, two or more stars are in close proximity to each other and execute orbits 

around a common gravitational center-point. The close proximity of the stars often 

means that they cannot be distinguished on an image and appear as a single source of 

light. Variations in these objects are caused by the plane of the orbit aligning with the 

view from Earth. As a result, one star periodically passes in front of another resulting 

in a change in the brightness of the source of light in the astronomical images. Analy-

sis of the light curves of eclipsing binary candidate light sources can be used to de-

termine the number and types of star present within the system as well as their mass 

and orbital period. This process can also be caused by exoplanetary transits, another 

important research area in modern astronomy where one of the objects is a planet 

orbiting a parent star. 

 



Finally, there are also transient events that result in harder-to-predict phenomena 

[4]. Flare Stars are stars that can undergo occasional outbursts due to magnetic and 

plasma processes within their atmospheres. These events can be repetitive but not 

usually with the degree of periodicity of variable stars. For purely transient events, 

two of the most studied examples are Novae and Supernovae caused by the cataclys-

mic eruption of stellar material, producing some of the brightness objects in the 

known universe as the victim star is destroyed or badly disrupted during the event. 

Other common transient phenomena are Gamma Ray Bursts caused by a number of 

physical events including the collapse of supermassive stars into black holes and 

Gravitational Microlensing events when the light from a background object is bright-

ened by lensing due to a dark, massive object moving in the foreground. 

3 The STILT Dataset 

The Small Telescopes Installed at the Liverpool Telescope (STILT) dataset is a wide 

field object SQL database. It contains 1.24 billion separate object observations of 

27.74 million independent stellar objects. It was generated through the pre-processing 

of observational images gathered by the STILT instruments [3]. The Liverpool Tele-

scope is located at the Observatorio del Roque de los Muchachos on La Palma [12]. 

The STILT instruments consist of three cameras with varying field of views mounted 

directly to the body of the main Liverpool Telescope aimed co-parallel with the main 

telescope’s field of view. 

 

The first instrument, SkycamA is capable of imaging the entire sky from La Palma. 

It is primarily used for monitoring the status of weather but it can be of use in the 

detection of bright transient objects. This camera does not contribute any observations 

to the STILT database. The next camera is named SkycamT and is responsible for 

most of the observations. It is a single CCD camera capable of detecting light across 

the visible spectrum with a wide-angle lens with a field of view of 21 by 21 degrees 

and a magnitude limit of +12. Finally, the remainder of the database is constructed 

from observations by the SkycamZ instrument. This instrument contains a CCD cam-

era which is also capable of detecting light from across the visible spectrum attached 

to a small telescope with a field of view of only one by one degree but with a greatly 

increased magnitude limit of +18. The database contains time-series data on the mag-

nitude of detected objects over a period of time from March 2009 to March 2012 [3]. 

It makes use of the SExtractor software to identify potential objects and the astrome-

try.net software to correctly assign celestial coordinates to each object [13, 14]. 

 

As the Skycam images are centered on the view of the main Liverpool Telescope, 

observations of specific objects are only recorded when they are within the field of 

view of the camera as the telescope is focused within the vicinity of the objects. This 

results in time-series with uneven length gaps between observations, greatly increas-

ing the difficulty of identifying variations in the magnitude of the observations. 
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4 Feature Extraction 

The astronomical time-series gathered by the Skycam instruments can contain a num-

ber of periodic features buried within measurement and sampling noise. In order to 

identify variable objects, these features must be extracted from the data and expressed 

as a fixed set of parameters that describe the state of the specific object. By collecting 

sufficient features it may be possible for a classification algorithm to successfully 

discriminate between many different types of variable object based on the physics and 

timings that govern them [15]. 

 

We begin our analysis using a methodology proposed by Debosscher et al. in 2007 

and improved upon by Richards et al. in 2011 [16, 4]. The goal is to describe the 

time-series data for each object as a set of harmonic features that are invariant to the 

objects mean magnitude and time-translation phase allowing the features to be direct-

ly compared to other objects of differing classes. The whole SkycamT database used 

in this investigation is 180 GB in size with 20 GB of indexes for faster query response 

times. For each object, a set methodology is applied to generate an associated feature 

vector. The database is queried for all observations of a specific object. The returned 

table has its magnitude, modified Julian date and magnitude error columns retrieved. 

The identification of the dominant periodic oscillation within the object’s time-series 

is then required. There are a number of possible algorithms that can be deployed on 

uneven time-series. 

 

Phase dispersion minimization [17] and the String Length Lafler-Kinman (SLLK) 

statistic can identify how well-aligned data points are placed in phase-space across a 

sample range of periods [18]. This is accomplished through computing the distance 

between each data point in phase space. This calculation is performed across a fre-

quency spectrum of candidate frequencies. Upon the alignment of the data points at a 

frequency close to (or a multiple of) the true frequency, this statistic is minimized 

[18]. An extension to this idea of aligning data within phase space is a recently pro-

posed periodogram based on the Blum-Kiefer-Rosenblatt (BKR) statistical independ-

ence test [19]. Instead of utilizing the alignment of the data such as in the string-

length methods, a rank correlation test is performed on the phase-folded data within 

each candidate period phase space. As the phase folded light curve aligns at a strong 

period, the correlation between the magnitude and phase of each data point rises. The 

peak of this correlation is a good candidate frequency and can be determined from 

time-series of limited size [19]. There also exist Information Theoretic approaches 

such as slotted correntropy and the improved Correntropy Kernelized Periodogram 

(CKP) [20] that have proven to be very effective and are a focus for future initiatives 

on the Skycam database [7]. However, for this initial investigation, the methodology 

proposed by Debosscher et al. in 2007 is utilized [16]. Therefore, a Lomb-Scargle 

Periodogram (LSP) is utilized to identify the primary periodic signal within the data. 

The Lomb-Scargle Periodogram algorithm utilized in this method was produced by 

Thomas Ruf originally for biological periodic pattern recognition [21]. 

 



The Lomb-Scargle Periodogram uses a least-squares spectral analysis. It is a meth-

od of estimating the frequency spectrum of time-series data by the fitting of multiple 

sinusoids to the data using least-squares regression [6, 4]. Like the phase dispersion 

minimization this method is performed over a frequency range resulting in the statis-

tic normalized power that has a larger value if the fitted sinusoid has a lower chi-

squared error with a candidate frequency. It operates over a frequency range with a 

finite set of candidate frequencies separated by intervals. As the objects in the data-

base can have low and high period variations, this interval is set as constant to pro-

duce a uniform sample across the full frequency range. The lowest frequency is the 

longest period that can be expected to be detected by the periodogram. It is defined as 

the reciprocal of the difference between the maximum and minimum modified Julian 

Date of the object’s observations named the total observation time 𝑡𝑡𝑜𝑡. The maxi-

mum frequency is an interesting discussion area and is related to the minimum peri-

ods that can be found from an object’s data. Hypothetically scanning down to the 

minimum possible periods for variable stars is recommended. However, for some 

pulsating white dwarf stars, this can be as low as 1-2 minutes [16]. The Lomb-Scargle 

Periodogram is not limited to a Nyquist frequency [4]. However, at very high fre-

quencies many noisy peaks can be generated as any data can be fitted well to a model 

with such high frequencies. In previous methods, a Pseudo-Nyquist frequency was 

proposed for the determining of a maximum frequency for unevenly sampled data 

which approximates the Nyquist frequency by taking the mean of the individual time 

intervals between the observations of an object. This equation is shown in equation 1. 

𝑓𝑛𝑦𝑞 = 0.5 〈
1

Δ𝑇
〉 (1) 

Where 𝑓𝑛𝑦𝑞 is the Pseudo-Nyquist frequency and Δ𝑇 is the time intervals between 

observations of an object. In the Richards et al. methodology, the frequencies could 

rise beyond this value with the periodogram normalized power subjected to a soft 

penalty term that weakens the peaks beyond the Pseudo-Nyquist frequency based on 

the relative difference between this frequency and the candidate frequency [4]. So far 

this mechanism has yet to be implemented in this investigation of the STILT data-

base. Currently the maximum frequency is simply limited to the Pseudo-Nyquist fre-

quency as utilized in the Debosscher et al. methodology [16]. 

 

This frequency is determined by the mean intervals between observations in an un-

even time-series. Gaps in observations are not considered uneven observations and 

instead are just considered times with a lack of observations and do not contribute to 

the calculation of the Pseudo-Nyquist frequency. Despite this distinction, a globally 

accepted definition of a ‘gap’ and an ‘uneven sample’ was not identified. Therefore 

we attempt to approach this problem to provide a good solution. Theoretically, the 

time intervals between observations could all be considered gaps. This is not really 

possible as the start and stop times of Skycam observations are unlikely to be an inte-

ger number of minutes (the interval between exposures). Ignoring this, theoretically 

the sampling rate could be the Nyquist frequency of the evenly sampled exposure 

intervals which is half of the reciprocal of a minute, 720 cycles per day, equivalent to 
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a period of 2 minutes.  For the example with no gaps, every interval is included in the 

calculation of the Pseudo-Nyquist frequency. This results in a frequency that may 

result in the loss of low period signals from the periodogram. 

 

Evidence suggests that neither of these options is ideal. For example, the dominant 

period of the star RR Lyrae has been determined as 0.5668 days [22]. From the 

STILT data for this star, if none of the time intervals are considered gaps, the Pseudo-

Nyquist frequency results in a minimum detectable period of approximately 0.7 days. 

No candidate frequencies would be evaluated by the periodogram near the 0.5668 day 

period. By manually allowing for larger frequency range, this period is detected as the 

dominant period. Conversely, if the 720 cycles per day frequency is used as the 

Nyquist-frequency as described above, the frequency spectrum is dense enough to 

result in extreme processing load from the periodogram. 

 

As previously discussed, an adequate definition of what time intervals are to be 

considered gaps and which are to be considered unevenly sampled intervals would be 

advantageous. Currently we have defined a gap as an interval greater than two stand-

ard deviations for this method. This is unlikely to be an acceptable final answer as the 

standard deviation has limited meaning on non-normal distributions. Future experi-

ments will investigate this question in order to provide a more concrete definition. 

 

Finally, the frequency step between candidate frequencies must be determined to 

produce a frequency spectrum with a finite number of frequencies. Both Debosscher 

et al. and Richards et al. make use of a frequency step of 0.1 divided by the total ob-

servation time as defined above [16, 4]. In this method the frequency step is defined 

as shown in equation 2. 

𝑓𝑠𝑡𝑒𝑝 =  
1

𝑜𝑣𝑠𝑚 × 𝑡𝑡𝑜𝑡 
 (2) 

Where 𝑓𝑠𝑡𝑒𝑝 is the frequency step, 𝑡𝑡𝑜𝑡 is the total observation time as defined above 

and 𝑜𝑣𝑠𝑚 is the oversampling factor. When the oversampling factor is set to 10 the 

frequency step equates to that used in the previous methods [16, 4]. Our early experi-

ments suggest this might be too fine a frequency grid for the STILT data as noisy 

peaks seem to be produced with this oversampling factor for some objects such as the 

previously mentioned RR Lyrae. The best results for this star appear to be generated 

with an oversampling factor of between 2 and 6. Interestingly, for the light source 

Algol, an eclipsing binary system, an oversampling factor of 10 is required to identify 

the correct period. This remains a challenge in the development of this method. When 

the Lomb-Scargle Periodogram is applied to the time-series observational data, the 

frequency associated with the maximum power is recorded as the primary frequency. 

 

An additional operation to eliminate periodicities caused by the sampling times is 

also performed. This is accomplished by creating a randomized dataset based on the 

object magnitude but with the same observation times. Any periodicities found by the 

periodogram in this randomized dataset are purely due to the sampling times. There-



fore, this power spectrum is subtracted from the power spectrum produced by the true 

time-series to eliminate any peak values not associated with actual variability in the 

objects magnitude values. Additionally, local synodic periods caused by light varia-

tions near Earth such as 0.5 days (solar half-day cycle), one day (solar day cycle) and 

29.5 days (lunar synodic period) and associated alias periods are removed. 

 

Upon the determination of the candidate period, a harmonic model with a linear 

trend is then fitted with this period across the time-series data. In order for the model 

to have the degree of freedom required to accurately fit the data, artificial data points 

are bound into the time-series. These artificial data points have a uniform distribution 

in time and a magnitude equal to the mean magnitude of the time-series. The artificial 

data points must be assigned zero weight as to not contribute to the model optimiza-

tion. As the weights were defined as the reciprocal of the magnitude error, the artifi-

cial data points are assigned a magnitude error of positive infinity. Weighted linear 

regression is then performed on this new time-series to fit a four-harmonic sinusoid 

model using the period detected by the periodogram. This model has ten coefficients 

and is demonstrated by Equation 3. The symbols within the equation are explained 

under Equation 4. 

𝑦(𝑡) =  𝑐𝑡 + ∑ {𝑎𝑗  𝑠𝑖𝑛(2𝜋𝑗𝑓1𝑡) + 𝑏𝑗 𝑐𝑜𝑠(2𝜋𝑗𝑓1𝑡)}4
𝑗=1 + 𝑏0 (3) 

This model is then subtracted from the time-series in a process called pre-

whitening. This is done as to eliminate any periodic activity within the time-series 

based on the dominant period detected by the periodogram. This pre-whitened time-

series is then used to identify a second period independent of the first dominant peri-

od. A harmonic model is then fit for this period and subtracted off in a second pre-

whitening phase. Finally, a third period is identified independent to the first two peri-

ods. The time-series is then restored to the original time-series archived prior to these 

operations. A harmonic best-fit is again computed by weighted linear regression using 

a model with twenty six coefficients is utilized as shown in Equation 4. 

𝑦(𝑡) =  𝑐𝑡 + ∑ ∑ {𝑎𝑖𝑗  𝑠𝑖𝑛(2𝜋𝑗𝑓𝑖𝑡) +  𝑏𝑖𝑗  𝑐𝑜𝑠(2𝜋𝑗𝑓𝑖𝑡)}4
𝑗=1

3
𝑖=1 +  𝑏0 (4) 

Where the 𝑏0 parameter is the mean magnitude of the light curve and the 𝑐 parameter 

is the linear trend of the time-series. By calculating this linear trend in the same re-

gression operation as the sinusoidal models, a time-series with a non-integer number 

of wavelengths within the sampling period (with a corresponding trend) will not inter-

fere with the linear trend caused by a gradual brightening or dimming of the object, an 

important feature for classification. The frequencies 𝑓𝑖 and the coefficients 𝑎𝑖𝑗  and 𝑏𝑖𝑗  

are retained and provide a good description of the light curve as long as it is periodic 

and well-described by a sum of sinusoids. These coefficients are not yet time-

translation invariant and must be transformed into better descriptors of the light curve. 

This is accomplished by transforming the Fourier coefficients into a set of amplitudes 

𝐴𝑖𝑗 and phases 𝑃𝐻𝑖𝑗 . The amplitudes are computed by equation 5 and the phases by 

equation 6 derived from trigonometric identities [16]. 
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𝐴𝑖𝑗 =  √𝑎𝑖𝑗
2 + 𝑏𝑖𝑗

2
 (5) 

𝑃𝐻𝑖𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏𝑖𝑗 ,  𝑎𝑖𝑗) (6) 

The phases are not yet time-translation invariant and are defined relative to 𝑃𝐻11, the 

phase of the first harmonic of the dominant period using equation 7. 

𝑃𝐻𝑖𝑗
′ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏𝑖𝑗 ,  𝑎𝑖𝑗) −  (

𝑖 𝑓𝑖

 𝑓1
) 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏11,  𝑎11) (7) 

The phases are then constrained between −𝜋 to +𝜋 by the transformation in equation 

8. For simplicity the double dash is dropped through the rest of the paper. 

𝑃𝐻𝑖𝑗
′′ = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑠𝑖𝑛(𝑃𝐻𝑖𝑗

′), 𝑐𝑜𝑠(𝑃𝐻𝑖𝑗
′)) (8) 

As long as the light curves are well described as monoperiodic this results in the 

production of twenty eight features that are time-translation invariant. Monoperiodic 

light curves are those that oscillate with one dominant period primarily due to radial 

pulsations [23]. This assumption does not hold for all potential variable stars but as 

the primary period is usually highly dominant, this assumption is a good approxima-

tion [16]. These features include the slope of the linear trend, the three frequencies 

used in the final harmonic model, the twelve amplitude coefficients and eleven phase 

coefficients (as 𝑃𝐻11 is always zero it is discarded) and the ratio of data variance 

(called variance ratio) between the variance before the pre-whitening of the harmonic 

model of the primary period and after. This statistic is a strong indicator of the im-

portance of the primary period to the light curve relative to the other periods. These 

features are assembled into a feature vector and recorded as a row within a table of 

feature vectors where the columns are features and the rows are each object found 

within the original SQL query criteria. 

 

These features have been successfully implemented into classifiers by Debosscher 

et al in 2007 and Richards et al. in 2011 [16, 4]. These studies made use of well sam-

pled datasets collected by orbital space telescopes and large collaborations. The Skyc-

amT database has very sparse and noisy time-series data. Additionally, the Lomb-

Scargle Periodogram is known to strongly identify periodicities for variable stars that 

are highly sinusoidal such as Mira-class variables. But it can also struggle with less 

sinusoidal light curves such as eclipsing binaries occasionally missing the period of 

offering a multiple of the correct period instead of the true period. 

 

Figure 1 demonstrates the model produced by the described method for the Skyc-

amT data collected on the star Mira, the prototype of the Mira class variables showing 

a clear sinusoidal oscillation. The period of Mira has been widely reported as 332 

days, verified by surveys such as HIPPARCOS [24]. Despite the discussed weakness-

es, if the periodogram returns a result similar to the stars correct period, the linear 

regression can produce an accurate model despite the prevalence of noise within the 

time-series data. The model is not a perfect fit but should be sufficient to generate 



features within the ranges expected of Mira class variables. 

 

Fig. 1.  

The light curve of the star Mira with a harmonic fit with a primary period of 316 days com-

pared to the accepted value of 332 days. Despite this two week discrepancy, the harmonic mod-

el is a close match to the data producing features suitable for future classification algorithms. 

A good solution for improving the accuracy of the period search is to incorporate a 

more powerful period finding algorithm such as the correntropy kernelized periodo-

gram with information potential. This method does not assume the variations are si-

nusoidal and has verifiably improved success [7]. The artificial data points have al-

lowed the harmonic fits the degree of freedom required to fit the unevenly sampled 

magnitude data resulting in powerful fits such as that demonstrated by figure 2. 

 

Unfortunately this has also resulted in situations where the model deviates drasti-

cally in the non-sampled regions due to ‘noisy fringes’ in the data. The linear regres-

sion is resilient to noise and can evaluate the signals within very poor data. However, 

coupled with the uneven sampling rate, the noise can result in the linear regression 

entering a region devoid of data whilst fitting for a steeper or shallower gradient due 

to the noise of these last data points. As a result the amplitude of the sinusoids can 

peak beyond a physically realistic state. A new feature has been implemented which 

is assigned the value of one when the model peaks outside of the mean plus or minus 

two times the standard deviation of the  object’s time-series and zero otherwise. This 

will allow for any future method to identify unrealistic fits due to this phenomenon. 
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Fig. 2.  

A harmonic fit on the star 1243-0264228. By allowing the model to vary within the non-

sampled spaces, a superior harmonic fit can be constructed. However, the primary 29.6 day 

period seen here is likely due to variations in ambient light due to the lunar synodic period. 

Finally, as the object database exhibits 27.74 million independent stellar objects, 

the performance of the analysis system is of great concern. Fortunately, the weighted 

linear regression is implemented using a very efficient normal equation method. 

Therefore the Lomb-Scargle Periodogram which is 𝑂(𝑁2) in processing complexity 

is the primary processing component of this analysis method. This order is a result of 

needing to run every observation of an object over a high resolution frequency spec-

trum to extract the dominate periods otherwise important harmonic variations may be 

missed. The observations cannot be subjected to stochastic or mini-batch operations 

as each observation refined the range of the harmonic least-squares fitting. They are 

all interdependent for this operation. On the other hand, the frequency spectrum can 

contain tens of thousands of candidate periods to be evaluated. Each period, regard-

less of proximity to each other, is completely independent. Therefore, this loop can be 

performed stochastically in parallel as the result is the same whether each candidate 

period is run on the same CPU core or across thousands of separate CPU cores. This 

allows the Lomb-Scargle Periodogram to be heavily multithreaded if the hardware 

exists for considerable performance improvement. 

5 Proposed Solution 

In order to significantly improve performance, we propose a system that makes use of 

multiple intelligent agents to subdivide the processing tasks between multiple clusters 

whilst simultaneously a new ‘intelligence service’ will constantly monitor the models 

being generated by the individual agents. This intelligence system will learn stochas-

tically as models are continuously generated for the light curves of different objects. 



We use intelligent agents for this task as they are capable of continuously making 

decisions based on the quantity of data being processed and the system resources 

available [25]. The proposed framework will be dynamic and modular as well as scal-

able in nature. The modular aspect of the framework will allow a user the ability to 

develop tasks as well as the type of strategies used when replicating an agent. This 

dynamic aspect of the framework allows it to be scalable by using replication. 

 

Due to the modularity of the framework, a user has the ability to define their tasks. 

Depending on the tasks and the environment that will be operated; the agent will ei-

ther know in advance when it is first started or at which time in the future. There are 

two distinct scenarios in which these agents can operate. In the first scenario, an agent 

is processing some calculations in a static SQL Database. The agent will know in 

advance the size of the tables required for the tasks by conducting a count to retrieve 

the size and it can compute the amount of agents and the tasks that needs to be pro-

cessed on each agent depending on the user’s pre-defined discretion. In the second 

scenario, an agent is processing in-frequent amounts of data bursts, sometimes small 

amounts of data and sometimes large amounts of data in a timely manner. The agent 

will have to monitor its resources and depending on the threshold defined by the user 

the agent can determine if it can complete the tasks in the required time [25]. When an 

agent has decided it can either not complete the tasks or has reached a point that it no 

longer can complete its task due to the load then it will replicate itself. This is the 

dynamic and scalable aspect of the framework because the agent has to make a deci-

sion that it cannot complete its tasks and has to offload some tasks to another agent. 

This decision is made from what we call ‘the dynamic strategy’ by looking at the 

resources of the host machine and comparing them with the threshold defined by the 

user. This is only used for the replication phase. 

 

Once an agent has requested a replication then that agent will only run the first task 

and the newly replicated agent will run the remaining tasks. When that agent has de-

cided that it can no longer complete the tasks in a suitable time period then it will 

replicate itself again. Every time an agent starts to struggle due to the load then it will 

replicate itself until each task is running on a single agent. Previously replication has 

mainly been used for fault tolerance [26, 27, 28]. However, we are using replication 

for performance and scalability increase. Some tasks could possibly be synchronous 

and some tasks may be asynchronous. This means that tasks could possibly rely on 

results computed from previous tasks and some tasks may be independent and can run 

in parallel. We define two types of task, synchronous tasks that rely on the result from 

a previous task or asynchronous tasks that rely on a type of data either from a previ-

ous tasks result or based on the source data. 

 

The system will contain two types of agents, ‘The Task Agent’ and ‘The Resource 

Management Agent / Resource Controller’. When an agent wants to replicate itself, it 

will contact all Resource Management agents on the network to see if any resources 

are available for it to replicate and responses will be send back informing the replicat-

ing agent of the amount of usable resources available on each of the machine. If an 
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appropriate amount of resources are available then the agent will request the resource 

management agent to replicate the task agent. When replicating, the resource man-

agement agent will spawn a container for the replicated agent to run within with a 

specific amount of resources that the user has defined for the task [29]. We choose to 

containerize the agent for two reasons. Firstly, containerizing the agent allows us to 

isolate the agent from other agents on the machine while also having the capability to 

deploy the agent almost instantly due to their minimal runtime requirements. Second-

ly, we can configure the container to only use a specific amount of resources, for ex-

ample a predefined number of CPU Cores and percentage of usage for each CPU, 

allowing for more control over the resources allocated to the replicated agent [30]. 

Figure 3 demonstrates the structure of this replication sequence. 

 

 

Fig. 3.  

The sequence of operations involved in agent replication. 

The proposed system for the processing of astronomical light curves will be using 

the static Skycam database. This means that no new entries are ever added to the da-

tabase and the data is left standalone. We will use a static based strategy as we know 

that the database is not going to be updated. This strategy will count the number of 

objects in the database and then based on the quantity of resources allocated to each 

agent, a decision that the programmer has made when building their strategy, will 

either allow a single agent to conduct all the tasks utilizing the total resources (as 

shown in figure 4) or each machine running an instance of the Resource Management 

Agent will spawn task agents to run the tasks for multiple objects simultaneously. 

 

 

Fig. 4.  

A single agent is capable of running every task. 



Whilst the multi-agents distribute the processing tasks generating the harmonic best-

fit models, a second intelligence service operates independently. This service moni-

tors the outbound models and determines whether they are physically realistic or a 

result of overfitting on noise or a false period. This service with have a confidence 

threshold which dictates how well the model has fit the time-series data based on its 

trained state. If it has a low confidence it attempts to modify the model based on pre-

vious patterns that have been discovered within the multiple objects light curves pro-

cessed previously. The intelligence service is always operating using stochastic, su-

pervised learning trained using the known light curves of well sampled objects of 

each variability class to continuously improve its prediction based on the models be-

ing continuously produced by the agents on the multiple objects currently being pro-

cessed. This system is envisaged to use a form of neural network containing multiple 

models based on the different light curve profiles discovered. Both Recurrent and 

Convolutional neural networks have been shown to be potent at predicting time-series 

[31, 32]. Additionally, these methods can be extended into deep learning through the 

addition of more layers if the light curves require the production of more powerful 

features. In the event of a harmonic fit model receiving a low confidence, the intelli-

gence service will attempt to construct a new harmonic model using neural networks 

trained on the previous high confidence models through the stochastic learning pro-

cess. 

 

In order to reduce noise, techniques such as wavelet analysis can also be applied 

[31]. Wavelet analysis has previously been used successfully in the process of creat-

ing abstract images of Gamma Ray Burst transient events that retain both temporal 

and spectral features for classification [33]. It is very difficult to simply filter the 

noise from the time-series data as the noise has an amplitude very similar to many of 

the signals. This amplitude is approximately 0.2 magnitudes. More work is needed in 

order to refine the design of this intelligence service. However, we are hopeful that 

the combination of scalable processing and accurate time-series predictions will lead 

to high performance processing of the STILT database through the generation of ro-

bust features by supervised and unsupervised learning for future multi-class classifi-

cation analysis. 

6 Conclusion and Future work 

The weighted linear regression harmonic best-fit models can be used to produce time-

translation invariant features from uneven time-series. The STILT database contains 

many objects with sufficient noise and uneven sampling to result in poor or physically 

unrealistic harmonic models. The Lomb-Scargle Periodogram can produce multiples 

of the correct period and occasionally it misses the periodic signal completely. This 

problem is exaggerated by light curves exhibiting highly non-sinusoidal signals such 

as eclipsing binaries. Replacing the Lomb-Scargle Periodogram with a more powerful 

and less limiting algorithm such as the correntropy kernelized periodogram might 

alleviate this problem. The proposed solution seeks to introduce scalability and multi-
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threading for the high performance processing of the STILT database. This is accom-

plished through the use of a multiple intelligent agent platform. This platform is capa-

ble of distributing the processing tasks across multiple available machines as required 

based on the processing workload and available resources. Finally, a new intelligence 

service using more powerful machine learning algorithms such as Recurrent and Con-

volutional neural networks can regulate the models generated by the harmonic best-fit 

producing results that are consistent with astrophysical processes despite the degree of 

freedom available to the weighted linear regression.  Our future work will involve the 

incorporation of the proposed methods into a newly developed data analytics plat-

form. Following this, the models produced can be evaluated through testing previous-

ly classified variable objects in the STILT dataset as well as sourcing external datasets 

for comparative results. These efforts allow the production of robust light curve fea-

tures that are well placed for future incorporation into a powerful multi-class classifi-

cation system to rapidly and intelligently perform automated identification of all vari-

able objects within the STILT database. This methodology can then be extended to all 

other noisy light curve for a complete survey of all variable objects present within the 

night sky. 

Acknowledgment 

This work was funded through a Liverpool John Moores University scholarship in 

partial fulfilment of the requirements for the degree of Doctor of Philosophy. This 

paper makes use of the SkycamT database as developed by Neil Mawson as part of 

his PhD research and Professor Iain Steele of the Astrophysics Research Institute at 

Liverpool John Moores University. The raw images were gathered by the STILT 

instruments located on the Liverpool Telescope located on La Palma, Canary Islands 

and administered by Liverpool John Moores University. 

References 

[1]  D. G. York, J. Adelman, et al., "The Sloan Digital Sky Survey: Technical Sum-

mary," The Astronomical Journal, vol. 120, no. 3, pp. 1579-2000, 2000.  

[2]  Z. e. a. Ivezic, "LSST: from science drivers to reference design and anticipated 

data products," ArXiv e-prints, 2011.  

[3]  N. R. Mawson, I. A. Steele and R. J. Smith, "STILT: System design and perfor-

mance," Astronomische Nachrichten, vol. 334, no. 7, pp. 729-737, 2013.  

[4]  J. W. Richards, D. L. Starr, et al., "On Machine-Learned Classification of Varia-

ble Stars with Sparse and Noisy Time-Series Data," The Astrophysics Journal, 

vol. 733, no. 1, p. 10, 2011.  

[5]  S. Vaughan, "Random time series in astronomy," Philosophical Transactions of 

the Royal Society, vol. 371, no. 20110549, 2011.  



[6]  J. D. Scargle, "Studies in Astronomical Time Series Analysis. II. Statistical as-

pects of spectral analysis of unevenly spaced data," The Astrophysical Journal, 

vol. 263, pp. 835-853, 1982.  

[7]  P. Huijse, P. A. Estévez, et al., "An Information Theoretic Algorithm for Finding 

Periodicities in Stellar Light Curves," IEEE Transactions on Signal Processing, 

vol. 60, no. 10, pp. 5135-5145, 2012.  

[8]  P. Protopapas, J. M. Giammarco, et al., "Finding outlier light curves in cata-

logues of periodic variable stars," The Royal Astronomical Society, Monthly No-

tices, vol. 369, pp. 677-696, 2006.  

[9]  L. Eyer and N. Mowlavi, "Variable stars across the observational hr diagram," 

Journal of Physics: Conference Series, vol. 118, no. 1, p. 012010, 2008.  

[10]  J. Percy, Understanding Variable Stars, Cambridge University Press, 2007.  

[11]  D. M. LaCourse, K. J. Jek, et al., "Kepler eclipsing binary stars - VI. Identifica-

tion of eclipsing binaries in the K2 Campaign o data set," Monthly Notices of the 

Royal Astronomical Society, vol. 452, no. 4, pp. 3561-3592, 2015.  

[12]  I. A. Steele, R. J. Smith, et al., "The Liverpool Telescope: performance and first 

results.," in Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, 2004.  

[13]  E. Bertin and S. Arnouts, "SExtractor: Software for source extraction," Astron-

omy & Astrophysics Supplement Series, no. 117, pp. 393-404, 1996.  

[14]  D. Lang, D. W. Hogg, et al., "Astrometry.net: Blind astrometric calibration of 

arbitrary astronomical images," The Astronomical Journal, vol. 139, no. 5, p. 

1782, 2010.  

[15]  J. S. Bloom and J. W. Richards, "Data Mining and Machine-Learning in Time-

Domain Discovery and Classification," in Advances in Machine Learning and 

Data Mining for Astronomy, Taylor & Francis Group, 2011.  

[16]  J. Debosscher, L. M. Sarro, et al., "Automated supervised classification of varia-

ble stars I. Methodology," Astronomy and Astrophysics, no. 475, pp. 1159-1183, 

2007.  

[17]  R. F. Stellingwerf, "Period Determination using Phase Dispersion Minimiza-

tion," The Astrophysical Journal, vol. 224, pp. 953-960, 1978.  

[18]  D. Clarke, "String/Rope length methods using the Lafler-Kinman statistic," As-

tronomy and Astrophysics, vol. 2, no. 386, pp. 763-774, 2002.  

[19]  S. Zucker, "Detection of Periodicity Based on Independence Tests - II. Improved 

Serial Independence Measure," Monthly Notices Letters of the Royal Astronom-

ical Society, vol. 1, no. 457, pp. 118-121, 2016.  

[20]  W. Liu, P. P. Pokharel and J. C. Principe, "Correntropy: A Localized Similarity 

Measure," in Neural Networks, 2006. IJCNN '06. International Joint Conference 

on, Vancouver, BC, 2006.  

[21]  T. Ruf, "The Lomb-Scargle Periodogram in Biological Rhythm Research: Anal-

ysis of Incomplete and Unequally Spaced Time-Series," Biological Rhythm Re-

search, no. 30, pp. 178-201, 1999.  

[22]  K. Kolenberg, S. Bryson, et al., "Kepler photometry of the prototypical Blazhko 

star RR Lyr: An old friend seen in a new light," Monthly Notices of the Royal 

Astronomical Society, no. 411, p. 878, 2011.  



 17 

[23]  C. Aerts, S. V. Marchenko, et al., "Delta Ceti is not Monoperiodic: Seismic 

Modeling of a Beta Cephei star from MOST Space-based Photometry," The As-

trophysical Journal, vol. 642, pp. 470-477, 2006.  

[24]  T. R. Bedding and A. A. Zulstra, "HIPPARCOS Period-Luminosity relations for 

Mira and semiregular variables," The Astrophysical Journal, vol. 506, pp. 47-50, 

1998.  

[25]  L. Padgham and M. Winikoff, Developing Intelligent Agent Systems, A practical 

guide, Melbourne, Australia: John Wiley & Sons Ltd, 2004.  

[26]  A. d. L. Almeida, S. Aknine, et al., "Plan-Based Replication for Fault-Tolerant 

Multi-Agent Systems," in Parallel and Distributed Processing Symposium, 2006, 

IPDPS 2006. 20th International, Rhodes Island, 2006.  

[27]  Z. Guessoum, N. Faci and J.-P. Briot, "Adaptive replication of large-scale multi-

agent systems: towards a fault-tolerant multi-agent platform," in SELMAS '05 

Proceedings of the fourth international workshop on Software engineering for 

large-scale multi-agent systems, New York, NY, USA, 2005.  

[28]  D. Sylvain, Z. Guessoum and M. Ziane, "Adaptive Replication in Fault-Tolerant 

Multi-Agent Systems," in Web Intelligence and Intelligent Agent Technology 

(WI-IAT), 2011 IEEE/WIC/ACM International Conference on, Lyon, 2011.  

[29]  Docker, "What is Docker? Understand how Docker works and how you can use 

it.," 2016. [Online]. Available: https://www.docker.com/what-docker. [Accessed 

01 03 2016]. 

[30]  Docker, "Docker Run Reference," 2016. [Online]. Available: 

https://docs.docker.com/engine/reference/run/. [Accessed 01 03 2016]. 

[31]  M. Langkvist, L. Karlsson and A. Loutfi, "A review of unsupervised feature 

learning and deep learning for time-series modeling," Pattern Recognition Let-

ters, vol. 1, no. 42, pp. 11-24, 2014.  

[32]  M. Dalto, "Deep neural networks for time series prediction with applications in 

ultra-short-term wind forecasting," in Industrial Technology (ICIT), 2015 IEEE 

International Conference on, Seville, 2015.  

[33]  T. N. Ukwatta and P. R. Wozniak, "Integrating Temporal and Spectral Features 

of Astronomical Data Using Wavelet Analysis for Source Classification," in 

2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Imaging: 

Earth and Beyond , Washington DC, 2015. 


